
Zhang et al. Cybersecurity (2026) 9:123
https://doi.org/10.1186/s42400-026-00559-6

RESEARCH

Attribute‑based publicly verifiable secret
sharing
Liang Zhang1,2†   , Xingyu Wu1†, Qiuling Yue1*, Haibin Kan3 and Jiheng Zhang2 

Abstract 

Can a dealer share a secret without knowing the shareholders? We provide a positive answer to this question by intro-
ducing the concept of an attribute-based secret sharing (AB-SS) scheme.With AB-SS, a dealer can distribute a secret
based on attributes rather than specific individuals or shareholders. Only authorized users whose attributes satisfy
a given access structure can recover the secret. Furthermore, we introduce the concept of attribute-based publicly
verifiable secret sharing (AB-PVSS). An AB-PVSS scheme allows external users to verify the correctness of all broadcast
messages from the dealer and shareholders, similar to a traditional PVSS scheme. Additionally, AB-SS (or AB-PVSS)
distinguishes itself from traditional SS (or PVSS) by enabling a dealer to generate shares according to an arbitrary
monotone access structure.To build an AB-PVSS scheme, we first implement a decentralized ciphertext-policy
attribute-based encryption (CP-ABE) scheme, though not a fully-fledged one.We then incorporate non-interactive
zero-knowledge (NIZK) proofs to enable public verification of the CP-ABE ciphertext. Based on the CP-ABE and NIZK
proofs, we construct an AB-PVSS primitive.Finally, we conduct security analysis and comprehensive experiments
on the proposed CP-ABE and AB-PVSS schemes. The results demonstrate that both schemes exhibit plausible perfor-
mance compared to related works.

Keywords  Attribute-based secret sharing, Decentralized CP-ABE, Attribute-based publicly verifiable secret sharing,
NIZK

Introduction
A secret sharing (SS) scheme (Shamir 1979) is a cryp-
tographic primitive where a dealer commits to a secret,
which can only be recovered by a threshold number of
shareholders. However, in an SS scheme, a dealer can
broadcast invalid shares to deviate from the protocol.
To address this issue, a verifiable secret sharing (VSS)
scheme (Feldman 1987) ensures that the dealer behaves

honestly, as shareholders can verify the validity of the
dealer’s shares through corresponding proofs. Building
on this, a publicly verifiable secret sharing (PVSS) scheme
(Ruiz and Villar 2005; Schoenmakers 1999; Heidarvand
and Villar 2009; Jhanwar et al. 2014; Stadler 1996; Cas-
cudo and David 2017, 2020; Cascudo et al. 2022; Cascudo
and David 2024; Gentry et al. 2022; Fujisaki and Okamoto
1998) allows the dealer to publish shares publicly, ena-
bling any external user to verify the dealer’s honesty in a
non-interactive manner. PVSS is fundamental in secure
multi-party computation (SMPC) applications, especially
when fault-tolerance, public communication channels or
public verifiability is required. These SMPC applications
include but not limited to public distributed randomness
beacon (Cascudo and David 2017; Syta et al. 2017), byz-
antine agreement (Bessani et al. 2008), blockchain con-
sensus (Kiayias et al. 2017) and fair exchange (Avoine and
Vaudenay 2004; Zhang et al. 2024).

Open Access

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Cybersecurity

†L. Zhang, X. Wu contributed equally to this work.

*Correspondence:
Qiuling Yue
yueqiuling@hainanu.edu.cn
1 School of Cyberspace Security (School of Cryptology), Hainan University,
Renmin Road 58, Haikou 570228, China
2 Industrial Engineering and Decision Analytics, Hong Kong University
of Science and Technology, Clear Water Bay, Hong Kong, China
3 School of Computer Science, Fudan University, Handan Road 220,
Shanghai 200433, China

https://orcid.org/0000-0001-6393-5872
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-026-00559-6&domain=pdf

Page 2 of 13Zhang et al. Cybersecurity (2026) 9:123

Traditional (PV)SS schemes enable the dealer to share
a secret with specific shareholders. Some other works
have extended this concept to more complex scenarios
where shareholders are organized hierarchically, such
as in weighted access structures (WAS) (Shamir 1979;
Beimel et al. 2005), disjunctive access structures (DAS)
(Belenkiy 2008), conjunctive access structures (CAS)
(Tassa 2007), and compartmented access structures
(Tassa and Dyn 2009; Chen et al. 2021) However, these
access structures represent particular instances of arbi-
trary monotone access structures when applied in secret
sharing schemes. Consequently, the resulting secret shar-
ing schemes are limited in their applicability. An arbitrary
monotone access structure allows a dealer to distribute
shares according to more flexible and versatile policies.
The question of whether it is possible to construct (PV)
SS schemes with more general attribute-based access
structures remains an open problem.

In this paper, we fill the gap by proposing an attrib-
ute-based secret sharing (AB-SS) scheme and an attrib-
ute-based publicly verifiable secret sharing (AB-PVSS)
scheme. AB-SS and AB-PVSS schemes adopt a general
access structure, providing versatile and fine-grained
access control policies. More importantly, AB-SS quali-
fies a dealer to share a secret according to attributes,
rather than concrete shareholders. We construct an
AB-SS scheme by studying how SS schemes are leveraged
in BSW CP-ABE (Bethencourt et al. 2007)and achieve an
AB-PVSS scheme based on a newly proposed lightweight
decentralized CP-ABE. The decentralized CP-ABE uses
secret shares only once1 in the ciphertext. Furthermore,
an encryptor can incorporate an arbitrary number of
users as the authorities when generating a ciphertext,
making the CP-ABE scheme decentralized. Different
from traditional decentralized CP-ABE schemes (Lewko
and Waters 2011; Rouselakis and Waters 2015) our pro-
posed scheme requires the ciphertext as an input to the
key-generation algorithm. This design limits key reusabil-
ity, where keys cannot be applied interchangeably across
distinct ciphertexts. Furthermore, in order to enable
encryptors to prove knowledge of plaintext, we use Sigma
protocol (Damgård 2002)and Fiat-Shamir (FS) heuristic
(Fiat and Shamir 1986)to obtain NIZK proofs for the pro-
posed decentralized CP-ABE.

The contributions are summarized as follows:

•	 We put forward the concept of attribute-based secret
sharing (AB-SS), allowing a dealer to share/hide a

secret according to attributes, rather than individuals
or shareholders. Further, we define attribute-based
publicly verifiable secret sharing (AB-PVSS), which
not only inherit the advantage of AB-SS scheme, but
also extends the functionalities of PVSS schemes.

•	 To implement an AB-PVSS scheme, we propose a
more efficient decentralized CP-ABE scheme. The
main idea of the proposed CP-ABE is that we use
secret shares only once in Encrypt algorithm. To
prove plaintext knowledge of the proposed CP-ABE
ciphertext, we achieve NIZK proofs by incorporating
Sigma protocol with Fiat-Shamir heuristic.

•	 Comprehensive complexity analysis and experi-
ments are conducted for both the proposed CP-ABE
scheme and AB-PVSS scheme. The results show that
both schemes outperform respective related works.

Preliminaries
Access control policy

Definition 1  (Access Structure (Beimel et al. 2005))
Let A = {a1, a2, . . . , an} be a set of attribute and A be its
power set. A collection Ŵ ∈ A is an access structure, if
it meets the following two conditions: (1) if B ∈ Ŵ , then
|B| �= 0 . (2) if B ∈ Ŵ , B ⊆ C , then C ∈ Ŵ.

If B ∈ Ŵ , we call it authorized, and if B /∈ Ŵ , we call it
unauthorized.

Armed with the knowledge of access structure, we will
frequently use another related concept, access control
policy (ACP), in the subsequent article. ACP can be
regarded as an instance of access structure, enabling only
qualified users to access specific resources. Access con-
trol policy acp can be represented using a tree structure,
containing attribute strings. Each leaf node of the tree is
an attribute string appeared in acp. Each non-leaf node
represents the threshold gate, described by its direct
children and a threshold value. A policy is satisfied only
when enough (the threshold-gate value) attributes are
combined. The collection of the qualified attributes is
called an authorized attribute set.

Decentralized CP‑ABE
Decentralized ciphertext-policy attribute-based encryp-
tion (CP-ABE) scheme is defined as below, slightly modi-
fied from previous schemes (Lewko and Waters 2011;
Rouselakis and Waters 2015) The main modification is
that partial ciphertext Cui is input of key generation algo-
rithm for authority i.1  Traditional CP-ABE schemes use secret shares multiple times (Bethen-

court et al. 2007; Lewko and Waters 2011; Rouselakis and Waters 2015) in
the encryption algorithm, providing the opportunity to reduce ciphertext
size and the numbers of cryptograhpic operations.

Page 3 of 13Zhang et al. Cybersecurity (2026) 9:123 	

•	 GP ← GlobalSetup(�) . It takes in the security
parameter � and outputs global parameters GP.

•	 (ski,pki) ← AuthSetup(GP) . Each authority i takes
GP as input to produce a key pair ( ski , pki).

•	 C ← Encrypt(s, acp,GID,GP, {pki}) . The algorithm
takes in GP , a message s ∈ G0 , an access control pol-
icy acp, an identity GID , and a set of public keys {pki} .
Let U denote all the attributes (leaf nodes’ value) that
appear in acp. It outputs a ciphertext C = (C0, {Cui}) ,
where ui ∈ U is the attribute value controlled by
authority i.

•	 Kui ← KeyGen(GP,Cui ,ui, ski) . The algorithm takes
in GP , an attribute ui belonging to the authority i, a
ciphertext Cui associated with the attribute ui and an
authority’s secret key ski . It produces a decryption
key Kui . If a set {ui} satisfies an access control policy
acp, we say the corresponding set {Kui} is an author-
ized key set.

•	 s ← Decrypt(GID,C ,GP, {Kui }) . The decryption
algorithm takes in GP , the ciphertext C, and a col-
lection of decryption keys {Kui} . Only if {Kui} is an
authorized key set for the access control policy acp in
C, it outputs the message s.

The security game is defined by Definition 2.

Definition 2  (Security Game) The decentralized CP-
ABE security model is defined through the following
game2:

•	 Setup: The challenger runs GlobalSetup(�) to gen-
erate global parameters GP and obtains a key pair
( ski,pki ) for each authority via AuthSetup(GP) algo-
rithm. Then, it sends all public parameters to the
adversary.

•	 Challenge: The adversary constructs a challenge
access control policy acp∗ . Then, it sends two equal
length messages ( s0 , s1 ), acp∗ and GID to the chal-
lenger. The challenger randomly chooses b ∈ {0, 1}
and encrypts sb with acp∗ to obtain the result-
ant ciphertext C∗ = (C0, {Cui}) which is sent to the
adversary.

•	 Query: By constructing each attribute value ui=“attr j
@AUTHi ”, the adversary queries a decryption key
Kui from the challenger. Denote all the queried attrib-

utes as set U ′ ={“attr j@AUTHi”}∀j,∀i . After current
phase, any S ⊆ 2U

′ does not satisfy acp∗.
•	 Guess: The adversary outputs a guess b′ of b.

The scheme is breakable if an adversary has a non-neg-
ligible advantage in correctly guessing the bit b in the
above security game.

Sigma protocol and NIZK proof
In generic linear relationship Sigma protocol (Damgård
2002) a prover P can prove zero knowledge of
X = {x1, ..., xm} for Y, where Y = h

x1
1
...hxmm and h1, ..., hm

are generators of G , as follows:

Hash is modeled as a random oracle, as required
by Fiat-Shamir heuristic (Fiat and Shamir 1986) Y ′ is
called the commitment value, c is the challenge value
and {x̃1, ..., ˜xm} the response value. The transcript
(Y ′, c, {x̃1, ..., ˜xm}) is called a conversation between P and
V. The transcript is also regarded as NIZK proof proofsX
for proving knowledge of owning X.

A sigma protocol is required to achieve following secu-
rity properties.

•	 Correctness: If P is honest, honest V always outputs
True.

•	 Knowledge soundness: Given two correct conver-
sations (Y ′, c, {xi}) and (Y ′, c′, {x′i}) where c = c′ , it is
efficient to extract the private value X.

•	 Special honest verifier zero knowledge (HVZK):
The proof proofsX conveys no information about X
other than the validity of the statement Y .

Attribute‑based secret sharing

Definition 3  (Attribute-based Secret Sharing) An
attribute-based secret sharing scheme (AB-SS) is defined
with following two phases.

(1) Distribution Phase: The dealer chooses an ACP
Ŵ and takes a secret s ∈ Zq as input. Then using a rand-
omized algorithm Share(Ŵ, s) −→ {s1, s2, · · · , s|Ŵ|} to
output shares, where |Ŵ| is the number of leaf nodes in Ŵ.

2  In the CP-ABE defined in Sect. 2.2, ciphertext should be generated before
decryption keys. It is unnecessary to define a query phase before the chal-
lenge phase, which is required in previous works (Bethencourt et al. 2007;
Lewko and Waters 2011)

Page 4 of 13Zhang et al. Cybersecurity (2026) 9:123

(2) Reconstruction phase: Using a deterministic algo-
rithm Recon(Ŵ, S) −→ s to reconstruct the secret, if S is
an authorized attribute set for Ŵ , i.e., S ∈ Ŵ.

AB-SS is a secret sharing scheme that allows a dealer
to share a secret based on attributes, not individuals
or shareholders. We give an AB-SS instance which is
inspired by the BSW CP-ABE construction (Bethencourt
et al. 2007) as below.

In the Distribution phase, the dealer constructs an
ACP tree Ŵ to share a secret s. Denote U be the set con-
taining all the attribute values of leaf nodes in Ŵ . Each
non-leaf node has a pre-defined threshold value. Then,
each (leaf and non-leaf) node in Ŵ is attached with a
value. For each node x, define a polynomial px with
degree dx , where dx is one less than the threshold value.
Next, set px(0) = pparent(x)(index(x)) for any other node
x, where the parent function returns x’s parent and the
index function represents x’s index value in its parent.
Firstly, s is attached to the root node R. Subsequently,
through the top-down manner, we can calculate a bind-
ing value for each (leaf and non-leaf) node. Finally, the
secret share for attribute ui is defined as pui(H(ui)) and
the values of non-leaf node are discarded. For simplicity,
H maps the |U| attributes to integers belong to [1, |U|].

In the Reconstruction phase, given an authorized
attribute set S ∈ Ŵ , the dealer’s secret is recovered in
a down-top manner. For each non-leaf node, its value
is recovered by its direct children nodes’ values, using
Lagrange interpolation (Berrut and Trefethen 2004).
Finally, s is recovered.

Efficient decentralized CP‑ABE
Construction
In this section, we propose an efficient decentralized CP-
ABE. The notations are following those in Sect. 3. Let G0
be a group of prime order q, and let g0 be generators of
G0 . � is the security parameter, determining the size of
the groups. Figure 1 shows the proposed decentralized
CP-ABE construction.

The GlobalSetup algorithm chooses group G0 of prime
order q with generator g0 . Also, it defines a hash function
H : {0, 1}∗ → Zq which is modeled as a random oracle.
The function maps an arbitrary value to a random ele-
ment in Zq.

The AuthSetup algorithm takes in the global parame-
ters GP = {g0,G0,H} , and authority i randomly chooses
ski ∈ Zq and calculates the corresponding public key
pki = g

ski
0

.
The Encrypt algorithm takes in the a secret/plaintext s,

an access control policy acp, the global parameters GP ,
a global identifier GID and public keys {pki} . Denote T
be the access control policy acp tree. Each non-leaf node

of T has a pre-defined threshold value. In the algorithm,
each node of the access control policy tree is attached to
a value and the value is calculated in a top-down man-
ner. As clarified in Sect. 2.1, the secret sharing phase of
the SS scheme is conducted for each non-leaf node in the
Encrypt algorithm. Denote U be the set containing all the
values of leaf nodes in acp. For each node (or attribute
value) x, define a polynomial px with dx , where dx is one
less than the threshold value. s is the random value for
the root node R. Then, set px(0) = pparent(x)(index(x))
for any other node x, where the parent function returns
x’s parent and the index function represents x’s index
value in its parent. Finally, computes the ciphertext
C = (C0 = s · g

w·H(GID)
0

, {Cui = pk
pui (0)·H(ui)

i }∀ui∈U)   ,
where ui represents each attribute in the access control
policy, H(ui) binds to the attribute ui and H(GID) serves
to uniquely identify each CP-ABE ciphertext.3

The KeyGen algorithm invoked by authority i gen-
erates its key Kui for attribute value ui as follows:
Kui = C

1/ski
ui = g

pui (0)·H(ui)

0
 . Since we propose a decen-

tralized CP-ABE, multiple authorities exist. Here, ui is
used to represent that the attribute value is controlled by
authority i.

Fig. 1  Construction of the decentralized CP-ABE

3  The use of GID follows decentralized CP-ABE schemes (Lewko and
Waters 2011; Rouselakis and Waters 2015).

Page 5 of 13Zhang et al. Cybersecurity (2026) 9:123 	

As opposed to Encrypt algorithm, the secret recon-
struction phase of the SS scheme is included in the
Decrypt algorithm, taking ciphertext C, GP and an
authorized key set {Kui} as the input. Define
µ(Z) =

∏

j,k∈Z,j �=k
k

k−j be the Lagrange coefficient. The
Decrypt algorithm is a recursive operation from down to
top with the following two rules:

•	 For any leaf node x with attribute value ui , set recov-
ered value Fx = K

H(GID)/H(ui)
ui = g

px(0)·H(GID)
0

 . px
means the randomly chosen polynomial of node x.

•	 For a non-leaf node x with arbitrary child node z,
denote Fz be the recovered value for node z, Sx be
an arbitrary authorized attribute set for node x, S′x is
defined as S′x = {index(z) : z ∈ Sx} . If {Kui} does not
comprise of an authorized key set, return ⊥ for the
Decrypt algorithm. Otherwise, calculate:

Hence, we recursively obtain gw·H(GID) for the
root node of tree T. Finally, calculate plaintext
M = C0/g

pR(0)·H(GID)
0

 , since pR(0) = w.

Security analysis

Theorem 1

Under the DL assumption, the proposed CP-ABE scheme
is secure against a static probabilistic polynomial time
adversary.

Proof
We say that a CP-ABE scheme is secure if for any polyno-
mial time adversary, whose attributes set U ′ do not sat-
isfy the access control policy acp∗ , has a negligible advan-
tage in the security game (by Definition 2) played against
a challenger. Suppose the adversary can break the DL
assumption with advantage of η . The security game goes
as follows:

•	 Setup: The challenger runs GlobalSetup(�)
to generate global parameters GP and invokes
AuthSetup(GP) to obtain a key pair ( ski,pki ) for
each authority. Then, it sends all public parameters to
the adversary.

Fx =
∏

z∈Sx
F
µ(S′x)
z

=
∏

z∈Sx
(g

pz(0)·H(GID)
0

)µ(S
′
x)

=
∏

z∈Sx
(g

pparent(z)(index(z))·H(GID)

0
)µ(S

′
x)

= g
px(0)·H(GID)
0

•	 Challenge: The adversary constructs a chal-
lenge access control policy acp∗ . Then, it sends
two equal length messages ( s0 , s1 ), acp∗ and
GID to the challenger. The challenger ran-
domly chooses b ∈ {0, 1} and encrypts sb
with acp∗ . The corresponding ciphertext is
C∗ = (C0 = sb · g

w·H(GID)
0

, {Cui = pk
pui (0)·H(ui)

i })
which is sent to the adversary.

•	 Query: By constructing each attribute value
ui , the adversary queries a decryption key
Kui = {g

pui (0)·H(ui)

0
} , where i and j are parameters.

Denote all the queried attributes as set U ′ ={“attr j@
AUTHi”}∀j,∀i . After the current phase, acp∗ is satis-
fied by none of set S ⊆ 2U

′ . These decryption keys
{Kui}ui∈U ′ are sent to the adversary.

•	 Guess: The adversary makes a guess of b′.

Since w is randomly chosen,
Pr[C0 = s0 · g

w·H(GID)
0

] = Pr[C0 = s1 · g
w·H(GID)
0

] = 1/2  .
If the adversary wants to distinguish sb , it needs to com-
pute gw·H(GID)

0
 . The adversary will succeed if it is able to

recover gpR(0)0
 for the root node R given an acp∗ . Due to

the fact that the calculation of gw
0

 is a process from bot-
tom to top of acp∗ . For each non-leaf node x, it is asso-
ciated with a (t − 1)-degree polynomial px , where t is
the threshold number required to recover gpx(0)0

 . Since
U ′ /∈ acp∗ after the Query phase, there exists a non-leaf
node x where less than t decryption keys are provided for
the adversary. As is known, less than t points interpolate
infinite (t − 1)-degree polynomials, making it infeasible
to defer gpx(0)0

 at node x. Therefore, the adversary cannot
recover gw

0
 where w = pR(0) and R denotes the root of

acp∗ . 	� �

Then, the last chance to obtain gw
0

 is by breaking the DL
assumption so that pui(0) can be obtained directly from
Cui . Hence, the probability that the adversary succeeds in
guessing Pr[b′ = b] is 1

2
+ η , where η is negligible.

Construction of AB‑PVSS
AB‑PVSS Definition

Definition 4  (Attribute-based Publicly Verifiable Secret
Sharing) Let Ŵ ∈ A be an access control policy, where
A = 2{a1,a2,...,an} . An attribute-based publicly verifiable
secret sharing scheme (AB-PVSS) contains four phases,
i.e., Setup , Distribution , Verification,Reconstruction :

 (1)	 Setup Phase: On input security parameter � ,
global parameters GP = {g0,G0,H} is generated.

Page 6 of 13Zhang et al. Cybersecurity (2026) 9:123

Each authority generates his key pair (pki, ski) . The
dealer collects all public keys {pki}i∈[1,n].

 (2)	 Distribution Phase: The dealer chooses a Ŵ and
takes a random value s ∈ G0 . The dealer picks w ∈ Zq
and calculates and utilizes a randomized algorithm
Share(Ŵ,w) −→ {w1,w2, · · · ,w|Ŵ|} to output shares
for each leaf node in Ŵ . The dealer encrypts s with w
to C and encrypts wj with the corresponding author-
ity’s public key pki to Cui , where ui is the attribute
value of a leaf node. The whole result is denoted by C.
Also, the dealer generates an NIZK proof proofss for
proving the correctness of the encryption.

 (3)	 Verification phase: Any external user can verify
that C correctly contains valid shares of some secret
non-interactively.

 (4)	 Reconstruction phase: Firstly, each authority
decrypts each Cui with his private key ski to obtain
a decryption key Kui . Note that any user can check
whether Kui is correctly computed or not. With
enough decryption keys collected to be an authorized
key set, a user can recover the secret value s.

Similar to PVSS scheme (Cascudo and David 2017), an
AB-PVSS scheme consists of the following three main
roles:

•	 Dealer generates the encrypted share components
Cui for a secret value s ∈ G0 under a given monotone
access structure, using the corresponding authorities’
public keys. In addition, the dealer produces a non-
interactive zero-knowledge proof proofss attesting to
the correctness of the encryption.

•	 Authority (or Shareholder) is responsible for
decrypting the encrypted share Cui associated with
its managed attribute ui and subsequently returning
the derived decryption value Kui.

•	 User verifies the validity of the encrypted shares Cui ;
collects an authorized set of decryption keys Kui to
reconstruct the secret value s.

Similar to PVSS scheme (Cascudo and David 2017), an
AB-PVSS scheme should satisfy the following three secu-
rity requirements:

•	 Correctness. If the dealer and the authorities are
honest, then all check in Verification and Recon‑
struction phases will pass and the secret can be
reconstructed in the Reconstruction phase with any
authorized key set.

•	 IND2-Secrecy (Heidarvand and Villar 2009). Without
an authorized key set, no one can learn any informa-
tion about the secret before Reconstruction. It is for-
mally defined by Definition 5.

•	 Verifiability. If the Verification phase passes, the C is
a valid sharing of some secret with high probability. If
the verification in the Reconstruction phase passes,
Kui is a correct decryption key generated for attribute
ui.

Definition 5  (IND2-Secrecy Game) An AB-PVSS has
IND2− Secrecy if for any polynomial time adversary
A corrupting some authorities who cannot produce an
authorized key set, A has negligible advantage in a game
with a challenger C .

1.	 Setup: C runs the PVSS Setup phase and sends
(GP, pki, ski) to each uncorrupted shareholder Pi . C
sends public information and corrupted authorities’
private keys {ski} to A.

2.	 Challenge: The adversary A sends two equal length
secrets ( s0 , s1 ) to C . C randomly chooses b ← {0, 1}
and runs the Distribution phase with secret sb . It
sends all the output to A.

3.	 Query: The adversary A queries a set of decryption
keys, and the whole set should be unauthorized.

4.	 Guess: A outputs a guess b′ ∈ {0, 1}.

A ’s advantage over the game is defined as |Pr[b = b′] − 1/2|

.
The game is actually similar to the proposed CP-ABE

security model in Definition 2.
Adversarial model. In our scheme, the adversary is

modeled as a probabilistic polynomial-time (PPT) algo-
rithm. For an AB-PVSS protocol defined over an access
structure τ , we consider a static adversarial model in which
the adversary may corrupt a subset of authorities who con-
trolling a set of attributes Q, provided that Q does not sat-
isfy the access structure τ.

NIZK Proofs for CP‑ABE Ciphertext
In this section, we demonstrate how to achieve proof of
plaintext knowledge for the proposed CP-ABE cipher-
text using the Sigma protocol and FS heuristic. Suppose a
prover encrypts a secret s ∈ G0 to obtain C using the CP-
ABE algorithm, as Equations (1) show.

Then, the prover composes the commitment value C ′ ,
which is encrypted from s′ R

←− G0 , as Equations (2) show.

(1)

C = Encrypt(s, acp,GID,GP, {pki}) =

{

C0 = s · g
w·H(GID)
0

,

{Cui = pk
pui (0)·H(ui)

i }ui∈U

Page 7 of 13Zhang et al. Cybersecurity (2026) 9:123 	

where w′(�= w) is randomly chosen from Zq ; p′R is a
randomly chosen polynomial for root node R, and
p′R(0) = w′ . Next, the prover calculates the Sigma pro-
tocol challenge value c = H1(C

′,C) , where H1 is a hash
function that maps data to an element in Zq . Then, the
response value includes:

Thus, the NIZK proof proofss ← NIZK(C) = ( C ′, c, (s̃, w̃,
{p̃ui(0)}ui∈U)).

Any honest external verifier can be convinced that the
prover has plaintext knowledge of s, if CheckCiphertext ,
defined by Equations (3), outputs true:

The last equation in Equations (3) provides binding rela-
tionship of s in C0 and {Cui} . interpolate implements the
Lagrange polynomial interpolation process from bottom
to top according to the acp tree.

Lemma 1

(Completeness) A dealer can use the CheckCiphertext
algorithm to prove knowledge of the secret s.

Proof
Given the CP-ABE ciphertext and an NIZK proofss , then
the Equations (3) is proved to hold as follows. 	� �

Lemma 2

(Special knowledge soundness) Given two correct con-
versations with the same commitment and different chal-
lenge value, it is efficient to calculate the plaintext s.

(2)

C ′ = Encrypt(s′, acp,GID,GP, {pki}) =

{

C ′
0
= s′ · g

w′·H(GID)
0

,

{C ′
ui
= pk

p′ui
(0)·H(ui)

i }ui∈U

s̃ = s′/sc, w̃ = w′ − cw, {p̃ui(0) = p′ui(0)− c · pui(0)}ui∈U

(3)

CheckCiphertext(C ,proofss) :














C ′
0

?
= s̃ · g

w̃·H(GID)
0

Cc
0

{C ′
ui

?
= pk

p̃ui (0)·H(ui)

i · Cc
ui
}ui∈U

w̃
?
= interpolate({p̃ui(0)}ui∈U)



























C ′
0 = s′ · g

w′·H(GID)
0

= s̃ · sc · g
(w̃+cw)·H(GID)
0

= s̃ · g
w̃·H(GID)
0

Cc
0

{C ′
ui
= pk

p′ui
(0)·H(ui)

i = pk
(p̃ui (0)+c·pui (0))·H(ui)

i = pk
p̃ui (0)·H(ui)

i · Cc
ui
}ui∈U

w̃ = w′ − cw = interpolate({p′ui(0)}ui∈U)− c · interpolate({p̃ui (0)}ui∈U)

= interpolate({p̃ui(0)}ui∈U)

Proof
Given two accepting conversations (C , proofss) and
(C , proofs′s) , where proofss = (C ′, c, (s̃, w̃ , {p̃ui(0)}ui∈U) )
and proofs′s = ( C ′, c′, (s̃′, w̃′ , {p̃′ui(0)}ui∈U) ). Note that the
two conversations share the same sigma protocol value C ′ .

With
{

w̃ = w′ − cw,

w̃′ = w′ − c′w
 , one can calculate w = w̃′−w̃

c−c′  . Thus,

s can be calculated as: s = C

g
w·H(GID)
0

 . 	� �

Lemma 3
(Special HVZK) The proof proofss reveals nothing infor-
mation about s.

Proof
The special HVZK is proved with a simulator. We need
to prove that the simulator can always generate a con-
versation that is identical with real conversation between
P and V. The simulator can generate the conversation in
arbitrary order. Upon receiving the CP-ABE ciphertext
C = {C0,Cui} and challenge value c, the simulator ran-
domly chooses response values ŝ ∈ G0, ŵ ∈ Zq and mul-
tiple polynomials according to the access control policy Ŵ
in C, where ŵ invokes the AB-SS Share(Ŵ, ŵ) algorithm to
obtain {p̂ui(0)}ui∈U for each leaf node in Ŵ . Then, generates
a conversation as:

where C ′
0
← ŝ · g

ŵ·H(GID)
0

Cc
0
 and

{C ′
ui
← pk

p̂ui (0)·H(ui)

i · Cc
ui
}ui∈U . Obviously, proofs′s

always represents an accepting conversation, as required.
Furthermore, since Share is a random algorithm and
ŝ, c, ŵ, {p̂ui(0)} are uniformly distributed in G0 and Zq ,
C ′
0
 and {C ′

ui
} are uniformly distributed in G0 . That means

the simulator can always output a proof proofs′s and the
distribution is identical to the real randomized conversa-
tion. Hence, proofss constructs an NIZK proofs for s in
C. 	� �

Construction of AB‑PVSS
In this section, we introduce how to build an AB-PVSS
scheme based on the proposed CP-ABE algorithm.
Firstly, we introduce an algorithm CheckKey to check
whether a CP-ABE decryption key Kui is correctly

proofs′s = (C ′ = {C ′
0,C

′
ui
}, c, (ŝ, ŵ, {p̂ui(0)}ui∈U))

Page 8 of 13Zhang et al. Cybersecurity (2026) 9:123

generated with attribute ui . The CheckKey algorithm
takes in Kui , pki and u, then outputs true or false . The
algorithm costs constant time, i.e., two bilinear pairings
(Bethencourt et al. 2007).

For convenience, we introduce three entities in the AB-
PVSS scheme, namely the dealer, authorities and an
external verifier/user. The dealer can share a secret using
attribute values. The authorities are responsible for gen-
erating keys according to attributes. The external verifier/
user checks whether the dealer or an authority is honest
or not. If secret recovery is required, the external veri-
fier/user acts as the role to collect decryption keys from
authorities.

Figure 2 depicts the diagram of data flow in four
phases.

1.	 Setup Given the decentralized CP-ABE
GP ← GlobalSetup algorithm is initialized. Each
authority i invokes AuthSetup(GP) to obtain the key
pair (ski, pki) . The dealer collects all public keys {pki}
.

2.	 Distribution The dealer constructs an access control
policy acp. Then, the dealer encrypts his secret s by
invoking Encrypt(s, acp,GID,GP, {pki}) and obtains
ciphertext C. At the same time, the corresponding
NIZK proofs proofss ← NIZK(C) is attached. Next,
the dealer publishes C , proofss in the public channel.

3.	 Verification Any external verifier can check C by
CheckCiphertext(C , proofss) . If the verification result
is true , the verifier is sure that s is indeed encrypted
to C but learns nothing about s.

4.	 Reconstruction Each authority i runs the
KeyGen(GP,Cui ,ui, ski) algorithm for each attrib-

CheckKey(Kui , pki, g0,Cui) :

e(Kui ,pki)
?
= e(Cui , g0)

ute ui to obtain Kui . Each key Kui is checked via
CheckKey(Kui , pki, g0,Cui) . After collecting an
authorized key set {Kui} , any user can invoke
Decrypt(GID,C ,GP, {Kui}) to recover the secret s.

Security analysis
This section analyzes the security requirements of the AB-
PVSS scheme defined in Sect. 5.1.

Theorem 2

(Correctness) If the dealer and authorities are honest,
Verification Phase outputs true and Reconstruction
Phase outputs the dealer’s secret s for any honest external
verifier/user.

Proof
In the Distribution phase, the honest dealer computes
C by encrypting a secret s under access control policy acp
and generate NIZK proofs proofss . proofss will always
makes the Verification outputs true for any honest exter-
nal verifier/user due to completeness of Sigma protocols,
as Lemma 1 shows. In the Reconstruction phase, hon-
est authorities issue correct CP-ABE decryption keys to
the external user. Then, the decryption keys {Kui} form
an authorized key set, guaranteeing that attribute set
{ui} ∈ acp and s ← Decrypt(GID,C ,GP, {Kui }) is success-
fully recovered. 	� �

Theorem 3
(IND2-secrecy) The proposed AB-PVSS is IND2-secrect
against a probabilistic polynomial time adversary A ,
without an authorized key set under the DL assumption
and random oracle model.

Proof
By Lemma 3, we prove that A has negligible advantage to
obtain the secret s from the NIZK proofss . Moreover, we
prove the A has negligible advantage in the CP-ABE secu-
rity game by Theorem 1. The proving process of Theorem 1
is also applicable to the IND2-Secrecy game, since the
behaviors of A are the same in both games given CP-ABE
ciphertext. Thus, A also has negligible advantage in learn-
ing information about plaintext s. 	� �

Fig. 2  The proposed AB-PVSS based on decentralized CP-ABE

Page 9 of 13Zhang et al. Cybersecurity (2026) 9:123 	

Theorem 4
(Verifiability) The protocol is (publicly) verifiable, i.e., the
dealer is verifiable in Distribution and authorities are
verifiable in Reconstruction.

Proof
Theorem 2 has shown that Verification phase outputs
true if the dealer is honest. If the dealer is dishonest, it
can be uncovered and the output is false by the sound-
ness of Sigma protocols, as Lemma 2 shows. Hence, the
dealer is verifiable in the Distribution phase. We intro-
duce CheckKey algorithm to check whether a CP-ABE
decryption key Kui is valid or not. The CheckKey is based
on bilinear group pairing, i.e., e(Kui ,pki)

?
= e(Cui , g0) .

It is infeasible to find a invalid decryption key K ′
ui
�= Kui

for a dishonest authority, owing to one-wayness of bilin-
ear mapping. Thus, the authorities are verifiable in the
Reconstruction phase. 	� �

Complexity of the proposed AB‑PVSS
PVSS scheme usually contains only one instance of secret
sharing, which can be expressed with a one-level thresh-
old secret sharing. However, our protocol is attribute-
based, enabling multi-level secret sharing. To compare
the computation and communication complexity with
PVSS schemes, the below analysis only considers a one-
level threshold access control policy. Hence, n is the
number of authorities/shareholders, t is the threshold
value.

Computation Complexity: In the Distribution phase,
the dealer invokes Encrypt algorithm to generate C. It
costs n+ 1 exponentiations to produce a ciphertext.
The NIZK proofs generation algorithm NIZK(C) gener-
ates C ′, c, (s̃, w̃, {p̃ui(0)}ui∈U) , where C ′ also takes n+ 1
exponentiations and s̃ takes 1 exponentiation. Hence,
the Distribution phase takes 2n+ 3 exponentiations.
In the Verification phase, the CheckCiphertext costs 2
exponentiations for verifying C0 and 2n exponentiations

for verifying all {Cui} . Therefore, the Distribution phase
takes 2n+ 2 exponentiations. In the Reconstruction
phase, the CheckKey costs 2 pairings for each decryption
key. Besides, the Decrypt algorithm is used for recovering
secret s, costing t exponentiations. Therefore, the com-
putation complexity of the Reconstruction phase costs t
exponentiations and 2t pairings in total.

Communication Complexity: In the Distribution
phase, the dealer publishes the ciphertext C of s and
the corresponding NIZK proofs proofss = (C ′, c, (s̃, w̃,
{p̃ui(0)}ui∈U)) . The proposed CP-ABE ciphertext con-
tains n elements on G0 and 1 element on G1 . Hence, the
Distribution contains 2n+ 3 elements on G in total and
n+ 2 elements on Zq . In the Reconstruction phase, each
authority i publishes a CP-ABE decryption key Kui for
each attribute u. Moreover, only t valid keys are enough
for the CP-ABE Decrypt algorithm. Hence, Reconstruc-
tion phase costs t elements on G for an external user to
recover the secret.

Table 1 and Table 2 compare the computation and
communication complexity of our protocol with state-
of-the-art (O(n) verification) PVSS schemes. To further
underscore our contribution beyond complexity, it is
important to note that previous PVSS protocols (Sch-
oenmakers 1999; Heidarvand and Villar 2009; Cascudo
and David 2017, 2020; Cascudo et al. 2022) only enable

Table 1  Computation complexity

 Ref. Distribution Verification Reconstruction

Exp Exp Pair Exp Pair

SCRAPEDBS Cascudo and David (2017) 2n n 2n t + 1 2t + 1

SCRAPEDDH Cascudo and David (2017) 4n 5n − 5t + 3 −

ALBATROSS Cascudo and David (2020) 2n+ 1 2n − 6t + 10 −

HEPVSS Cascudo et al. (2022) 7n 4n − 3t −

DHPVSS Cascudo et al. (2022) n(n− t + 2)+ 2 n(n− t)+ 4 − 5t −

Ours 2n+ 3 2n+ 2 − t 2t

Table 2  Communication complexity

 Ref. Distribution Reconstruction

G Z G Z

SCRAPEDBS Cascudo and David
(2017)

2n 0 t 0

SCRAPEDDH Cascudo and David
(2017)

4n n+ 1 3t t + 1

ALBATROSS Cascudo and David
(2020)

2n n+ 1 3t t + 1

HEPVSS Cascudo et al. (2022) 3n 2n t 2

DHPVSS Cascudo et al. (2022) n+ 2 1 3t t

Ours 2n n+ 3 t 0

Page 10 of 13Zhang et al. Cybersecurity (2026) 9:123

a dealer to distribute shares among individuals or share-
holders. In contrast, our protocol is attribute-based,
allowing a dealer to share a secret using attribute values.
This capability enables arbitrary monotone access con-
trol, making our protocol applicable to more general and
diverse scenarios.

Implementations
We implement the decentralized CP-ABE scheme and
AB-PVSS scheme with Charm-Crypto library (Akinyele
et al. 2013), which is a framework for constructing cryp-
tographic schemes. It provides Python programming lan-
guage interfaces. The Charm-Crypto framework relies
on the GMP (GNU multiple precision) arithmetic library
and the PBC (pairing-based cryptography) library written
in C language. Charm-Crypto also provides classic cryp-
tographic primitives as its built-in examples, including
the BSW CP-ABE (Bethencourt et al. 2007), LW CP-ABE
(Lewko and Waters 2011) and RW CP-ABE (Rouselakis
and Waters 2015). Based on the built-in example, we first
make it compatible with the threshold-based access con-
trol policy. Then we implement our proposed decentral-
ized CP-ABE. Further, we implement our AB-PVSS and
some of above mentioned PVSS schemes (Cascudo and
David 2017, 2020). The experiments are conducted on
AWS Ubuntu 18.04, 4 GB RAM, with Python 3.6.9 and
curve “SS512".

We then compare the performance of the proposed
CP-ABE with other decentralized CP-ABE schemes,
i.e., LW CP-ABE (Lewko and Waters 2011) and RW CP-
ABE (Rouselakis and Waters 2015). Figure 3 and Fig. 4
depict the Encrypt and the Decrypt time cost, respec-
tively. Though our decentralized CP-ABE scheme is not

fully-fledged, these figures indicate that our scheme out-
performs previous constructions.

We then evaluate the performance with the proposed
AB-PVSS scheme by downgrading the AB-PVSS to a
PVSS scheme and compare it with other PVSS schemes
(Cascudo and David 2017, 2020; Cascudo et al. 2022).
Figure 5, Fig. 6 and Fig. 7 show the concrete computa-
tion overhead of the Distribution phase (by the dealer),
the Verification phase (by a verifier), and the Recon-
struction phase (by a user), respectively. SCRAPEDBS
has the lowest distribution time cost, which is identical
to Table 1. It can be seen that our AB-PVSS and ALBA-
TROSS have the lowest verification overhead. However,
ALBATROSS has the highest reconstruction overhead.
DHPVSS has the lowest reconstruction overhead, but it

Fig. 3  Encrypt cost of decentralized CP-ABE

Fig. 4  Decrypt cost of decentralized CP-ABE

Fig. 5  Distribution cost

Page 11 of 13Zhang et al. Cybersecurity (2026) 9:123 	

requires superlinear complexity in the distribution and
verification phase due to point evaluations with a ran-
dom (n-t-1)-degree polynomial. HEPVSS is not shown in
the figures, as it does not appear to be optimized in either
phase by Table 1.

Discussions

1.	 The mask of using H(GID) and H(ui) seems use-
less in C, since ui and GID are public and adversar-
ies can invert a value without these masks. However,
ui is an attribute in the access control policy which
is essential to CP-ABE schemes. And H(GID) is used
to identify each CP-ABE ciphertext, resembling pre-

vious schemes (Lewko and Waters 2011; Rouselakis
and Waters 2015).

2.	 Our CP-ABE outperforms related works, because we
use secret shares only once and remove bilinear map-
ping. Let’s take decentralized RW CP-ABE (Rousela-
kis and Waters 2015) as an example to show how we
reduce ciphertext size and computation cost. A ran-
dom value tx , two tuple of secret shares {�x} and {ωx}
are generated and used for attribute x in ciphertext.
Another random value t is used in two fields KGID,u
and K ′

GID,u in KeyGen algorithm. Hence, the random
values {tx} and t can be eliminated by bilinear pair-
ings in Decrypt algorithm. However, in our CP-ABE
implementation, the ciphertext Cui uses each secret
share pui(0) only once in Encrypt algorithm. Then,
the decryption key Kui inputs the ciphertext Cui and
no new random value is generated in KeyGen algo-
rithm. Thus, we do not need bilinear pairing opera-
tion to get rid of randomness in Decrypt algorithm.
(Note that the bilinear pairing operation is required
only in the proposed AB-PVSS CheckKey algorithm,
but not in the CP-ABE scheme.)

3.	 As a trade-off, our KeyGen algorithm requires the
ciphertext Cui as an input. That means traditional
CP-ABE Encrypt and KeyGen algorithms are inde-
pendent and enables a decryption key to be useful for
future-generated ciphertext. However, our CP-ABE
require Encrypt to be invoked before KeyGen is exe-
cuted for a plaintext. This design leads to reduced key
reusability where keys can not be used interchange-
ably across different ciphertexts. Even if the CP-ABE
keys associated with a particular sharing instance
(GID) are compromised, the confidentiality of all pre-
viously generated ciphertexts remains intact, thereby
ensuring forward secrecy. Our scheme is a relaxation
of functionality, which is the weakness compared
with related works. Strictly speaking, this may vio-
late the concept of CP-ABE for some researchers.
We neglect the accuracy of the concept of CP-ABE,
because our primary contribution is to introduce
AB-(PV)SS and its particularity. But it does impact
its usage and security in implementing our AB-PVSS
scheme.

4.	 Although the encryptor can generate keys for
decryptors without authorities, our decentralized
CP-ABE is still non-trivial in some distributed sce-
narios. These scenarios include those where a com-
mitment scheme or threshold decryption is required.

5.	 Fundamentally, the proposed decentralized CP-ABE
scheme operates as a distributed ElGamal protocol
(Zhang et al. 2025) with a monotone access struc-
ture, enabling ciphertext decryption for users whose
keys satisfy the specified access conditions. Further,

Fig. 6  Verification cost

Fig. 7  Reconstruction cost

Page 12 of 13Zhang et al. Cybersecurity (2026) 9:123

we implement this decentralized CP-ABE in order to
uncover the connection between CP-ABE and PVSS,
as presented in Sect. 7.

6.	 To our knowledge, AB-PVSS can be obtained by any
CP-ABE along with NIZK. Actually, we have also suc-
cessfully constructed AB-PVSS with single-authority
BSW CP-ABE (Bethencourt et al. 2007) and multi-
authority RW CP-ABE (Rouselakis and Waters 2015),
which are less efficient than the proposed AB-PVSS
in this paper. That also explains why we construct the
more efficient decentralized CP-ABE. As a sacrifice,
ciphertext has to be an input of the KeyGen algo-
rithm, indicating restrictions in some applications.
AB-PVSS construction might also be obtained based
on traditional PVSS and multi-level ACP. Hence, CP-
ABE is not a necessity in building AB-PVSS schemes.
In the future, we will investigate more about new
constructions of AB-PVSS schemes.

7.	 An important direction for extending our decentral-
ized CP-ABE design is the integration of efficient
attribute-revocation mechanisms, as demonstrated
in the revocable ABE schemes (Sethi et al. 2021)
and Li et al. (2025). Incorporating such revocation
idea into our decentralized construction would not
only enhance its practicality but also facilitate the
development of new secret-sharing frameworks and
attribute-based publicly verifiable secret re-sharing.

Conclusion
We propose the concept of attribute-based secret shar-
ing (AB-SS), where two favorable functionalities are
acquired. They are: 1) a dealer can share a secret with an
arbitrary monotone access structure; 2) a dealer also can
share a secret without knowing the shareholders. We give
the definition of AB-SS rigorously and present an AB-SS
scheme by adopting some ideas from BSW CP-ABE.
Then, we build an efficient decentralized CP-ABE by
reducing the times of secret shares usage in Encrypt algo-
rithm. Further, NIZK proofs are attached to prove plain-
text knowledge for the proposed CP-ABE ciphertext. The
NIZK proofs are obtained by leveraging generic linear
Sigma protocol and Fiat-Shamir heuristic. Finally, we
formally define and implement an attribute-based secret
sharing (AB-PVSS) scheme by integrating the proposed
CP-ABE scheme with NIZK proofs.

Acknowledgements
We thank anonymous reviewers for helpful discussions.

Author Contributions
Liang Zhang contributed to the methodology, software implementation, and
investigation, and prepared the original draft of the manuscript, as well as
acquiring funding. Xingyu Wu and Qiuling Yue participated in the discussions

and contributed to manuscript review and editing. Haibin Kan provided
funding acquisition, resources, and supervision. Jiheng Zhang was responsible
for funding acquisition and project administration. All the authors read and
approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China
for Young Scientists (No. 62302129), National Natural Science Foundation of
China (Nos. 62272107), Hainan Province Key R&D plan project (No. ZDYF-
2024GXJS030) and the HK RGC General Research Fund (Nos. 16208120 and
16214121).

Data Availability
Our manuscript has no associated data.

Declarations

Conflict of interest
The authors declare that they have no Conflict of interest.

Received: 23 September 2025 Accepted: 6 February 2026

References
Shamir A (1979) How to share a secret. Comm of the ACM 22(11):612–613
Cascudo I, David B (2024) Publicly verifiable secret sharing over class groups

and applications to DKG and YOSO. In Eurocrypt’24. 216–248
Feldman PA (1987) practical scheme for non-interactive verifiable secret shar-

ing. In FOCS’87, 427–438
Stadler M (1996) Publicly verifiable secret sharing. In Eurocrypt’96, 190–199
Cascudo I, David B (2017) SCRAPE: scalable randomness attested by public

entities. In ACNS’17, 537–556
Beimel A, Tassa T, Weinreb E (2005) Characterizing ideal weighted threshold

secret sharing. In TCC’05, 600–619
Belenkiy M (2008) Disjunctive multi-level secret sharing. Cryptology ePrint

Archive
Tassa T (2007) Hierarchical Threshold Secret Sharing J Cryptol 20(2):237–264
Tassa T, Dyn N (2009) Multipartite secret sharing by bivariate interpolation. J

Cryptol 22(2):227–258
Chen Q, Tang C, Lin Z (2021) Efficient explicit constructions of multipartite

secret sharing schemes. IEEE TIT 68(1):601–631
Gentry C, Halevi S, Lyubashevsky V (2022) Practical non-interactive publicly

verifiable secret sharing with thousands of parties. In Eurocrypt’22,
458–487

Syta E, Jovanovic P, Kogias EK, Gailly N, Gasser L, Khoffi I, Fischer MJ, Ford B
(2017) Scalable bias-resistant distributed randomness. In SP’17, 444–460

Bessani AN, Alchieri EP, Correia M, Fraga JS (2008) DepSpace: a Byzantine fault-
tolerant coordination service. In Eurosys’08, 163–176

Kiayias A, Russell A, David B, Oliynykov R (2017) Ouroboros: a provably secure
proof-of-stake blockchain protocol. In Crypto’17, 357–388

Fujisaki E, Okamoto T (1998) A practical and provably secure scheme for pub-
licly verifiable secret sharing and its applications. In Eurocrypt’98, 32–46

Fiat A, Shamir A (1986) How to prove yourself: practical solutions to identifica-
tion and signature problems. In Eurocrypt’86, 186–194

Damgård I (2002) On �-protocols. University of Aarhus, Department for Com-
puter Science, Lecture Notes

Schoenmakers B (1999) A Simple Publicly Verifiable Secret Sharing Scheme
and Its Application to Electronic. In Crypto’99, 148–164

Ruiz A, Villar JL (2005) Publicly verifiable secret sharing from Paillier’s cryptosys-
tem. In SAC’05

Heidarvand S, Villar JL (2009) Public verifiability from pairings in secret sharing
schemes. In SAC’09, 294–308

Jhanwar MP, Venkateswarlu A, Safavi-Naini R (2014) Paillier-based publicly
verifiable (non-interactive) secret sharing. Des Codes Crypt 73:529–546

Bethencourt J, Sahai A, Waters B (2007) Ciphertext-Policy Attribute-Based
Encryption. In SP’07, 321–334

Page 13 of 13Zhang et al. Cybersecurity (2026) 9:123 	

Berrut J-P, Trefethen LN (2004) Barycentric lagrange interpolation. SIAM Rev
46(3):501–517

Cascudo I, David B, Garms L, Konring A (2022) YOLO YOSO: fast and simple
encryption and secret sharing in the YOSO model. In Asiacrypt’21,
651–680

Cascudo I, David B (2020) ALBATROSS: publicly attestable batched random-
ness based on secret sharing. In Asiacrypt’20, 311–341

Akinyele JA, Garman C, Miers I, Pagano MW, Rushanan M, Green M, Rubin
AD (2013) Charm: a framework for rapidly prototyping cryptosystems. J
Cryptogr Eng 3:111–128

Lewko A, Waters B (2011) Decentralizing attribute-based encryption. In Euro-
crypt’11, 568–588

Rouselakis Y, Waters B (2015) Efficient statically-secure large-universe multi-
authority attribute-based encryption. In FC’15, 315–332

Zhang L, Kan H, Qiu F, Hao F (2024) A Publicly Verifiable Optimistic
Fair Exchange Protocol Using Decentralized CP-ABE. Comput J
67(3):1017–1029

Avoine G, Vaudenay S (2004) Optimistic fair exchange based on publicly verifi-
able secret sharing. In ACISP’04

Zhang L, Wu X, Ma Y, Kan H (2025) Data exchange for the metaverse with
accountable decentralized TTPs and incentive mechanisms. IEEE Trans
Big Data, Accepted

Sethi K, Pradhan A, Bera P (2021) PMTER-ABE: a practical multi-authority CP-
ABE with traceability, revocation and outsourcing decryption for secure
access control in cloud systems. Clust Comput 24(2):1525–1550

Li J, Yan H, Koe ASV, Deng W, Zhong Z (2025) Secure and Revocable Multi-
authority CP-ABE for Mobile Cloud Computing. In International confer-
ence on algorithms and architectures for parallel processing, pp. 75–84

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Qiuling Yue  Qiuling Yue holds a Ph.D. in Cryptography from Bei-
jing University of Posts and Telecommunications, and has served as
a visiting scholar at the University of Illinois at Urbana-Champaign
and Southern Illinois University Carbondale. She is recognized as
a high-level talent in Hainan Province. Her current research focuses
on applied cryptography, privacy-preserving computation, block-
chain, and quantum information. Recently, she has published several
papers in SCI-indexed journals

	Attribute-based publicly verifiable secret sharing
	Abstract
	Introduction
	Preliminaries
	Access control policy
	Decentralized CP-ABE
	Sigma protocol and NIZK proof

	Attribute-based secret sharing
	Efficient decentralized CP-ABE
	Construction
	Security analysis

	Construction of AB-PVSS
	AB-PVSS Definition
	NIZK Proofs for CP-ABE Ciphertext
	Construction of AB-PVSS
	Security analysis
	Complexity of the proposed AB-PVSS

	Implementations
	Discussions
	Conclusion
	Acknowledgements
	References

