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Abstract 

Can a dealer share a secret without knowing the shareholders? We provide a positive answer to this question by intro-
ducing the concept of an attribute-based secret sharing (AB-SS) scheme.With AB-SS, a dealer can distribute a secret 
based on attributes rather than specific individuals or shareholders. Only authorized users whose attributes satisfy 
a given access structure can recover the secret. Furthermore, we introduce the concept of attribute-based publicly 
verifiable secret sharing (AB-PVSS). An AB-PVSS scheme allows external users to verify the correctness of all broadcast 
messages from the dealer and shareholders, similar to a traditional PVSS scheme. Additionally, AB-SS (or AB-PVSS) 
distinguishes itself from traditional SS (or PVSS) by enabling a dealer to generate shares according to an arbitrary 
monotone access structure.To build an AB-PVSS scheme, we first implement a decentralized ciphertext-policy 
attribute-based encryption (CP-ABE) scheme, though not a fully-fledged one.We then incorporate non-interactive 
zero-knowledge (NIZK) proofs to enable public verification of the CP-ABE ciphertext. Based on the CP-ABE and NIZK 
proofs, we construct an AB-PVSS primitive.Finally, we conduct security analysis and comprehensive experiments 
on the proposed CP-ABE and AB-PVSS schemes. The results demonstrate that both schemes exhibit plausible perfor-
mance compared to related works.

Keywords  Attribute-based secret sharing, Decentralized CP-ABE, Attribute-based publicly verifiable secret sharing, 
NIZK

Introduction
A secret sharing (SS) scheme (Shamir 1979) is a cryp-
tographic primitive where a dealer commits to a secret, 
which can only be recovered by a threshold number of 
shareholders. However, in an SS scheme, a dealer can 
broadcast invalid shares to deviate from the protocol. 
To address this issue, a verifiable secret sharing (VSS) 
scheme (Feldman 1987) ensures that the dealer behaves 

honestly, as shareholders can verify the validity of the 
dealer’s shares through corresponding proofs. Building 
on this, a publicly verifiable secret sharing (PVSS) scheme 
(Ruiz and Villar 2005; Schoenmakers 1999; Heidarvand 
and Villar 2009; Jhanwar et  al. 2014; Stadler 1996; Cas-
cudo and David 2017, 2020; Cascudo et al. 2022; Cascudo 
and David 2024; Gentry et al. 2022; Fujisaki and Okamoto 
1998) allows the dealer to publish shares publicly, ena-
bling any external user to verify the dealer’s honesty in a 
non-interactive manner. PVSS is fundamental in secure 
multi-party computation (SMPC) applications, especially 
when fault-tolerance, public communication channels or 
public verifiability is required. These SMPC applications 
include but not limited to public distributed randomness 
beacon (Cascudo and David 2017; Syta et al. 2017), byz-
antine agreement (Bessani et  al. 2008), blockchain con-
sensus (Kiayias et al. 2017) and fair exchange (Avoine and 
Vaudenay 2004; Zhang et al. 2024).
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Traditional (PV)SS schemes enable the dealer to share 
a secret with specific shareholders. Some other works 
have extended this concept to more complex scenarios 
where shareholders are organized hierarchically, such 
as in weighted access structures (WAS) (Shamir 1979; 
Beimel et  al. 2005), disjunctive access structures (DAS) 
(Belenkiy 2008), conjunctive access structures (CAS) 
(Tassa 2007), and compartmented access structures 
(Tassa and Dyn 2009; Chen et  al. 2021) However, these 
access structures represent particular instances of arbi-
trary monotone access structures when applied in secret 
sharing schemes. Consequently, the resulting secret shar-
ing schemes are limited in their applicability. An arbitrary 
monotone access structure allows a dealer to distribute 
shares according to more flexible and versatile policies. 
The question of whether it is possible to construct (PV)
SS schemes with more general attribute-based access 
structures remains an open problem.

In this paper, we fill the gap by proposing an attrib-
ute-based secret sharing (AB-SS) scheme and an attrib-
ute-based publicly verifiable secret sharing (AB-PVSS) 
scheme. AB-SS and AB-PVSS schemes adopt a general 
access structure, providing versatile and fine-grained 
access control policies. More importantly, AB-SS quali-
fies a dealer to share a secret according to attributes, 
rather than concrete shareholders. We construct an 
AB-SS scheme by studying how SS schemes are leveraged 
in BSW CP-ABE (Bethencourt et al. 2007)and achieve an 
AB-PVSS scheme based on a newly proposed lightweight 
decentralized CP-ABE. The decentralized CP-ABE uses 
secret shares only once1 in the ciphertext. Furthermore, 
an encryptor can incorporate an arbitrary number of 
users as the authorities when generating a ciphertext, 
making the CP-ABE scheme decentralized. Different 
from traditional decentralized CP-ABE schemes (Lewko 
and Waters 2011; Rouselakis and Waters 2015) our pro-
posed scheme requires the ciphertext as an input to the 
key-generation algorithm. This design limits key reusabil-
ity, where keys cannot be applied interchangeably across 
distinct ciphertexts. Furthermore, in order to enable 
encryptors to prove knowledge of plaintext, we use Sigma 
protocol (Damgård 2002)and Fiat-Shamir (FS) heuristic 
(Fiat and Shamir 1986)to obtain NIZK proofs for the pro-
posed decentralized CP-ABE.

The contributions are summarized as follows:

•	 We put forward the concept of attribute-based secret 
sharing (AB-SS), allowing a dealer to share/hide a 

secret according to attributes, rather than individuals 
or shareholders. Further, we define attribute-based 
publicly verifiable secret sharing (AB-PVSS), which 
not only inherit the advantage of AB-SS scheme, but 
also extends the functionalities of PVSS schemes.

•	 To implement an AB-PVSS scheme, we propose a 
more efficient decentralized CP-ABE scheme. The 
main idea of the proposed CP-ABE is that we use 
secret shares only once in Encrypt algorithm. To 
prove plaintext knowledge of the proposed CP-ABE 
ciphertext, we achieve NIZK proofs by incorporating 
Sigma protocol with Fiat-Shamir heuristic.

•	 Comprehensive complexity analysis and experi-
ments are conducted for both the proposed CP-ABE 
scheme and AB-PVSS scheme. The results show that 
both schemes outperform respective related works.

Preliminaries
Access control policy

Definition 1  (Access Structure (Beimel et  al. 2005)) 
Let A = {a1, a2, . . . , an} be a set of attribute and A be its 
power set. A collection Ŵ ∈ A is an access structure, if 
it meets the following two conditions: (1) if B ∈ Ŵ , then 
|B| �= 0 . (2) if B ∈ Ŵ , B ⊆ C , then C ∈ Ŵ.

If B ∈ Ŵ , we call it authorized, and if B /∈ Ŵ , we call it 
unauthorized.

Armed with the knowledge of access structure, we will 
frequently use another related concept, access control 
policy (ACP), in the subsequent article. ACP can be 
regarded as an instance of access structure, enabling only 
qualified users to access specific resources. Access con-
trol policy acp can be represented using a tree structure, 
containing attribute strings. Each leaf node of the tree is 
an attribute string appeared in acp. Each non-leaf node 
represents the threshold gate, described by its direct 
children and a threshold value. A policy is satisfied only 
when enough (the threshold-gate value) attributes are 
combined. The collection of the qualified attributes is 
called an authorized attribute set.

Decentralized CP‑ABE
Decentralized ciphertext-policy attribute-based encryp-
tion (CP-ABE) scheme is defined as below, slightly modi-
fied from previous schemes (Lewko and Waters 2011; 
Rouselakis and Waters 2015) The main modification is 
that partial ciphertext Cui is input of key generation algo-
rithm for authority i.1  Traditional CP-ABE schemes use secret shares multiple times (Bethen-

court et al. 2007; Lewko and Waters 2011; Rouselakis and Waters 2015) in 
the encryption algorithm, providing the opportunity to reduce ciphertext 
size and the numbers of cryptograhpic operations.
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•	 GP ← GlobalSetup(�) . It takes in the security 
parameter � and outputs global parameters GP.

•	 (ski,pki) ← AuthSetup(GP) . Each authority i takes 
GP as input to produce a key pair ( ski , pki).

•	 C ← Encrypt(s, acp,GID,GP, {pki}) . The algorithm 
takes in GP , a message s ∈ G0 , an access control pol-
icy acp, an identity GID , and a set of public keys {pki} . 
Let U denote all the attributes (leaf nodes’ value) that 
appear in acp. It outputs a ciphertext C = (C0, {Cui}) , 
where ui ∈ U  is the attribute value controlled by 
authority i.

•	 Kui ← KeyGen(GP,Cui ,ui, ski) . The algorithm takes 
in GP , an attribute ui belonging to the authority i, a 
ciphertext Cui associated with the attribute ui and an 
authority’s secret key ski . It produces a decryption 
key Kui . If a set {ui} satisfies an access control policy 
acp, we say the corresponding set {Kui} is an author-
ized key set.

•	 s ← Decrypt(GID,C ,GP, {Kui }) . The decryption 
algorithm takes in GP , the ciphertext C, and a col-
lection of decryption keys {Kui} . Only if {Kui} is an 
authorized key set for the access control policy acp in 
C, it outputs the message s.

The security game is defined by Definition 2.

Definition 2  (Security Game) The decentralized CP-
ABE security model is defined through the following 
game2:

•	 Setup: The challenger runs GlobalSetup(�) to gen-
erate global parameters GP and obtains a key pair 
( ski,pki ) for each authority via AuthSetup(GP) algo-
rithm. Then, it sends all public parameters to the 
adversary.

•	 Challenge: The adversary constructs a challenge 
access control policy acp∗ . Then, it sends two equal 
length messages ( s0 , s1 ), acp∗ and GID to the chal-
lenger. The challenger randomly chooses b ∈ {0, 1} 
and encrypts sb with acp∗ to obtain the result-
ant ciphertext C∗ = (C0, {Cui}) which is sent to the 
adversary.

•	 Query: By constructing each attribute value ui=“attr j
@AUTHi ”, the adversary queries a decryption key 
Kui from the challenger. Denote all the queried attrib-

utes as set U ′ ={“attr j@AUTHi”}∀j,∀i . After current 
phase, any S ⊆ 2U

′ does not satisfy acp∗.
•	 Guess: The adversary outputs a guess b′ of b.

The scheme is breakable if an adversary has a non-neg-
ligible advantage in correctly guessing the bit b in the 
above security game.

Sigma protocol and NIZK proof
In generic linear relationship Sigma protocol (Damgård 
2002) a prover P can prove zero knowledge of 
X = {x1, ..., xm} for Y, where Y = h

x1
1
...hxmm  and h1, ..., hm 

are generators of G , as follows:

Hash is modeled as a random oracle, as required 
by Fiat-Shamir heuristic (Fiat and Shamir 1986) Y ′ is 
called the commitment value, c is the challenge value 
and {x̃1, ..., ˜xm} the response value. The transcript 
(Y ′, c, {x̃1, ..., ˜xm}) is called a conversation between P and 
V. The transcript is also regarded as NIZK proof proofsX 
for proving knowledge of owning X.

A sigma protocol is required to achieve following secu-
rity properties.

•	 Correctness: If P is honest, honest V always outputs 
True.

•	 Knowledge soundness: Given two correct conver-
sations (Y ′, c, {xi}) and (Y ′, c′, {x′i}) where c  = c′ , it is 
efficient to extract the private value X.

•	 Special honest verifier zero knowledge (HVZK): 
The proof proofsX conveys no information about X 
other than the validity of the statement Y .

Attribute‑based secret sharing

Definition 3  (Attribute-based Secret Sharing) An 
attribute-based secret sharing scheme (AB-SS) is defined 
with following two phases.

(1) Distribution Phase: The dealer chooses an ACP 
Ŵ and takes a secret s ∈ Zq as input. Then using a rand-
omized algorithm Share(Ŵ, s) −→ {s1, s2, · · · , s|Ŵ|} to 
output shares, where |Ŵ| is the number of leaf nodes in Ŵ.

2  In the CP-ABE defined in Sect. 2.2, ciphertext should be generated before 
decryption keys. It is unnecessary to define a query phase before the chal-
lenge phase, which is required in previous works (Bethencourt et al. 2007; 
Lewko and Waters 2011)
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(2) Reconstruction phase: Using a deterministic algo-
rithm Recon(Ŵ, S) −→ s to reconstruct the secret, if S is 
an authorized attribute set for Ŵ , i.e., S ∈ Ŵ.

AB-SS is a secret sharing scheme that allows a dealer 
to share a secret based on attributes, not individuals 
or shareholders. We give an AB-SS instance which is 
inspired by the BSW CP-ABE construction (Bethencourt 
et al. 2007) as below.

In the Distribution phase, the dealer constructs an 
ACP tree Ŵ to share a secret s. Denote U be the set con-
taining all the attribute values of leaf nodes in Ŵ . Each 
non-leaf node has a pre-defined threshold value. Then, 
each (leaf and non-leaf ) node in Ŵ is attached with a 
value. For each node x, define a polynomial px with 
degree dx , where dx is one less than the threshold value. 
Next, set px(0) = pparent(x)(index(x)) for any other node 
x, where the parent function returns x’s parent and the 
index function represents x’s index value in its parent. 
Firstly, s is attached to the root node R. Subsequently, 
through the top-down manner, we can calculate a bind-
ing value for each (leaf and non-leaf ) node. Finally, the 
secret share for attribute ui is defined as pui(H(ui)) and 
the values of non-leaf node are discarded. For simplicity, 
H maps the |U| attributes to integers belong to [1, |U|].

In the Reconstruction phase, given an authorized 
attribute set S ∈ Ŵ , the dealer’s secret is recovered in 
a down-top manner. For each non-leaf node, its value 
is recovered by its direct children nodes’ values, using 
Lagrange interpolation (Berrut and Trefethen 2004). 
Finally, s is recovered.

Efficient decentralized CP‑ABE
Construction
In this section, we propose an efficient decentralized CP-
ABE. The notations are following those in Sect. 3. Let G0 
be a group of prime order q, and let g0 be generators of 
G0 . � is the security parameter, determining the size of 
the groups. Figure  1 shows the proposed decentralized 
CP-ABE construction.

The GlobalSetup algorithm chooses group G0 of prime 
order q with generator g0 . Also, it defines a hash function 
H : {0, 1}∗ → Zq which is modeled as a random oracle. 
The function maps an arbitrary value to a random ele-
ment in Zq.

The AuthSetup algorithm takes in the global parame-
ters GP = {g0,G0,H} , and authority i randomly chooses 
ski ∈ Zq and calculates the corresponding public key 
pki = g

ski
0

.
The Encrypt algorithm takes in the a secret/plaintext s, 

an access control policy acp, the global parameters GP , 
a global identifier GID and public keys {pki} . Denote T 
be the access control policy acp tree. Each non-leaf node 

of T has a pre-defined threshold value. In the algorithm, 
each node of the access control policy tree is attached to 
a value and the value is calculated in a top-down man-
ner. As clarified in Sect. 2.1, the secret sharing phase of 
the SS scheme is conducted for each non-leaf node in the 
Encrypt algorithm. Denote U be the set containing all the 
values of leaf nodes in acp. For each node (or attribute 
value) x, define a polynomial px with dx , where dx is one 
less than the threshold value. s is the random value for 
the root node R. Then, set px(0) = pparent(x)(index(x)) 
for any other node x, where the parent function returns 
x’s parent and the index function represents x’s index 
value in its parent. Finally, computes the ciphertext 
C = (C0 = s · g

w·H(GID)
0

, {Cui = pk
pui (0)·H(ui)

i }∀ui∈U )   , 
where ui represents each attribute in the access control 
policy, H(ui) binds to the attribute ui and H(GID) serves 
to uniquely identify each CP-ABE ciphertext.3

The KeyGen algorithm invoked by authority i gen-
erates its key Kui for attribute value ui as follows: 
Kui = C

1/ski
ui = g

pui (0)·H(ui)

0
 . Since we propose a decen-

tralized CP-ABE, multiple authorities exist. Here, ui is 
used to represent that the attribute value is controlled by 
authority i.

Fig. 1  Construction of the decentralized CP-ABE

3  The use of GID follows decentralized CP-ABE schemes (Lewko and 
Waters 2011; Rouselakis and Waters 2015).
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As opposed to Encrypt algorithm, the secret recon-
struction phase of the SS scheme is included in the 
Decrypt algorithm, taking ciphertext C, GP and an 
authorized key set {Kui} as the input. Define 
µ(Z) =

∏

j,k∈Z,j �=k
k

k−j be the Lagrange coefficient. The 
Decrypt algorithm is a recursive operation from down to 
top with the following two rules:

•	 For any leaf node x with attribute value ui , set recov-
ered value Fx = K

H(GID)/H(ui)
ui = g

px(0)·H(GID)
0

 . px 
means the randomly chosen polynomial of node x.

•	 For a non-leaf node x with arbitrary child node z, 
denote Fz be the recovered value for node z, Sx be 
an arbitrary authorized attribute set for node x, S′x is 
defined as S′x = {index(z) : z ∈ Sx} . If {Kui} does not 
comprise of an authorized key set, return ⊥ for the 
Decrypt algorithm. Otherwise, calculate: 

Hence, we recursively obtain gw·H(GID) for the 
root node of tree T. Finally, calculate plaintext 
M = C0/g

pR(0)·H(GID)
0

 , since pR(0) = w.

Security analysis

Theorem 1

Under the DL assumption, the proposed CP-ABE scheme 
is secure against a static probabilistic polynomial time 
adversary.

Proof
We say that a CP-ABE scheme is secure if for any polyno-
mial time adversary, whose attributes set U ′ do not sat-
isfy the access control policy acp∗ , has a negligible advan-
tage in the security game (by Definition 2) played against 
a challenger. Suppose the adversary can break the DL 
assumption with advantage of η . The security game goes 
as follows:

•	 Setup: The challenger runs GlobalSetup(�) 
to generate global parameters GP and invokes 
AuthSetup(GP) to obtain a key pair ( ski,pki ) for 
each authority. Then, it sends all public parameters to 
the adversary.

Fx =
∏

z∈Sx
F
µ(S′x)
z

=
∏

z∈Sx
(g

pz(0)·H(GID)
0

)µ(S
′
x)

=
∏

z∈Sx
(g

pparent(z)(index(z))·H(GID)

0
)µ(S

′
x)

= g
px(0)·H(GID)
0

•	 Challenge: The adversary constructs a chal-
lenge access control policy acp∗ . Then, it sends 
two equal length messages ( s0 , s1 ), acp∗ and 
GID to the challenger. The challenger ran-
domly chooses b ∈ {0, 1} and encrypts sb 
with acp∗ . The corresponding ciphertext is 
C∗ = (C0 = sb · g

w·H(GID)
0

, {Cui = pk
pui (0)·H(ui)

i }) 
which is sent to the adversary.

•	 Query: By constructing each attribute value 
ui , the adversary queries a decryption key 
Kui = {g

pui (0)·H(ui)

0
} , where i and j are parameters. 

Denote all the queried attributes as set U ′ ={“attr j@
AUTHi”}∀j,∀i . After the current phase, acp∗ is satis-
fied by none of set S ⊆ 2U

′ . These decryption keys 
{Kui}ui∈U ′ are sent to the adversary.

•	 Guess: The adversary makes a guess of b′.

Since w is randomly chosen, 
Pr[C0 = s0 · g

w·H(GID)
0

] = Pr[C0 = s1 · g
w·H(GID)
0

] = 1/2  . 
If the adversary wants to distinguish sb , it needs to com-
pute gw·H(GID)

0
 . The adversary will succeed if it is able to 

recover gpR(0)0
 for the root node R given an acp∗ . Due to 

the fact that the calculation of gw
0

 is a process from bot-
tom to top of acp∗ . For each non-leaf node x, it is asso-
ciated with a (t − 1)-degree polynomial px , where t is 
the threshold number required to recover gpx(0)0

 . Since 
U ′ /∈ acp∗ after the Query phase, there exists a non-leaf 
node x where less than t decryption keys are provided for 
the adversary. As is known, less than t points interpolate 
infinite (t − 1)-degree polynomials, making it infeasible 
to defer gpx(0)0

 at node x. Therefore, the adversary cannot 
recover gw

0
 where w = pR(0) and R denotes the root of 

acp∗ . 	�  �

Then, the last chance to obtain gw
0

 is by breaking the DL 
assumption so that pui(0) can be obtained directly from 
Cui . Hence, the probability that the adversary succeeds in 
guessing Pr[b′ = b] is 1

2
+ η , where η is negligible.

Construction of AB‑PVSS
AB‑PVSS Definition

Definition 4  (Attribute-based Publicly Verifiable Secret 
Sharing) Let Ŵ ∈ A be an access control policy, where 
A = 2{a1,a2,...,an} . An attribute-based publicly verifiable 
secret sharing scheme (AB-PVSS) contains four phases, 
i.e., Setup , Distribution , Verification,Reconstruction : 

 (1)	 Setup Phase: On input security parameter � , 
global parameters GP = {g0,G0,H} is generated. 
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Each authority generates his key pair (pki, ski) . The 
dealer collects all public keys {pki}i∈[1,n].

 (2)	 Distribution Phase: The dealer chooses a Ŵ and 
takes a random value s ∈ G0 . The dealer picks w ∈ Zq 
and calculates and utilizes a randomized algorithm 
Share(Ŵ,w) −→ {w1,w2, · · · ,w|Ŵ|} to output shares 
for each leaf node in Ŵ . The dealer encrypts s with w 
to C and encrypts wj with the corresponding author-
ity’s public key pki to Cui , where ui is the attribute 
value of a leaf node. The whole result is denoted by C. 
Also, the dealer generates an NIZK proof proofss for 
proving the correctness of the encryption.

 (3)	 Verification phase: Any external user can verify 
that C correctly contains valid shares of some secret 
non-interactively.

 (4)	 Reconstruction phase: Firstly, each authority 
decrypts each Cui with his private key ski to obtain 
a decryption key Kui . Note that any user can check 
whether Kui is correctly computed or not. With 
enough decryption keys collected to be an authorized 
key set, a user can recover the secret value s.

Similar to PVSS scheme (Cascudo and David 2017), an 
AB-PVSS scheme consists of the following three main 
roles:

•	 Dealer generates the encrypted share components 
Cui for a secret value s ∈ G0 under a given monotone 
access structure, using the corresponding authorities’ 
public keys. In addition, the dealer produces a non-
interactive zero-knowledge proof proofss attesting to 
the correctness of the encryption.

•	 Authority (or Shareholder) is responsible for 
decrypting the encrypted share Cui associated with 
its managed attribute ui and subsequently returning 
the derived decryption value Kui.

•	 User verifies the validity of the encrypted shares Cui ; 
collects an authorized set of decryption keys Kui to 
reconstruct the secret value s.

Similar to PVSS scheme (Cascudo and David 2017), an 
AB-PVSS scheme should satisfy the following three secu-
rity requirements:

•	 Correctness. If the dealer and the authorities are 
honest, then all check in Verification and Recon‑
struction phases will pass and the secret can be 
reconstructed in the Reconstruction phase with any 
authorized key set.

•	 IND2-Secrecy  (Heidarvand and Villar 2009). Without 
an authorized key set, no one can learn any informa-
tion about the secret before Reconstruction. It is for-
mally defined by Definition 5.

•	 Verifiability. If the Verification phase passes, the C is 
a valid sharing of some secret with high probability. If 
the verification in the Reconstruction phase passes, 
Kui is a correct decryption key generated for attribute 
ui.

Definition 5  (IND2-Secrecy Game) An AB-PVSS has 
IND2− Secrecy if for any polynomial time adversary 
A corrupting some authorities who cannot produce an 
authorized key set, A has negligible advantage in a game 
with a challenger C . 

1.	 Setup: C runs the PVSS Setup phase and sends 
(GP, pki, ski) to each uncorrupted shareholder Pi . C 
sends public information and corrupted authorities’ 
private keys {ski} to A.

2.	 Challenge: The adversary A sends two equal length 
secrets ( s0 , s1 ) to C . C randomly chooses b ← {0, 1} 
and runs the Distribution phase with secret sb . It 
sends all the output to A.

3.	 Query: The adversary A queries a set of decryption 
keys, and the whole set should be unauthorized.

4.	 Guess: A outputs a guess b′ ∈ {0, 1}.

A ’s advantage over the game is defined as |Pr[b = b′] − 1/2|

.
The game is actually similar to the proposed CP-ABE 

security model in Definition 2.
Adversarial model. In our scheme, the adversary is 

modeled as a probabilistic polynomial-time (PPT) algo-
rithm. For an AB-PVSS protocol defined over an access 
structure τ , we consider a static adversarial model in which 
the adversary may corrupt a subset of authorities who con-
trolling a set of attributes Q, provided that Q does not sat-
isfy the access structure τ.

NIZK Proofs for CP‑ABE Ciphertext
In this section, we demonstrate how to achieve proof of 
plaintext knowledge for the proposed CP-ABE cipher-
text using the Sigma protocol and FS heuristic. Suppose a 
prover encrypts a secret s ∈ G0 to obtain C using the CP-
ABE algorithm, as Equations (1) show.

Then, the prover composes the commitment value C ′ , 
which is encrypted from s′ R

←− G0 , as Equations (2) show.

(1)

C = Encrypt(s, acp,GID,GP, {pki}) =

{

C0 = s · g
w·H(GID)
0

,

{Cui = pk
pui (0)·H(ui)

i }ui∈U
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where w′(�= w) is randomly chosen from Zq ; p′R is a 
randomly chosen polynomial for root node R, and 
p′R(0) = w′ . Next, the prover calculates the Sigma pro-
tocol challenge value c = H1(C

′,C) , where H1 is a hash 
function that maps data to an element in Zq . Then, the 
response value includes:

Thus, the NIZK proof proofss ← NIZK(C) = ( C ′, c, (s̃, w̃, 
{p̃ui(0)}ui∈U )).

Any honest external verifier can be convinced that the 
prover has plaintext knowledge of s, if CheckCiphertext , 
defined by Equations (3), outputs true:

The last equation in Equations (3) provides binding rela-
tionship of s in C0 and {Cui} . interpolate implements the 
Lagrange polynomial interpolation process from bottom 
to top according to the acp tree.

Lemma 1

(Completeness) A dealer can use the CheckCiphertext 
algorithm to prove knowledge of the secret s.

Proof
Given the CP-ABE ciphertext and an NIZK proofss , then 
the Equations (3) is proved to hold as follows. 	�  �

Lemma 2

(Special knowledge soundness) Given two correct con-
versations with the same commitment and different chal-
lenge value, it is efficient to calculate the plaintext s.

(2)

C ′ = Encrypt(s′, acp,GID,GP, {pki}) =

{

C ′
0
= s′ · g

w′·H(GID)
0

,

{C ′
ui
= pk

p′ui
(0)·H(ui)

i }ui∈U

s̃ = s′/sc, w̃ = w′ − cw, {p̃ui(0) = p′ui(0)− c · pui(0)}ui∈U

(3)

CheckCiphertext(C ,proofss) :














C ′
0

?
= s̃ · g

w̃·H(GID)
0

Cc
0

{C ′
ui

?
= pk

p̃ui (0)·H(ui)

i · Cc
ui
}ui∈U

w̃
?
= interpolate({p̃ui(0)}ui∈U )



























C ′
0 = s′ · g

w′·H(GID)
0

= s̃ · sc · g
(w̃+cw)·H(GID)
0

= s̃ · g
w̃·H(GID)
0

Cc
0

{C ′
ui
= pk

p′ui
(0)·H(ui)

i = pk
(p̃ui (0)+c·pui (0))·H(ui)

i = pk
p̃ui (0)·H(ui)

i · Cc
ui
}ui∈U

w̃ = w′ − cw = interpolate({p′ui(0)}ui∈U )− c · interpolate({p̃ui (0)}ui∈U )

= interpolate({p̃ui(0)}ui∈U )

Proof
Given two accepting conversations (C , proofss) and 
(C , proofs′s) , where proofss = (C ′, c, (s̃, w̃ , {p̃ui(0)}ui∈U ) ) 
and proofs′s = ( C ′, c′, (s̃′, w̃′ , {p̃′ui(0)}ui∈U ) ). Note that the 
two conversations share the same sigma protocol value C ′ . 

With 
{

w̃ = w′ − cw,

w̃′ = w′ − c′w
 , one can calculate w = w̃′−w̃

c−c′  . Thus, 

s can be calculated as: s = C

g
w·H(GID)
0

 . 	�  �

Lemma 3
(Special HVZK) The proof proofss reveals nothing infor-
mation about s.

Proof
The special HVZK is proved with a simulator. We need 
to prove that the simulator can always generate a con-
versation that is identical with real conversation between 
P and V. The simulator can generate the conversation in 
arbitrary order. Upon receiving the CP-ABE ciphertext 
C = {C0,Cui} and challenge value c, the simulator ran-
domly chooses response values ŝ ∈ G0, ŵ ∈ Zq and mul-
tiple polynomials according to the access control policy Ŵ 
in C, where ŵ invokes the AB-SS Share(Ŵ, ŵ) algorithm to 
obtain {p̂ui(0)}ui∈U for each leaf node in Ŵ . Then, generates 
a conversation as:

where C ′
0
← ŝ · g

ŵ·H(GID)
0

Cc
0
 and 

{C ′
ui
← pk

p̂ui (0)·H(ui)

i · Cc
ui
}ui∈U . Obviously, proofs′s 

always represents an accepting conversation, as required. 
Furthermore, since Share is a random algorithm and 
ŝ, c, ŵ, {p̂ui(0)} are uniformly distributed in G0 and Zq , 
C ′
0
 and {C ′

ui
} are uniformly distributed in G0 . That means 

the simulator can always output a proof proofs′s and the 
distribution is identical to the real randomized conversa-
tion. Hence, proofss constructs an NIZK proofs for s in 
C. 	�  �

Construction of AB‑PVSS
In this section, we introduce how to build an AB-PVSS 
scheme based on the proposed CP-ABE algorithm. 
Firstly, we introduce an algorithm CheckKey to check 
whether a CP-ABE decryption key Kui is correctly 

proofs′s = (C ′ = {C ′
0,C

′
ui
}, c, (ŝ, ŵ, {p̂ui(0)}ui∈U ))
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generated with attribute ui . The CheckKey algorithm 
takes in Kui , pki and u, then outputs true or false . The 
algorithm costs constant time, i.e., two bilinear pairings 
(Bethencourt et al. 2007).

For convenience, we introduce three entities in the AB-
PVSS scheme, namely the dealer, authorities and an 
external verifier/user. The dealer can share a secret using 
attribute values. The authorities are responsible for gen-
erating keys according to attributes. The external verifier/
user checks whether the dealer or an authority is honest 
or not. If secret recovery is required, the external veri-
fier/user acts as the role to collect decryption keys from 
authorities.

Figure  2 depicts the diagram of data flow in four 
phases.

1.	 Setup Given the decentralized CP-ABE 
GP ← GlobalSetup algorithm is initialized. Each 
authority i invokes AuthSetup(GP) to obtain the key 
pair (ski, pki) . The dealer collects all public keys {pki}
.

2.	 Distribution The dealer constructs an access control 
policy acp. Then, the dealer encrypts his secret s by 
invoking Encrypt(s, acp,GID,GP, {pki}) and obtains 
ciphertext C. At the same time, the corresponding 
NIZK proofs proofss ← NIZK(C) is attached. Next, 
the dealer publishes C , proofss in the public channel.

3.	 Verification Any external verifier can check C by 
CheckCiphertext(C , proofss) . If the verification result 
is true , the verifier is sure that s is indeed encrypted 
to C but learns nothing about s.

4.	 Reconstruction Each authority i runs the 
KeyGen(GP,Cui ,ui, ski) algorithm for each attrib-

CheckKey(Kui , pki, g0,Cui) :

e(Kui ,pki)
?
= e(Cui , g0)

ute ui to obtain Kui . Each key Kui is checked via 
CheckKey(Kui , pki, g0,Cui) . After collecting an 
authorized key set {Kui} , any user can invoke 
Decrypt(GID,C ,GP, {Kui}) to recover the secret s.

Security analysis
This section analyzes the security requirements of the AB-
PVSS scheme defined in Sect. 5.1.

Theorem 2

(Correctness) If the dealer and authorities are honest, 
Verification Phase outputs true and Reconstruction 
Phase outputs the dealer’s secret s for any honest external 
verifier/user.

Proof
In the Distribution phase, the honest dealer computes 
C by encrypting a secret s under access control policy acp 
and generate NIZK proofs proofss . proofss will always 
makes the Verification outputs true for any honest exter-
nal verifier/user due to completeness of Sigma protocols, 
as Lemma  1 shows. In the Reconstruction phase, hon-
est authorities issue correct CP-ABE decryption keys to 
the external user. Then, the decryption keys {Kui} form 
an authorized key set, guaranteeing that attribute set 
{ui} ∈ acp and s ← Decrypt(GID,C ,GP, {Kui }) is success-
fully recovered. 	�  �

Theorem 3
(IND2-secrecy) The proposed AB-PVSS is IND2-secrect 
against a probabilistic polynomial time adversary A , 
without an authorized key set under the DL assumption 
and random oracle model.

Proof
By Lemma 3, we prove that A has negligible advantage to 
obtain the secret s from the NIZK proofss . Moreover, we 
prove the A has negligible advantage in the CP-ABE secu-
rity game by Theorem 1. The proving process of Theorem 1 
is also applicable to the IND2-Secrecy game, since the 
behaviors of A are the same in both games given CP-ABE 
ciphertext. Thus, A also has negligible advantage in learn-
ing information about plaintext s. 	�  �

Fig. 2  The proposed AB-PVSS based on decentralized CP-ABE
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Theorem 4
(Verifiability) The protocol is (publicly) verifiable, i.e., the 
dealer is verifiable in Distribution and authorities are 
verifiable in Reconstruction.

Proof
Theorem  2 has shown that Verification phase outputs 
true if the dealer is honest. If the dealer is dishonest, it 
can be uncovered and the output is false by the sound-
ness of Sigma protocols, as Lemma  2 shows. Hence, the 
dealer is verifiable in the Distribution phase. We intro-
duce CheckKey algorithm to check whether a CP-ABE 
decryption key Kui is valid or not. The CheckKey is based 
on bilinear group pairing, i.e., e(Kui ,pki)

?
= e(Cui , g0) . 

It is infeasible to find a invalid decryption key K ′
ui
�= Kui 

for a dishonest authority, owing to one-wayness of bilin-
ear mapping. Thus, the authorities are verifiable in the 
Reconstruction phase. 	�  �

Complexity of the proposed AB‑PVSS
PVSS scheme usually contains only one instance of secret 
sharing, which can be expressed with a one-level thresh-
old secret sharing. However, our protocol is attribute-
based, enabling multi-level secret sharing. To compare 
the computation and communication complexity with 
PVSS schemes, the below analysis only considers a one-
level threshold access control policy. Hence, n is the 
number of authorities/shareholders, t is the threshold 
value.

Computation Complexity: In the Distribution phase, 
the dealer invokes Encrypt algorithm to generate C. It 
costs n+ 1 exponentiations to produce a ciphertext. 
The NIZK proofs generation algorithm NIZK(C) gener-
ates C ′, c, (s̃, w̃, {p̃ui(0)}ui∈U ) , where C ′ also takes n+ 1 
exponentiations and s̃ takes 1 exponentiation. Hence, 
the Distribution phase takes 2n+ 3 exponentiations. 
In the Verification phase, the CheckCiphertext costs 2 
exponentiations for verifying C0 and 2n exponentiations 

for verifying all {Cui} . Therefore, the Distribution phase 
takes 2n+ 2 exponentiations. In the Reconstruction 
phase, the CheckKey costs 2 pairings for each decryption 
key. Besides, the Decrypt algorithm is used for recovering 
secret s, costing t exponentiations. Therefore, the com-
putation complexity of the Reconstruction phase costs t 
exponentiations and 2t pairings in total.

Communication Complexity: In the Distribution 
phase, the dealer publishes the ciphertext C of s and 
the corresponding NIZK proofs proofss = (C ′, c, (s̃, w̃, 
{p̃ui(0)}ui∈U )) . The proposed CP-ABE ciphertext con-
tains n elements on G0 and 1 element on G1 . Hence, the 
Distribution contains 2n+ 3 elements on G in total and 
n+ 2 elements on Zq . In the Reconstruction phase, each 
authority i publishes a CP-ABE decryption key Kui for 
each attribute u. Moreover, only t valid keys are enough 
for the CP-ABE Decrypt algorithm. Hence, Reconstruc-
tion phase costs t elements on G for an external user to 
recover the secret.

Table  1 and Table  2 compare the computation and 
communication complexity of our protocol with state-
of-the-art (O(n) verification) PVSS schemes. To further 
underscore our contribution beyond complexity, it is 
important to note that previous PVSS protocols (Sch-
oenmakers 1999; Heidarvand and Villar 2009; Cascudo 
and David 2017, 2020; Cascudo et  al. 2022) only enable 

Table 1  Computation complexity

 Ref.  Distribution  Verification  Reconstruction

Exp Exp Pair Exp Pair

SCRAPEDBS Cascudo and David (2017) 2n n 2n t + 1 2t + 1

SCRAPEDDH Cascudo and David (2017) 4n 5n − 5t + 3 −

ALBATROSS Cascudo and David (2020) 2n+ 1 2n − 6t + 10 −

HEPVSS Cascudo et al. (2022) 7n 4n − 3t −

DHPVSS Cascudo et al. (2022) n(n− t + 2)+ 2 n(n− t)+ 4 − 5t −

Ours 2n+ 3 2n+ 2 − t 2t

Table 2  Communication complexity

 Ref.  Distribution  Reconstruction

G Z G Z

SCRAPEDBS Cascudo and David 
(2017)

2n 0 t 0

SCRAPEDDH Cascudo and David 
(2017)

4n n+ 1 3t t + 1

ALBATROSS Cascudo and David 
(2020)

2n n+ 1 3t t + 1

HEPVSS Cascudo et al. (2022) 3n 2n t 2

DHPVSS Cascudo et al. (2022) n+ 2 1 3t t

Ours 2n n+ 3 t 0
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a dealer to distribute shares among individuals or share-
holders. In contrast, our protocol is attribute-based, 
allowing a dealer to share a secret using attribute values. 
This capability enables arbitrary monotone access con-
trol, making our protocol applicable to more general and 
diverse scenarios.

Implementations
We implement the decentralized CP-ABE scheme and 
AB-PVSS scheme with Charm-Crypto library (Akinyele 
et al. 2013), which is a framework for constructing cryp-
tographic schemes. It provides Python programming lan-
guage interfaces. The Charm-Crypto framework relies 
on the GMP (GNU multiple precision) arithmetic library 
and the PBC (pairing-based cryptography) library written 
in C language. Charm-Crypto also provides classic cryp-
tographic primitives as its built-in examples, including 
the BSW CP-ABE (Bethencourt et al. 2007), LW CP-ABE 
(Lewko and Waters 2011) and RW CP-ABE (Rouselakis 
and Waters 2015). Based on the built-in example, we first 
make it compatible with the threshold-based access con-
trol policy. Then we implement our proposed decentral-
ized CP-ABE. Further, we implement our AB-PVSS and 
some of above mentioned PVSS schemes (Cascudo and 
David 2017, 2020). The experiments are conducted on 
AWS Ubuntu 18.04, 4 GB RAM, with Python 3.6.9 and 
curve “SS512".

We then compare the performance of the proposed 
CP-ABE with other decentralized CP-ABE schemes, 
i.e., LW CP-ABE (Lewko and Waters 2011) and RW CP-
ABE (Rouselakis and Waters 2015). Figure  3 and Fig.  4 
depict the Encrypt and the Decrypt time cost, respec-
tively. Though our decentralized CP-ABE scheme is not 

fully-fledged, these figures indicate that our scheme out-
performs previous constructions.

We then evaluate the performance with the proposed 
AB-PVSS scheme by downgrading the AB-PVSS to a 
PVSS scheme and compare it with other PVSS schemes 
(Cascudo and David 2017, 2020; Cascudo et  al. 2022). 
Figure  5, Fig.  6 and Fig.  7 show the concrete computa-
tion overhead of the Distribution phase (by the dealer), 
the Verification phase (by a verifier), and the Recon-
struction phase (by a user), respectively. SCRAPEDBS 
has the lowest distribution time cost, which is identical 
to Table 1. It can be seen that our AB-PVSS and ALBA-
TROSS have the lowest verification overhead. However, 
ALBATROSS has the highest reconstruction overhead. 
DHPVSS has the lowest reconstruction overhead, but it 

Fig. 3  Encrypt cost of decentralized CP-ABE

Fig. 4  Decrypt cost of decentralized CP-ABE

Fig. 5  Distribution cost
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requires superlinear complexity in the distribution and 
verification phase due to point evaluations with a ran-
dom (n-t-1)-degree polynomial. HEPVSS is not shown in 
the figures, as it does not appear to be optimized in either 
phase by Table 1.

Discussions

1.	 The mask of using H(GID) and H(ui) seems use-
less in C, since ui and GID are public and adversar-
ies can invert a value without these masks. However, 
ui is an attribute in the access control policy which 
is essential to CP-ABE schemes. And H(GID) is used 
to identify each CP-ABE ciphertext, resembling pre-

vious schemes (Lewko and Waters 2011; Rouselakis 
and Waters 2015).

2.	 Our CP-ABE outperforms related works, because we 
use secret shares only once and remove bilinear map-
ping. Let’s take decentralized RW CP-ABE (Rousela-
kis and Waters 2015) as an example to show how we 
reduce ciphertext size and computation cost. A ran-
dom value tx , two tuple of secret shares {�x} and {ωx} 
are generated and used for attribute x in ciphertext. 
Another random value t is used in two fields KGID,u 
and K ′

GID,u in KeyGen algorithm. Hence, the random 
values {tx} and t can be eliminated by bilinear pair-
ings in Decrypt algorithm. However, in our CP-ABE 
implementation, the ciphertext Cui uses each secret 
share pui(0) only once in Encrypt algorithm. Then, 
the decryption key Kui inputs the ciphertext Cui and 
no new random value is generated in KeyGen algo-
rithm. Thus, we do not need bilinear pairing opera-
tion to get rid of randomness in Decrypt algorithm. 
(Note that the bilinear pairing operation is required 
only in the proposed AB-PVSS CheckKey algorithm, 
but not in the CP-ABE scheme.)

3.	 As a trade-off, our KeyGen algorithm requires the 
ciphertext Cui as an input. That means traditional 
CP-ABE Encrypt and KeyGen algorithms are inde-
pendent and enables a decryption key to be useful for 
future-generated ciphertext. However, our CP-ABE 
require Encrypt to be invoked before KeyGen is exe-
cuted for a plaintext. This design leads to reduced key 
reusability where keys can not be used interchange-
ably across different ciphertexts. Even if the CP-ABE 
keys associated with a particular sharing instance 
(GID) are compromised, the confidentiality of all pre-
viously generated ciphertexts remains intact, thereby 
ensuring forward secrecy. Our scheme is a relaxation 
of functionality, which is the weakness compared 
with related works. Strictly speaking, this may vio-
late the concept of CP-ABE for some researchers. 
We neglect the accuracy of the concept of CP-ABE, 
because our primary contribution is to introduce 
AB-(PV)SS and its particularity. But it does impact 
its usage and security in implementing our AB-PVSS 
scheme.

4.	 Although the encryptor can generate keys for 
decryptors without authorities, our decentralized 
CP-ABE is still non-trivial in some distributed sce-
narios. These scenarios include those where a com-
mitment scheme or threshold decryption is required.

5.	 Fundamentally, the proposed decentralized CP-ABE 
scheme operates as a distributed ElGamal protocol 
(Zhang et  al. 2025) with a monotone access struc-
ture, enabling ciphertext decryption for users whose 
keys satisfy the specified access conditions. Further, 

Fig. 6  Verification cost

Fig. 7  Reconstruction cost
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we implement this decentralized CP-ABE in order to 
uncover the connection between CP-ABE and PVSS, 
as presented in Sect. 7.

6.	 To our knowledge, AB-PVSS can be obtained by any 
CP-ABE along with NIZK. Actually, we have also suc-
cessfully constructed AB-PVSS with single-authority 
BSW CP-ABE (Bethencourt et  al. 2007) and multi-
authority RW CP-ABE (Rouselakis and Waters 2015), 
which are less efficient than the proposed AB-PVSS 
in this paper. That also explains why we construct the 
more efficient decentralized CP-ABE. As a sacrifice, 
ciphertext has to be an input of the KeyGen algo-
rithm, indicating restrictions in some applications. 
AB-PVSS construction might also be obtained based 
on traditional PVSS and multi-level ACP. Hence, CP-
ABE is not a necessity in building AB-PVSS schemes. 
In the future, we will investigate more about new 
constructions of AB-PVSS schemes.

7.	 An important direction for extending our decentral-
ized CP-ABE design is the integration of efficient 
attribute-revocation mechanisms, as demonstrated 
in the revocable ABE schemes (Sethi et  al. 2021) 
and Li et  al. (2025). Incorporating such revocation 
idea into our decentralized construction would not 
only enhance its practicality but also facilitate the 
development of new secret-sharing frameworks and 
attribute-based publicly verifiable secret re-sharing.

Conclusion
We propose the concept of attribute-based secret shar-
ing (AB-SS), where two favorable functionalities are 
acquired. They are: 1) a dealer can share a secret with an 
arbitrary monotone access structure; 2) a dealer also can 
share a secret without knowing the shareholders. We give 
the definition of AB-SS rigorously and present an AB-SS 
scheme by adopting some ideas from BSW CP-ABE. 
Then, we build an efficient decentralized CP-ABE by 
reducing the times of secret shares usage in Encrypt algo-
rithm. Further, NIZK proofs are attached to prove plain-
text knowledge for the proposed CP-ABE ciphertext. The 
NIZK proofs are obtained by leveraging generic linear 
Sigma protocol and Fiat-Shamir heuristic. Finally, we 
formally define and implement an attribute-based secret 
sharing (AB-PVSS) scheme by integrating the proposed 
CP-ABE scheme with NIZK proofs.
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