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We prove Lemma 1 in §EC1. We present the queueing equations and some preliminary analysis
in §EC2. Then we prove Theorem 1 in §EC3 and Theorem 2 in §EC4. Proof of Proposition 1 is
placed in §EC5 and that of Theorem 4 in §EC6. The proofs of the results in Section 5 are presented

in §EC7. Finally, proofs of supplemental results appear in §ECS.

EC1. Proof of Lemma 1

We first state some preliminary results. We note that
P2, =iv (EC1)
hence PAd; is increasing in i. Also by (3)
P > P for j' > j. (EC2)

The proof of the following result is elementary hence skipped.

LEMMA ECL1. If for a level j, 1 <j <1, cfj = cij/ for some j' < j then level j cannot be efficient.

Also, for any efficient level i,

(1-P)dy, > (1P d, (EC3)
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for all v <i;.



REMARK EC1 (EQUIVALENT DEFINITIONS). It can easily be checked that if a level 7 is inefficient

than the following hold for some 7; <i <1,

<P£bcziz - P ffb‘jn) d; < (Pfg‘bdiz - PiAbCZl) d;, + (PZ-AbCii - P ffb‘ii1> d;,, (EC4)
(szg - dil) (szbdig - PiAbCZZ) < (dig - Cii) (Pi;”’c% - P{fbdn) ; (EC5)

and
(dip = di, ) PYdi = (di = diy ) P, + (diy = di) Py (EC6)

Proof of Lemma 1: The routing LP (10) can be written as

I

min» " PAAi + Arg (ECT)
st. =

I )\
Y SN, (EC8)
i=1 %

I
> A+ A = (EC9)
1=1
N>0, i=1,2,...,1,1+1. (EC10)

Let yn, y» and y; denote the dual variables associated with the constraints (EC8), (EC9) and
(EC10), respectively. We can write the dual of the routing LP, referred to as LP-D, as

max Ay — Nyy

st.

Yy —gyNerigP;‘b, i=1,2,...,1
yx+y;+1§1, 1=1,2,...,1

yn >0,

yn =0,

y; >0, i=1,2,...,]+1.

LP-D is equivalent to the following LP, referred to as LP-DE,

N A

max — —

Ny’\ YN

st.

Cziy)\_yNSF)iAbdia i:1127"'717 (ECll)
yn <1, (EC12)

yr >0, (EC13)



yn = 0. (EC14)

For the rest of the proof we focus on establishing an optimal solution of LP-DE. Because an optimal
solution of LP-D can easily be derived from an optimal solution of LP-DE, we also refer to such a
solution as an optimal solution of LP-D, with a slight abuse of terminology.

We divide the proof into a few cases depending on the value of the parameters N and . First,
assume that 2 < d,. Consider the solution (y5,y%) = (P{*,0) with objective value 2 P/** for LP-
DE. We claim that it is an optimal solution of LP-DE. Note first that it is feasible by (EC2). In
addition, by (EC11) for ¢ =1, for any feasible solution (y,yx) the objective function is bounded
by

A YN
o PAb - o <7PAb
N<1 +d1> WENT

where the last inequality follows from the fact that % < d,. Thus, (y5,y%) = (P{**,0) is an optimal
solution of LP-DE and LP-D. Note also that the feasible solution given by A; = A, and A\; =0,
i=2,...,1,1 +1 for the routing LP (EC7) attains the same objective value with the optimal
objective function value of LP-D, therefore it must be an optimal solution of (10), proving (15).
Next, assume that 4§ = d;- for an efficient level i*. By (EC4) and (EC5) and the fact that level
1* is efficient for any i; < i* < iy and 41,49 € N©
P{ilbc?i* - 1;?%1 B Pgb@ — zfig*bdh _ 1113%@2 - inébciﬁ
dix —d N d, —d N d;, — di

, (EC15)
i ip — Gy i
where by convention -/0 = co and diQ > di* > dil by Lemma EC1 and the fact that i;,i5 € N¢. Let
yx be such that

Pitd — P,;;‘bdil

di» —d

Y < Pi;‘bdiz — Piébdi*
A= = ~

IN

, for all iy,is €N®, iy <i* and iy >i*. (EC16)

i1
The existence of such yj is guaranteed by the fact that level ¢* is assumed to be efficient and by

(EC15). Also, set
yy = diys — Pdse. (EC17)

First note that by the fact that level I is efficient, d; > d;= and by (EC16) with iy = I, y} < 1.
Using (EC16) and (EC17) it is easily checked that (y%,y% ) satisfies (EC11) for all : € N¢. Also, for
i €N, (y5,yy) satisfies (EC11) by (EC1), the definition of A and the fact that (y},y}) satisfies
(EC11) for i € N°. Hence, (y%,yx) is a feasible solution of LP-DE with the objective function value



P2%d,.. The optimality of (y%,y%) for LP-DE (and so for LP-D) follows from the fact that for any

feasible solution (y,yy) the objective function satisfies

%y/\ —yn =diyr —yn < P¥d;

by our assumption that % = d;«. Note also that the feasible solution given by A\;» =\, \; =0 for
i #14* for the routing LP (ECT) attains the same objective value as the optimal objective function
value of LP-D, therefore it must be an optimal solution of (10), proving (16) in this case.

Now assume that d; N > A >d; N and that 2 = F dg for any i* € F. Let i%,, be defined as in (14)

j+1
and define .
iéldi;ﬂ_PiébdZ; Pléld’jﬂdlj 'Pi?bdl;dl;Jrl
Waun)=| —— e, - = : (EC18)
iz~ diz —di;
Also define

Using (EC11) for i} and 7}, ;, we have for any feasible solution (yx,y~)

A 7 d*+1 _A Ab j A_d Ab
Ny,\—yN:(s(di;y,\—yN)—l—(l—@(d U —yn) < hpj d; +mPJ+1d;H
i1 1Y

On the other hand, it is easy to verify that (y},yy) defined in (EC18) achieves this best possible
value. Therefore it is enough to show that (y},yx) is a feasible solution for LP-DE to conclude
that it is an optimal solution for LP-DE.

By the monotonicity property (EC1) and Lemma EC1, (y3},y%) satisfies the constraints (EC12),

(EC13) and (EC14). Also, it satisfies (EC11) for i =1} and i =747, ,. In fact, these two constraints

Jj+1-
are tight at this point. We next prove that (y3,yy) satisfies (EC11) for i #i},}, . For i <1,
diyy —yn = dir, Y3 —yn — (dix, | — di)yx
. pivd,
= P2 dpe  —(dw. —d) sn A N (EC19)
i Yl j+1 dix —d.«
Gl Y
Since level 7 is efficient, by (EC5) and Lemma EC1
P dix  — P, b dis, — P,
j+1 J+1 j J > Yi+1
dl* - dz* B d i 7
j+1 j Yi+1

This implies by (EC19) that d;y; — v < PA%;. So (EC11) is satisfied for any i < i by (Y3, Yn)-

For i >}, a similar argument applies by using the efficiency of level i}, ;. Specifically, by (EC5)

Jj+1-
7 Ab 3 7 7 Ab 7 7 Ab
(d; — dJ)PMd;H <(dig,, = dis) P+ (di = dyy ) P (EC20)



Then
diyy —yn = disyx —yn + (di = di )y3
Ab G ;g P"ﬁ"ildi;ﬂ B Piébdzj Ab 7
_ " . J J . )
- Pl;k dz]. + (dz dz].) Cii»f - (ii. S PZ d“

where the last inequality follows from (EC20).
If Uy = (), then the proof is complete. Also, for all i € N, (y%,yx) satisfies (EC11), as described
above if (y3,yy) satisfies (EC11) for all i € . So next we consider U;; N N°. For any i € Ui NN,

let
5 Y e S A
LT pae g Ab
j+1 I+l L5 J

and 0; =1—0,4,. By (EC1), 6;,6;41 €0,1]. It follows from Lemma EC2 below and (ECG6) that
di < 0j41dix + 0y - (EC21)
Then

diyx = Yn <0541 (di; Yr— y?‘v) +9; (di;+1y§ - y}"v>
Ab g Ab g
< 5j+1pi;, di; + 6jf)i;+ldﬁ

j+1
_ pAbj
=P""d,,

where the first inequality follows from (EC21) and the second inequality follows from the fact that
(yx,yn) satisfies the constraint (EC11) for i and 45, ,. So (y5,yx) satisfies the constraint (EC11)
for all 1 <i<1I. Therefore, (y5,y%) is an optimal solution for LP-DE and LP-D. In addition, the
feasible solution given by (16) for the routing LP (EC7) attains the same objective value as the
optimal objective value of LP-D, therefore it must be an optimal solution of (10), proving (16) in
this case.

Finally, we study the case where A > d;N. Consider the solution (y5,y%) = (1,d; (1 — PAY)) with
objective value 2 — d;(1— P{) for LP-DE. We claim that it is an optimal solution of LP-DE. Note
first that it is feasible by (6). In addition, by (EC11) for i = I and (EC12), for any feasible solution
(Y, yn) the objective function is bounded by % — d;(1—P{%). Thus, (y5,y%) is an optimal solution
of LP-DE and LP-D. Note also that the feasible solution given by A\; = CZIN, Ari1=A— CZ[N, and
Ai=0,i=1,...,I—1 for the routing LP (ECT7) attains the same objective value with the optimal
objective function value of LP-D, therefore it must be an optimal solution of (10), proving (17).

0



EC1.1. Proof of (EC21)

We now focus on the inefficient levels in Z/li; NN¢ (when U, # () for an efficient level i;. For
notational simplicity we assume N = ) and use only the notation Z/{i; the rest of this section. (We
do not make use of this assumption in the proof.) For an inefficient level ¢, we denote the set of
all pairs (iy,45) with i, <i <1y that satisfy (EC5) by J(i). For any i €U;,, by the definition of
inefficiency, there exists a pair (k, j) € J(i). However, the definition itself does not require (;,4;11)
to be one of the pairs in [J(¢). In this section we prove that (i;,i;41) € J (7).

Let a; = PA'd; and consider the set of pairs {(d;,a;):i={1,2,...,1}} on a two-dimensional
plane. Assume that dy, =+ d} and let L¥7: R — R denote the (straight) line passing through points
(dy,ay) and (d;, a;), hence,

a; — ay a;

LM (z) = = T — Aj_aAka? +a, xR
= a T d—a

From here on when we consider L*7 we assume without further mention that d, #* dj. For k <v <y,

we have

>
>
>
>

S
<.

LM(dy) = aj=—" + =
R T M

SN

If a level 7 is inefficient then by (EC6) either dj, = d; for some k < i or
a; > LM (d;) (EC22)
for some (k,7) € J(4).
LemMA EC2. Leti; € F. For any i €U, (EC21) holds.

Note that (EC21) is equivalent to
a; > L+ (d;). (EC23)

We use the following results in the proof that are immediate from algebraic manipulations. Let

k <i and k < j and assume that L*i(z) < L¥J(z) for some z > dj,, then

L¥(x) < L*(z) for all x> dj, (EC24)
Similarly, if for k <i and j <i L*(z) < L7(z) for some & < d;, then

LFi(z) < LP(x) for all z < d;. (EC25)

Let ¢ < j and k <[ and assume that there exists x; > such that LI (z) < L*!(x) for some z < zy,

and L% (x) > L*!(z) for some z > z;, then

L (z) < LPY(z) for all x <y, and L™ (x) > LF(x) for all x > ;. (EC26)



Proof of Lemma EC2: We prove the result using an induction argument. Because level i is inef-
ficient, by Lemma EC3 below, (ki,7;41) € J (i) for some k; < i. Hence, by (EC22) (note that by

A~

Lemma EC1 and the fact that i, is efficient we have czi <d for all 4 <i,41)

ij41
a; > Lkl’ij+l(di>. (EC27)

Now we proceed by induction. Let ¢ =¢; + 1. Assume that k; < ; as otherwise the proof is
complete. Because level i; is efficient

ai; < L"+1(d; ). (EC28)

Since a;; = Lij’iﬂl(a?ij), we have Liiii+1(x) < L¥i+1(z) for all z < d,

then follows from (EC27).

by (EC25). The result

ij41
Now assume that for i €U, i >1;+1 and
ay > Li]-,i]-+1(cgi,)

for all i;+1 <4’ <i—1. By Lemma EC3, there exists 1 < k; < such that (k1,4;+1) € J(9). If ky <1,

the result follows as above using (EC28). Now assume that k; > ;. By the induction argument
ay, = L5+ (dy,) > L'+ (dy, ).
Therefore, by (EC25)

LFiie (x) > [ttt (x)

~

for x <d Then (EC23) follows from (EC27). O

1

LeEmMMA EC3. Let i € F. For any i €U,
a; > LP5+1(d;) (EC29)

for some 1 <k <.

Proof of Lemma EC3: Assume that level i is inefficient. Then by (EC6) either d; = ch for some
j<tor

for some j; <1i < js.



~

First assume that czz = a?i/ for some ¢’ <i. Then, by Lemma EC1 d > a?i = czi/. Hence, we have

ij41
a; = L (sz)

by (EC24) completing the proof in this case.

Now assume that d; > d;_; and that (EC30) holds. It follows from (EC24) and Lemma EC1 that
ch2 > d;. We prove the result in this case recursively by induction. First suppose i =1;;; — 1. In
this case, if j, =14,41 the result follows. Otherwise, we must have j, > i;,1. The fact that level 7,4,

is efficient implies

LIt (d}jﬂ) =aj;,, < L2 (Czij+1)a

hence by (EC24)
LV (z) < LIV72(z), for all > d;,. (EC31)

The result (EC29) with k = j; follows from (EC30) and (EC31) (with z = d; since d; > d;,).

Now suppose 7 <i;41 — 1 and by induction that for all ¢" with ¢ <7’ <7;1,
ay > Lkl(if),¢j+1(cji,) (EC32)

for some k; (i') <i'. By the discussion above, if d; =d;_; the proof is immediate, therefore we focus
on the case when d; > d;_,. If d; > d;_, then it follows from (EC24) and Lemma ECI that cijz, >d,.

~

Also, by Lemma EC1 and the fact that ;.4 is efficient we have djz <d,,,,. Hence for the rest of

the proof the following holds
(EC33)

If jo >i;41, then the result (EC29) (with k = j;) follows in a similar way to the discussion leading
to (EC31). So we now focus on the case where j, <i;;;. We can assume the pair (ji, j») we pick is

the one such that j» =min{j: (j1,7) € J(i)}. By the induction assumption (EC32), for this js
Q. > Lkl(j2)7ij+1 (CijQ). (EC34)

There are three different cases to be analyzed separately.
(i) k1(j2) <jr <i<jo
(i) J1 <ki(J2) <i<jo

(iii) j1 <i<ki(Jja2) < Jo
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Case (i): If a; > L¥102)4+1(d;), then result (EC29) with k = k (j) follows immediately. So we

focus on the case where
a; < LM (). (EC35)
We show below that in this case,
a;, < LM (d, ), (EC36)

We now show the result (EC29) holds with k£ = j; using (EC35) and (EC36). Figure 1 gives a
graphic demonstration of the argument. Let L7172 denote the line that passes through the points

a;,) and (d;,, L*102)04+1(d},)). Since (EC34) holds, by (EC24), we have that

~

(d

g1
Livi2(z) > Li92(z), for all z > dj,. (EC37)

On the other hand, since (EC36) holds, by (EC25), we have that

LF1U2)441 () > [Ivi+1 (), for all o < d

ij1

Plugging 2 = d;, in the above yields L*102)i+1(d, ) = Livi2(d;,) > Livi+1(d;,). This, again by
(EC24), implies that
Lv32(g) > LI+ (z), for all > d;,. (EC38)

The result follows from (EC30), (EC37) and (EC38) (with z = d; since d; >d;,).
To complete the proof in Case (i), we next prove (EC36). We first show that (EC34) and the
opposite of (EC36) implies that

L7v2(z) > LR (g, for all d;, <z < dj,. (EC39)

~ ~

(In other words, the line segment connecting (d;,,a;,) and (d,,,a;,) lies above the line passing

through (dg, (jy), @k, (j»)) and (cLHI,ain).) Let L7172 be defined as above. By (EC34) and (EC24)
LIv92 () < L7192 (x), for all x> d, (EC40)

and if (EC36) does not hold then by (EC25)
Lvi2(z) > L2541 (g), for all 2 < d, (EC41)

We have (EC39) by (EC40) and (EC41). By (EC39) and (EC30), we must have that a; >
LFG2)541(d,), contradicting (EC35), hence (EC36) holds.



10

ij41

Figure 1  Graphic Presentation in Case (i).

Case (ii): If ax, (j,) < L/*72(dy,(j)), then this and (EC34) implies that
L2 () > LR 4541 (), for all dy, () < < d,,. (EC42)

Since dy, (j,) < d; < dj,, the result (EC29) with k = k,(j) follows immediately from (EC30) and
from plugging = = d; in (EC42).

Now assume that ay,j,) > L/192(dy, (;,))- This implies that
LR 551 (dy, ) > L2 (dgy ).

It follows from (EC34) that
LF1(2) 0541 (Cijz) < L1392 (CZJQ)'

By (EC26),

LF1U2)4541 () > L1192 (g), for all o < cikl(jz).

In particular, the above holds for z = djl since djl < dkl(h). Thus, by (EC25),

LRG0 (1) > [Ivi+ (), for all 2 < d

ij1

Since d;, < d the above inequality holds for z = d,,, this together with (EC34) implies that

15410 j29

4 = L (d,y). By (EC24),
V32 () > LI+ (z), for all o > d;,. (EC43)

The result (EC29) with k = j, follows from (EC30) and (EC43) (with z = d; since d; > Czh)-
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Case (iii): Since level j, is the smallest indexed level such that (ji,72) € J (i) we must have
a; < LR (4, (EC44)

Also note that d; . > dkl(j2) > d; > d; by (EC33). (EC44) together with (EC30) implies

>
Livk1G2)(d,) > Liv72(d;). Since dy, () > d; by (EC24),

ij+1

Ak (j2) = L2 (dAkl(jQ)) = Ljhkl(h)(dkl(ﬂé)) > Lz (Jh(jz))'
On the other hand, (EC34) implies that
LF1(G2)i5401 (de) < 192 (CZD).

By (EC26), we have
LF1G2)si541 (z) < [1:92 (x) for all x > djg-

~ ~

In particular, the above inequality holds for z =d; , since d;,_, > ch2. Thus, by (EC24), (EC43)
holds in this case as well. The result (EC29) with k = j; follows from (EC30) and (EC43) (with

x =d; since d; Zdjl). O

ij+1

EC2. Queueing equations
In this section we provide the details of the queueing equations for the CSC systems and set the

notation for the rest of results in the appendix.

EC2.1. Notation

All random variables and processes are defined on a common probability space (€2,G, P) unless
specified otherwise. The symbols N, R and R, are used to denote nonnegative integers, real numbers
and nonnegative real numbers, respectively. For d € N, R¢ denotes the d-dimensional Euclidean
space; thus, R = R'. The space of functions f:R, — R? that are right-continuous on [0,00) and
have left limits in (0, 00) is denoted by D(R,R?) or simply D¢ ; similarly, with 7'> 0, the space of
functions f:[0,T] — R? that are right-continuous on [0,7") and have left limits in (0,7] is denoted
by D([0,T],R%). For f €D f(t—) denotes its left limit at ¢ > 0. Each stochastic process whose
sample paths are in D¢ is considered to be a D%valued random element. The space D¢ is assumed
to be endowed with the u.o.c. topology (see Billingsley (1968)). For a function f:R — R¢ with d
being some positive integer, we say that t is a regular point of f if f is differentiable at ¢ and use
f(t) to denote its derivative at t. We use E,[-] to denote the conditional expectation and P,{-} to
denote the conditional probability given that (Q(0), Z(0)) is distributed according to v. Similarly,

we use E,[-] to denote the conditional expectation and P,{-} to denote the conditional probability

given that (Q(0),Z(0)) ==.
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EC2.2. Queueing Equations

In this section we introduce the queueing equations for the CSC systems. Fix A and let Z}(¢) denote
the number of agents serving i customers and Q*(t) denote the number of customers in queue at
time t. Also, let {S;:i=1,...,I+1} denote a set of independent rate 1 Poisson processes and A*(t)
denote the number of arrivals at the system by time ¢ which is also assumed to be independent
of {S;:i=1,...,I+1}. We denote by A}(t) the number of customers who are routed to an agent
serving i customers for i =0,1,...,I — 1 and by A}(¢) the number of customers who are routed to
the queue upon arrival by time ¢ in the Ath system. We set Z* = (Z}(0);i=0,1,...,I, t>0) and
AN = (AMt), AMt);i=0,1,...,1, t >0). Let

t
DMt)=S; (di/ Z}(s)ds>, i=1,...,1
0

and

Dy (t) =S (’Y /Ot Q’\(S)ds>

denote the number of customers who leave the system while receiving service from an agent at
level i and the number of abandonments from queue by time ¢, respectively. The following queueing

equations are satisfied under any policy for t > 0.

Z)(t) = Z3(0) - <>+DA<> EC45
ZMt) = Z() ) —A)+ DA, () - D), =1, 1 -2, EC46
Zia(t) = ()+A o(t) = A7_y (t) + Lg(t) — D7_y (1), EC47

(EC45)
(EC46)
(EC47)
() ()+AA() Dy (t) = D7y () + Ly (1), (EC48)
(EC49)
(EC50)
(EC51)

ZA? EC49
=0
Z)Mt) > O,Aj(()) =0 and A} is nondecreasing, i =0,1,...,1. EC50
I
PFAGE EC51
=0
where
L= [ 116 =0} i)
By (EC51), Z}(t) = N* = S21_0 Z)(t), for all £ >0, hence
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Also, an arrival can be routed to an agent at level i only when there is at least one agent at that

level, hence,

/tn {Z}s—)=0}dA}s)=0, t>0.

In addition, because we focus on non-idling policies, customers wait in the queue only when all

agents are at level I, therefore

QX (1) <I§ Z?(t)> =0, t>0. (EC52)

Additional equations under the proposed policy: Note that the policy proposed in §4.1 is a static

priority policy once the basic levels i} and i}, are fixed. For levels with indices below i}

, those
with lower indices have higher priorities. Levels in Z/{fj have lower priorities than those levels with
indices below z? but higher priorities than 13\ Also their priorities among those levels in this set
are set in the reverse order of their indices. All levels with indices larger than 13\ 41 (including z? 1)
have lower priorities than levels with indices lower than z? 1+ Also for two levels with indices larger
than 13\ 1, levels in A have lower priorities than those levels that are not in A”. Levels that are not
in NV’ have decreasing priority in their indices and levels that are in N/ have increasing priority in
their indices. We can re-index the levels using {v;}'} so that v;* denotes the priority index of level i

and v} <)) if level ¢ has priority over i'. We note that under the proposed policy, for 0 < ¢; < to,

we have

AM(to) — ANt) =0, if Y Z)(s)>0, forall s€fty to], i=1,...,]—1. (EC53)
{i"0) <v}}

EC3. Proof of Theorem 1
Fix X\ and let 7 denote a non-idling policy. We first prove that under 7 there exists a unique
steady state distribution v(7?) for the processes (Z*,@Q*). We prove this result using Foster’s
criteria. Choose K > 0 large enough so that y(K — N*) + Id;N* =\ > —c, for some ¢ > 0. We say
a state (Z,Q) is feasible if (EC51) and (EC52) are satisfied. (Throughout the proof we use the
notation defined in §EC2.) Given a (feasible) state (Z,Q), with Z = (Zy, Z1,...,Z;), where Z; is
the number of agents at level i and @ is the queue length, define f(Z,Q) = Zf:o Z;+ Q. Then, for
any state (Z,Q) with f(Z,Q) > K, for the generator of the underlying Markov chain I", we have

If(Z,Q)=A—d;N*—~Q < —c

because the policy is assumed to be non-idling. Therefore (Z*, Q") is positive recurrent for each A

by Foster’s criteria (see for example Meyn and Tweedie (2009)).
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Because under any non-idling policy there exists a unique stationary distribution, by Meyn and

Tweedie (2009) and (EC45)-(EC48), we have for each A

ANT)  Butey | LI 0 Z20) +79Q(0)

P (Ab) = lim =

T—o00 T)\ )\
Obviously, under v(7)
I
> ZMN0)<N.
i=1
Because the underlying chain is ergodic
- DNT) 5
’,le—Ig(}oT :EU(WA) |:CZZZz (0):| a.s.,
fori=0,1,...,1 and
Dy, (T) A
71141)1;)10 T = Ev(ﬂ)‘) ['YQ (O)] a.S.

In addition, by stationarity

I
=0

Consider the following LP

min pAb
{Q,Z;;i=0,1,...,1}

I
st.yQ+ Y ivZ; =P,
i=1

I
ZZZ S N/\a
=0

I
7@+ E diZiZAa

i=1
0.7,>0,i=0,1,....1.

(EC54)

(EC55)

(EC56)

(EC57)

Denote the optimal solution of this LP by PA*(\, N*). By (EC54), (EC55), and (EC56), we have

that

P ™ (Ab) > PAb(\, N).

Also, LP (EC5T7) is equivalent to LP (10), which can be seen by setting \; = d;Z; and Ary1 =7Q

there and using (2). Therefore,

PM(Ab) > PA(1,A"IND).

(EC58)
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Then taking the limit on both sides of (EC58) as A goes to infinity and using the fact

lim P*(1,A\"'N*) = P4*(1,N),

A—00

which follows from (9), and the fact that the optimal solution of the LP is a continuous function

of its constraints gives the desired result. [J

EC4. Proof of Theorem 2
In this section we prove Theorem 2. (Throughout the proof we use the notation defined in §EC2.)
The proof is based on analyzing the (fluid) limits of the fluid scaled processes (n='Z" n='Q").
Specifically we find the steady state of the fluid limits by establishing the fluid model equations.
Then we show that the steady state of the fluid scaled processes are tight. Then we combine these
results to complete the proof. For the case when there is only one basic level in the limit the proof
is slightly different but the idea is similar.

We analyze the fluid limits of the queuing processes under the proposed policies in §EC4.1 and
then prove the tightness of the stationary distributions of the fluid scaled processes in §EC4.2. We
present the proof in §EC4.3

EC4.1. Analysis of the fluid model

In this section we analyze the fluid limits of the chat systems under the proposed policies. First we
establish the fluid model equations that are satisfied by the fluid limits and then find the steady
state of the fluid model solutions.

Consider the asymptotic regime where (9) holds. Consider the following fluid model equations.

) = 20(0) — Ault) i [ Z1(5)s, (EC59)
Z:(t) = Z:(0) + Ai 1 (£) — Ai(t) +diss Ot Zii1(s)ds — d; /Ot Zi(s)ds, i=1,....1—2,  (EC60)
7 ()= Z;_1(0) 4+ A;_o(t) — Ar_1(t) + Ly (t) — d;—y /0 t Z;_1(s)ds, (EC61)
3(t) = Q(0) + A, (t) — dy /O ' Za(s)ds -~ Ot Q(s)ds + Ly (t), (EC62)
ifli(t) =At)=1, (EC63)
Zi(t) =N — 3 Zi(t), (EC64)

> flk(ti):i 1if Zy(t) >0, for some ' with v; > vy, i=0,1,...,1—1, (EC65)
(ko)

L,(t)=0if Q(t) >0, (EC66)
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-1

a0z -0, (BCE7)
_ =0

Zi(t) >0,Q(t) >0, i=0,1,...,1, (EC68)
A;, L, are non-decreasing, i =0,1,...,1, (EC69)

where the priorities of levels are found based on *(1,N) as explained in §EC2.2. We refer to
(EC59)—(EC69) as the fluid model and to (Q,Z, A, L,) with Z = (Z—(t);i =0,1,...,1, t> O) and
A= (A(t),A;(t);i=0,1,...,1, t >0) which satisfies these equations as a fluid model solution. It
can be shown as in Dai and Tezcan (2011) that every fluid model solution is Lipschitz and so
differentiable a.e.

Because the proposed policy depends on the values of A and N*, if i*(1, N') has only one element,

7

there may be a “discontinuity” in the proposed policies along the sequence of systems. Specifically,
the proposed policy 7** may be different for each A and may fluctuate between different policies as
A — 0o. We prove Theorem 2 separately for the cases when such discontinuity is present and when
it is not. Under the following assumption we will show that the proposed policy is independent of

A for large A.

ASSUMPTION 1. One of the following conditions holds
i) The set i*(1,N) has two elements;
i1) The set i*(1,N) has only one element and all the levels are efficient;

iii) N*=AN for some N >0 and for X\ large enough.

If Assumption 1 holds, one can work with the fluid model to complete the proof of Theorem 2.
Otherwise, one needs to work with the fluid limits as described in Proposition 2. We next show
that the fluid model is obtained from the underlying queueing system equations. The fluid scaling
of the queueing processes are defined as Z*(t) = A" Z*(t), Q t) = A71Q (t), A*t) = A\ "LAMN®)
and L) (t) = A"'L)(t). Assume that

(2*(0),Q*(0)) = (Z(0),Q(0)) as A — oo a.s. (EC70)

with Z(0) = (Z;(0);i=0,1,...,1).

PROPOSITION 1. Consider a sequence of chat service systems and assume that (9), (EC70)
and Assumption 1 hold. Then the sequence {(Z’\,Q’\,flk,l_/;)} is tight a.s. in the Skorohod space

endowed with the u.o.c. topology and every limit (Z,Q,A, l_}q) is a fluid model solution.
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Proof of Proposition 1: Consider a sequence of chat service systems and assume that (9), (EC70)
and Assumption 1 hold. The proof of the tightness of the sequence {(Z*,Q*, A* L)} is standard
(see Dai and Tezcan (2011)) hence we skip the details. Also, the fact that fluid limits satisfy the
fluid model equations can be proved as in there. We also note that all the fluid model equations
(EC59)-(EC69) except (EC65) are satisfied by the fluid limits under any sequence of non-idling
policies. We next show that the fluid limits under the proposed policy satisfy the policy specific
equation (EC65).

Fix a fluid limit (Z, Q, A, Eq) and assume that Z;(t) > 0 for some i < I — 1. Then, there exists a

subsequence, denoted again by A and w € 2 such that

(Z’\,Q’\,A’\,Eg) — (Z,Q,.A, Eq) , U.0.C. a8 A\ — 00. (ECT1)
By the continuity of the fluid model solutions, (EC71) implies that
ZMs) >0 (ECT72)

for s € [t —9,t+ 6], for some 0 > 0 small enough and for all A large enough. Under Assumption 1(i),
by the continuity of an LP on its constraints and because there can be at most two basic levels, for A
large enough we have i*(\, N*) =i*(1, N). Under Assumption 1(iii) we have i*(\, N*) =i*(1, N) for
all A large enough. Under Assumption 1(ii) the set of basic levels may be different for two different
N's, however, because all the levels are efficient the policy is a strict priority rule giving priority to
levels with a lower index for each A. Condition (EC65) then follows from (EC49), (EC53), (EC71)
and (EC72). O

Steady state of the fluid limits: Next we establish the steady state of the fluid model. Fix N and
consider the optimal solution A* (1, N) = (A (1,N);i=0,1,...,1,I+1) of (10). Let z* be defined
as in (18) and

0, ifl1<d,N
q*:{ b= (ECT73)

AN i 1> d;N.
THEOREM EC1. Let M > N be such that ¢* < M. For any fluid model solution (Z,Q,A,I_)q)
with |[(Q(0), Z(0))|| <2M and for any € >0 there exists T(M,€) >0 such that

(@), Z(t)) — (¢, ") || <e (ECT74)

for allt >T(M,e).

We present the proof of this result in §ECS.1.
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When Assumption 1 does not hold: Next we analyze the fluid limits when Assumption 1 does not
hold and prove a result similar to Theorem EC1. In this case we work with the fluid limits instead of
the fluid model solutions as the fluid limits may not satisfy (EC65) because of the aforementioned

“discontinuity” in the proposed policy in the sequence of CSC systems.

PROPOSITION 2. Consider a sequence of chat service systems and assume that (9) and (EC70)

hold. Also assume that i*(1,N) has only one element,
(Z’\,Q’\,fl’\,f/g) — (Z,Q,f{,f/q) , Q.5. U.0.C. A4S A — 00 (EC75)
and that
liinsupP {Q0)>M} <e
for some M and € > 0. Then, there exists T > 0 large enough such that

limsup P {[[(Q*(t), Z*(t)) — (¢", ")

A—o0

> e} < 2e (ECT76)

forallt>T.
We present the proof in §ECS.2.

EC4.2. Convergence of steady state quantities

Consider the asymptotic regime where (9) holds. Let 0(7m*) denote the stationary distribution of
(Z*t),Q*(t)) under a non-idling policy 7*. The existence and uniqueness of ©(7*) follow from
the proof of Theorem 1. We next show that the sequence of fluid scaled stationary distributions is

tight.

THEOREM EC2. Consider a sequence of chat service systems that satisfies (9) under a sequence
of non-idling policies {m*} and let (Z*(0),Q*(0)) be distributed according to v(x*). Then the
sequence {(Z’\(O),Q’\(O))} is tight and the sequence {Q’\(O)} is uniformly integrable.

A proof is presented in §EC8.3.

EC4.3. Proof of Theorem 2
Consider a sequence of chat service systems that satisfies (9). Let v* denote the stationary distri-
bution in the Ath system. The first claim follows from the second one, Theorem EC2, and the fact

that

N1y B |[7QN0) + X, ivZ0)
P2\(Ab) = lim. AbT(AT) - - ! . (ECTT)
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We focus on proving the second part for the rest of the proof. Assume that the initial state
(Q*(0), Z*(0)) has distribution v*. By Theorem EC2, the sequence {(Q*(0), Z*(0))} is tight. There-
fore, it is sufficient to show that every convergent subsequence of (Q*(0), Z*(0)) converges to the
same limit (¢*,2*). To this end consider a convergent subsequence, denoted again by {A} for nota-

tional simplicity. We show that
(Q*(0),2*(0)) — (q*, z*) as n — oo in probability. (ECT8)
To prove (EC78) it is enough to show that
li{\nsupP{H(Q)‘(O),Z’\(O)) —(¢",2")|| > €} <¢ (ECT79)
for any €, ¢’ > 0. Therefore, fix e >0 and € > 0. By Theorem EC2, there exists M > 0 such that
lif\nsupP{H(Q’\(O),Z’\(O))H >MY} <€) (EC80)

Using an argument similar to that in Theorem A.1 in Dai and Tezcan (2011) and using Theorem

4.4 in Billingsley (1968), the sequence
{(@*(0),2X0),Q*, 2*, A", L), 5} (EC81)
is tight, where S* = (S}, 82,...,S7,) and S}(t) =A7'S;(At), i =1,2,...,1+ 1. Consider a conver-
gent subsequence, again denoted by A, and let the limit of this subsequence be denoted by
{(Q(0),2(0),Q,2Z,A,L,,S}.

Also observe that S;(t) =1, for S = (S,(¢),...,Sr+1;¢t>0) and A(t) =t, t >0 a.s. Obviously, it is
enough to prove (EC79) for any such (further) subsequence.
By appealing to the Skorohod representation theorem, we may choose an equivalent distributional

9

representation (which we will denote by putting a “ = ” above the symbols) such that the sequence

of random processes
{(Q0).20),0", 2, 2. L;,8)}

as well as the limit

—
On
“N\z
2
N
[

S~
S

Ui

N

(QA(O),EA(O),Q:)A,é*,fl*,[i;,é‘*) = (é(O),é(O),Q,é,j,iq,é) (EC82)
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u.o.c. as A — oo. Clearly él(t) =1,t>0 a.s. for S = (él(t), .. .,§’I+1;t > 0>, hence we drop it from
the notation for the rest of the proof. Also, zﬁil(t) =t a.s. for t > 0.

By the equivalent distributional representation, the limit (C:)(O),é (0),@,2,/?,[2) satisfies the
fluid model equations (EC59)—(EC69) if Assumption 1 holds. Hence, it follows from (EC80) and

Theorem EC1 that there exists T > 0 such that

r{|@w.2) - (.=

> e} <¢)2 (EC83)
for all t > T. By (EC82) and the equivalent distributional representation, this implies that

P{{[(@*®),2*(t)) = (q",2")

‘>e}<e’

for all £ >T and A large enough. We obtain the desired result (EC80) by the fact that the initial
state (in the original probability space) (Q*(0), Z*(0)) has a stationary distribution for each \. If
Assumption 1 does not hold, (EC83) (hence the result) follows from Proposition 2. O

EC4.4. Proof of Theorem 3

The proof is similar to the proof of Theorem 2 hence we only present a sketch. The main difference
in the proof is that we need to show that Theorem ECI is still valid under 7’ when (23) holds. The
proof is similar to that of Theorem EC1. It is easily checked that (EC110) in Step 1 and (EC111)
in Step 2 of Theorem EC1 are still valid when (23) holds. Then Step 3 is identical since 7’ takes
the same actions with 7** when (EC113) and (EC114) hold. O

EC5. Proof of Proposition 1

Assume that (9), (26) and (27). holds. (Throughout the proof we use the notation defined in §EC2.)
Recall that z*(1,N) = (z3,27,...,2;) denotes the optimal solution of (10) (with staffing level N
and arrival rate A=1), see (18).

As in the proof of Theorem 2, we focus on the fluid limits. First we give an explanation of how
the queueing equations are obtained under mp. Let levels i; and ¢;,; be efficient and recall that
Z/{ij denote the set of inefficient levels whose indices are in between the indices of these two levels
(i; and 4;11). With a slight abuse of notation, let A}(¢) denote the number of customers who are
assigned to an agent at levels {i,} UU;; upon arrival. By construction of our policy there may be

at most one agent at one of the levels in f; ;. Let

D i .
D}, ()= D)t) and D}, (1) =—

7;61/{1'].
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Obviously
> Z)-)—0and D, (-) =0 (EC84)
1€U; !
J
1.0.C. a.8. as A — 00.

Now because of the preemption procedure

AN -0}, (0-D, 0 (4,,0-D),0-Dh, O)\|_

zZ) () -2} (0)— - e
zj+1( ) 7,j+1( ) ij+1 _Z‘j ij+2_ij+1

Using this condition and (EC84), one can show that the fluid limits of 7p satisfy the following
equations in addition to (EC59) and (EC64)—(EC69); for i ¢ F

Zi(t) =0, for all t > 0. (EC85)
For i, € F,
Zo(t)=Zi (0) 4 —— A, () — 4, (1)
. T R 15 Z.j—l " Z‘j-&-l — 1 '
d;, b d;. b
—I—]H/ Zi., (s)ds — — / Z; (s)ds, i; € F\{0,I}, (EC86)
i1 =1 Jo ]: = ti-1Jo 7
QO =QO)+Ax(0)~d; | Ziwyis— [ Qs)ds+L,0), (BCST)
. 0 0
A (=1, (ECSS)
ij.E]'-
flij, (t)=0, if Z; (t) > 0 for some j < j, (EC89)

where J is the number of efficient levels. The fluid model equations (EC59), (EC64)—(EC69) and
(EC85)—(EC89) are similar to the fluid model equations (EC59)-(EC69), with one difference; the
number of agents transitioning from one level to another as explained above. We note again that a
solution {Z,Q, A} to equations (EC59), (EC64)-(EC69) and (EC85)—(EC89), referred to as a fluid
model solution, is differentiable almost everywhere and we refer to a point where it is differentiable
as a regular point.

As in the proof of Theorem 2, it is enough to show that for any fluid model solution {Z,Q, A},

given € > 0, there exists T' large enough such that

|Zi(t) — 2}

K3

<e. (EC90)

for t>T and i =0,...,I. We also note that for i ¢ F, (EC90) follows from Lemma 1 and (ECS85).

We prove the result in three steps. We mainly focus on the case when there are two basic levels,
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whose indices denoted by 7; and i;,4, 0 <1; <4,;41 <I and d;N <1< d;N and comment on other
cases at the end of the proof. Throughout the proof we only consider regular points of the fluid
model solution.

Stepl (when i <i;): We first show that (EC90) holds for i < ;. The proof is similar to the

proof of Step 1 of Theorem EC1 using an induction argument. For ¢ =0, the argument in Step 1
of Theorem EC1 can be repeated verbatim. Assume that i, € F with 0 <4, <i; and there exits ¢/
such that Zy(t) =0 for all ¢ >#' and ' <4,. We show that there exists T > ¢’ such that Z; (t) =0
for t > T, completing the induction argument. Because level ij is the lowest indexed nonempty

level then at any regular point ¢ >t/

Zs(t) =0 for all i’ < iy,

Therefore by (EC59) and (EC86), A;, . (t) = (i, — ir_1)di, Zi, (t). Also by (EC86)—(ECS89)
Zlk (t) = —14d, 2, (1) + dik+12ik+1 (t)

Tt — Uk

< % (<14 iy (V= Zo, (1)) (ECO1)

where the inequality follows from the fact that 7,1 — i, <1 and 4,411 € F. Because i, <14, and

80 ip41 <1i;, (EC91) implies that, when there are two basic levels,

Z;, ()< —=(1—d;,

whenever Zik (t) > 0 for a regular point ¢. Therefore, there exists 7' large enough such that
Zi(t)=0for all t > T and i < i,

completing the proof of (EC90) for ¢ <i;.

Step 2 (When i >i;.;): Next we focus on ¢ >i;;; and prove by induction that (EC90) holds
for i >i;,,. As in the second step of proof of Theorem EC1, Q(t) =0 for t >T":= M /(1 — d;N).
Assume that Z;(t) > 0 for a regular point ¢ > T". If Z;(t) > 0 for some i < i;_;, then by (EC87)
and (EC89)

. EC92
i, (EC92)

If Z;(t)=0for all i <i;_,, then Z(t) =0 for all i <i;_,; for any regular point ¢ by (EC86)-(EC89),

hence

Z:(t) < — < o (EC93)
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By (EC92) and (EC93) there exists T; > 0 such that Z;(t) < e for t > T.

Now consider J >k > j+ 1 and assume that there exits T;, . such that, for ¢t >T;

1 k417

- 1

Zi(t) < ————¢ (EC94)
4[ Inan{dj}

for 7 >1;, and that
d;, N
€> —H (EC95)

41 dij .

Assume also that Z;, (t) > Ie/a?ik for a regular point ¢. If Z;(t) > 0 for some i < i; — 1, then by
(EC86), (EC89), (EC94) and (EC95)

- _szkZZk(t) + dikJrlZikJrl (t)

Z, (1) < < —¢/2. (EC96)

U — -1 k1 — Uk
If Z;(t) =0 for all i <i_, then Zl(t) =0 for all ¢ <i;_, for any regular point ¢, hence by (EC86),
(EC89), (EC94) and (EC95)

. 1—d;, Z, (O)—d;, Z: (t) di  Z; . (¢
ZZk(t) S k—1 'kfl( ) k k( ) + k+1 k+1( ) S _6/4 (ECQ?)

(ik *Z'kfl) ZF/’~c+1 *ik

By (EC96) and (EC97) there exists T;, > 0 such that Z;, () <e for ¢t > T}, completing the induction
argument.

Step 3 (i; and i,41): Now we are ready to finish the proof by focusing on 4; and i,,,. We show

that given e there exists T' large enough such that

<e, for k=j,5+1.

Zik (t) - Z:k

The proof is similar to the case with U/;, = () in the proof of Theorem ECI1. Fix ¢ > 0 and given
€’ >0 choose T'(€¢') so that (EC113) and (EC114) hold. Existence of such T'(¢’) is guaranteed by the
first two steps. Then by (EC86), (EC113) and (EC114), if Zi]. (t) = 2 +€ for é>eand t> T(€)

((Czijﬂ - Czij Je+ Ciij+1) ¢

Similarly, if Zi]. (t)= z —¢€

. 1 . . .
Zi(t) > ((diy,, = diy)e—diy )

S Rk ¥

~ ~ ~

For € < (d - dij> /(4d;, ., )€, this gives the desired.

ij41
Other cases: The other cases are handled in a way similar to that described at the end of the

proof of Theorem EC1. [J



24

EC6. Proof of Theorem 4

Fix € > 0 that satisfies

0
€< - , (EC98)
21d,,(P{td; v 1)
where d,,, = maxi <, ;,.i<r (%) > 1 and consider the policy 7*(¢). By (6), (EC2), Theorem EC2
'Ll 7/2
and (ECT77) it is enough to show that
limsup lim ||ZM(T) —z*(1,N)|| < 2de. (EC99)

T—00 A0

Note that by Proposition 1, there exist A and T large enough such that for the virtual system
|ZNT) = 2*(1,N)|| <.

Therefore, if z;‘jk (1, N) > ¢, for k=1,2, then the result follows from Theorem 2.

Now assume that zi*jk (I, N)<efor k=1or k=2.1f i;, =I then we have that all the agents are
in states I — 1 and [ in the fluid model as we argue next. Because d; > d[,l, using the first step
of the proof of Theorem ECS.1, we have for large enough ¢, Z 1-1(t) <d,,€ by definition of d,, and
Zi(t)=N — Z;_,(t). Hence (EC99) follows.

Now assume that . (I, N) < € and let j; denote index of the lowest indexed level whose index
is greater than i;, that is not in A/. Note that as in the proof of Theorem EC8.1, Z;, (t) < d,.e¢ (by
definition of d,,) and Zijl (t) > N — Z;, (t) — dme, Zi(t) =0 for i <i;, and > sy Zi(t) < dpe for t
large enough. Hence (EC99) follows.

Now assume that zjjl (I, N) <€ and let j, denote the index of the lowest indexed level whose
index is greater than ij;, that is not in A. By steps 1 and 2 of Theorem ECS8.1, Z;(t) =0 for
i<ij,—1, and Z,»].fl(t) < dye by definition of d,,, and >, Zi(t) <dpe/I, for t >T and T large
enough. Note that because j, denotes the index of the smallest indexed level whose index is larger
than 4;, that is not in AV, all levels in {i;, +1,...,7j> — 1} (if there are any) are in N. In this case
(EC99) follows similarly to the third step of the proof of Theorem EC8.1 as we explain next. Set
T = 0 for notational simplicity. If Zijz_l(t) + Zim (t) > N —d,,e for any t the result readily follows.
Therefore assume that Z,»J.Q 1(0)+ Zij2 (0) < N —d,,e. Then, it is easy to show using the fluid model
equations that either Zih,l(s) =0or Z%,l(s) + Zih (s) > N —d,,e for s large enough. In the latter
case the desired result follows from the preceding argument so assume that the former holds. Also

assume that Z% (t) < N —d,,e for all t > s as otherwise the result follows again from the preceding



25

argument. Then it is easy to check that Zij2—1(t) =0 and similar to (EC119) and (EC120) we have
for ¢t > s that

() Z,, (5) (EC100)

to
and for any €, > 0 there exists finite T'(¢;) large enough such that
dy(t) > (1—€) V (cib(s) A 1) (EC101)

for dy(t) = CZ% Zijz (t)+d;,Z;,(t) and t > T(e,). The rest of the proof follows similarly to the third
step of the proof of Theorem EC8.1. [

EC7. Proofs of the results in Section 5
Proof of Theorem 5: The proof follows from Theorems 1 and 2. First it is easily checked that

*(\n ,,Ab
N (A P ) :)\nN*(l’pAb)
n
Therefore,
x(\n ,,Ab
lim N(An’p) = N*(\,p™). (EC102)

Assume that there exists an asymptotically feasible sequence N™ such that

N*(\" Ab
lim sup M

n—oo Nn

>1. (EC103)

Then there exists a subsequence (for simplicity of notation, we still use index n), along which

N*(\" Ab
lim NPTy (EC104)
n—o00 Nn
and
N’I’L
lim — =N (EC105)
n—oo M
for some N. Also, by (EC103) and (EC104), we have
N < N*(\,p™). (EC106)

Note that P4 (X, N) > P4 (X, N*(\, p?)), otherwise N*(\,p4®) = N and (EC106) cannot hold.
By Theorems 1 and 2, for any non-idling policy n", if the staffing level is equal to N™ in the nth

system, we have

liminf PA*™" (A", N™) > limsup PA*™ (A", N") = PA* (\,N) > P (\, N*(\,p*")) . (EC107)

n—oo n—o0o
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Hence, N™ cannot be feasible and in turn (EC103) cannot hold. Also,

lim P4 (A", N*(A",p*)) = PA(A, N* (A, p™*)) <p™, (EC108)

n—oo

where the equality follows from Theorem 2, (38) and (EC102) and the inequality follows from the
fact that N*()\,p?) is an optimal solution (hence a feasible solution) of the staffing LP. [
Proof of Theorem 6: Fix 6 > 0. If pA* = PAY the result follows from Lemma 1 and (EC2) and
Theorem 4 by setting € = §/2. Note that if pA® > P/ then A > (146)N*(\, p**)d, for some § > 4§ >0
by Lemma 2 since both levels 1 and I are assumed to be efficient. For notational simplicity we set
N* = N*(\,p). Define
6=  inf {PAb(A,N*) _ pA ()\,(1+5)N*>}. (EC109)

A>(146)N*dy

By Lemma 1 and (EC2), § > 0. Choose € > 0 as in Theorem 4 so that (29) holds with 6. The result

then follows from Theorem 4. [

ECS8. Proofs of supplemental results
In this section we prove Theorem EC1 in §ECS8.1, Proposition 2 in §EC8.2 and Theorem EC2 in
§ECS8.3. (Throughout this section we use the notation defined in §EC2.)

EC8.1. Proof of Theorem EC1
Fix N and let i*(1, N) = {i;,7;41} denote the set of the indices of the basic levels. We mainly focus
on the case when 0 <14, <4,41 <[ and cilN <l< CZ]N. We describe how the proof can be extended
to other cases at the end. In addition we focus mainly on the case when N = () and extend the
proof using Lemma EC4 below when it is not. Let (Q,Z,A, L,) denote a fluid model solution.
Throughout the proof we use the following fact that if Z;(t) =0 at a regular point ¢ then Zz(t) =0,
since Z; attains its minimum at ¢.

Fix € > 0. We prove (EC74) in three steps.
. We first show that there exists Ty > 0 such that Z;(¢t)=0 for t > T} and i <i; — 1.
. Then we show that given € > 0 there exists Ty > T} such that Z;(t) <e for t > Ty and i > i,,,.

Zi(t) — 2}

In the last step, we show that given € > 0 there exists T3 > T, such that <efort>T;
and for ¢ =14;,7; +1...,7;;1, completing the proof.
Because (Q,Z, A, Eq) is differentiable almost everywhere, when we take the derivatives with

respect to t we only consider the regular points of (Q, Z, A, L,) throughout the proof without loss

of generality.
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Step 1. Let

Assume that f(t) > 0. Note that by (EC59)—(EC69), for any regular point ¢ we have

i
ft)y==1+>"diZ;(t) < —1+d;;N < =9, (EC110)
i=1
where § = (czij o a?ij)z;‘_ and the last inequality follows from (18), and the fact that there are
i+

two basic levels. Hence Z;(t) =0, i <i; — 1, for t > T} := N/0.
Step 2. Now we consider i >i;,,. By (EC62), (EC66) and (EC67), if Q(t) > 0, we have

Qt)=1—d;N —~Q(2).

Hence, Q(t) =0 for t >T":= M /(1 —d;N). Let

I

fOy= > (i—ij)Zi(t).

i=ij+1+1
By our assumption N' =0 and (EC59)-(EC69), if f(t) > € for t > T, then

f(t) <=9, (EC111)

where 6 = min {dij+1+1e/1, -1+ CZZ-].+1+1N}, which is positive by (14). By our assumption N =0,

we conclude that
Zi(t)<e (EC112)

for tZTQ :T/+N/5 and Z>ZJ+1

Step 3. To conclude the proof we need to show that (EC74) is satisfied (for a reselected €) by
Zij, Zi for i EZ/{i]. (lf Z/{ij 7& Q)) and Zz
there exists a finite T'(¢') > 0 such that for t > T(¢'), Q(¢) =0,

41+ By the first two steps, we can assume that for any € >0

Zi(t)=0fori<i;—1 (EC113)
and
Zi(t) <€ fori>ij +1. (EC114)
Assume that U;, = (. Fix €,€¢’ > 0 so that

¢ < (aZ - cii].) /(4d;,. e (EC115)

ij41
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Recall that by Lemma EC1

di . >d; (EC116)

ij+1

for all ¢ < ;4 otherwise level i;,; cannot be an efficient level. By (EC60), (EC65), (EC67) and
(EC113)

~ — ~ —

Zij (t) = _(1 - dijZij (t)) + dij+1Zij+1 (t)

Fix € > 0. Then by (EC65), (EC113) and (EC114), if Zij (t)= z + € for €> ¢,

~ ~

Z, ()< —(d d; e.

vj Li+1 J

Similarly, if Zi]. (t)=2zr —€

J

~ ~ A~

Z;.(t)>(d diYe—d;. €.

i 41 Py ij+1

~

This gives the desired result (EC74) for i;,i;., with T'>T'(¢') + 4N/ ((d
and (EC116).
Now assume that U;, # (). Define

- a%)e) by (EC115)

ij41

~ ~ — A —

db (t) - di]- Zij (t) + dij+1Zij+1 (t)

By (EC113), (EC114), (EC116) and (EC64), given § > 0, there exists €, e > 0 such that if d,(t) >
1—2¢, and Z; (t) > z;, —2e for t 2T(¢€), then

Zi )€z =6,z +4].

i 41 GG+1 LA ER
Therefore, it is enough to prove that for € > 0 small, there exists 7" such that for ¢ >T > T'(€'),

dy(t) > 1—2¢ and Z;,(t) > 2} — 2. (EC117)

%5

For the rest of the proof fix ¢ >0 and € > 0 small so that

A~

. d;. .
(dy+1) (1— 3 >ez4(yuij|+1) d; 1€’ (EC118)

ij41

From here on we only consider ¢t > T'(¢') so take T'(¢') = 0 for notational simplicity and assume that
(EC113) and (EC114) hold for ¢ > 0.

We begin the proof in this case with the following preliminary results. For all ¢ >0 and € >0

Z:,(t) > Zi, (0) A (zj‘j - e) (EC119)
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and for any €, > 0 there exists finite T'(¢;) large enough such that
dy(t) > (1-e) v (d,(0) A1)

for t > T'(ep).
Proof of (EC119): By (EC118) we have

(EC120)

(EC121)

Note that because level 7, — 1 has priority over levels ¢ > 4, and level 7; has lower priority than those
levels in U; , if Z; (t) < z; — ¢, either there exists i € U;; with Z;(t) > 0 or by (EC118), d,(t) > 1
and Z;(t) =0 for all i € Ui, Tt is easy to show that if a?b(t) >1and Z;(t) =0 for all i € U;,, then ¢

cannot be a regular point. Therefore, by (EC60) and (EC65)
Zi,(t) =0

whenever Zij (t) < z;, — €. This gives (EC119).
Proof of (EC120): Now assume that

(EC122)

(EC123)

by (EC60)—(EC65) since Z; attains a minimum at t. Therefore, if (EC123) holds, by (EC60)-

(EC65)

Zij+1 (t) >

where [U;.| is the cardinality of the set U;,.

Note also that if for all the levels i € U; , Z;(t) =0 (implying Zl(t) =0) then when (EC123) holds,

by (EC60)-(EC65),

- 1—dy(t)
>———=and Z;.(t) = ————=.
an j ( ) ‘uij ‘
Therefore, dy(t) is increasing if d,(t) < 1 and so (EC120) holds.
We consider the following three cases separately to complete the proof.

(A) Z;,(0) > 2] +e

j -
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(B) Zi,(0) <2 +e, dy(0)>1
(C) Zi,(0) <z} +e dy(0) <1

Case (A): Assume that Zij(O) >z} + €. Then, by (EC120) for ¢ large enough dy(t) > 1 — € for
¢ >T. This with (EC119) gives (EC117).

Case (B): Assume that Z; (0) < z; +eand dy(0) > 1. By (EC120), d,(t) > 1, for all ¢ > 0. Thus,
to prove (EC117), it is enough to show that there exists T large enough such that Zij (t) > 2 - 2¢
for t > T. But by (EC122), this can be proved by showing that there exists a ¢ > 0 such that
Zi,(t) = z;, — 2e.

Assume that no such t exists, that is,

Z;.(t) <z —2¢ for all t>0. (EC124)
i J
Let
a(t) =2 — 2, (t) (EC125)
and
&(t) = d ’(A) UL Y (). (EC126)
i1 dij+1
Because dy(t) > 1 for t >0, Z;. () =220+ &(t).
Let 6(t) = Z,;. ) — % —&(t). By (EC121), (EC125), and (EC126),
_ _ N i N d;,
S+ Y Zit) =N —¢ = Z (t)— 2, —&() =&(t) —&(t) —€ > 05 | 1 - — | (EC127)
€U ; dij+1
Now define the Lyapunov function
F(t) = (s =) Zig (8 + ) (i=5) Zi(0).
ieuij
Note that f(0) <IN and that f(¢) =0 implies
Zi, \( Z (EC128)

L{

If f(t) >0, we have (assuming (EC124) and d,(t) > 1 for all ¢ >0)

f;(t):(in* z]+1 +Z i—1;) Z

zEZ/l
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<1—d;, Zi,(t) — diy,, Ziy,, ( Z + (U] + 1)dij 1€ (EC129)
U
< —d;; ., 0 Z + (|td;; |+ 1)d i€ (EC130)
U
cZ
S —0. 5d1 — = (V/l ‘—i—l) i +1E (EClSl)
d Jt1
. oZ
< —0.25d, ( ) e:=—A, (EC132)
41

where (EC129) follows from (EC60)-(EC65) and the fact that level i; — 1 has priority over all the
other levels ¢ >i; — 1, (EC130) follows from the definition of §(¢), (EC131) follows from (EC127)
and (EC132) follows from (EC118). Therefore, for T' large enough f(¢) =0 for ¢t > T and so (EC128)
holds for all ¢ > T. However, this contradicts the fact that d,(¢) > 1 for all ¢ > 0. Hence, Zi]. (t) >
z;, — 2¢ for some ¢ € [0,(IN)/A], giving (EC117) in this case.

Case (C): Assume that, Z; (0) < z; +eand d,(0) < 1. By (EC120), we can assume without loss
of generality that d,(t) > 1 — e for ¢ large enough. If d,(t) > 1, the proof is complete by Case (B) so
assume that 1 —e < d,(t) < 1.

Also, if Z; (t) > z; — 2¢ for some ¢, (EC117) follows from (ECllQ). Therefore, assume that
Z;,(t) <z —2¢ for all t > 0. Then, because dy(t) <1, Zi 0 (t) < 2, i1 T €2(t) for € defined as in
(EC126). Hence

ijt1

ST Ziy za(t) — &) ¢ > 05 (1 _ 4 ) . (EC133)

Because d,(t) < 1, by (EC60)-(EC65), (EC133), and the fact that level 4,1 — 1 have higher

priority than level 7; and level 4,44,

Therefore, for T'> N/A,

Hence,

N
G
|
=
|
N
=3
|
m\

Lj41 - i

However, because Zij (t) < 27 — 2 for all ¢ > 0, this implies czb(T) > 1 for ¢ small, contradicting

our earlier assumption and completing the proof by Case (B).
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Other cases: If there is only one basic level i; with 1 <7; <I then we have

~

and t > T\ := N/§, where ¢ = (d;,,
Therefore, for t > T}, by (EC60) and (EC65)

— dij)z;‘j e using an argument similar to that in Step 1.

Ziga () < = (diy = diy 1) Ziya(0).

J

Hence
Zi 1 (t) <e (EC134)

for t >Ty:= N/ ((JZJ — CZZ-J._1> e) +T. If 1< JIN, the result then follows from Step 2.

If 1 =d;N, then there is only one basic level I. By (EC60) and (EC62), t > T" := M/(ve), we
have Q(t) < € and by (EC134), Z;(t) > N — ¢, proving the result for ¢t > T" large enough.

If 1 >d;N, we have by (EC110) that Z,(t) =N, for all ¢ >T":= N/(1—d;N). By (EC73) and
(EC59)—(EC69), this implies that [Q(t) — ¢
(ECT74) if 1> d;N.

< e for all t > Ty :=T" + M/(ve) + ¢*/(ye), proving

Finally we consider the cases when there are two basic levels i; and i;;; but either i, =0 or
tj401 =1.1f i; =0, then 7;,, =1, since level 1 is an efficient level by definition. Then the result is
proved using (EC112) as in the case with U, =() in Step 3. If 4;,, = I then the result is proved in
the same way as above except that we do not need Step 2 and do not require (EC114) in Step 3
anymore. [

If N # (0, the second step in the proof needs to be modified. The result in that case follows from

the following lemma.

LEMMA EC4. Assume that the conditions of Theorem ECI hold and that i;1,1 < I. Then for any

€ >0 there exists to >0 such that

Zi(t) <€ fort >ty and i>1i;41.

Proof of Lemma EC4: Assume that the conditions of Theorem EC1 hold and that ¢;; < I. Let
{v;} denote a sequence of nonnegative finite constants {v;} for ¢ >;,, 4+ 1 such that

e y,=1ifi¢ N,

o IfiecN

d*
v > (d v 1) vy, forall i’ >, (EC135)

where d* =min{d; :i' > i, + 1, ¢ N'}.
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Also, let {p;} be defined for ¢ >i;,; + 1 recursively as follows;

Pi =V + Pi-1,

where p;, ., = 0. Define

I

f(t): Z piZi<t)'

’L‘:Z‘j+1~‘r1
Observe that, given € > 0, it is enough to show that there exists T > 0 such that
f(t)<e, forallt>T.
f:ij+1+1 Z;(t) > €/pr. Recall that we assume I ¢ N
Case 1: Assume that Z,(t) > 0 for some n <41, then by (EC60) and (EC65)

Fix € and assume that f(¢) > e. This implies )

I I

£(t) = Z PiZLi(t)Sl Z pi (—di Zi(t) + dis1 Zis1 (1))

Case 2: Now assume that Z,(t) =0 for all n <i,,;, then for a regular point ¢,

Zij+1_1(t) = 0, (EC136)

because Zlﬂl,l(t) =0 (note that this is only possible if 1 > dinZHl (t), which we assume is true),

and Zf:ijﬂ Z;(t) = N. Note that (EC136) implies

Aij+1,1(t) == dij+1 Zi].+1 (t) (ECl?)?)

Because 1 < d;N, we can assume without loss of generality that Z;(t) < N, for all t >0, and so
there exists 7 < I with Z;(t) >0, by (EC64).

Case 2(a): Assume that there exists a level n such that i;., <n <1, Z,(t) >0 and n ¢ N’ and
let i ¢ N7 be the index of the lowest indexed such level at time t. Note that ¢ + 1 ¢ N. By the
definition of the policy and (EC65), if i/ € N7 and ¢’ <1

Au(t)=0. (EC138)
Also, if i’ ¢ N" and ' < i, we claim that

Ay () =dysr Zyir (1) (EC139)
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To prove this first note that Zy (t) =0, for a regular point t. Therefore, by (EC60), it is enough to
show that jlif,l(t) =0.If Zy_1(t) >0, then ' — 1 € A7 and by (EC138), /ii/,l(t) = 0. Assume that
Zy_1(t) =0 and so 2i/_1(t) =0. If Zy_(t) >0, therefore i’ —2 € A", then fii/_g(t) =0 by (EC60).
Because 21/_1(t) = 0, this implies Zlix_l(t) =0 by (EC60). If Zy_,(t) =0, we repeat the same
argument until we reach to level i, or the highest indexed level i’ — k before i’ with Z;_(¢) > 0.

Also,
Ay(t)=0, for i/ >i+1 (EC140)
by (EC65). Therefore by (EC60) and (EC63)

Zi+k(t) = —diswZivw(t) + dizhi1 Zizw (), for k=2,... . T —i—1, (EC141)
Z1(t) = —d; Zy (). (EC142)

For i;,1 <k <i, by (EC60)-(EC64),

Zu(t) = Ap_1(8) + diy1 Zisr (t) — Ap(t) — du Zu(2) (EC143)

and

Zir () = Ay(t) + disoZisa(t) — dicy Zisr (2). (EC144)
By (EC138)-(EC140) and (EC63)

A)y=1— 3 dZiut)—di,, Ziy,, (2). (EC145)
ke[ij+1+1,’i]
k¢N

Then, by (EC141)—(EC144)

I-1 %
ft) = pi (s Zia(8) = du Zo(t)) — prdi Zo() + Y pw (Ak—l(t) - Ak(ﬂ) + pir1 Ai(t)
k:ij+1+l k:ij+1+1
(a) ! _ : . _ _
S - Z I/kdek(t) + Z VkAk_1<t) + Vit 1-— Z dek(t) - dij+1Zij+1 (t)
k=’ij+1+1 k=ij+1+1 kG[’ij+1+l,i]

kg N

I
= - Yo udiZit)+ Y wmdiZu)+1- Y dZi(t) —diy,, Ziy,, (1) (ECL46)

k:ij+1+1 ke[ij+1+1,i} ke[ij+1+1,i]
k¢N k¢N
I
() > >
Sl-di,Zi () - Y ndiZi(t)
k):’i]'+1+1
@ _ o
<1- dij+1 Zij+1 (t) —d (N - Zij+1 (t))
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for some constant ¢ > 0, where (a) follows from (EC140), (EC145) and algebraic manipulations,
(b) follows from the fact that i+ 1 ¢ N, so v, =1, (EC138) and (EC139), (c) follows from simple
algebraic manipulations, (d) follows from the definition of v;’s and the fact that Zf:ijﬂ Zi(t)=N,
(e) follows from the definition of d*.

Case 2(b): Now assume that Z,(t) =0 for all n <i;,; and Z,(t) =0 for all k >i,;,; and k ¢
N\ {I}. Let i € N’ denote the index of the highest indexed level with Z;(t) > 0. We note that
(EC138) and (EC139) still hold. Also, (EC143) holds by (EC60).

By definition of the policy Z,(t)=0 for all i + 1 <k <T—1 and so

Z,(t) =0, for i+1<k<I—1, (EC147)
because t is a regular point. Therefore, by (EC60)—(EC64)
Zi(t) = A1 (t) — Ay(t) — di Z,(2), (EC148)
and
Z,(t) = A;(t) — di Zy (), (EC149)
where by (EC137)-(EC139) and (EC147)

1-— dij_H Zij+1 (t) —d; Z;(t) — Zke[1j+1+1,i] diZ(t)

A(t) = T RN . (EC150)

We note that /L(t) > 0 otherwise ¢ cannot be a regular point.

Then, similar to case Case 2(a),

0L Y p(denZin®-dZ®) -pdiZi)+ Y o (Aeal) = A)
k=ijy1+1 k=ijy1+1

+pidica () + (pr — p) Ai(t)

®) _ _ S piia Vi _ _
S — Z deka(t)—p[d]ZI(t)—i-% 1_dij+1Zij+1(t)_ Z dek(t)
ke[ij+1+1,i] ke[ij+1+1,’i]
keN kEN

(0 _ _ _ _
<= Y wndiZi() = prdi Zr(t) fvig | 1= di Zi ()~ Y diZi(t)
kelij1+1,d] kelij41+1d]
keN kEN
(d) _ _
< Vit1 (1 - dij+1Zij+1 (t) —d (N - Zij+1 (t)))
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(e)

S —C¢€,
for some constant ¢ > 0, where (a) follows from (EC139), (EC143), (EC147), (EC148), and (EC149),
(b) follows from (EC150) and algebraic manipulations similar to that in (EC146), (c) and (d) follow
from (EC135), (e) follows from the fact that Zi:ijﬂ Z,(t) = N and from the definition of d*. [

ECS8.2. Proof of Proposition 2
Assume that the conditions of the proposition hold. We prove the result by contradiction. Assume

that (EC76) does not hold. Then we can find a subsequence, denoted again by A, such that

lim P {|[(Q\(T),Z\T)) - (¢",2")

n—oo

> e} > 2.

We next prove that no such subsequence exists. Let i; denote the index of the single basic level
in ¢*(1,N). For simplicity we only consider the case when i; < i;_;, but the proof is similar for
other cases. We note that (Z,Q,ﬂ, f/q) satisfies the fluid model equations (EC59)—(EC64) and
(EC66)—-(EC69). It may not satisfy (EC65) because i*(1,N) has only one element. First assume
that

liminf [i* (A, N*)[ = 1. (EC151)

Then the result follows from Theorem ECI1, because along a subsequence of {n} Assumption 1(iii)
holds.

If (EC151) does not hold, then at least one the following does:

limsup 1 ()\;.*jil()\,NA) > o) = Lor limsup1 (A;‘M(A,NA) > 0) =1 (EC152)
by Lemma 1. We focus on the case when the former holds; the proof for the case when only the
latter holds is similar.

If the first equation in (EC152) holds, then along a subsequence A’ the limit is attained, hence
the proposed policy is 7*(i;_1,;) (although i*(1, N) has a single element) for A\’ large enough. Fix
a sample path w € Q such that (EC75) holds and Q(0) < M.

From the first two steps of the proof of Theorem EC1, there exists 7' > 0 such that

Zi(t)=0, fori=0,1,...,i; 1 —1 (EC153)
and

Z,(t) <e/I, fori=1i;+1,...,1. (EC154)
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We prove below that there exists T} > T such that

for t > T. By (EC64) and (EC153)—(EC155), for ¢t > T}

Zi]. (t)> N —e. (EC156)
Note that (EC156) holds for a set of sample paths with probability greater than 1 — ¢, giving the
desired result.

We prove (EC155) to complete the proof. Let

If f(t) >4, then by (EC65) (recall that 7*(i;_1,%;) is the policy for the case with two basic levels
i;—1 and ¢; along this sequence), (EC60), (EC63), (EC64), (EC65), (EC153) and (EC154)

f) =14 Y dZit) < (di, —diy 1) 0/ 7°

i=ij_1
giving (EC156). O

ECS8.3. Proof of Theorem EC2
Consider a sequence of chat service systems that satisfies (9) under a sequence of non-idling policies

{m*}. For z € RIF2, define ®(x) = Y"1, 2;. Next we show that, for \ large enough, for some t,, K >0

and 0 <6 <1, - -
B, [‘I) (ZA(to)»Q’\(to))}
®(z)

sup < 4. (EC157)

I€R£_+22¢(I)>K
In other words, ® is a geometric Lyapunov function with a geometric drift size 0 < § < 1, drift time
to and exception parameter K (see Gamarnik and Zeevi (2006)). By Theorem 5 in Gamarnik and

Zeevi (2006), (EC157) implies that

By [®(20),0(0))] < qﬁl(t_o)f( (EC158)

where

Ol = TG

Because Y2;_o Z}(t) + Q1) < 321 Z2 () + QM(0) + AN(1),
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By (52) in Gamarnik and Zeevi (2006) and the fact that arrivals follow a Poisson process,

limsup E [exp(A*(ty))] < o0

A—00

for any finite ¢y > 0. Hence, (EC157) and (EC158) give tightness. To prove uniform integrability,
note that by Markov’s inequality and (EC158) we have

P, (Q’\(O) > u) < Bpexp(—u),

for some constant Bj.

We prove (EC157) to complete the proof by choosing appropriate K, t, and 6. Let N» = A~ N2
K =max (1/7,supN’\> . (EC159)
A

Choose K = 7x and to =1/7. We now compute an upper bound of E, [V (Z*(to), Q*(to))]. Let
Z*(-) denote the total number of customers in an M/M /oo queue with arrival rate A\ and ser-
vice rate 7. Then by a coupling argument one can show that E, [¥ (Z*(t),Q*(t))] < N* +
E (Z*(t)|Z(0) = z141). It follows from the Kolmogorov equation (see Example 2 in Chapter 4.6 of
Karlin and Taylor (1975)) that for ¢ >0

_ _ 1
E(Z*W|Z(0)=2;41) = ;(1 —e M)tz

When ®(x) > K, we must have x;,; > 6x due to the choice of K and the fact that Zf:o x; <
sup,, N*. So by (EC159) and the choice t,,

_ _ 2
E(Z)\(to)’Z(O) :$1+1) < /<&+m1+1€7"’t < /@+x1+1/2 < §l‘1+1-

Again, by (EC159)

sup E. [qj (Z/\(to)’Q/\(tO))] < N* + §$1+1 _9
2eRL T2 @ (2)> K U (x) - N +a, T

Thus, (EC157) holds for 6 =5/7. O
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