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We prove Lemma 1 in §EC1. We present the queueing equations and some preliminary analysis

in §EC2. Then we prove Theorem 1 in §EC3 and Theorem 2 in §EC4. Proof of Proposition 1 is

placed in §EC5 and that of Theorem 4 in §EC6. The proofs of the results in Section 5 are presented

in §EC7. Finally, proofs of supplemental results appear in §EC8.

EC1. Proof of Lemma 1

We first state some preliminary results. We note that

PAb
i d̂i = iν (EC1)

hence PAb
i d̂i is increasing in i. Also by (3)

PAb
j′ >P

Ab
j for j′ > j. (EC2)

The proof of the following result is elementary hence skipped.

Lemma EC1. If for a level j, 1< j < I, d̂j = d̂j′ for some j′ < j then level j cannot be efficient.

Also, for any efficient level ij (
1−PAb

ij

)
d̂ij ≥

(
1−PAb

i

)
d̂i, (EC3)

for all i≤ ij.
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Remark EC1 (Equivalent definitions). It can easily be checked that if a level i is inefficient

than the following hold for some i1 ≤ i≤ i2(
PAb
i2
d̂i2 −P

Ab
i1
d̂i1

)
d̂i ≤

(
PAb
i2
d̂i2 −P

Ab
i d̂i

)
d̂i1 +

(
PAb
i d̂i−PAb

i1
d̂i1

)
d̂i2 , (EC4)

(
d̂i2 − d̂i1

)(
PAb
i2
d̂i2 −P

Ab
i d̂i

)
≤
(
d̂i2 − d̂i

)(
PAb
i2
d̂i2 −P

Ab
i1
d̂i1

)
, (EC5)

and (
d̂i2 − d̂i1

)
PAb
i d̂i ≥

(
d̂i− d̂i1

)
PAb
i2
d̂i2 +

(
d̂i2 − d̂i

)
PAb
i1
d̂i1 . (EC6)

Proof of Lemma 1: The routing LP (10) can be written as

min
I∑
i=1

PAb
i λi +λI+1 (EC7)

st.
I∑
i=1

λi

d̂i
≤N, (EC8)

I∑
i=1

λi +λI+1 ≥ λ, (EC9)

λi ≥ 0, i= 1,2, . . . , I, I + 1. (EC10)

Let yN , yλ and yi denote the dual variables associated with the constraints (EC8), (EC9) and

(EC10), respectively. We can write the dual of the routing LP, referred to as LP-D, as

maxλyλ−NyN
st.

yλ−
1

d̂i
yN + yi ≤ PAb

i , i= 1,2, . . . , I

yλ + yI+1 ≤ 1, i= 1,2, . . . , I

yλ ≥ 0,

yN ≥ 0,

yi ≥ 0, i= 1,2, . . . , I + 1.

LP-D is equivalent to the following LP, referred to as LP-DE,

max
λ

N
yλ− yN

st.

d̂iyλ− yN ≤ PAb
i d̂i, i= 1,2, . . . , I, (EC11)

yλ ≤ 1, (EC12)

yλ ≥ 0, (EC13)
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yN ≥ 0. (EC14)

For the rest of the proof we focus on establishing an optimal solution of LP-DE. Because an optimal

solution of LP-D can easily be derived from an optimal solution of LP-DE, we also refer to such a

solution as an optimal solution of LP-D, with a slight abuse of terminology.

We divide the proof into a few cases depending on the value of the parameters N and λ. First,

assume that λ
N
< d̂1. Consider the solution (y∗λ, y

∗
N) = (PAb

1 ,0) with objective value λ
N
PAb

1 for LP-

DE. We claim that it is an optimal solution of LP-DE. Note first that it is feasible by (EC2). In

addition, by (EC11) for i= 1, for any feasible solution (yλ, yN) the objective function is bounded

by

λ

N

(
PAb

1 +
yN

d̂1

)
− yN ≤

λ

N
PAb

1 ,

where the last inequality follows from the fact that λ
N
< d̂1. Thus, (y∗λ, y

∗
N) = (PAb

1 ,0) is an optimal

solution of LP-DE and LP-D. Note also that the feasible solution given by λ1 = λ, and λi = 0,

i = 2, . . . , I, I + 1 for the routing LP (EC7) attains the same objective value with the optimal

objective function value of LP-D, therefore it must be an optimal solution of (10), proving (15).

Next, assume that λ
N

= d̂i∗ for an efficient level i∗. By (EC4) and (EC5) and the fact that level

i∗ is efficient for any i1 < i
∗ < i2 and i1, i2 ∈N c

PAb
i∗ d̂i∗ −PAb

i1
d̂i1

d̂i∗ − d̂i1
≤
PAb
i2
d̂i2 −PAb

i1
d̂i1

d̂i2 − d̂i1
≤
PAb
i2
d̂i2 −PAb

i∗ d̂i∗

d̂i2 − d̂i∗
, (EC15)

where by convention ·/0 =∞ and d̂i2 ≥ d̂i∗ > d̂i1 by Lemma EC1 and the fact that i1, i2 ∈N c. Let

y∗λ be such that

PAb
i∗ d̂i∗ −PAb

i1
d̂i1

d̂i∗ − d̂i1
≤ y∗λ ≤

PAb
i2
d̂i2 −PAb

i∗ d̂i∗

d̂i2 − d̂i∗
, for all i1, i2 ∈N c, i1 < i

∗ and i2 > i
∗. (EC16)

The existence of such y∗λ is guaranteed by the fact that level i∗ is assumed to be efficient and by

(EC15). Also, set

y∗N = d̂i∗y
∗
λ−PAb

i∗ d̂i∗ . (EC17)

First note that by the fact that level I is efficient, d̂I > d̂i∗ and by (EC16) with i2 = I, y∗λ ≤ 1.

Using (EC16) and (EC17) it is easily checked that (y∗λ, y
∗
N) satisfies (EC11) for all i∈N c. Also, for

i ∈ N , (y∗λ, y
∗
N) satisfies (EC11) by (EC1), the definition of N and the fact that (y∗λ, y

∗
N) satisfies

(EC11) for i∈N c. Hence, (y∗λ, y
∗
N) is a feasible solution of LP-DE with the objective function value
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PAb
i∗ d̂i∗ . The optimality of (y∗λ, y

∗
N) for LP-DE (and so for LP-D) follows from the fact that for any

feasible solution (yλ, yN) the objective function satisfies

λ

N
yλ− yN = d̂i∗yλ− yN ≤ PAb

i∗ d̂i∗

by our assumption that λ
N

= d̂i∗ . Note also that the feasible solution given by λi∗ = λ, λi = 0 for

i 6= i∗ for the routing LP (EC7) attains the same objective value as the optimal objective function

value of LP-D, therefore it must be an optimal solution of (10), proving (16) in this case.

Now assume that d̂IN >λ> d̂1N and that λ
N
6= d̂i∗ for any i∗ ∈F . Let i∗j+1 be defined as in (14)

and define

(y∗λ, y
∗
N) =

PAb
i∗j+1

d̂i∗j+1
−PAb

i∗j
d̂i∗j

d̂i∗j+1
− d̂i∗j

,
PAb
i∗j+1

d̂i∗j+1
d̂i∗j −P

Ab
i∗j
d̂i∗j d̂i∗j+1

d̂i∗j+1
− d̂i∗j

 . (EC18)

Also define

δ=
d̂i∗j+1

− λ
N

d̂i∗j+1
− d̂i∗j

.

Using (EC11) for i∗j and i∗j+1, we have for any feasible solution (yλ, yN)

λ

N
yλ− yN = δ(d̂i∗j yλ− yN) + (1− δ)(d̂i∗j+1

yλ− yN)≤
d̂i∗j+1

− λ
N

d̂i∗j+1
− d̂i∗j

PAb
i∗j
d̂i∗j +

λ
N
− d̂i∗j

d̂i∗j+1
− d̂i∗j

PAb
i∗j+1

d̂i∗j+1
.

On the other hand, it is easy to verify that (y∗λ, y
∗
N) defined in (EC18) achieves this best possible

value. Therefore it is enough to show that (y∗λ, y
∗
N) is a feasible solution for LP-DE to conclude

that it is an optimal solution for LP-DE.

By the monotonicity property (EC1) and Lemma EC1, (y∗λ, y
∗
N) satisfies the constraints (EC12),

(EC13) and (EC14). Also, it satisfies (EC11) for i= i∗j and i= i∗j+1. In fact, these two constraints

are tight at this point. We next prove that (y∗λ, y
∗
N) satisfies (EC11) for i 6= i∗j , i

∗
j+1. For i < i∗j ,

d̂iy
∗
λ− y∗N = d̂i∗j+1

y∗λ− y∗N − (d̂i∗j+1
− d̂i)y∗λ

= PAb
i∗j+1

d̂i∗j+1
− (d̂i∗j+1

− d̂i)

PAb
i∗j+1

d̂i∗j+1
−PAb

i∗j
d̂i∗j

d̂i∗j+1
− d̂i∗j

 . (EC19)

Since level i∗j is efficient, by (EC5) and Lemma EC1

PAb
i∗j+1

d̂i∗j+1
−PAb

i∗j
d̂i∗j

d̂i∗j+1
− d̂i∗j

≥
PAb
i∗j+1

d̂i∗j+1
−PAb

i d̂i

d̂i∗j+1
− d̂i

.

This implies by (EC19) that d̂iy
∗
λ − y∗N ≤ PAb

i d̂i. So (EC11) is satisfied for any i < i∗j by (y∗λ, y
∗
N).

For i > i∗j+1, a similar argument applies by using the efficiency of level i∗j+1. Specifically, by (EC5)

(d̂i− d̂i∗j )P
Ab
i∗j+1

d̂i∗j+1
≤ (d̂i∗j+1

− d̂i∗j )P
Ab
i d̂i + (d̂i− d̂i∗j+1

)PAb
i∗j
d̂i∗j . (EC20)
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Then

d̂iy
∗
λ− y∗N = d̂i∗j y

∗
λ− y∗N + (d̂i− d̂i∗j )y

∗
λ

= PAb
i∗j
d̂i∗j + (d̂i− d̂i∗j )

PAb
i∗j+1

d̂i∗j+1
−PAb

i∗j
d̂i∗j

d̂i∗j+1
− d̂i∗j

≤ PAb
i d̂i,

where the last inequality follows from (EC20).

If Ui∗j = ∅, then the proof is complete. Also, for all i∈N , (y∗λ, y
∗
N) satisfies (EC11), as described

above if (y∗λ, y
∗
N) satisfies (EC11) for all i∈N c. So next we consider Uij ∩N c. For any i∈ Ui∗j ∩N

c,

let

δj+1 =
PAb
i∗j+1

d̂i∗j+1
−PAb

i d̂i

PAb
i∗j+1

d̂i∗j+1
−PAb

i∗j
d̂i∗j

and δj = 1− δj+1. By (EC1), δj, δj+1 ∈ [0,1]. It follows from Lemma EC2 below and (EC6) that

d̂i ≤ δj+1d̂i∗j + δj d̂i∗j+1
. (EC21)

Then

d̂iy
∗
λ− y∗N ≤ δj+1

(
d̂i∗j y

∗
λ− y∗N

)
+ δj

(
d̂i∗j+1

y∗λ− y∗N
)

≤ δj+1P
Ab
i∗j
d̂i∗j + δjP

Ab
i∗j+1

d̂i∗j+1

= PAb
i d̂i,

where the first inequality follows from (EC21) and the second inequality follows from the fact that

(y∗λ, y
∗
N) satisfies the constraint (EC11) for i∗j and i∗j+1. So (y∗λ, y

∗
N) satisfies the constraint (EC11)

for all 1≤ i≤ I. Therefore, (y∗λ, y
∗
N) is an optimal solution for LP-DE and LP-D. In addition, the

feasible solution given by (16) for the routing LP (EC7) attains the same objective value as the

optimal objective value of LP-D, therefore it must be an optimal solution of (10), proving (16) in

this case.

Finally, we study the case where λ≥ d̂IN . Consider the solution (y∗λ, y
∗
N) = (1, d̂I(1−PAb

I )) with

objective value λ
N
− d̂I(1−PAb

I ) for LP-DE. We claim that it is an optimal solution of LP-DE. Note

first that it is feasible by (6). In addition, by (EC11) for i= I and (EC12), for any feasible solution

(yλ, yN) the objective function is bounded by λ
N
− d̂I(1−PAb

I ). Thus, (y∗λ, y
∗
N) is an optimal solution

of LP-DE and LP-D. Note also that the feasible solution given by λI = d̂IN , λI+1 = λ− d̂IN , and

λi = 0, i= 1, . . . , I − 1 for the routing LP (EC7) attains the same objective value with the optimal

objective function value of LP-D, therefore it must be an optimal solution of (10), proving (17).

�



6

EC1.1. Proof of (EC21)

We now focus on the inefficient levels in Ui∗j ∩ N
c (when Uij 6= ∅) for an efficient level ij. For

notational simplicity we assume N = ∅ and use only the notation Ui∗j the rest of this section. (We

do not make use of this assumption in the proof.) For an inefficient level i, we denote the set of

all pairs (i1, i2) with i1 < i < i2 that satisfy (EC5) by J (i). For any i ∈ Uij , by the definition of

inefficiency, there exists a pair (k, j)∈J (i). However, the definition itself does not require (ij, ij+1)

to be one of the pairs in J (i). In this section we prove that (ij, ij+1)∈J (i).

Let ai = PAb
i d̂i and consider the set of pairs {(d̂i, ai) : i = {1,2, . . . , I}} on a two-dimensional

plane. Assume that d̂k 6= d̂j and let Lk,j : R→R denote the (straight) line passing through points

(d̂k, ak) and (d̂j, aj), hence,

Lk,j(x) =
aj − ak
d̂j − d̂k

x− aj − ak
d̂j − d̂k

d̂k + ak, x∈R.

From here on when we consider Lk,j we assume without further mention that d̂k 6= d̂j. For k < i < j,

we have

Lk,j(d̂i) = aj
d̂i− d̂k
d̂j − d̂k

+ ak
d̂j − d̂i
d̂j − d̂k

.

If a level i is inefficient then by (EC6) either d̂k = d̂i for some k < i or

ai ≥Lk,j(d̂i) (EC22)

for some (k, j)∈ J(i).

Lemma EC2. Let ij ∈F . For any i∈ Uij (EC21) holds.

Note that (EC21) is equivalent to

ai ≥Lij ,ij+1(d̂i). (EC23)

We use the following results in the proof that are immediate from algebraic manipulations. Let

k < i and k < j and assume that Lk,i(x)≤Lk,j(x) for some x> d̂k, then

Lk,i(x)≤Lk,j(x) for all x> d̂k (EC24)

Similarly, if for k < i and j < i Lk,i(x)≤Lj,i(x) for some x< d̂i, then

Lk,i(x)≤Lj,i(x) for all x< d̂i. (EC25)

Let i < j and k < l and assume that there exists x1 >x0 such that Li,j(x)≤Lk,l(x) for some x< x0,

and Li,j(x)≥Lk,l(x) for some x> x1, then

Li,j(x)≤Lk,l(x) for all x< x0, and Li,j(x)≥Lk,l(x) for all x> x1. (EC26)
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Proof of Lemma EC2: We prove the result using an induction argument. Because level i is inef-

ficient, by Lemma EC3 below, (k1, ij+1) ∈ J (i) for some k1 < i. Hence, by (EC22) (note that by

Lemma EC1 and the fact that ij+1 is efficient we have d̂i < d̂ij+1
for all i < ij+1)

ai ≥Lk1,ij+1(d̂i). (EC27)

Now we proceed by induction. Let i = ij + 1. Assume that k1 < ij as otherwise the proof is

complete. Because level ij is efficient

aij <L
k1,ij+1(d̂ij ). (EC28)

Since aij = Lij ,ij+1(d̂ij ), we have Lij ,ij+1(x) ≤ Lk1,ij+1(x) for all x ≤ d̂ij+1
by (EC25). The result

then follows from (EC27).

Now assume that for i∈ Uij , i > ij + 1 and

ai′ ≥Lij ,ij+1(d̂i′)

for all ij+1≤ i′ ≤ i−1. By Lemma EC3, there exists 1≤ k1 < i such that (k1, ij+1)∈J (i). If k1 ≤ ij,

the result follows as above using (EC28). Now assume that k1 > ij. By the induction argument

ak1 =Lk1,ij+1(d̂k1)≥Lij ,ij+1(d̂k1).

Therefore, by (EC25)

Lk1,ij+1(x)≥Lij ,ij+1(x)

for x< d̂ij+1
. Then (EC23) follows from (EC27). �

Lemma EC3. Let ij ∈F . For any i∈ Uij ,

ai ≥Lk,ij+1(d̂i) (EC29)

for some 1≤ k < i.

Proof of Lemma EC3: Assume that level i is inefficient. Then by (EC6) either d̂i = d̂j for some

j < i or

ai ≥Lj1,j2(d̂i). (EC30)

for some j1 < i< j2.
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First assume that d̂i = d̂i′ for some i′ < i. Then, by Lemma EC1 d̂ij+1
> d̂i = d̂i′ . Hence, we have

ai ≥Li
′,ij+1(d̂i)

by (EC24) completing the proof in this case.

Now assume that d̂i > d̂i−1 and that (EC30) holds. It follows from (EC24) and Lemma EC1 that

d̂j2 > d̂i. We prove the result in this case recursively by induction. First suppose i = ij+1 − 1. In

this case, if j2 = ij+1 the result follows. Otherwise, we must have j2 > ij+1. The fact that level ij+1

is efficient implies

Lj1,ij+1(d̂ij+1
) = aij+1

<Lj1,j2(d̂ij+1
),

hence by (EC24)

Lj1,ij+1(x)≤Lj1,j2(x), for all x> d̂j1 . (EC31)

The result (EC29) with k= j1 follows from (EC30) and (EC31) (with x= d̂i since d̂i > d̂j1).

Now suppose i < ij+1− 1 and by induction that for all i′ with i < i′ < ij+1

ai′ ≥Lk1(i′),ij+1(d̂i′) (EC32)

for some k1(i′)< i′. By the discussion above, if d̂i = d̂i−1 the proof is immediate, therefore we focus

on the case when d̂i > d̂i−1. If d̂i > d̂i−1 then it follows from (EC24) and Lemma EC1 that d̂j2 > d̂i.

Also, by Lemma EC1 and the fact that ij+1 is efficient we have d̂j2 < d̂ij+1
. Hence for the rest of

the proof the following holds

d̂i−1 < d̂i < d̂j2 < d̂ij+1
. (EC33)

If j2 ≥ ij+1, then the result (EC29) (with k= j1) follows in a similar way to the discussion leading

to (EC31). So we now focus on the case where j2 < ij+1. We can assume the pair (j1, j2) we pick is

the one such that j2 = min{j : (j1, j)∈J (i)}. By the induction assumption (EC32), for this j2

aj2 ≥L
k1(j2),ij+1(d̂j2). (EC34)

There are three different cases to be analyzed separately.

(i) k1(j2)< j1 < i< j2

(ii) j1 ≤ k1(j2)< i< j2

(iii) j1 < i≤ k1(j2)< j2
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Case (i): If ai ≥ Lk1(j2),ij+1(d̂i), then result (EC29) with k = k1(j2) follows immediately. So we

focus on the case where

ai <L
k1(j2),ij+1(d̂i). (EC35)

We show below that in this case,

aj1 ≤L
k1(j2),ij+1(d̂j1). (EC36)

We now show the result (EC29) holds with k = j1 using (EC35) and (EC36). Figure 1 gives a

graphic demonstration of the argument. Let L̃j1,j2 denote the line that passes through the points

(d̂j1 , aj1) and (d̂j2 ,L
k1(j2),ij+1(d̂j2)). Since (EC34) holds, by (EC24), we have that

Lj1,j2(x)≥ L̃j1,j2(x), for all x≥ d̂j1 . (EC37)

On the other hand, since (EC36) holds, by (EC25), we have that

Lk1(j2),ij+1(x)≥Lj1,ij+1(x), for all x≤ d̂ij+1
.

Plugging x = d̂j2 in the above yields Lk1(j2),ij+1(d̂j2) = L̃j1,j2(d̂j2) ≥ Lj1,ij+1(d̂j2). This, again by

(EC24), implies that

L̃j1,j2(x)≥Lj1,ij+1(x), for all x≥ d̂j1 . (EC38)

The result follows from (EC30), (EC37) and (EC38) (with x= d̂i since d̂i ≥ d̂j1).

To complete the proof in Case (i), we next prove (EC36). We first show that (EC34) and the

opposite of (EC36) implies that

Lj1,j2(x)≥Lk1(j2),ij+1(x), for all d̂j1 ≤ x≤ d̂j2 . (EC39)

(In other words, the line segment connecting (d̂j1 , aj1) and (d̂j2 , aj2) lies above the line passing

through (d̂k1(j2), ak1(j2)) and (d̂ij+1
, aij+1

).) Let L̃j1,j2 be defined as above. By (EC34) and (EC24)

L̃j1,j2(x)≤Lj1,j2(x), for all x≥ d̂j1 (EC40)

and if (EC36) does not hold then by (EC25)

L̃j1,j2(x)≥Lk1(j2),ij+1(x), for all x≤ d̂j2 (EC41)

We have (EC39) by (EC40) and (EC41). By (EC39) and (EC30), we must have that ai ≥

Lk1(j2),ij+1(d̂i), contradicting (EC35), hence (EC36) holds.
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ak1(j2)

d̂k1(j2)

aij+1

d̂ij+1

aj1

d̂j1

aj2

d̂j2

ai

d̂i

Figure 1 Graphic Presentation in Case (i).

Case (ii): If ak1(j2) <L
j1,j2(d̂k1(j2)), then this and (EC34) implies that

Lj1,j2(x)≥Lk1(j2),ij+1(x), for all d̂k1(j2) ≤ x≤ d̂j2 . (EC42)

Since d̂k1(j2) ≤ d̂i ≤ d̂j2 , the result (EC29) with k = k1(j2) follows immediately from (EC30) and

from plugging x= d̂i in (EC42).

Now assume that ak1(j2) ≥Lj1,j2(d̂k1(j2)). This implies that

Lk1(j2),ij+1(d̂k1(j2))≥Lj1,j2(d̂k1(j2)).

It follows from (EC34) that

Lk1(j2),ij+1(d̂j2)≤Lj1,j2(d̂j2).

By (EC26),

Lk1(j2),ij+1(x)≥Lj1,j2(x), for all x≤ d̂k1(j2).

In particular, the above holds for x= d̂j1 since d̂j1 ≤ d̂k1(j2). Thus, by (EC25),

Lk1(j2),ij+1(x)≥Lj1,ij+1(x), for all x≤ d̂ij+1
.

Since d̂j2 ≤ d̂ij+1
, the above inequality holds for x = d̂j2 , this together with (EC34) implies that

aj2 ≥Lj1,ij+1(d̂j2). By (EC24),

Lj1,j2(x)≥Lj1,ij+1(x), for all x≥ d̂j1 . (EC43)

The result (EC29) with k= j1 follows from (EC30) and (EC43) (with x= d̂i since d̂i ≥ d̂j1).
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Case (iii): Since level j2 is the smallest indexed level such that (j1, j2)∈J (i) we must have

ai ≤Lj1,k1(j2)(d̂i). (EC44)

Also note that d̂ij+1
> d̂k1(j2) ≥ d̂i > d̂j1 by (EC33). (EC44) together with (EC30) implies

Lj1,k1(j2)(d̂i)≥Lj1,j2(d̂i). Since d̂k1(j2) ≥ d̂i by (EC24),

ak1(j2) =Lk1(j2),ij+1(d̂k1(j2)) =Lj1,k1(j2)(d̂k1(j2))≥Lj1,j2(d̂k1(j2)).

On the other hand, (EC34) implies that

Lk1(j2),ij+1(d̂j2)≤Lj1,j2(d̂j2).

By (EC26), we have

Lk1(j2),ij+1(x)≤Lj1,j2(x) for all x≥ d̂j2 .

In particular, the above inequality holds for x= d̂ij+1
since d̂ij+1

≥ d̂j2 . Thus, by (EC24), (EC43)

holds in this case as well. The result (EC29) with k = j1 follows from (EC30) and (EC43) (with

x= d̂i since d̂i ≥ d̂j1). �

EC2. Queueing equations

In this section we provide the details of the queueing equations for the CSC systems and set the

notation for the rest of results in the appendix.

EC2.1. Notation

All random variables and processes are defined on a common probability space (Ω,G, P ) unless

specified otherwise. The symbols N,R and R+ are used to denote nonnegative integers, real numbers

and nonnegative real numbers, respectively. For d ∈ N, Rd denotes the d-dimensional Euclidean

space; thus, R = R1. The space of functions f : R+→ Rd that are right-continuous on [0,∞) and

have left limits in (0,∞) is denoted by D(R+,Rd) or simply Dd ; similarly, with T > 0, the space of

functions f : [0, T ]→Rd that are right-continuous on [0, T ) and have left limits in (0, T ] is denoted

by D([0, T ],Rd). For f ∈ Dd, f(t−) denotes its left limit at t > 0. Each stochastic process whose

sample paths are in Dd is considered to be a Dd-valued random element. The space Dd is assumed

to be endowed with the u.o.c. topology (see Billingsley (1968)). For a function f : R→Rd with d

being some positive integer, we say that t is a regular point of f if f is differentiable at t and use

ḟ(t) to denote its derivative at t. We use Eυ[·] to denote the conditional expectation and Pυ{·} to

denote the conditional probability given that (Q(0),Z(0)) is distributed according to υ. Similarly,

we use Ex[·] to denote the conditional expectation and Px{·} to denote the conditional probability

given that (Q(0),Z(0)) = x.
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EC2.2. Queueing Equations

In this section we introduce the queueing equations for the CSC systems. Fix λ and let Zλi (t) denote

the number of agents serving i customers and Qλ(t) denote the number of customers in queue at

time t. Also, let {Si : i= 1, . . . , I+1} denote a set of independent rate 1 Poisson processes and Aλ(t)

denote the number of arrivals at the system by time t which is also assumed to be independent

of {Si : i= 1, . . . , I + 1}. We denote by Aλi (t) the number of customers who are routed to an agent

serving i customers for i= 0,1, . . . , I − 1 and by AλI (t) the number of customers who are routed to

the queue upon arrival by time t in the λth system. We set Zλ = (Zλi (0); i= 0,1, . . . , I, t≥ 0) and

Aλ = (Aλ(t),Aλi (t); i= 0,1, . . . , I, t≥ 0). Let

Dλ
i (t) = Si

(
d̂i

∫ t

0

Zλi (s)ds

)
, i= 1, . . . , I

and

Dλ
I+1(t) = SI+1

(
γ

∫ t

0

Qλ(s)ds

)
denote the number of customers who leave the system while receiving service from an agent at

level i and the number of abandonments from queue by time t, respectively. The following queueing

equations are satisfied under any policy for t≥ 0.

Zλ0 (t) =Zλ0 (0)−Aλ0(t) +Dλ
1 (t) , (EC45)

Zλi (t) =Zλi (0) +Aλi−1(t)−Aλi (t) +Dλ
i+1 (t)−Dλ

i (t) , i= 1, . . . , I − 2, (EC46)

ZλI−1(t) =ZλI−1(0) +AλI−2(t)−AλI−1(t) +Lλq (t)−Dλ
I−1 (t) , (EC47)

Qλ(t) =Qλ(0) +AλI (t)−Dλ
I (t)−Dλ

I+1 (t) +Lλq (t), (EC48)
I∑
i=0

Aλi (t) =Aλ(t), (EC49)

Zλi (t)≥ 0,Aλi (0) = 0 and Aλi is nondecreasing, i= 0,1, . . . , I. (EC50)
I∑
i=0

Zλi (t) =Nλ, (EC51)

where

Lλq (t) =

∫ t

0

1
{
Qλ(s) = 0

}
dDλ

I (s).

By (EC51), ZλI (t) =Nλ−
∑I−1

i=0 Z
λ
i (t), for all t≥ 0, hence

Dλ
I (t) = SI

(
d̂I

(
Nλt−

∫ t

0

I−1∑
i=0

Zλi (s)ds

))
.
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Also, an arrival can be routed to an agent at level i only when there is at least one agent at that

level, hence, ∫ t

0

1
{
Zλi (s−) = 0

}
dAλi (s) = 0, t≥ 0.

In addition, because we focus on non-idling policies, customers wait in the queue only when all

agents are at level I, therefore

Qλ(t)

(
I−1∑
i=0

Zλi (t)

)
= 0, t≥ 0. (EC52)

Additional equations under the proposed policy: Note that the policy proposed in §4.1 is a static

priority policy once the basic levels iλj and iλj+1 are fixed. For levels with indices below iλj , those

with lower indices have higher priorities. Levels in Uλij have lower priorities than those levels with

indices below iλj but higher priorities than iλj . Also their priorities among those levels in this set

are set in the reverse order of their indices. All levels with indices larger than iλj+1 (including iλj+1)

have lower priorities than levels with indices lower than iλj+1. Also for two levels with indices larger

than iλj+1, levels in N ′ have lower priorities than those levels that are not in N ′. Levels that are not

in N ′ have decreasing priority in their indices and levels that are in N ′ have increasing priority in

their indices. We can re-index the levels using {vλi } so that vλi denotes the priority index of level i

and vλi < vλi′ if level i has priority over i′. We note that under the proposed policy, for 0< t1 < t2,

we have

Aλi (t2)−Aλi (t1) = 0, if
∑

{i′:vλ
i′<v

λ
i }

Zλi′(s)> 0, for all s∈ [t1, t2], i= 1, . . . , I − 1. (EC53)

EC3. Proof of Theorem 1

Fix λ and let πλ denote a non-idling policy. We first prove that under πλ there exists a unique

steady state distribution υ(πλ) for the processes (Zλ,Qλ). We prove this result using Foster’s

criteria. Choose K > 0 large enough so that γ(K −Nλ) + Id̂IN
λ−λ>−c, for some c > 0. We say

a state (Z,Q) is feasible if (EC51) and (EC52) are satisfied. (Throughout the proof we use the

notation defined in §EC2.) Given a (feasible) state (Z,Q), with Z = (Z0,Z1, . . . ,ZI), where Zi is

the number of agents at level i and Q is the queue length, define f(Z,Q) =
∑I

i=0Zi +Q. Then, for

any state (Z,Q) with f(Z,Q)>K, for the generator of the underlying Markov chain Γ, we have

Γf(Z,Q) = λ− d̂INλ− γQ<−c

because the policy is assumed to be non-idling. Therefore (Zλ,Qλ) is positive recurrent for each λ

by Foster’s criteria (see for example Meyn and Tweedie (2009)).
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Because under any non-idling policy there exists a unique stationary distribution, by Meyn and

Tweedie (2009) and (EC45)–(EC48), we have for each λ

P λ,πλ(Ab) = lim
T→∞

Abλ(T )

Tλ
=
Eυ(πλ)

[∑I

i=1 iνZ
λ
i (0) + γQλ(0)

]
λ

. (EC54)

Obviously, under υ(πλ)

I∑
i=1

Zλi (0)≤N. (EC55)

Because the underlying chain is ergodic

lim
T→∞

Dλ
i (T )

T
=Eυ(πλ)

[
d̂iZ

λ
i (0)

]
a.s.,

for i= 0,1, . . . , I and

lim
T→∞

Dλ
I+1(T )

T
=Eυ(πλ)

[
γQλ(0)

]
a.s.

In addition, by stationarity

λ=
I∑
i=0

Eυ(πλ)

[
d̂iZ

λ
i (0)

]
+Eυ(πλ)

[
γQλ(0)

]
. (EC56)

Consider the following LP

min
{Q,Zi;i=0,1,...,I}

PAb

st. γQ+
I∑
i=1

iνZi = PAbλ,

I∑
i=0

Zi ≤Nλ,

γQ+
I∑
i=1

d̂iZi ≥ λ,

Q,Zi ≥ 0, i= 0,1, . . . , I.

(EC57)

Denote the optimal solution of this LP by P̃Ab(λ,Nλ). By (EC54), (EC55), and (EC56), we have

that

P λ,πλ(Ab)≥ P̃Ab(λ,Nλ).

Also, LP (EC57) is equivalent to LP (10), which can be seen by setting λi = d̂iZi and λI+1 = γQ

there and using (2). Therefore,

P λ,πλ(Ab)≥ PAb(1, λ−1Nλ). (EC58)
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Then taking the limit on both sides of (EC58) as λ goes to infinity and using the fact

lim
λ→∞

PAb(1, λ−1Nλ) = PAb(1,N),

which follows from (9), and the fact that the optimal solution of the LP is a continuous function

of its constraints gives the desired result. �

EC4. Proof of Theorem 2

In this section we prove Theorem 2. (Throughout the proof we use the notation defined in §EC2.)

The proof is based on analyzing the (fluid) limits of the fluid scaled processes (n−1Zn, n−1Qn).

Specifically we find the steady state of the fluid limits by establishing the fluid model equations.

Then we show that the steady state of the fluid scaled processes are tight. Then we combine these

results to complete the proof. For the case when there is only one basic level in the limit the proof

is slightly different but the idea is similar.

We analyze the fluid limits of the queuing processes under the proposed policies in §EC4.1 and

then prove the tightness of the stationary distributions of the fluid scaled processes in §EC4.2. We

present the proof in §EC4.3

EC4.1. Analysis of the fluid model

In this section we analyze the fluid limits of the chat systems under the proposed policies. First we

establish the fluid model equations that are satisfied by the fluid limits and then find the steady

state of the fluid model solutions.

Consider the asymptotic regime where (9) holds. Consider the following fluid model equations.

Z̄0(t) = Z̄0(0)− Ā0(t) + d̂1

∫ t

0

Z̄1(s)ds, (EC59)

Z̄i(t) = Z̄i(0) + Āi−1(t)− Āi(t) + d̂i+1

∫ t

0

Z̄i+1(s)ds− d̂i
∫ t

0

Z̄i(s)ds, i= 1, . . . , I − 2, (EC60)

Z̄I−1(t) = Z̄I−1(0) + ĀI−2(t)− ĀI−1(t) + L̄q(t)− d̂I−1

∫ t

0

Z̄I−1(s)ds, (EC61)

Q̄(t) = Q̄(0) + ĀI(t)− d̂I
∫ t

0

Z̄I(s)ds− γ
∫ t

0

Q̄(s)ds+ L̄q(t), (EC62)

I∑
i=0

˙̄Ai(t) = ˙̄A(t) = 1, (EC63)

Z̄I(t) =N −
I−1∑
i=0

Z̄i(t), (EC64)∑
{k:vk≤vi}

˙̄Ak(t) = 1 if Z̄i′(t)> 0, for some i′ with vi ≥ vi′ , i= 0,1, . . . , I − 1, (EC65)

˙̄Lq(t) = 0 if Q̄(t)> 0, (EC66)
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Q̄(t)
I−1∑
i=0

Z̄i(t) = 0, (EC67)

Z̄i(t)≥ 0, Q̄(t)≥ 0, i= 0,1, . . . , I, (EC68)

Āi, L̄q are non-decreasing, i= 0,1, . . . , I, (EC69)

where the priorities of levels are found based on i∗(1,N) as explained in §EC2.2. We refer to

(EC59)–(EC69) as the fluid model and to (Q̄, Z̄, Ā, L̄q) with Z̄ =
(
Z̄i(t); i= 0,1, . . . , I, t≥ 0

)
and

Ā= (Ā(t), Āi(t); i= 0,1, . . . , I, t≥ 0) which satisfies these equations as a fluid model solution. It

can be shown as in Dai and Tezcan (2011) that every fluid model solution is Lipschitz and so

differentiable a.e.

Because the proposed policy depends on the values of λ and Nλ, if i∗(1,N) has only one element,

there may be a “discontinuity” in the proposed policies along the sequence of systems. Specifically,

the proposed policy πλ,∗ may be different for each λ and may fluctuate between different policies as

λ→∞. We prove Theorem 2 separately for the cases when such discontinuity is present and when

it is not. Under the following assumption we will show that the proposed policy is independent of

λ for large λ.

Assumption 1. One of the following conditions holds

i) The set i∗(1,N) has two elements;

ii) The set i∗(1,N) has only one element and all the levels are efficient;

iii) Nλ = λN for some N ≥ 0 and for λ large enough.

If Assumption 1 holds, one can work with the fluid model to complete the proof of Theorem 2.

Otherwise, one needs to work with the fluid limits as described in Proposition 2. We next show

that the fluid model is obtained from the underlying queueing system equations. The fluid scaling

of the queueing processes are defined as Z̄λ(t) = λ−1Zλ(t), Q̄λ(t) = λ−1Qλ(t), Āλ(t) = λ−1Aλ(t)

and L̄λq (t) = λ−1Lλq (t). Assume that

(
Z̄λ(0), Q̄λ(0)

)
→
(
Z̄(0), Q̄(0)

)
as λ→∞ a.s. (EC70)

with Z̄(0) =
(
Z̄i(0); i= 0,1, . . . , I

)
.

Proposition 1. Consider a sequence of chat service systems and assume that (9), (EC70)

and Assumption 1 hold. Then the sequence {
(
Z̄λ, Q̄λ, Āλ, L̄λq

)
} is tight a.s. in the Skorohod space

endowed with the u.o.c. topology and every limit
(
Z̄, Q̄, Ā, L̄q

)
is a fluid model solution.
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Proof of Proposition 1: Consider a sequence of chat service systems and assume that (9), (EC70)

and Assumption 1 hold. The proof of the tightness of the sequence {
(
Z̄λ, Q̄λ, Āλ, L̄λq

)
} is standard

(see Dai and Tezcan (2011)) hence we skip the details. Also, the fact that fluid limits satisfy the

fluid model equations can be proved as in there. We also note that all the fluid model equations

(EC59)–(EC69) except (EC65) are satisfied by the fluid limits under any sequence of non-idling

policies. We next show that the fluid limits under the proposed policy satisfy the policy specific

equation (EC65).

Fix a fluid limit
(
Z̄, Q̄, Ā, L̄q

)
and assume that Z̄i(t)> 0 for some i≤ I − 1. Then, there exists a

subsequence, denoted again by λ and ω ∈Ω such that

(
Z̄λ, Q̄λ, Āλ, L̄λq

)
→
(
Z̄, Q̄, Ā, L̄q

)
, u.o.c. as λ→∞. (EC71)

By the continuity of the fluid model solutions, (EC71) implies that

Z̄λi (s)> 0 (EC72)

for s∈ [t− δ, t+ δ], for some δ > 0 small enough and for all λ large enough. Under Assumption 1(i),

by the continuity of an LP on its constraints and because there can be at most two basic levels, for λ

large enough we have i∗(λ,Nλ) = i∗(1,N). Under Assumption 1(iii) we have i∗(λ,Nλ) = i∗(1,N) for

all λ large enough. Under Assumption 1(ii) the set of basic levels may be different for two different

λ’s, however, because all the levels are efficient the policy is a strict priority rule giving priority to

levels with a lower index for each λ. Condition (EC65) then follows from (EC49), (EC53), (EC71)

and (EC72). �

Steady state of the fluid limits: Next we establish the steady state of the fluid model. Fix N and

consider the optimal solution λ∗ (1,N) = (λ∗i (1,N) ; i= 0,1, . . . , I, I + 1) of (10). Let z∗ be defined

as in (18) and

q∗ =

{
0, if 1≤ d̂IN

1−d̂IN
γ

, if 1> d̂IN.
(EC73)

Theorem EC1. Let M >N be such that q∗ <M . For any fluid model solution
(
Z̄, Q̄, Ā, L̄q

)
with

∥∥(Q̄(0), Z̄(0))
∥∥< 2M and for any ε > 0 there exists T (M,ε)> 0 such that

∥∥(Q̄(t), Z̄(t))− (q∗, z∗)
∥∥< ε (EC74)

for all t≥ T (M,ε).

We present the proof of this result in §EC8.1.
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When Assumption 1 does not hold: Next we analyze the fluid limits when Assumption 1 does not

hold and prove a result similar to Theorem EC1. In this case we work with the fluid limits instead of

the fluid model solutions as the fluid limits may not satisfy (EC65) because of the aforementioned

“discontinuity” in the proposed policy in the sequence of CSC systems.

Proposition 2. Consider a sequence of chat service systems and assume that (9) and (EC70)

hold. Also assume that i∗(1,N) has only one element,

(
Z̄λ, Q̄λ, Āλ, L̄λq

)
→
(
Z̄, Q̄, Ā, L̄q

)
, a.s. u.o.c. as λ→∞ (EC75)

and that

limsup
λ→∞

P
{
Q̄λ(0)>M

}
< ε

for some M and ε > 0. Then, there exists T > 0 large enough such that

limsup
λ→∞

P
{∥∥(Q̄λ(t), Z̄λ(t))− (q∗, z∗)

∥∥> ε}< 2ε (EC76)

for all t≥ T .

We present the proof in §EC8.2.

EC4.2. Convergence of steady state quantities

Consider the asymptotic regime where (9) holds. Let ῡ(πλ) denote the stationary distribution of

(Z̄λ(t), Q̄λ(t)) under a non-idling policy πλ. The existence and uniqueness of ῡ(πλ) follow from

the proof of Theorem 1. We next show that the sequence of fluid scaled stationary distributions is

tight.

Theorem EC2. Consider a sequence of chat service systems that satisfies (9) under a sequence

of non-idling policies {πλ} and let
(
Z̄λ(0), Q̄λ(0)

)
be distributed according to ῡ(πλ). Then the

sequence
{

(Z̄λ(0), Q̄λ(0))
}

is tight and the sequence
{
Q̄λ(0)

}
is uniformly integrable.

A proof is presented in §EC8.3.

EC4.3. Proof of Theorem 2

Consider a sequence of chat service systems that satisfies (9). Let υλ denote the stationary distri-

bution in the λth system. The first claim follows from the second one, Theorem EC2, and the fact

that

P λ
υλ(Ab) = lim

T→∞

Abλ(T )

Tλ
=
Eυλ

[
γQλ(0) +

∑I

i=1 iνZ
λ
i (0)

]
λ

. (EC77)
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We focus on proving the second part for the rest of the proof. Assume that the initial state

(Qλ(0),Zλ(0)) has distribution υλ. By Theorem EC2, the sequence {(Q̄λ(0), Z̄λ(0))} is tight. There-

fore, it is sufficient to show that every convergent subsequence of (Q̄λ(0), Z̄λ(0)) converges to the

same limit (q∗, z∗). To this end consider a convergent subsequence, denoted again by {λ} for nota-

tional simplicity. We show that

(Q̄λ(0), Z̄λ(0))→ (q∗, z∗) as n→∞ in probability. (EC78)

To prove (EC78) it is enough to show that

limsup
λ→∞

P
{∥∥(Q̄λ(0), Z̄λ(0))− (q∗, z∗)

∥∥> ε}< ε′ (EC79)

for any ε, ε′ > 0. Therefore, fix ε > 0 and ε′ > 0. By Theorem EC2, there exists M > 0 such that

limsup
λ→∞

P
{∥∥(Q̄λ(0), Z̄λ(0))

∥∥>M}< ε′/2. (EC80)

Using an argument similar to that in Theorem A.1 in Dai and Tezcan (2011) and using Theorem

4.4 in Billingsley (1968), the sequence{
(Q̄λ(0), Z̄λ(0), Q̄λ, Z̄λ, Āλ, L̄λq , S̄λ

}
(EC81)

is tight, where S̄λ = (S̄λ1 , S̄
λ
2 , . . . , S̄

λ
I+1) and S̄λi (t) = λ−1Si(λt), i= 1,2, . . . , I + 1. Consider a conver-

gent subsequence, again denoted by λ, and let the limit of this subsequence be denoted by{
(Q̄(0), Z̄(0), Q̄, Z̄, Ā, L̄q, S̄

}
.

Also observe that S̄i(t) = 1, for S̄ =
(
S̄1(t), . . . , SI+1; t≥ 0

)
and Ā(t) = t, t≥ 0 a.s. Obviously, it is

enough to prove (EC79) for any such (further) subsequence.

By appealing to the Skorohod representation theorem, we may choose an equivalent distributional

representation (which we will denote by putting a “ ˜ ” above the symbols) such that the sequence

of random processes {(
˜̄Qλ(0), ˜̄Zλ(0), ˜̄Qλ, ˜̄Zλ, ˜̄Aλ, ˜̄Lλq ,

˜̄Sλ
)}

as well as the limit (
˜̄Q(0), ˜̄Z(0), ˜̄Q, ˜̄Z, ˜̄A, ˜̄Lq,

˜̄S
)

are defined on a new probability space, say (Ω̃, G̃, P̃ ), so that P̃ -a.s.(
˜̄Qλ(0), ˜̄Zλ(0), ˜̄Qλ, ˜̄Zλ, ˜̄Aλ, ˜̄Lλq ,

˜̄Sλ
)
→
(

˜̄Q(0), ˜̄Z(0), ˜̄Q, ˜̄Z, ˜̄A, ˜̄Lq,
˜̄S
)

(EC82)
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u.o.c. as λ→∞. Clearly ˜̄Si(t) = 1, t≥ 0 a.s. for ˜̄S =
(

˜̄S1(t), . . . , ˜̄SI+1; t≥ 0
)

, hence we drop it from

the notation for the rest of the proof. Also, ˜̄A(t) = t a.s. for t≥ 0.

By the equivalent distributional representation, the limit
(

˜̄Q(0), ˜̄Z(0), ˜̄Q, ˜̄Z, ˜̄A, ˜̄Lq

)
satisfies the

fluid model equations (EC59)–(EC69) if Assumption 1 holds. Hence, it follows from (EC80) and

Theorem EC1 that there exists T > 0 such that

P
{∥∥∥( ˜̄Q(t), ˜̄Z(t))− (q∗, z∗)

∥∥∥> ε}< ε′/2 (EC83)

for all t≥ T . By (EC82) and the equivalent distributional representation, this implies that

P
{∥∥(Q̄λ(t), Z̄λ(t))− (q∗, z∗)

∥∥> ε}< ε′
for all t≥ T and λ large enough. We obtain the desired result (EC80) by the fact that the initial

state (in the original probability space) (Q̄λ(0), Z̄λ(0)) has a stationary distribution for each λ. If

Assumption 1 does not hold, (EC83) (hence the result) follows from Proposition 2. �

EC4.4. Proof of Theorem 3

The proof is similar to the proof of Theorem 2 hence we only present a sketch. The main difference

in the proof is that we need to show that Theorem EC1 is still valid under π′ when (23) holds. The

proof is similar to that of Theorem EC1. It is easily checked that (EC110) in Step 1 and (EC111)

in Step 2 of Theorem EC1 are still valid when (23) holds. Then Step 3 is identical since π′ takes

the same actions with πλ,∗ when (EC113) and (EC114) hold. �

EC5. Proof of Proposition 1

Assume that (9), (26) and (27). holds. (Throughout the proof we use the notation defined in §EC2.)

Recall that z∗(1,N) = (z∗0 , z
∗
1 , . . . , z

∗
I ) denotes the optimal solution of (10) (with staffing level N

and arrival rate λ= 1), see (18).

As in the proof of Theorem 2, we focus on the fluid limits. First we give an explanation of how

the queueing equations are obtained under πP . Let levels ij and ij+1 be efficient and recall that

Uij denote the set of inefficient levels whose indices are in between the indices of these two levels

(ij and ij+1). With a slight abuse of notation, let Aλi (t) denote the number of customers who are

assigned to an agent at levels {ij} ∪Uij upon arrival. By construction of our policy there may be

at most one agent at one of the levels in Uij . Let

Dλ
Uij

(t) =
∑
i∈Uij

Dλ
i (t) and D̄λ

Uij
(t) =

Dλ
Uij

(t)

λ
.
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Obviously

∑
i∈Uij

Z̄λi (·)→ 0 and D̄λ
Uij

(·)→ 0 (EC84)

u.o.c. a.s. as λ→∞.

Now because of the preemption procedure∣∣∣∣∣∣Zλij+1
(t)−Zλij+1

(0)−

Aλij (t)−Dλ
ij+1

(t)−Dλ
Uij

(t)

ij+1− ij
−

(
Aλij+1

(t)−Dλ
ij+2

(t)−Dλ
Uij+1

(t)
)

ij+2− ij+1

∣∣∣∣∣∣≤ 2.

Using this condition and (EC84), one can show that the fluid limits of πP satisfy the following

equations in addition to (EC59) and (EC64)–(EC69); for i /∈F

Z̄i(t) = 0, for all t≥ 0. (EC85)

For ij ∈F ,

Z̄ij (t) = Z̄ij (0) +
1

ij − ij−1

Āij−1
(t)− 1

ij+1− ij
Āij (t)

+
d̂ij+1

ij+1− ij

∫ t

0

Z̄ij+1
(s)ds−

d̂ij
ij − ij−1

∫ t

0

Z̄ij (s)ds, ij ∈F \ {0, I}, (EC86)

Q̄(t) = Q̄(0) + ĀI(t)− d̂I
∫ t

0

Z̄I(s)ds− γ
∫ t

0

Q̄(s)ds+ L̄q(t), (EC87)∑
ij∈F

˙̄Aij (t) = 1, (EC88)

˙̄Aij′ (t) = 0, if Z̄ij (t)> 0 for some j < j′, (EC89)

where J is the number of efficient levels. The fluid model equations (EC59), (EC64)–(EC69) and

(EC85)–(EC89) are similar to the fluid model equations (EC59)–(EC69), with one difference; the

number of agents transitioning from one level to another as explained above. We note again that a

solution {Z̄, Q̄, Ā} to equations (EC59), (EC64)–(EC69) and (EC85)–(EC89), referred to as a fluid

model solution, is differentiable almost everywhere and we refer to a point where it is differentiable

as a regular point.

As in the proof of Theorem 2, it is enough to show that for any fluid model solution {Z̄, Q̄, Ā},

given ε > 0, there exists T large enough such that

∣∣Z̄i(t)− z∗i ∣∣< ε. (EC90)

for t≥ T and i= 0, . . . , I. We also note that for i /∈F , (EC90) follows from Lemma 1 and (EC85).

We prove the result in three steps. We mainly focus on the case when there are two basic levels,
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whose indices denoted by ij and ij+1, 0< ij < ij+1 < I and d̂1N < 1< d̂IN and comment on other

cases at the end of the proof. Throughout the proof we only consider regular points of the fluid

model solution.

Step1 (when i < ij): We first show that (EC90) holds for i < ij. The proof is similar to the

proof of Step 1 of Theorem EC1 using an induction argument. For i= 0, the argument in Step 1

of Theorem EC1 can be repeated verbatim. Assume that ik ∈F with 0< ik < ij and there exits t′

such that Z̄i′(t) = 0 for all t≥ t′ and i′ < ik. We show that there exists T > t′ such that Z̄ik(t) = 0

for t ≥ T , completing the induction argument. Because level ik is the lowest indexed nonempty

level then at any regular point t > t′

˙̄Zi′(t) = 0 for all i′ < ik.

Therefore by (EC59) and (EC86), ˙̄Aik−1
(t) = (ik− ik−1)d̂ikZ̄ik(t). Also by (EC86)–(EC89)

˙̄Zik(t) =
−1 + d̂ikZ̄ik(t) + d̂ik+1

Z̄ik+1
(t)

ik+1− ik
≤ 1

I

(
−1 + d̂ik+1

(N − Z̄ik(t))
)
, (EC91)

where the inequality follows from the fact that ik+1− ik ≤ I and ik, ik+1 ∈ F . Because ik < ij and

so ik+1 ≤ ij, (EC91) implies that, when there are two basic levels,

˙̄Zik(t)≤−1

I
(1− d̂ijN)< 0,

whenever Z̄ik(t)> 0 for a regular point t. Therefore, there exists T large enough such that

Z̄i(t) = 0 for all t≥ T and i < ij,

completing the proof of (EC90) for i < ij.

Step 2 (When i > ij+1): Next we focus on i > ij+1 and prove by induction that (EC90) holds

for i > ij+1. As in the second step of proof of Theorem EC1, Q̄(t) = 0 for t > T ′ :=M/(1− d̂IN).

Assume that Z̄I(t) > 0 for a regular point t > T ′. If Z̄i(t) > 0 for some i < iJ−1, then by (EC87)

and (EC89)

˙̄ZI(t)≤−
d̂IZ̄I(t)

I − iJ−1

. (EC92)

If Z̄i(t) = 0 for all i < iJ−1, then ˙̄Zi(t) = 0 for all i < iJ−1 for any regular point t by (EC86)–(EC89),

hence

˙̄ZI(t)≤
1− d̂iJ−1

Z̄iJ−1
(t)− d̂IZ̄I(t)
I

≤
1− d̂iJ−1

N

I
. (EC93)
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By (EC92) and (EC93) there exists TI > 0 such that Z̄I(t)< ε for t≥ TI .

Now consider J > k > j+ 1 and assume that there exits Tik+1
such that, for t≥ Tik+1

,

Z̄i(t)≤
1

4Imaxj{d̂j}
ε (EC94)

for i > ik and that

ε >
d̂ik+1

N

4Id̂ij+1

. (EC95)

Assume also that Z̄ik(t)> Iε/d̂ik for a regular point t. If Z̄i(t)> 0 for some i < ik − 1, then by

(EC86), (EC89), (EC94) and (EC95)

˙̄Zik(t)≤−
d̂ikZ̄ik(t)

ik− ik−1

+
d̂ik+1

Z̄ik+1
(t)

ik+1− ik
<−ε/2. (EC96)

If Z̄i(t) = 0 for all i < ik−1, then ˙̄Zi(t) = 0 for all i < ik−1 for any regular point t, hence by (EC86),

(EC89), (EC94) and (EC95)

˙̄Zik(t)≤
1− d̂ik−1

Z̄ik−1
(t)− d̂ikZ̄ik(t)

(ik− ik−1)
+
d̂ik+1

Z̄ik+1
(t)

ik+1− ik
≤−ε/4. (EC97)

By (EC96) and (EC97) there exists Tik > 0 such that Z̄ik(t)< ε for t≥ Tik completing the induction

argument.

Step 3 (ij and ij+1): Now we are ready to finish the proof by focusing on ij and ij+1. We show

that given ε there exists T large enough such that

∣∣Z̄ik(t)− z∗ik
∣∣< ε, for k= j, j+ 1.

The proof is similar to the case with Uij = ∅ in the proof of Theorem EC1. Fix ε > 0 and given

ε′ > 0 choose T (ε′) so that (EC113) and (EC114) hold. Existence of such T (ε′) is guaranteed by the

first two steps. Then by (EC86), (EC113) and (EC114), if Z̄ij (t) = z∗ij + ε̃, for ε̃ > ε and t > T (ε′)

˙̄Zij (t)≤−
1

ij+1− ij

(
(d̂ij+1

− d̂ij )ε+ d̂ij+1

)
ε′

Similarly, if Z̄ij (t) = z∗ij − ε̃

˙̄Zij (t)≥
1

ij+1− ij

(
(d̂ij+1

− d̂ij )ε− d̂ij+1
ε′
)

For ε′ <
(
d̂ij+1

− d̂ij
)
/(4d̂ij+1

)ε, this gives the desired.

Other cases: The other cases are handled in a way similar to that described at the end of the

proof of Theorem EC1. �
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EC6. Proof of Theorem 4

Fix ε > 0 that satisfies

ε <
δ

2Idm(PAb
I d̂I ∨ 1)

, (EC98)

where dm = max1≤i1,i2,i≤I

(
d̂i−d̂i2
d̂i1−d̂i2

)
≥ 1 and consider the policy π̂∗(ε). By (6), (EC2), Theorem EC2

and (EC77) it is enough to show that

limsup
T→∞

lim
λ→∞

∥∥Z̄λ(T )− z∗(1,N)
∥∥< 2dmε. (EC99)

Note that by Proposition 1, there exist λ and T large enough such that for the virtual system

∥∥Z̄λ(T )− z∗(1,N)
∥∥< ε.

Therefore, if z∗ijk
(1,N)> ε, for k= 1,2, then the result follows from Theorem 2.

Now assume that z∗ijk
(1,N)< ε for k= 1 or k= 2. If ij1 = I then we have that all the agents are

in states I − 1 and I in the fluid model as we argue next. Because d̂I > d̂I−1, using the first step

of the proof of Theorem EC8.1, we have for large enough t, Z̄I−1(t)≤ dmε by definition of dm and

Z̄I(t) =N − Z̄I−1(t). Hence (EC99) follows.

Now assume that z∗ij2
(1,N)< ε and let j1 denote index of the lowest indexed level whose index

is greater than ij1 that is not in N . Note that as in the proof of Theorem EC8.1, Z̄j1(t)≤ dmε (by

definition of dm) and Z̄ij1 (t)≥N − Z̄j1(t)− dmε, Z̄i(t) = 0 for i≤ ij1 and
∑

i>j1
Z̄i(t)< dmε for t

large enough. Hence (EC99) follows.

Now assume that z∗ij1
(1,N) < ε and let j2 denote the index of the lowest indexed level whose

index is greater than ij2 that is not in N . By steps 1 and 2 of Theorem EC8.1, Z̄i(t) = 0 for

i < ij2 − 1, and Z̄ij2−1(t)< dmε by definition of dm and
∑

i>j2
Z̄i(t)< dmε/I, for t≥ T and T large

enough. Note that because j2 denotes the index of the smallest indexed level whose index is larger

than ij2 that is not in N , all levels in {ij2 + 1, . . . , j2− 1} (if there are any) are in N . In this case

(EC99) follows similarly to the third step of the proof of Theorem EC8.1 as we explain next. Set

T = 0 for notational simplicity. If Z̄ij2−1(t) + Z̄ij2 (t)>N − dmε for any t the result readily follows.

Therefore assume that Z̄ij2−1(0)+ Z̄ij2 (0)<N −dmε. Then, it is easy to show using the fluid model

equations that either Z̄ij2−1(s) = 0 or Z̄ij2−1(s)+ Z̄ij2 (s)>N −dmε for s large enough. In the latter

case the desired result follows from the preceding argument so assume that the former holds. Also

assume that Z̄ij2 (t)<N −dmε for all t≥ s as otherwise the result follows again from the preceding
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argument. Then it is easy to check that Z̄ij2−1(t) = 0 and similar to (EC119) and (EC120) we have

for t≥ s that

Z̄ij2 (t)≥ Z̄ij2 (s) (EC100)

and for any εb > 0 there exists finite T (εb) large enough such that

d̂b(t)≥ (1− εb)∨
(
d̂b(s)∧ 1

)
(EC101)

for d̂b(t) = d̂ij2 Z̄ij2 (t) + d̂j2Z̄j2(t) and t≥ T (εb). The rest of the proof follows similarly to the third

step of the proof of Theorem EC8.1. �

EC7. Proofs of the results in Section 5

Proof of Theorem 5: The proof follows from Theorems 1 and 2. First it is easily checked that

N∗(λn, pAb)

n
= λnN∗(1, pAb).

Therefore,

lim
n→∞

N∗(λn, pAb)

n
=N∗(λ,pAb). (EC102)

Assume that there exists an asymptotically feasible sequence Nn such that

limsup
n→∞

N∗(λn, pAb)

Nn
> 1. (EC103)

Then there exists a subsequence (for simplicity of notation, we still use index n), along which

lim
n→∞

N∗(λn, pAb)

Nn
> 1 (EC104)

and

lim
n→∞

Nn

n
=N (EC105)

for some N . Also, by (EC103) and (EC104), we have

N <N∗(λ,pAb). (EC106)

Note that PAb (λ,N)>PAb (λ,N∗(λ,pAb)), otherwise N∗(λ,pAb) =N and (EC106) cannot hold.

By Theorems 1 and 2, for any non-idling policy πn, if the staffing level is equal to Nn in the nth

system, we have

lim inf
n→∞

PAb,πn(λn,Nn)≥ limsup
n→∞

PAb,π∗(λn,Nn) = PAb (λ,N)>PAb
(
λ,N∗(λ,pAb)

)
. (EC107)
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Hence, Nn cannot be feasible and in turn (EC103) cannot hold. Also,

lim
n→∞

PAb,π∗(λn,N∗(λn, pAb)) = PAb(λ,N∗(λ,pAb))≤ pAb, (EC108)

where the equality follows from Theorem 2, (38) and (EC102) and the inequality follows from the

fact that N∗(λ,pAb) is an optimal solution (hence a feasible solution) of the staffing LP. �

Proof of Theorem 6: Fix δ > 0. If pAb = PAb
1 the result follows from Lemma 1 and (EC2) and

Theorem 4 by setting ε= δ/2. Note that if pAb >PAb
1 then λ≥ (1+ δ̃)N∗(λ,pAb)d1 for some δ≥ δ̃ > 0

by Lemma 2 since both levels 1 and I are assumed to be efficient. For notational simplicity we set

N∗ =N∗(λ,pAb). Define

θ= inf
λ≥(1+δ̃)N∗d̂1

{
PAb (λ,N∗)−PAb

(
λ, (1 + δ̃)N∗

)}
. (EC109)

By Lemma 1 and (EC2), θ > 0. Choose ε > 0 as in Theorem 4 so that (29) holds with θ. The result

then follows from Theorem 4. �

EC8. Proofs of supplemental results

In this section we prove Theorem EC1 in §EC8.1, Proposition 2 in §EC8.2 and Theorem EC2 in

§EC8.3. (Throughout this section we use the notation defined in §EC2.)

EC8.1. Proof of Theorem EC1

Fix N and let i∗(1,N) = {ij, ij+1} denote the set of the indices of the basic levels. We mainly focus

on the case when 0< ij < ij+1 < I and d̂1N < 1< d̂IN . We describe how the proof can be extended

to other cases at the end. In addition we focus mainly on the case when N = ∅ and extend the

proof using Lemma EC4 below when it is not. Let (Q̄, Z̄, Ā, L̄q) denote a fluid model solution.

Throughout the proof we use the following fact that if Z̄i(t) = 0 at a regular point t then ˙̄Zi(t) = 0,

since Z̄i attains its minimum at t.

Fix ε > 0. We prove (EC74) in three steps.

1. We first show that there exists T1 ≥ 0 such that Z̄i(t) = 0 for t≥ T1 and i≤ ij − 1.

2. Then we show that given ε > 0 there exists T2 ≥ T1 such that Z̄i(t)< ε for t≥ T2 and i > ij+1.

3. In the last step, we show that given ε > 0 there exists T3 ≥ T2 such that
∣∣Z̄i(t)− z∗i ∣∣< ε for t≥ T3

and for i= ij, ij + 1 . . . , ij+1, completing the proof.

Because (Q̄, Z̄, Ā, L̄q) is differentiable almost everywhere, when we take the derivatives with

respect to t we only consider the regular points of (Q̄, Z̄, Ā, L̄q) throughout the proof without loss

of generality.
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Step 1. Let

f(t) =

ij−1∑
i=0

(ij − i)Z̄i(t).

Assume that f(t)> 0. Note that by (EC59)–(EC69), for any regular point t we have

ḟ(t) =−1 +

ij∑
i=1

d̂iZ̄i(t)<−1 + d̂ijN <−δ, (EC110)

where δ = (d̂ij+1
− d̂ij )z∗ij+1

and the last inequality follows from (18), and the fact that there are

two basic levels. Hence Z̄i(t) = 0, i≤ ij − 1, for t≥ T1 :=N/δ.

Step 2. Now we consider i > ij+1. By (EC62), (EC66) and (EC67), if Q̄(t)> 0, we have

˙̄Q(t) = 1− d̂IN − γQ̄(t).

Hence, Q̄(t) = 0 for t > T ′ :=M/(1− d̂IN). Let

f(t) =
I∑

i=ij+1+1

(i− ij+1)Z̄i(t).

By our assumption N = ∅ and (EC59)–(EC69), if f(t)> ε for t > T ′, then

ḟ(t)≤−δ, (EC111)

where δ = min
{
d̂ij+1+1ε/I,−1 + d̂ij+1+1N

}
, which is positive by (14). By our assumption N = ∅,

we conclude that

Z̄i(t)< ε (EC112)

for t≥ T2 := T ′+N/δ and i > ij+1.

Step 3. To conclude the proof we need to show that (EC74) is satisfied (for a reselected ε) by

Z̄ij , Z̄i for i ∈ Uij (if Uij 6= ∅) and Z̄ij+1
. By the first two steps, we can assume that for any ε′ > 0

there exists a finite T (ε′)> 0 such that for t≥ T (ε′), Q̄(t) = 0,

Z̄i(t) = 0 for i≤ ij − 1 (EC113)

and

Z̄i(t)≤ ε′ for i≥ ij+1 + 1. (EC114)

Assume that Uij = ∅. Fix ε, ε′ > 0 so that

ε′ <
(
d̂ij+1

− d̂ij
)
/(4d̂ij+1

)ε. (EC115)
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Recall that by Lemma EC1

d̂ij+1
> d̂i (EC116)

for all i < ij+1 otherwise level ij+1 cannot be an efficient level. By (EC60), (EC65), (EC67) and

(EC113)

˙̄Zij (t) =−(1− d̂ij Z̄ij (t)) + d̂ij+1
Z̄ij+1

(t)

Fix ε > 0. Then by (EC65), (EC113) and (EC114), if Z̄ij (t) = z∗ij + ε̃, for ε̃ > ε,

˙̄Zij (t)≤−(d̂ij+1
− d̂ij )ε.

Similarly, if Z̄ij (t) = z∗ij − ε̃

˙̄Zij (t)≥ (d̂ij+1
− d̂ij )ε− d̂ij+1

ε′.

This gives the desired result (EC74) for ij, ij+1 with T > T (ε′) + 4N/
(

(d̂ij+1
− d̂ij )ε

)
by (EC115)

and (EC116).

Now assume that Uij 6= ∅. Define

d̂b(t) = d̂ij Z̄ij (t) + d̂ij+1
Z̄ij+1

(t).

By (EC113), (EC114), (EC116) and (EC64), given δ > 0, there exists ε′, ε > 0 such that if d̂b(t)≥

1− 2ε, and Z̄ij (t)≥ z∗ij − 2ε for t≥ T (ε′), then

Z̄ij+1
(t)∈ [z∗ij+1

− δ, z∗ij+1
+ δ].

Therefore, it is enough to prove that for ε > 0 small, there exists T such that for t≥ T ≥ T (ε′),

d̂b(t)≥ 1− 2ε and Z̄ij (t)≥ z
∗
ij
− 2ε. (EC117)

For the rest of the proof fix ε > 0 and ε′ > 0 small so that

(d̂1 + 1)

(
1−

d̂ij

d̂ij+1

)
ε≥ 4

(
|Uij |+ 1

)
d̂ij+1ε

′. (EC118)

From here on we only consider t≥ T (ε′) so take T (ε′) = 0 for notational simplicity and assume that

(EC113) and (EC114) hold for t≥ 0.

We begin the proof in this case with the following preliminary results. For all t≥ 0 and ε > 0

Z̄ij (t)≥ Z̄ij (0)∧
(
z∗ij − ε

)
(EC119)
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and for any εb > 0 there exists finite T (εb) large enough such that

d̂b(t)≥ (1− εb)∨
(
d̂b(0)∧ 1

)
(EC120)

for t≥ T (εb).

Proof of (EC119): By (EC118) we have

ε≥
2d̂ij+1

d̂ij+1
− d̂ij

ε′ (EC121)

Note that because level ij−1 has priority over levels i≥ ij and level ij has lower priority than those

levels in Uij , if Z̄ij (t)≤ z∗ij − ε, either there exists i ∈ Uij with Z̄i(t)> 0 or by (EC118), d̂b(t)≥ 1

and Z̄i(t) = 0 for all i ∈ Uij . It is easy to show that if d̂b(t)≥ 1 and Z̄i(t) = 0 for all i ∈ Uij , then t

cannot be a regular point. Therefore, by (EC60) and (EC65)

˙̄Zij (t)≥ 0 (EC122)

whenever Z̄ij (t)≤ z∗ij − ε. This gives (EC119).

Proof of (EC120): Now assume that

d̂b(t)≤ 1. (EC123)

Let i be the highest indexed non-empty level in Uij . Then, for all i < i′ < ij+1,

˙̄Zi′(t) = 0,

by (EC60)–(EC65) since Z̄i′ attains a minimum at t. Therefore, if (EC123) holds, by (EC60)–

(EC65)

˙̄Zij+1
(t)≥ 1− d̂b(t)

|Uij |
and ˙̄Zij (t)≥ 0,

where |Uij | is the cardinality of the set Uij .

Note also that if for all the levels i∈ Uij , Z̄i(t) = 0 (implying ˙̄Zi(t) = 0) then when (EC123) holds,

by (EC60)–(EC65),

˙̄Zij+1
(t)≥ 1− d̂b(t)

|Uij |
and ˙̄Zij (t) =−1− d̂b(t)

|Uij |
.

Therefore, d̂b(t) is increasing if d̂b(t)≤ 1 and so (EC120) holds.

We consider the following three cases separately to complete the proof.

(A) Z̄ij (0)≥ z∗ij + ε
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(B) Z̄ij (0)≤ z∗ij + ε, d̂b(0)≥ 1

(C) Z̄ij (0)≤ z∗ij + ε, d̂b(0)≤ 1

Case (A): Assume that Z̄ij (0)≥ z∗ij + ε. Then, by (EC120) for t large enough d̂b(t)≥ 1− ε for

t≥ T . This with (EC119) gives (EC117).

Case (B): Assume that Z̄ij (0)≤ z∗ij + ε and d̂b(0)≥ 1. By (EC120), d̂b(t)≥ 1, for all t≥ 0. Thus,

to prove (EC117), it is enough to show that there exists T large enough such that Z̄ij (t)≥ z∗ij − 2ε

for t ≥ T . But by (EC122), this can be proved by showing that there exists a t > 0 such that

Z̄ij (t)≥ z∗ij − 2ε.

Assume that no such t exists, that is,

Z̄ij (t)≤ z
∗
ij
− 2ε for all t≥ 0. (EC124)

Let

ε̃1(t) = z∗ij − Z̄ij (t) (EC125)

and

ε̃2(t) =
1− d̂ij Z̄ij (t)− d̂ij+1

z∗ij+1

d̂ij+1

=
d̂ij

d̂ij+1

ε̃1(t). (EC126)

Because d̂b(t)≥ 1 for t≥ 0, Z̄ij+1
(t)≥ z∗ij+1

+ ε̃2(t).

Let δ(t) = Z̄ij+1
(t)− z∗ij+1

− ε̃2(t). By (EC121), (EC125), and (EC126),

δ(t) +
∑
i∈Uij

Z̄i(t)≥N − ε′− Z̄ij (t)− z
∗
ij+1
− ε̃2(t) = ε̃1(t)− ε̃2(t)− ε′ > 0.5

(
1−

d̂ij

d̂ij+1

)
ε.(EC127)

Now define the Lyapunov function

f(t) = (ij+1− ij) Z̄ij+1
(t) +

∑
i∈Uij

(i− ij) Z̄i(t).

Note that f(0)< IN and that f(t) = 0 implies

Z̄ij+1
(t) +

∑
i∈Uij

Z̄i(t) = 0. (EC128)

If f(t)> 0, we have (assuming (EC124) and d̂b(t)≥ 1 for all t≥ 0)

ḟ(t) = (ij+1− ij) ˙̄Zij+1
(t) +

∑
i∈Uij

(i− ij) ˙̄Zi(t)
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≤ 1− d̂ij Z̄ij (t)− d̂ij+1
Z̄ij+1

(t)−
∑
i∈Uij

d̂iZ̄i(t) + (|Uij |+ 1)d̂ij+1ε
′ (EC129)

≤ −d̂ij+1
δ(t)−

∑
i∈Uij

d̂iZ̄i(t) + (|Uij |+ 1)d̂ij+1ε
′ (EC130)

≤ −0.5d̂1

(
1−

d̂ij

d̂ij+1

)
ε+ (|Uij |+ 1)d̂ij+1ε

′ (EC131)

≤ −0.25d̂1

(
1−

d̂ij

d̂ij+1

)
ε :=−∆, (EC132)

where (EC129) follows from (EC60)–(EC65) and the fact that level ij − 1 has priority over all the

other levels i≥ ij − 1, (EC130) follows from the definition of δ(t), (EC131) follows from (EC127)

and (EC132) follows from (EC118). Therefore, for T large enough f(t) = 0 for t≥ T and so (EC128)

holds for all t≥ T . However, this contradicts the fact that d̂b(t)≥ 1 for all t≥ 0. Hence, Z̄ij (t)≥

z∗ij − 2ε for some t∈ [0, (IN)/∆], giving (EC117) in this case.

Case (C): Assume that, Z̄ij (0)≤ z∗ij + ε and d̂b(0)≤ 1. By (EC120), we can assume without loss

of generality that d̂b(t)≥ 1− ε for t large enough. If d̂b(t)≥ 1, the proof is complete by Case (B) so

assume that 1− ε≤ d̂b(t)< 1.

Also, if Z̄ij (t) > z∗ij − 2ε for some t, (EC117) follows from (EC119). Therefore, assume that

Z̄ij (t)< z∗ij − 2ε for all t≥ 0. Then, because d̂b(t)< 1, Z̄ij+1
(t)< z∗ij+1

+ ε̃2(t) for ε̃2 defined as in

(EC126). Hence

∑
i∈Uij

Z̄i(t)≥ ε̃1(t)− ε̃2(t)− ε′ > 0.5

(
1−

d̂ij

d̂ij+1

)
. (EC133)

Because d̂b(t) < 1, by (EC60)–(EC65), (EC133), and the fact that level ij+1 − 1 have higher

priority than level ij and level ij+1,

∑
i∈Uij

(i− ij) ˙̄Zi(t)≤−d̂1

∑
i∈Uij

Z̄i(t)≤−0.5d̂1

(
1−

d̂ij

d̂ij+1

)
ε :=−∆0.

Therefore, for T ≥N/∆0 ∑
i∈Uij

Z̄i(T ) = 0.

Hence,

Z̄ij+1
(T ) =N − Z̄ij (T )− ε′.

However, because Z̄ij (t) < z∗ij − 2ε for all t ≥ 0, this implies d̂b(T ) > 1 for ε′ small, contradicting

our earlier assumption and completing the proof by Case (B).
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Other cases: If there is only one basic level ij with 1< ij < I then we have

Z̄i(t) = 0, for i < ij − 1

and t ≥ T1 := N/δ, where δ = (d̂ij+1
− d̂ij )z∗ij+1

, using an argument similar to that in Step 1.

Therefore, for t≥ T1, by (EC60) and (EC65)

˙̄Zij−1(t)≤−
(
d̂ij − d̂ij−1

)
˙̄Zij−1(t).

Hence

Z̄ij−1(t)< ε (EC134)

for t≥ T2 :=N/
((
d̂ij − d̂ij−1

)
ε
)

+T1. If 1< d̂IN , the result then follows from Step 2.

If 1 = d̂IN , then there is only one basic level I. By (EC60) and (EC62), t≥ T ′ :=M/(γε), we

have Q̄(t)< ε and by (EC134), Z̄I(t)>N − ε, proving the result for t≥ T ′ large enough.

If 1> d̂IN , we have by (EC110) that Z̄I(t) =N , for all t > T ′ :=N/(1− d̂IN). By (EC73) and

(EC59)–(EC69), this implies that
∣∣Q̄(t)− q∗

∣∣< ε for all t > T1 := T ′ +M/(γε) + q∗/(γε), proving

(EC74) if 1> d̂IN .

Finally we consider the cases when there are two basic levels ij and ij+1 but either ij = 0 or

ij+1 = I. If ij = 0, then ij+1 = 1, since level 1 is an efficient level by definition. Then the result is

proved using (EC112) as in the case with Uij = ∅ in Step 3. If ij+1 = I then the result is proved in

the same way as above except that we do not need Step 2 and do not require (EC114) in Step 3

anymore. �

If N 6= ∅, the second step in the proof needs to be modified. The result in that case follows from

the following lemma.

Lemma EC4. Assume that the conditions of Theorem EC1 hold and that ij+1 < I. Then for any

ε > 0 there exists t2 > 0 such that

Z̄i(t)< ε for t≥ t2 and i > ij+1.

Proof of Lemma EC4: Assume that the conditions of Theorem EC1 hold and that ij+1 < I. Let

{νi} denote a sequence of nonnegative finite constants {νi} for i≥ ij+1 + 1 such that

• νi = 1 if i /∈N ,

• If i∈N

νi ≥
(
d∗

di
∨ 1

)
νi′ , for all i′ > i, (EC135)

where d∗ = min{di′ : i′ ≥ ij+1 + 1, i′ /∈N}.
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Also, let {ρi} be defined for i≥ ij+1 + 1 recursively as follows;

ρi = νi + ρi−1,

where ρij+1
= 0. Define

f(t) =
I∑

i=ij+1+1

ρiZ̄i(t).

Observe that, given ε > 0, it is enough to show that there exists T > 0 such that

f(t)< ε, for all t≥ T .

Fix ε and assume that f(t)> ε. This implies
∑I

i=ij+1+1 Z̄i(t)> ε/ρI . Recall that we assume I /∈N .

Case 1: Assume that Z̄n(t)> 0 for some n< ij+1, then by (EC60) and (EC65)

ḟ(t) =
I∑

i=ij+1+1

ρi
˙̄Zi(t)≤

I∑
i=ij+1+1

ρi
(
−diZ̄i(t) + di+1Z̄i+1(t)

)
≤ −d∗

I∑
i=ij+1+1

Z̄i(t)<−d∗ε/ρI .

Case 2: Now assume that Z̄n(t) = 0 for all n< ij+1, then for a regular point t,

˙̄Zij+1−1(t) = 0, (EC136)

because Z̄ij+1−1(t) = 0 (note that this is only possible if 1≥ dij+1
Z̄ij+1

(t), which we assume is true),

and
∑I

i=ij+1
Z̄i(t) =N . Note that (EC136) implies

˙̄Aij+1−1(t) = dij+1
Z̄ij+1

(t). (EC137)

Because 1 < dIN , we can assume without loss of generality that Z̄I(t) <N , for all t ≥ 0, and so

there exists i < I with Z̄i(t)> 0, by (EC64).

Case 2(a): Assume that there exists a level n such that ij+1 ≤ n < I, Z̄n(t)> 0 and n /∈N ′ and

let i /∈ N ′ be the index of the lowest indexed such level at time t. Note that i+ 1 /∈ N . By the

definition of the policy and (EC65), if i′ ∈N ′ and i′ ≤ i

˙̄Ai′(t) = 0. (EC138)

Also, if i′ /∈N ′ and i′ ≤ i, we claim that

˙̄Ai′(t) = di′+1Z̄i′+1(t). (EC139)
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To prove this first note that ˙̄Zi′(t) = 0, for a regular point t. Therefore, by (EC60), it is enough to

show that ˙̄Ai′−1(t) = 0. If Z̄i′−1(t)> 0, then i′− 1∈N ′ and by (EC138), ˙̄Ai′−1(t) = 0. Assume that

Z̄i′−1(t) = 0 and so ˙̄Zi′−1(t) = 0. If Z̄i′−2(t)> 0, therefore i′− 2 ∈N ′, then ˙̄Ai′−2(t) = 0 by (EC60).

Because ˙̄Zi′−1(t) = 0, this implies ˙̄Ai′−1(t) = 0 by (EC60). If Z̄i′−2(t) = 0, we repeat the same

argument until we reach to level ij+1 or the highest indexed level i′− k before i′ with Z̄i′−k(t)> 0.

Also,

˙̄Ai′(t) = 0, for i′ ≥ i+ 1 (EC140)

by (EC65). Therefore by (EC60) and (EC63)

˙̄Zi+k(t) =−di+kZ̄i+k(t) + di+k+1Z̄i+k+1(t), for k= 2, . . . , I − i− 1, (EC141)

˙̄ZI(t) =−dIZ̄I(t). (EC142)

For ij+1 ≤ k≤ i, by (EC60)–(EC64),

˙̄Zk(t) = ˙̄Ak−1(t) + dk+1Z̄k+1(t)− ˙̄Ak(t)− dkZ̄k(t) (EC143)

and

˙̄Zi+1(t) = ˙̄Ai(t) + di+2Z̄i+2(t)− di+1Z̄i+1(t). (EC144)

By (EC138)–(EC140) and (EC63)

˙̄Ai(t) = 1−
∑

k∈[ij+1+1,i]

k/∈N

dkZ̄k(t)− dij+1
Z̄ij+1

(t). (EC145)

Then, by (EC141)–(EC144)

ḟ(t) =
I−1∑

k=ij+1+1

ρk
(
dk+1Z̄k+1(t)− dkZ̄k(t)

)
− ρIdIZ̄I(t) +

i∑
k=ij+1+1

ρk

(
˙̄Ak−1(t)− ˙̄Ak(t)

)
+ ρi+1

˙̄Ai(t)

(a)

≤ −
I∑

k=ij+1+1

νkdkZ̄k(t) +
i∑

k=ij+1+1

νk
˙̄Ak−1(t) + νi+1

1−
∑

k∈[ij+1+1,i]

k/∈N

dkZ̄k(t)− dij+1
Z̄ij+1

(t)


(b)
= −

I∑
k=ij+1+1

νkdkZ̄k(t) +
∑

k∈[ij+1+1,i]

k/∈N

νkdkZ̄k(t) + 1−
∑

k∈[ij+1+1,i]

k/∈N

dkZ̄k(t)− dij+1
Z̄ij+1

(t) (EC146)

(c)
= 1− dij+1

Z̄ij+1
(t)−

I∑
k=ij+1+1

νkdkZ̄k(t)

(d)

≤ 1− dij+1
Z̄ij+1

(t)− d∗(N − Z̄ij+1
(t))
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(e)

≤ −cε,

for some constant c > 0, where (a) follows from (EC140), (EC145) and algebraic manipulations,

(b) follows from the fact that i+ 1 /∈N , so νi+1 = 1, (EC138) and (EC139), (c) follows from simple

algebraic manipulations, (d) follows from the definition of νk’s and the fact that
∑I

i=ij+1
Z̄i(t) =N ,

(e) follows from the definition of d∗.

Case 2(b): Now assume that Z̄n(t) = 0 for all n < ij+1 and Z̄k(t) = 0 for all k ≥ ij+1 and k /∈

N ′ \ {I}. Let i ∈ N ′ denote the index of the highest indexed level with Z̄i(t) > 0. We note that

(EC138) and (EC139) still hold. Also, (EC143) holds by (EC60).

By definition of the policy Z̄k(t) = 0 for all i+ 1≤ k≤ I − 1 and so

˙̄Zk(t) = 0, for i+ 1≤ k≤ I − 1, (EC147)

because t is a regular point. Therefore, by (EC60)–(EC64)

˙̄Zi(t) = ˙̄Ai−1(t)− ˙̄Ai(t)− diZ̄i(t), (EC148)

and

˙̄ZI(t) = ˙̄Ai(t)− dIZ̄I(t), (EC149)

where by (EC137)-(EC139) and (EC147)

˙̄Ai(t) =

1− dij+1
Z̄ij+1

(t)− dIZ̄I(t)−
∑

k∈[ij+1+1,i]

k/∈N
dkZ̄k(t)

I − i
. (EC150)

We note that ˙̄Ai(t)≥ 0 otherwise t cannot be a regular point.

Then, similar to case Case 2(a),

ḟ(t)
(a)

≤
i∑

k=ij+1+1

ρk
(
dk+1Z̄k+1(t)− dkZ̄k(t)

)
− ρIdIZ̄I(t) +

i−1∑
k=ij+1+1

ρk

(
˙̄Ak−1(t)− ˙̄Ak(t)

)
+ ρi

˙̄Ai−1(t) + (ρI − ρi) ˙̄Ai(t)

(b)

≤ −
∑

k∈[ij+1+1,i]
k∈N

νkdkZ̄k(t)− ρIdIZ̄I(t) +

∑I

k=i+1 νk

I − i

1− dij+1
Z̄ij+1

(t)−
∑

k∈[ij+1+1,i]

k/∈N

dkZ̄k(t)


(c)

≤ −
∑

k∈[ij+1+1,i]
k∈N

νkdkZ̄k(t)− ρIdIZ̄I(t) + νi+1

1− dij+1
Z̄ij+1

(t)−
∑

k∈[ij+1+1,i]

k/∈N

dkZ̄k(t)


(d)

≤ νi+1

(
1− dij+1

Z̄ij+1
(t)− d∗(N − Z̄ij+1

(t))
)
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(e)

≤ −cε,

for some constant c > 0, where (a) follows from (EC139), (EC143), (EC147), (EC148), and (EC149),

(b) follows from (EC150) and algebraic manipulations similar to that in (EC146), (c) and (d) follow

from (EC135), (e) follows from the fact that
∑I

k=ij+1
Z̄k(t) =N and from the definition of d∗. �

EC8.2. Proof of Proposition 2

Assume that the conditions of the proposition hold. We prove the result by contradiction. Assume

that (EC76) does not hold. Then we can find a subsequence, denoted again by λ, such that

lim
n→∞

P
{∥∥(Q̄λ(T ), Z̄λ(T ))− (q∗, z∗)

∥∥> ε}> 2ε.

We next prove that no such subsequence exists. Let ij denote the index of the single basic level

in i∗(1,N). For simplicity we only consider the case when ij < iJ−1, but the proof is similar for

other cases. We note that
(
Z̄, Q̄, Ā, L̄q

)
satisfies the fluid model equations (EC59)–(EC64) and

(EC66)–(EC69). It may not satisfy (EC65) because i∗(1,N) has only one element. First assume

that

lim inf
n→∞

∣∣i∗(λ,Nλ)
∣∣= 1. (EC151)

Then the result follows from Theorem EC1, because along a subsequence of {n} Assumption 1(iii)

holds.

If (EC151) does not hold, then at least one the following does:

limsup
λ→∞

1
(
λ∗ij−1

(λ,Nλ)> 0
)

= 1 or lim sup
λ→∞

1
(
λ∗ij+1

(λ,Nλ)> 0
)

= 1 (EC152)

by Lemma 1. We focus on the case when the former holds; the proof for the case when only the

latter holds is similar.

If the first equation in (EC152) holds, then along a subsequence λ′ the limit is attained, hence

the proposed policy is π∗(ij−1, ij) (although i∗(1,N) has a single element) for λ′ large enough. Fix

a sample path ω ∈Ω such that (EC75) holds and Q̄(0)<M .

From the first two steps of the proof of Theorem EC1, there exists T > 0 such that

Z̄i(t) = 0, for i= 0,1, . . . , ij−1− 1 (EC153)

and

Z̄i(t)< ε/I, for i= ij + 1, . . . , I. (EC154)
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We prove below that there exists T1 >T such that

Z̄i(t)< ε/I, for i= ij−1, . . . , ij − 1 (EC155)

for t > T1. By (EC64) and (EC153)–(EC155), for t > T1

Z̄ij (t)>N − ε. (EC156)

Note that (EC156) holds for a set of sample paths with probability greater than 1− ε, giving the

desired result.

We prove (EC155) to complete the proof. Let

f(t) =

ij−1∑
i=ij−1

(ij − i)Z̄i(t).

If f(t)> δ, then by (EC65) (recall that π∗(ij−1, ij) is the policy for the case with two basic levels

ij−1 and ij along this sequence), (EC60), (EC63), (EC64), (EC65), (EC153) and (EC154)

ḟ(t) =−1 +

ij−1∑
i=ij−1

d̂iZ̄i(t)<−
(
d̂ij − d̂ij−1

)
δ/I2

giving (EC156). �

EC8.3. Proof of Theorem EC2

Consider a sequence of chat service systems that satisfies (9) under a sequence of non-idling policies

{πλ}. For x∈RI+2
+ , define Φ(x) =

∑I+1

i=0 xi. Next we show that, for λ large enough, for some t0,K > 0

and 0< δ < 1,

sup
x∈RI+2

+ :Φ(x)>K

Ex
[
Φ
(
Z̄λ(t0), Q̄λ(t0)

)]
Φ(x)

< δ. (EC157)

In other words, Φ is a geometric Lyapunov function with a geometric drift size 0< δ < 1, drift time

t0 and exception parameter K (see Gamarnik and Zeevi (2006)). By Theorem 5 in Gamarnik and

Zeevi (2006), (EC157) implies that

Eυ(πλ)

[
Φ
(
Z̄λ(0), Q̄λ(0)

)]
<
φλ(t0)K

1− γ
, (EC158)

where

φλ(t0) = sup
x

Ex
[
Φ
(
Z̄λ(t0), Q̄λ(t0)

)]
Φ(x)

.

Because
∑I

i=0 Z̄
λ
i (t) + Q̄λ

i (t)≤
∑I

i=0 Z̄
λ
i (t) + Q̄λ(0) + Āλ(t),

φλ(t0)≤E
[
exp(Āλ(t0))

]
.
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By (52) in Gamarnik and Zeevi (2006) and the fact that arrivals follow a Poisson process,

limsup
λ→∞

E
[
exp(Āλ(t0))

]
<∞

for any finite t0 > 0. Hence, (EC157) and (EC158) give tightness. To prove uniform integrability,

note that by Markov’s inequality and (EC158) we have

Pυ(πλ)

(
Q̄λ(0)>u

)
≤B0 exp(−u),

for some constant B0.

We prove (EC157) to complete the proof by choosing appropriate K, t0 and δ. Let N̄λ = λ−1Nλ

κ= max

(
1/γ, sup

λ

N̄λ

)
. (EC159)

Choose K = 7κ and t0 = 1/γ. We now compute an upper bound of Ex
[
Ψ
(
Z̄λ(t0), Q̄λ(t0)

)]
. Let

Zλ(·) denote the total number of customers in an M/M/∞ queue with arrival rate λ and ser-

vice rate γ. Then by a coupling argument one can show that Ex
[
Ψ
(
Z̄λ(t0), Q̄λ(t0)

)]
≤ N̄λ +

E
(
Z̄λ(t)|Z̄(0) = xI+1

)
. It follows from the Kolmogorov equation (see Example 2 in Chapter 4.6 of

Karlin and Taylor (1975)) that for t > 0

E(Z̄λ(t)|Z̄(0) = xI+1) =
1

γ
(1− e−γt) +xI+1e

−γt.

When Φ(x) > K, we must have xI+1 ≥ 6κ due to the choice of K and the fact that
∑I

i=0 xi <

supn N̄
λ. So by (EC159) and the choice t0,

E(Z̄λ(t0)|Z̄(0) = xI+1)≤ κ+xI+1e
−γt ≤ κ+xI+1/2≤

2

3
xI+1.

Again, by (EC159)

sup
x∈RI+2

+ ,Φ(x)>K

Ex
[
Ψ
(
Z̄λ(t0), Q̄λ(t0)

)]
Ψ(x)

≤
N̄λ + 2

3
xI+1

N̄λ +xI+1

=
5

7
.

Thus, (EC157) holds for δ= 5/7. �

References

Billingsley, P. 1968. Convergence of probability measures. Wiley, New York.

Dai, J. G., T. Tezcan. 2011. State space collapse in many-server diffusion limits of parallel server systems.

Mathematics of Operations Research 36(2) 271–320.

Gamarnik, D., A. Zeevi. 2006. Validity of heavy traffic steady-state approximation in generalized Jackson

networks. Annals of Applied Probability 16(1) 56–90.

Karlin, S., H. M. Taylor. 1975. A first course in stochastic processes. 2nd ed. Academic Press Inc., New

York.

Meyn, S., R. L. Tweedie. 2009. Markov chains and stochastic stability . 2nd ed. Cambridge University Press,

Cambridge.


