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Perishable inventory problems have a long history and involve two fundamental decisions, how much to

order and how much old inventory to clear before expiration, that are known to be difficult to optimize

due to the curse of dimensionality. Most early work ignores the clearance decision and focuses solely on

the ordering decision until recently where heuristic clearance policies have been developed. In this paper,

we approach the problem from a different angle by exploring its asymptotic behavior, i.e., perishability

can be ignored in many cases and hence clearance of inventory is not necessary except at the beginning

of the planning horizon when a system is large enough. Inspired by such asymptotic behavior, we examine

simple policies that ignore clearance under minor conditions and establish theoretical bounds for them. The

bounds not only vanish asymptotically, but also indicate a system size required to guarantee any given

optimality gap. Numerical studies suggest that such policies can work very well for systems with reasonable

sizes and practical management of complex perishable inventory systems is not so much harder than that of

non-perishable ones.
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1. Introduction

Consider the classical, periodic review perishable inventory system serving random cus-

tomer demand. At the beginning of each period after the age distribution of the inventory

on hand is observed, the amount of new inventory needed is determined and ordered which

arrives immediately. Demand is then realized and met with inventory from the oldest to

the newest. Unmet demand is lost. At the end of each period, inventory that has expired is

discarded at a cost and a decision is then made on the amount of inventory to be cleared,

referred to as the clearance decision. In the absence of a fixed ordering cost, Li and Yu

(2014) have successfully characterized the structure of the optimal clearance decision as

one governed by multiple thresholds, and established the monotonicity and bounded sensi-

tivity of the optimal ordering and clearance policy using the concept of multi-modularity.

In the presence of a fixed ordering cost, successful characterization of the optimal decisions

is almost impossible for problems with general lifetimes. Regardless of whether an optimal
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structure is known or not, it is still difficult to compute an optimal policy due to the curse

of dimensionality as both decisions depend on the age distribution of the inventory on

hand. The longer the lifetime, the higher the dimension of the state space. Thus, although

a large number of studies have been conducted on perishable inventory systems over the

past decades, most focus on structural properties and/or offer heuristic policies without

theoretical guarantee.

We will approach the problem from a different angle by exploring its asymptotic behav-

ior as the demand and hence the inventory needed to meet it become large. Consider

large supermarkets and online retail stores such as SF Best, JD fresh, and Amazon Fresh,

each serving a large number of customers. According to a recent report (https://www.

investors.com/news/amazon-fresh-grocery-threatens-wal-mart-kroger/), “They

see the company’s (Amazonfresh) grocery volume shooting up to $23.2 billion five years

from now from an estimated $8.7 billion this year (2016)”. In such applications, although

different retailers may have customer bases of different sizes, each customer only buys for

his or her own household and is likely to be similar across retailers selling the same product.

Thus, demand in such retailers can be approximated as a compound Poisson process, i.e.,

the number of arrivals is Poisson and each arrival requires a random amount of inventory

independent of the arrival rate. In the asymptotic regime, the arrival rate becomes large

while the magnitude of the request from each arrival remains the same, i.e., the individual

request does not scale up. Thus, we refer to the arrival rate of customers as the size of

the system. We note that all of our results hold as long as the arrival process is a renewal

process.

In the asymptotic limit, the system behaves as if demand is deterministic and hence

inventory outdating can be completely avoided if it starts with a reasonably amount of

inventory. Thus, clearance of inventory, if any, will only occur at the beginning of the

planning horizon. This insight is very encouraging because, for large enough systems, the

clearance decision guided by complex state dependent thresholds may be unnecessary if

the initial inventory is low, and hence managing a perishable inventory system may be

as easy as managing a non-perishable one. Inspired by this insight, we consider two very

simple, asymptotically optimal heuristic policies to guide the ordering and clearance of

initial inventory.
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However, such simple heuristics inspired by the asymptotic behavior are meaningful

only if they work well for systems of a realistic size, not just in the limit. To this end,

we establish a theoretical bound on the performance gap, measuring how far from the

true optimal a heuristic can achieve, for each of the two heuristic policies. These bounds

vanish asymptotically implying asymptotic optimality of the heuristics and provide easy-

to-calculate lower bounds of the system size that guarantee any given desired performance.

Numerical experiments show that the lower bounds of the system sizes to achieve 2%, 3%

and 5% performance gap are of reasonable sizes in various scenarios (see Tables 1 and 3).

Since experiments on systems with sizes substantially smaller than the lower bounds of

the required sizes also indicate performance within a few percentage from the optimal (see

Tables 2 and 4), we also develop an efficient algorithm to compute the true optimal perfor-

mance so that we can directly benchmark and more accurately evaluate the performance

of the heuristic policies. Numerical comparisons against the optimal performance reveal

that our heuristic policies work well even for small-to-medium-sized systems.

The paper is organized as follows. After a literature review in Section 2, we formulate

the problem and define the asymptotic regime in Section 3. In Section 4, we show that both

a fluid-based and newsvendor type of policy are asymptotically optimal to the original

problem with the latter outperforms the former. In Section 5, we study a few extensions

by examining the performance of the heuristic policies under backlogging, general demand

distributions, the LIFO issuing rule (inventory is consumed from the newest to the oldest),

general demand distributions, and when the distribution of the batch size is unknown and

there is a fixed ordering cost. We present our efficient parallel algorithm to compute the

optimal policy and objective in Section 6 and conclude the paper in Section 7. All the

proofs can be found in the Appendix.

2. Literature review
2.1. Perishable inventory systems

The body of work on the management of periodic review perishable inventory systems

is voluminous. We refer readers to Nahmias (1982) for a review of the early work, and

Nahmias (2011) and Karaesmen et al. (2011) for reviews of more recent papers. Nahmias

and Pierskalla (1973) characterize the structure of the optimal ordering policy when the

lifetime of the product is two periods. For general lifetimes, Fries (1975) and Nahmias

(1975) prove the monotonicity of the order quantity in on-hand inventory of different ages
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and the sensitivity of the order quantity to the age of on-hand inventory for two systems

that differ in how the outdating costs are accounted for and are shown to be equivalent by

Nahmias (1977b).

When clearance of inventory either at a cost or with a salvage value before the expiration

date is allowed, Chen et al. (2014) study a joint pricing and inventory control problem

for a perishable product. Employing the concept of L\-convexity, they shed new light on

perishable inventory management by obtaining comprehensive structural properties of the

optimal policy in addition to providing a significantly simpler proof of a classical structural

result. Li and Yu (2014) characterize the structure of the optimal control policy without

pricing by using the concept of multi-modularity. Li et al. (2016) further study the structure

of the optimal solution when demand is fulfilled with inventory from the newest to the

oldest.

The state-dependent nature of the optimal policy for perishable inventory systems makes

it extremely difficult to find such a policy, especially for products with long lifetimes.

Therefore, much effort has been devoted to developing efficient heuristic ordering policies

when the clearance of inventory before the expiration date is not allowed. Nahmias (1976,

1977a) propose myopic ordering policies by pretending that the lifetime of the product is

shorter than it actually is to reduce the dimension of the state for the problems described

by Fries (1975) and Nahmias (1975). Nandakumar and Morton (1993) propose a policy

based on some analysis on the upper and lower bounds of the value function. Their policy

is shown to perform near optimal in extensive numerical experiments when the lifetime is

short. However, there is no theoretical analysis that can guarantee the performance, while

the policy are “expected to work well when the demand distribution exhibits low variance”.

Limiting the problem to a single critical number policy, Cohen (1976) provides a closed-

form expression of the optimal order-up-to level and Cooper (2001) derives bounds on the

stationary distribution of outdated inventory. Chao et al. (2015) extend the framework of

two-approximation analysis, developed by Levi et al. (2007), to prove a theoretical bound of

the worst-case performance for periodic review perishable inventory systems with general

demand distribution. Zhang et al. (2016) further extends the two-approximation method

to the case with positive setup cost.

A few publications have tried to develop heuristics for systems that allow clearing inven-

tory before the expiration date. Xue et al. (2012) derive piece-wise linear bounds on the
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value function, which leads to an order-up-to and deplete-down-to policy. Chen et al. (2014)

develop a myopic heuristic policy for a joint inventory control and pricing problem. Our

heuristic policies, which ignores the clearance decision except at the beginning of the plan-

ning horizon and whose order up to level in each period is either the mean demand or the

newsvendor solution of the non-perishable system, work well for systems with moderate or

high demand.

There is another stream of research on continuous review perishable systems where

perishability is caused by disasters and hence the lifetime of the product considered is

random, e.g., Gürler and Özkaya (2008), Baron et al. (2010) and David and Mehrez (1995).

With random lifetimes, the methodology used to analyze the system under the (s,S) policy

is very different. Most of the studies require the lifetime to be exponentially distributed

for its memoryless property and some require that the models can be converted into single

period ones.

Among all the work described above, only Chao et al. (2015) and Zhang et al. (2016)

provide analytical bounds for their heuristics. Since the aim was to bound the performance

regardless of the system size, these bounds can only guarantee the performance of their

policies to be within 200% or 300% from the optimal and are of limited practical use

because the actual performance gaps are likely to be much smaller as confirmed by extensive

numerical studies. We provide much tighter analytical bounds for our heuristics that link

their performance with the system size explicitly and are of practical significance in guiding

the implementation of the heuristics.

2.2. Asymptotic analysis

Asymptotic analysis aims to explore the asymptotic properties of a complex system and

has wide applications across sciences. Since the behavior of a system is usually more pre-

dictable in an asymptotic regime, asymptotic properties enhance the understanding of and

help develop heuristic policies that work well for the original system. In the literature of

Operations Research and Operations Management, asymptotic analysis, mostly as the cus-

tomer arrival rate becomes large, is often used to understand complex stochastic systems.

To name a few representative papers, Allon and Van Mieghem (2010) show that a Tai-

lored Base-Surge policy, under which the same order is placed with the slower supplier in

each period while orders are placed with the faster supplier following a simple order-up-to

rule, is asymptotical optimal for a high-volume dual sourcing production system. Armony
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et al. (2009) use a fluid model to approximate a queuing system with delayed announce-

ment. Bassamboo and Randhawa (2010) and Bassamboo et al. (2012) obtain some nice

insights into the capacity decision of parallel queueing systems by analyzing some fluid

models of the systems. More studies using fluid models to obtain practical insights include

Bassamboo and Randhawa (2016), Perry and Whitt (2011) and Wu et al. (2017).

There has been a few asymptotic analyses of inventory systems. Consider the standard

periodic review, lost sales inventory problem with a positive ordering lead time and zero

fixed ordering cost. The state of the system includes the on-hand inventory as well as all the

outstanding orders, and hence is multi-dimensional. Zipkin (2008) shows that the optimal

ordering decision is monotone in the transformed state variables and provides bounds

on the optimal ordering decision. Since the optimal ordering decision is state dependent

and complex, optimization of this dynamic program problem suffers from the curse of

dimensionality. However, Goldberg et al. (2016) show that a simple constant-order policy

is asymptotically optimal when lead times become large and derive a lower bound on the

lead time to achieve any desired performance gap. Xin and Goldberg (2016) further prove

that, for the infinite-horizon variant of the same lost sales problem, the optimality gap of

the same constant-order policy converges exponentially rapidly to zero. Xin and Goldberg

(2017) also consider a dual sourcing inventory problem where one supplier is quicker but

charges more, while the other is slower but charges less. They show that the Tailored Base-

Surge heuristic policy is asymptotically optimal as the difference in the lead times between

the two sources grows large, which is exactly the setting where the curse of dimensionality

renders the problem intractable. In our paper, we will develop bounds for our heuristics

that are asymptotically optimal as the demand becomes large and provide a lower bound

of the size of the demand above which the performance gap of the heuristics are below any

given level.

3. Problem description and asymptotic regime

Consider a periodic-review, single-product inventory system over a finite horizon of T

periods where the product has a fixed lifetime of L> 1 periods. Thus, at the beginning of

each period, there may be inventory with a remaining lifetime ` for 0< `≤L− 1.

The sequence of events and decisions

At the beginning of period t, an order of qt units of new inventory is place at a unit

cost of c and is received instantaneously. A random demand Dt then occurs and is met
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immediately as much as possible with inventory from the oldest to the newest at a price p.

Unmet demand is lost. At the end of the period, expired inventory is discarded at a unit

cost of θ. If there is inventory left, the firm decides on the amount zt to be cleared, from

the oldest to the newest, at a salvage value of s. A negative salvage value implies that there

is a cost to clear a unit of inventory even before it expires. Any inventory carried over to

the next period incurs a holding cost of h per unit. At the end of the planning horizon, all

inventory will be salvaged at a value of c, which is commonly used in the literature (for

example Chao et al. (2015)). Thus, there are two decisions to be made in each period, the

order quantity at the beginning and the amount of inventory to be cleared at the end.

When s=−∞, our problem reduces to the classical perishable inventory problem where

clearance is not allowed. Since clearance of inventory before expiration is a common prac-

tice, e.g., retailers regularly sell products approaching their expiration dates at a discount

to mitigate loss in practice, it should be considered as in recent work by Chen et al. (2014)

and Li et al. (2016).

The state of the system and its evolution

Since there is no information update between the clearance decision at the end of a

period and the ordering decision in the next period, we define It(`), where 0 ≤ t ≤ T

and 1 ≤ ` ≤ L − 1, as the amount of inventory with remaining life up to ` at the end

of period t, after the expired inventory is discarded but before the clearance decision is

made. Then, It(`) increases in `, It(L− 1) is the total inventory, and the inventory profile

It = {It(`),0 < ` ≤ L − 1} describes the state of the system at the end of period t. Let

S = {(x1, ..., xL−1)∈RL−1 : 0≤ x1 ≤ ...≤ xL−1} denote the set of all possible states.

For a given It, the total available inventory with remaining life up to `+ 1 after the

clearance and ordering decisions are made is [It(`+ 1)− zt]+ + qt+11{`=L−1} as clearance

starts with the oldest. For a given demand Dt+1, the amount of inventory that will expire

and hence be discarded at the end of period t+ 1 is [It(1)− zt−Dt+1]
+. Thus, for 0< `≤

L− 1,

It+1(`) =
[
[It(`+ 1)− zt]+ + qt+11{`=L−1}−Dt+1− [It(1)− zt−Dt+1]

+]+ . (1)

For notational purposes, let Γ be the mapping from (It, zt, qt+1,Dt+1) to the new profile

It+1 = Γ(It, zt, qt+1,Dt+1).

Problem formulation
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Let Vt(I) be the optimal expected discounted profit at the end of period t for a given

inventory profile I ∈ S, Ω(I) = {(z, q) : 0 ≤ z ≤ I(L− 1), q ≥ 0} be the set of all feasible

decisions for a given I, and α be the discount factor. Then,

Vt(I) = max
(z,q)∈Ω(I)

{E[G(I, z, q,D) +αVt+1(Γ(I, z, q,D))]}

for 0≤ t≤ T − 1 where

G(I, z, q,D) = sz−h [I(L− 1)− z]+−αcq−αθ [I(1)−D− z]+ +αpmin{D,I(L−1)−z+q}

is the single-period profit function (revenue from clearance and sales less the purchasing

and holding costs) for a given clearance and ordering decision (z, q)∈Ω(I) and demand D,

and

VT (I) = max
0≤z≤I(L−1)

{
sz−h [I(L− 1)− z]+ +αc [I(L− 1)− z]+

}
= (αc−h)I(L− 1)

as no order will be placed after period T and any inventory remaining after period T will

be salvaged at c.

Since one can recover the salvage value s as well as save the holding cost h by clearing

one unit of inventory, it is optimal to simply deplete all the inventory remaining at the

end of each period if s + h ≥ αc where α is the discount factor. Thus, we assume s +

h− αc < 0 throughout the paper, which include the case where s=−∞ where clearance

will never occur. Lemma 1 allows us to take derivatives in the proofs when needed where

vt(I, z, q,D) = G(I, z, q,D) + αVt+1(Γ(I, z, q,D)) is the expected discounted profit at the

end of period t for a given clearance and ordering decision (z, q) ∈ Ω(I), demand D and

inventory profile I.

Lemma 1. Vt(I) and vt(I, z, q,D) are continuous and differentiable component-wise

except at finitely many points.

3.1. Compound Poisson demand and the asymptotic regime

Although our analysis and results hold as long as the arrival process is a renewal process,

we will assume that customers arrive according to a Poisson process for the ease of pre-

sentation. It is well understood that, in a given time interval or period, the number of

customer arrivals is approximately Poisson with a rate n which measures the size of the

customer base. With a general distribution on the batch size of each customer demand, a
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compound Poisson is a reasonably general distribution to represent total customer demand

in a period. While different retailers may have customer bases of different sizes, i.e., differ-

ent n, the requirements from each customer are likely to be similar. Thus, in this paper,

we will focus on inventory systems with different n but independently and identically dis-

tributed batch sizes as summarized in the next assumption. Throughout the paper, we will

use fD and FD to represent the probability density function and cumulative distribution

function of a random variable D.

Assumption 1. Consider a sequence of systems indexed by n = 1,2, · · · . In the nth

system, the number of arrivals in each period is Poisson with rate n, each requiring a batch

with mean λ and second moment σ2.

Under assumption 1, demand in each period is compound Poisson with mean nλ and

variance nσ2 in the nth system. Throughout the paper, the superscript n denotes the nth

system. For instance, demand in period t in the nth system is denoted by Dn
t . Such a

demand form not only adequately represents real demand, it has several nice properties.

As the system size n increases, the variability in demand Dn
t decreases, i.e., the coefficient

of variation σ√
nλ

decreases. As n→∞, the variability vanishes and the distribution of the

scaled demand

D̃n
t :=

Dn
t −nλ√
nσ

(2)

converges to the standard normal Φ(·). That is, once the system becomes large enough,

demand becomes more predictable which eases the management of a perishable inventory

system.

Below we present a nice property on the probability density function of the scaled

demand that will be used later. For example, if the batch size required by each customer

is constant, the probability mass function of the scaled demand is uniformly bounded by

1/2.

Lemma 2. The probability density function of the scaled demand D̃n
t is uniformly

bounded by a constant.

4. Performance guarantee of two heuristic policies

In this section, we consider two very simple heuristic policies that ignore clearance except

at the beginning, a fluid based and a newsvendor type, and establish performance bound
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as a function of the system size for each of them in Sections 4.1 and 4.2, respectively.

We perform numerical experiments to demonstrate their performance against the bounds

as well as the optimal in Section 4.3. To evaluate the performance of a policy, we define
V n0 (I)−V π,n0 (I)

V n0 (I)
as the (relative) performance gap for any policy π and need to obtain a lower

bound of V n
0 (I). By the monotonicity of the optimal value function, V n

0 (I) is bounded from

below for any given initial inventory as

V n
0 (I)≥ V n

0 (0)≥
T∑
t=0

αt
[
−(αp−αc+h)E [Dn

1 −nλ]+ +α(p− c)λ
]

− α
L−αT+1

1−α
(αc+αθ−h)E

[
nλ−Dn

[L]

]+
=
α−αT+2

1−α
(p− c)nλ− 1−αT+1

1−α
(αp−αc+h)E [Dn

1 −nλ]+

− α
L−αT+1

1−α
(αc+αθ−h)E

[
nλ−Dn

[L]

]+
(3)

where D[t] :=D1 +D2 + · · ·+Dt.

Throughout the paper, double superscripts “π,n” represent values and functions asso-

ciated with the nth system under policy π. For instance, V π,n
t (Int ) represents the expected

profit of the nth system at time t for a given heuristic policy. It is notable that although

the subsequent analysis is focused on T <∞, all the results can be readily extended to

infinite-horizon settings (T =∞) as long as α< 1.

4.1. A fluid based heuristic

By (2), the scaled demand
Dnt
n
→ λ, a constant, as n→∞. Thus, we first study a system

where Dt =D, a constant, referred to as the fluid model. With deterministic demand, one

is able to match supply with demand by ordering up to D in each period and clearance

of inventory, if any, will only occur at the beginning of the planning horizon. The next

proposition provides a closed-form solution to the optimal clearance decision for the fluid

model.

Proposition 1. Under the fluid model, it is optimal to order up to D in each period

and only clear

z∗0 = max

{
I0(L− 1)− `0D, max

1≤`≤L−1
[I0(`)− `D]+

}
(4)

at the beginning of the planning horizon where

`0 =

L− 1, if s+ 1−αL−1

1−α h<αL−1c,

min
1≤`≤L−1

{
` : s+ 1−α`

1−α h≥ α
`c
}
, otherwise.

(5)
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Here we provide some intuitive explanations for the optimal solution, and delay the

formal proof to the appendix. If I0(`)> `D for some 1≤ `≤L−1, then max
1≤`≤L−1

[I0(`)− `D]+

amount of inventory will expire and be discarded eventually if kept in the system. Thus, it is

optimal to clear them as soon as possible. Of the remaining I0(L−1)− max
1≤`≤L−1

[I0(`)− `D]+,

it may be more profitable to clear some now, which brings in s and lowers the inventory

cost, and order later which happens if s+ 1−α`
1−α h≥ α

`c for some 1≤ `≤ L− 1. Thus, one

should hold inventory to cover at most `0 periods of demand `0D. If s+ 1−αL−1

1−α h< αL−1c,

`0 =L− 1, in which case, I0(L− 1)− max
1≤`≤L−1

[I0(`)− `D]+ < `0D and one only clears those

that will expire. Otherwise, clear down to `0D. Thus, `0 is the maximum number of periods

for which a unit of inventory should be kept in the system.

Inspired by the optimal policy of the fluid model, we propose a simple fluid policy f

for the nth system which mimics that of the fluid model: One orders up to nλ, the mean

demand, in each period and clearance if any only occurs at the beginning of the planning

horizon with

zf,n0 = max

{
In0 (L− 1)−nλ`0, max

1≤`≤L−1
[In0 (`)−nλ`]+

}
, where `0 is given in (5). Propositions

2 and 3 provide bounds of performance gap of the fluid policies when In0 = 0 and for a

general initial state, respectively. These bounds will be used to determine the minimum

system size that guarantees any given desired performance for the policy f . Note that the

above bounds are independent of the salvage value s since the clearance decision can be

ignored for a relatively large system except at the very beginning.

For convenience add a bar to the symbols under the fluid model, e.g., Īt represents the

inventory profile at the end of period t under the fluid model. Besides, add a bar to the

symbols under the nth system to represent the scaled quantity, e.g., Īnt = Int /n.

Proposition 2. V n
0 (0)−V f,n

0 (0) is in the order of O(
√
n) and

V n
0 (0)−V f,n

0 (0)≤
T∑
t=1

αt
{
−cyn + pEmin(Dn

t , y
n) + (αc−h)E [yn−Dn

t ]
+
}

+ (αc−h+ θ)E
[
λn−Dn

[L]

]+
−

T∑
t=1

αt
[
−cnλ+ pEmin(Dn

t , nλ) + (αc−h)E [nλ−Dn
t ]

+
]
. (6)

Proof. Consider a nonperishable inventory system for which the event time line is

the same as that for the perishable system except that the product is non-perishable. It

is well-known in the literature, for example in Scarf (1959), that the optimal policy is to

order up to yn = F−1
Dnt

(
p−c

p−αc+h

)
in each period, where F−1(·) stands for the reverse function
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of F (·). Observe that the optimal value function of the nonperishable system serves as an

upper bound of the optimal value function of the nth system. Thus,

V n
0 (0)≤

T∑
t=1

{
αt− cyn + pEmin(Dn

t , y
n) + (αc−h)E [yn−Dn

t ]+
}
.

Let On
t =

[
Int−1(1)− znt−1−Dn

t

]+
be the amount of inventory that is expired in period t.

Then

V f,n
0 (0) =

T∑
t=1

αt
[
−c(EDn

t−1 +EOn
t−1) + pEmin(Dn

t , nλ)−hE [nλ−Dn
t −On

t ]+− θEOn
t

]
≥

T∑
t=1

αt
[
−cnλ+ pEmin(Dn

t , nλ) + (αc−h)E [nλ−Dn
t ]+
]
− (αc−h+ θ)EOn

t .

Combining the above two inequalities leads to (6). Next we show (6) is of order O(
√
n).

Note that, there exists a value ξ which lies between yn and nλ such that

V n
0 (0)−V f,n

0 (0)≤
T∑
t=1

αt
[

1

2
(p−αc+h)fDnt (ξ)(yn−nλ)2 + (αc−h+ θ)EOn

t

]
.

Since

1

2
(p−αc+h)fDnt (ξ)(yn−nλ)2 ≤ C1

2
√
nσ

(p−αc+h)(yn−nλ)2

for some constant C1 by Assumption 2 and EOn
t ≤ E

[
nλ−Dn

[L]

]+

(see the similar result

Ot(x, y, d)≤Bt(y, d) in Section 6.2 of Chen et al. (2014)), we obtain

V n
0 (0)−V f,n

0 (0)≤
T∑
t=1

αt
{
−cyn + pEmin(Dn

t , y
n) + (αc−h)E [yn−Dn

t ]+
}

−
T∑
t=1

αt
[
−cnλ+ pEmin(Dn

t , nλ) + (αc−h)E [nλ−Dn
t ]+
]

+ (αc−h+ θ)E
[
λn−Dn

[L]

]+
≤ α−αT+1

1−α

[
C1

2
√
nσ

(p−αc+h)(yn−nλ)2 + (αc−h+ θ)E
[
λn−Dn

[L]

]+
,

which is of order
√
n as (yn−nλ)/

√
n= F−1

D̃nt

(
p−c

p−αc+h

)
→Φ−1

(
p−c

p−αc+h

)
.

By modifying the above proof slightly, we can show that V n
0 (0) − V f,n

0 (0) ≥ Ω(
√
n),

where the notation Ω(g(n)) means there exists a positive constant C which is greater than

Cg(n) when n is large enough. If we adopt the fluid policy in all periods except in period
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T in which we order qT =
[
F−1
Dnt

(
p−c
p−s

)
− InT (L− 1)

]+

, then the value function is below the

optimal. When n is large enough,

V n
0 (0)−V f,n

0 (0)≥ αT {EvnT (InT ,0, qT ,D
n
T )−EvnT (InT ,0, nλ,D

n
T )}

≥−αT+1cE
[
InT (L− 1)−F−1Dn

t

(
p− c
p− s

)]+
+αT [EvnT (0,0, qT ,D

n
T )−EvnT (0,0, nλ,Dn

T )]

≥ αT [EvnT (0,0, qT ,D
n
T )−EvnT (0,0, nλ,Dn

T )]

=−α
T

2

(
∂2EvnT (0,0, q,D

n
T )

∂q2

)
|q=ξ

[
F−1Dn

t

(
p− c
p− s

)
−nλ

]2
=

1

2
αT+1(p− s)fDn

t
(ξ)

[
F−1Dn

t

(
p− c
p− s

)
−nλ)

]2
where ξ is a value between F−1

Dnt

(
p−c
p−s

)
and nλ. The third inequality follows as

E
[
InT (L− 1)−F−1

Dnt

(
p−c
p−s

)]+

≤ E
[
nD̄−F−1

Dnt

(
p−c
p−s

)
−Dn

T

]+

= o(1). According to Assump-

tion 1,
Dnt −nλ√

n
→ N(0, σ2) as n→∞. Then, it is easy to see that fDnt (ξ) ∼ Ω(1/

√
n) and[

F−1
Dnt

(
p−c
p−s

)
−nλ

]2

∼Ω(n). �

The following lemma is crucial for deriving the performance bound in Proposition 3.

Lemma 3. For any given initial inventory profile In0 , the optimal profit of the nth system

V n
0 (In0 )≤ nV̄0(Ī0) where V̄0(·) is the optimal profit of the fluid model with Dt = λ.

Proof. Recall that vnt (I, z, q,D) = G(I, z, q,D) + αV n
t+1(Γ(I, z, q,D)). Thus, if

vnt (I, z, q,D) is concave in D, which we will show is true, then

V n
t (I) = max

(z,q)∈Ω(I)
E{vnt (I, z, q,Dn

t+1)} ≤ max
(z,q)∈Ω(I)

{vnt (I, z, q,EDn
t+1)}

for all t by Jensen’s inequality. Thus, V n
0 (In0 )≤ nV̄0(Ī0) by definition.

It suffices to show that
∂vnt (I,z,q,D)

∂D
is decreasing in D. First note that when D< I(1)− z

or D> I(L− 1)− z+ q, Γ(I, z, q,D) remains constant, thus
∂V nt+1(Γ(I,z,q,D))

∂D
= 0. Thus,

∂vnt (I, z, q,D)

∂D
=
∂G(I, z, q,D)

∂D
+α

∂V n
t+1(Γ(I, z, q,D))

∂D

=


αp+αθ, if D< I(1)− z,

αp+α
∂V nt+1(Γ(I,z,q,D))

∂D
, if I(1)− z <D< I(L− 1)− z+ q,

0 if D> I(L− 1)− z+ q.

(7)

Consider the case of I(1)− z < D < I(L− 1)− z + q. Note that, in this case, an increase

(decrease) in D that is small enough results in a decrease (increase) of the same amount

at the end of the period. By Chen et al. (2014), V n
t+1(·) is L\-concave (here we consider the
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profit maximization problem, while they consider the cost minimization), from which we

know that
∂V nt+1(Γ(I,z,q,D))

∂D
is decreasing in D. To prove that

∂vnt (I,z,q,D)

∂D
is decreasing in D, in

view of (7), it remains for us to show that

0≤ αp+
∂V n

t+1(Γ(I, z, q,D))

∂D
≤ αp+αθ. (8)

The two profiles Γ(I, z, q,D) and Γ(I, z, q,D + δ), where δ is a small enough positive

constant, differ by a total of δ units of inventory. By simple difference analysis, we can

show that s≤ ∂V nt+1(I)

∂I(`)
≤ αc−h for any 0< `≤L−1. Thus, −(αc−h)δ≤ V n

t+1(Γ(I, z, q,D+

δ))− V n
t+1(Γ(I, z, q,D))≤ 0. It follows that −α(αc− h)< α

∂V nt+1(Γ(I,z,q,D))

∂D
< 0, which leads

to (8) as p > c. �

Proposition 3. For any given initial inventory profile In0 ∈ S,

V n
0 (In0 )−V f,n

0 (In0 )≤K1E [Dn
1 −λn]+ +K2E

[
λn−Dn

[L]

]+
+H(n) =O(

√
n)

where

K1 = (L− 1)c+
L−1∑
t=1

(t− 1)αth+
α−αL+1

1−α
p+

αL−αT+1

1−α
(αp−αc+h),

K2 =
αL−αT+1

1−α
(αc+αθ−h),

H(n) = (c+αθ)Emax
{

0, λn−Dn
1 , · · · , (L− 1)λn−Dn

[L−1]

}
.

Thus, we have a theoretical bound on the performance gap
V n0 (I)−V f,n0 (I)

V n0 (I)
which is in the

order of O
(

1√
n

)
and vanishes asymptotically. Although being crude, the fluid analysis

has both theoretical and practical significance. Theoretically, the above two propositions

establish not only asymptotic optimality of policy f but also the speed at which its perfor-

mance gap from the optimal vanishes as n becomes large. This is new in the literature of

perishable inventory. A similar insight has been observed without a proof by Nandakumar

and Morton (1993) that their heuristics are expected to work well when “the lifetimes are

long or the demand distribution exhibits low variance”.

Practically, it reveals the following important insights. (1) A family of simple and imple-

mentable policies are guaranteed to perform close enough to optimality. (2) As mentioned

in the literature review, Chao et al. (2015) and Zhang et al. (2016) are the only papers in

the literature on perishable inventory that provide theoretically guaranteed performance
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of 200% or 300% from the optimal for their proposed heuristics. Our bounds for the fluid

heuristic are the first of its kind in that they are much tighter and can be arbitrary close to

the optimal as the system size increases. Thus, they can be used to determine a system size

that guarantees, say less than 5% performance gap. (3) Being simple is an important crite-

rion for a policy to be implemented in practice. The fluid policy as well as the newsvendor

policy we will examine in the next section, are both simple and easy to implement. (4) Our

analysis delivers the message that managing perishable inventory systems is much simpler

than it is understood for relatively large systems.

4.2. A newsvendor type of policy

While being simple, the fluid policy is rather crude and ignores demand uncertainty and

some cost parameters. It compensates for the need to clear inventory throughout the

planning horizon by a lower order-up-to level and leads to higher lost sales in most cases. In

this section, we consider an enhanced policy, referred to as policyH, under which one orders

up to yn = F−1
Dn

(
p−c

p−αc+h

)
, the optimal order up to level for the corresponding non-perishable

inventory system, and clears z
H,n
0 =

[
In0 (1)−F−1

Dn

(
αc−s−h
αc+θ−h

)]+
amount of inventory at the

beginning which is the solution of

min
0≤z≤In0 (L−1)

E
{
G(In0 , z, y

n− In0 (L− 1) + z,Dn
t+1) +α(αc−h)

[
yn−Dn

1 − [In0 (1)−Dn
1 − z]

+]+} ,
the optimal cost if the lifetime of the inventory is two periods. Proposition 4 provides

bounds for the absolute performance gap under the policy H for zero initial inventory and

In0 (L− 1)≤ yn, respectively. Note that both bounds are independent of the salvage value

s. Combined with (3), we have the following bounds on the performance gap of the policy

H, which vanish at an exponential speed.

Proposition 4. For any In0 ∈ S and In0 (L− 1)≤ yn,

V n
0 (In0)−V H,n

0 (In0)≤ α(αc−h+ θ)E [yn−Dn
1 −Dn

2 ]
+

+
αL−αT

1−α
(αc−h+ θ)E

[
yn−Dn

[L]

]+
= o(1).

Proof. It is obvious that the optimal profit function under the nonperishable system,

denoted by Vnt (Int ) with the understanding that all the inventory has infinite life time, is

an upper bound of the optimal profit function of the perishable system. Let OH,n
t be the

amount of inventory expiring at the end period of t under policy H, the following holds

V n
0 (In0 )≤max

z,q
{EG(In0 , z, q,D

n
1 ) +αEVn1 (Γ(In0 , z, q,D

n
1 ))}
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=EG(In0 , z
H,n
0 , yn− In0 (L− 1) + zH,n0 ,Dn

1 ) +αEVn1 (Γ(In0 , z
H,n
0 , yn− In0 (L− 1) + zH,n0 ,Dn

1 ))

= V H,n
0 (In0 )−αEV H,n

1 (Γ(In0 , z
H,n
0 , yn− In0 (L− 1) + zH,n0 ,Dn

1 ))

+αEVn1 (Γ(In0 , z
H,n
0 , yn− In0 (L− 1) + zH,n0 ,Dn

1 ))

≤ V H,n
0 (In0 ) + (αc−h+ θ)

T∑
t=2

αtEOH,n
t .

The first inequality follows because the one period profit function of the original problem

is bounded by that of the corresponding nonperishable system. The equalities follow due

to the definitions of zH,n0 , yn, and V H,n
0 (In0 ). The last inequality follows as the difference

between Vn1 and V H,n
1 under the same policy (that is, order up to yn) is the expiration

associated costs. Note that, each expired item incurs at most αc−h+θ (disposal cost plus

the cost to purchase a new unit later minus the inventory holding cost saved).

By (1), the total amount of inventory expiring during periods 2, · · · ,L satisfies

L∑
t=2

αtEOH,n
t ≤

L∑
t=2

EOH,n
t =Emax

{
0, In0 (1)− zH,n0 −Dn

1 , · · · , In0 (L− 1)− zH,n0 −Dn
[L−1], y

n−Dn
[L]

}
−Emax

(
0, In0 (1)− zH,n0 −Dn

1

)
≤Emax{0, yn−Dn

1 −Dn
2}= E [yn−Dn

1 −Dn
2 ]+

Since OH,n
t ≤

[
yn−

t∑
k=t−L+1

Dn
k

]+

for L< t≤ T , so
T∑
t=L

αtEOH,n
t ≤ αL−αT

1−α E
[
yn−Dn

[L]

]+

(see

the similar result Ot(x, y, d)≤Bt(y, d) in Section 6.2 of Chen et al. (2014)) as demand is

independently and identically distributed. Thus, we have the desired bound.

Under Assumption 1, it is easy to see that yn

nλ
→ 1 as n→∞. Thus, P(Dn

1 +Dn
2 ≤ yn) =

P
(
Dn1 +Dn2−2nλ√

nσ
≤ yn−2nλ√

nσ

)
decays exponentially as n→∞. So E [yn−Dn

1 −Dn
2 ]+ ≤ ynP(Dn

1 +

Dn
2 ≤ yn)→ 0 as n→∞. The same applies to E

[
yn−Dn

[L]

]+

and hence the bound is o(1).

�

For the special case of zero initial inventory, the bound in Proposition 4 reduces to

V n
0 (0)−V H,n

0 (0)≤ αL−αT

1−α
(αc−h+ θ)E

[
yn−Dn

[L]

]+
= o(1).

Note that the performance bounds for both the fluid and newsvendor policies are inde-

pendent of the salvage value s because the clearance decision can be ignored for a relatively

large system except at the very beginning.
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4.3. Numerical experiments

Since the bounds are functions of n, they provide lower bounds on the system size that

guarantee any desired performance gap. These bounds help evaluate the effectiveness of

the policies and provide practical reference.

Since the bounds overestimate the system sizes required to achieve a given performance

of a heuristic and hence underestimate the effectiveness of the heuristics, we develop an

efficient algorithm described in detail in Section 6 to search for the optimal decisions

intelligently, which we also view as an important contribution of the paper. Coupled with

parallel computing, we are able to solve relatively large problems optimally and provide

more accurate evaluations of the heuristics.

To see how policies f and H fare, we consider various combinations of system parameters

and batch size distributions.

1. System parameters: We fix T = 16, p = 10, θ = 1, h = 0.1c, α = 0.95, and vary c =

2,4,6, s= 0.5c,0.75c and L= 2,4.

2. Batch size: We consider a batch size that follows constant, uniform on [0,20], expo-

nential and two-phase hyper-exponential distributions, all with a fixed mean of λ = 10.

Thus, the second moment of the deterministic, uniform and exponential distributions are

σ2 = 100, 400/3, and 200, respectively. The two-phase hyper-exponential distribution is

characterized by the parameter r. That is, with probability r the distribution is exponen-

tial with rate r/5, and with probability 1− r it is exponential with rate (1− r)/5. In our

experiment, we set r= 1/8 in which case the second moment σ2 = 450.

Policy f : Since the results are similar, we only present the system sizes predicted by

the bounds to achieve 2%, 3%, and 5% performance gaps in Table 1 and the percentage

gaps in Table 2 for I0 = 0, c = 4,L = 4 and s = 2. While the performance improves as n

increases, the crude fluid policy which sets the order-up-to level to the mean demand works

well for relatively large systems, i.e., at n= 40 when c is relatively high (see the Appendix

for more numerical results). We also observe that zero initial inventory seems to have

the worst performance. This can be explained as follows: recall the definition of relative

performance gap
V n0 (I)−V π,n0 (I)

V n0 (I)
. While the absolute gap V n

0 (I)− V π,n
0 (I) is less affected by

the initial inventory profile I, the denominator V n
0 (I) increases as I becomes large in terms

of the total amount of inventory.
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Performance gap Constant Uniform Exponential Hyper-exp

5% 32 43 64 104

3% 72 112 143 253

2% 149 191 253 508

Table 1 Lower bounds on n to guarantee the desired performance gap under policy f for L= 4 and c= 4 when

In0 = 0

n Constant Uniform Exponential Hyper-exp

10 8.17 9.73 11.55 14.67

20 5.80 6.82 8.18 11.27

30 4.73 5.54 6.67 9.39

40 4.10 4.79 5.78 8.19

Table 2 Percentage gap of policy f for L= 4 and c= 4 when In0 = 0

Policy H: Table 3 presents the lower bounds on the system sizes that guarantee the

desired performance gap for the same set of parameters. Again, the bounds are insensitive

to the lifetime L and we only report the results for L= 4. Note that the minimum required

system sizes for policy H is much smaller than those for policy f and the bounds under

heuristic H are very similar to those with In0 = 0 as long as the total initial inventory is

below yn (and hence is omitted), indicating that policy H likely works very well even with

non-zero initial inventory.

We also compare the performance of the heuristics against the true optimal for the same

examples and Tables 4 provides a demo with more results in the Appendix. While the fluid

heuristic works reasonably well for relatively large systems, policy H works extremely well

even for very small systems. This is very encouraging in that a perishable inventory system

may be managed just like a non-perishable one as long as the system is not too small and

the initial inventory is not too “high”.

Lastly, we compare policy H with the heuristic policies DB and PB in Chao et al. (2015)

who proposed these policies for systems under backlogging and claimed that they can be

extended to systems under lost sales. Since the authors did not provide any numerical

study for the lost sales case, we will use the same parameters in this section (except that

s= 1, and vary θ = 1,4, to emphasize the effect of the disposal cost on the performance

of different polices) but consider the demand distributions as in Nandakumar and Morton
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(1993). As one can see Table 5, all heuristics work well for distributions with smaller

c.v.s, while the results are mixed when the c.v. is relatively large (e.g., when demand

is exponential). Given the extreme simplicity of policy H, it is not surprising that our

heuristic does not outperform theirs in every case. However, if simplicity is a requirement

for implementation, policy H can be much more appealing.

Performance gap Constant Uniform Exponential Hyper-exp

3% 6 9 14 35

2% 9 10 17 40

1% 10 14 20 49

Table 3 Lower bounds on n to guarantee the desired performance gap under policy H for c= 4 when In0 = 0

L= 2 L= 4

n Const Uniform Exp Hyp-exp Const Uniform Exp Hyp-exp

10 0.11 0.61 1.42 7.17 0.10 0.18 0.23 0.51

20 0.08 0.13 0.30 2.19 0.08 0.11 0.15 0.28

30 0.09 0.09 0.13 0.90 0.09 0.09 0.12 0.21

Table 4 Percentage gap of policy H for c= 4 when In0 = 0

5. Extensions

In this section, we extend our analysis beyond the base model by considering systems where

unmet demand is backlogged, the distribution of batch sizes is unknown, a fixed ordering

cost exists, and inventory is consumed last-in-first-out. We also examine numerically the

performance of the heuristics for systems where the demand in each period is not compound

Poisson.

5.1. The case of backlogging

Our results continue to hold when unmet demand is backlogged. In this case, we let It(L−1)

represent the net inventory level that can be positive or negative when there is backlogging

and rewrite the state transition function in (1) for `=L− 1

It+1(L− 1) = [It(L− 1)− zt]+ + qt+1−Dt+1− [It(1)− zt−Dt+1]
+ . (9)
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Norm(50,202) Erlang-2 Exponential

policy c θ mean max mean max mean max

2 1 0.06 0.06 0.28 0.29 1.84 1.88

4 1 0.10 0.10 0.15 0.16 1.62 1.71

H 6 1 0.17 0.18 0.05 0.05 0.93 1.04

2 4 0.14 0.15 2.41 2.49 7.43 7.63

4 4 0.14 0.14 0.30 0.31 3.65 3.86

6 4 0.23 0.25 0.07 0.08 1.77 1.99

2 1 1.79 1.83 2.07 2.10 2.22 2.27

4 1 2.11 2.18 1.52 1.58 0.98 1.02

DB 6 1 1.08 1.15 0.15 0.16 0.14 0.16

2 4 1.78 1.82 1.85 1.87 1.97 2.03

4 4 2.10 2.18 1.42 1.48 0.64 0.71

6 4 1.08 1.15 0.11 0.12 0.31 0.35

2 1 1.64 1.70 1.69 1.77 1.78 1.90

4 1 1.62 1.70 1.13 1.24 0.75 0.86

PB 6 1 0.71 0.76 0.20 0.29 1.11 1.27

2 4 1.75 1.83 1.61 1.69 1.78 1.89

4 4 1.64 1.72 1.11 1.22 0.62 0.71

6 4 0.72 0.78 0.21 0.30 1.31 1.48

Table 5 Percentage gap under polices H, DB and PB when L= 4.“mean” and “max” are with respect to

different initial inventory levels.

If we view p as the unit cost for backlogging, our profit maximization formulation is the

same as the cost minimization one in Chao et al. (2015). Following similar proofs, we can

establish all the bounds in Sections 4.1 and 4.2 for the fluid policy f and newsvendor-type

policy H in which case the order-up-to level is modified to F−1
Dn

(
p−c+αc
p+h

)
, the optimal order

up to level for the corresponding non-perishable inventory system with backlogging.

A comparison of our policy H with policies DB and PB for the same examples with

general demand distributions in Chao et al. (2015) and initial state 0 is summarized in

Table 6. While all the policies perform well, our policy H outperforms when demand is

Erlang-2 with a c.v. of 0.71 and underperforms when demand is exponential in which case



21

the c.v. is higher at 1. We also add a comparison of the policies when demand is Normal (50,

202) which has an even smaller c.v.= 0.4 in the same table and all three policies perform

equally well with our policy slightly better.

Normal (50, 202) Erlang-2 Exponential

c, p, θ H DB PB H DB PB H DB PB

0, 5, 5 0.03 3.30 5.56 0.10 0.56 0.50 1.08 1.21 0.13

0, 10, 5 0.00 7.64 11.88 0.29 1.37 2.30 2.49 0.88 0.29

0, 5, 10 0.03 3.51 5.54 0.28 0.56 0.29 3.31 1.86 0.58

5, 10, 5 0.12 0.48 0.58 0.11 0.26 0.36 1.37 0.29 0.02

5, 5, 10 0.29 0.04 0.05 0.02 0.08 0.01 0.86 0.39 0.42

5, 5, 5 0.29 0.03 0.05 0.01 0.08 0.02 0.44 0.22 0.26

5, 10, 0 0.12 0.34 0.58 0.03 0.07 0.09 0.41 0.18 0.06

10, 10, 5 0.17 0.08 0.12 0.06 0.11 0.12 1.03 0.37 0.07

10, 10, 10 0.17 0.10 0.12 0.10 0.11 0.10 0.53 0.34 0.38

10, 5, 5 0.57 0.21 0.12 0.01 0.02 0.00 0.26 0.44 0.32

10, 10, 0 0.17 0.06 0.12 0.03 0.10 0.16 0.52 0.28 0.02

Table 6 Percentage gap of polices H, DB and PB under backlogging when L= 4.

5.2. Unknown distribution of the batch sizes

So far, we have assumed that the distribution of batch sizes is known. Since the demand

distribution of Dn
t approaches the normal distribution with mean nλ and variance nσ2 as

n→∞, a modified H policy with the distribution of the demand replaced by the normal

distribution, referred to as policy π= ?, should work well for large enough systems regard-

less of the batch size distribution or the total demand distribution. That is, under policy ?,

we clear z?,n0 =
[
In0 (1)−nλ−

√
nσΦ−1

(
αc−s−h
αc+θ−h

)]+
amount of initial inventory and order up

to y?,n = nλ+
√
nσΦ−1

(
p−c

p−αc+h

)
at the beginning of each period. This policy only requires

information about the first two moments of the batch size distribution under compound

Poisson or the total demand. In Proposition 5, we present a theoretical performance gap

bound for policy ? when customer arrivals follow a Poisson distribution. Although the

bound is a rough one due to technical difficulties, it vanishes asymptotically, implying

asymptotic optimality of policy ?.
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Proposition 5. Let m3 be the third moment of the distribution of the batch size. There

exists a constant C(λ,σ,m3) in a closed form and n̂ such that, for n> n̂,

V n
0 (In0 )−V ?,n

0 (In0 )≤ C(λ,σ,m3)√
n

.

For the same examples in the previous sections, for (σ2,m3) ∈ {(1,1), (1.5,2), (2,3)},
Table 7 illustrates the system sizes that guarantee the desired relative performance gap

for L= 4 (the results for L= 2 are similar and hence omitted). Numerical results (see the

Appendix for details) show that although the required system sizes provided by the bounds

are very large as expected, the heuristic works very well for systems of a reasonable size.

(σ2,m3)

Performance gap c s (1,1) (1.5,2) (2,3)

2 1 1107 651 469

3% 4 2 249 157 120

6 4 175 110 85

2 1 1194 714 521

2% 4 2 281 181 140

6 4 192 124 98

2 1 1398 862 643

1% 4 2 357 238 187

6 4 236 162 131

Table 7 Lower bounds of n for desired performance gap under policy ?

5.3. There is a fixed ordering cost

Suppose that there is a fixed cost K for each order placed regardless of the order quantity,

in which case it is not clear what the optimal structure looks like for systems with general

lifetimes and few heuristic policies have been developed in the literature. For simplicity,

we will focus on the infinite horizon case with I0 = 0 and leave out the subscript t in the

cost functions. The optimal ordering strategy of the fluid model in the presence of a fixed

ordering cost K is to order just enough to cover demand for t∗ periods where t∗ is either

L or minimizes the total cost[
ctD+K +

1−αt− tαt + tαt+1

(1−α)2
Dh

]
/(1−αt), (10)
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whichever is smaller, and no clearance is needed. It is obvious that t∗ = 1 in our asymptotic

regime as the impact of the fixed ordering cost vanishes when n→∞ and D = nλ→∞.

Thus, the corresponding fluid policy f is the same as that without a fixed ordering cost,

i.e., order up to nλ in every period in the nth system, and is asymptotically optimal in

the presence of a fixed ordering cost.

However, in reality, even a “fixed” ordering cost will change as the order quantity exceeds

a certain level. For instance, another truck would need to be dispatched if the order quan-

tity exceeds the initial truck capacity and the fixed cost will double or triple as the order

quantity increases. In this case, the fixed ordering cost needs to be scaled up in the asymp-

totic regime to preserve its impact in the original problem.

Suppose that the fixed cost is piece-wise linear as aK if the order quantity is in [(a−

1)mλ+ 1, amλ], a= 1,2, ..., for some positive integer m. Then, t∗ is either L or minimizes

the total cost [
cnDt+

⌈
nDt

m

⌉
K +

1−αt− tαt + tαt+1

(1−α)2
nDh

]
/(1−αt), (11)

whichever is smaller, and no clearance is needed. Then, t∗ decreases in m and the order-up-

to level of the corresponding fluid policy f is nλt∗ for the nth system. The next proposition

states that the fluid policy f is not only asymptotically optimal but also has computable

performance guarantee.

Proposition 6. The optimality gap of the fluid policy f satisfies

V n(0)−V f,n(0)≤ α

1−α
(p+ θ+h+K)E|Dn

1 −nλ|+
[

α

1−α
(p+ θ) +

1−αt∗

(1−α)2
h

]
E [nλ−Dn

t ]
+

=O(
√
n).

5.4. The LIFO issuing rule

In practice, consumers may have the option to pick the freshest items, i.e., inventory is

depleted on a last-in-first-out (LIFO) basis. Li et al. (2016) is one of the few that explores

such a scenario and the structure of the optimal policy is even more complex under the

LIFO rule.

From the modeling perspective, it suffices to modify the inventory dynamics in (1) to

It+1(`) =
[
[It(`+ 1)− zt]+ + qt+11{`=L−1}− [Dt+1− qt+1− It(L− 1) + It(`+ 1)]+−Ot+1

]+
,

for 0 < ` ≤ L − 1, where Ot+1 = min{It(1), [It(L− 1) + qt+1−Dt+1]
+} is the amount of

inventory that will be expired by the end of period t+ 1.
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It is obvious that under the LIFO issuing rule, more inventory will be expired and hence,

clearance of inventory may be unavoidable. Following a similar proof of Proposition 4 which

provides a performance bound in the order of o(1) under the FIFO issuing rule, we can

establish a performance bound of heuristic H in the order of
√
n under the LIFO issuing

rule. Although policy H is likely not to perform as well under the LIFO rule, it is still

asymptotically optimal.

Corollary 1. For any In0 ∈ S, V n
0 (In0 )−V H,n

0 (In0 ) is of order
√
n. For In0 = 0,

V n
0 (0)−V H,n

0 (0)≤ αL−αT

1−α
(αc−h+ θ)Emin

{
[yn−Dn

1 ]+ , · · · , [yn−Dn
L]+
}

=O(
√
n).

Next, we modify the order-up-to level of policy H and devise a simple clearance policy

in each period that takes into account the total amount of inventory and the amount of

inventory that has remaining lifetime of one period. We refer to this heuristic policy as the

RH heuristic policy whose asymptotic optimality can also be established with a similar

effort.

The ordering policy of RH sets the order-up-to level at yn−γIn(1) where γ = αc−h+θ
p−αc+h by

the following reason: The marginal benefit of ordering-up-to x+ 1 rather than x in period

t is approximately

−c+ pP(Dn
t ≥ x)− θP(x− Int (1)<Dn

t ≤ x) + (αc−h)P(Dn
t <x− Int (1)) (12)

as it costs c to order the extra unit, enables one more unit of sales at p when Dn
t ≥ x,

potentially causes the disposal of one unit of old inventory at θ when x− In(1)<Dn ≤ x,

and gains up to αc−h due to extra inventory in the future when Dn <x− In(1). Setting

(12) to be 0 yields the order-up-to level x= yn− γIn(1).

The clearance policy of RH is inspired by an optimal property characterized in Li et al.

(2016) that, when the oldest inventory is below a certain level, its chance of expiration is

increased by the subsequent large order quantity and thus should be cleared.

• If Int (L−1)< yn−γInt (1), clear Int (1) when Int (1)≤ yn−F−1
Dnt

(
αc−s−h
αθ+αs

)
and no clearance

otherwise.

• If Int (L− 1)≥ yn− γInt (1), clear min

{
Int (1),

[
Int (L− 1)−F−1Dn

t

(
αp−s−h−αθP(Dn≤In(L−1)−In(1))

αp

)]+}
.

When Int (L− 1) < yn − γInt (1), an order will be placed in period t+ 1. Since it saves θ

and gains at least s if Dn ≤ yn − In(1), the marginal benefit of clearing one unit of the
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oldest inventory Int (1) at the end of period t and then ordering one fresh unit at the

beginning of period t+ 1 is at least s+h−αc+αP(Dn
t ≤ yn− Int (1))(θ+ s)≥ s+h−αc+

αP
(
Dn
t ≤ F−1

Dnt

(
αc−s−h
αθ+αs

))
(θ+ s) = 0 when In(1)≤ yn−F−1

Dn

(
αc−s−h
αθ+αs

)
.

When Int (L − 1) ≥ yn − γInt (1), the ordering decision in period t + 1 will depend on

the amount of inventory cleared at the end of period t. Since it is most likely that no

order will be placed in period t+ 1, the marginal benefit of clearing one unit of inventory

with remaining lifetime of 1 period is at least s+ h− αpP(Dn
t > Int (L− 1)) + αθP(Dn

t ≤
Int (L− 1)− Int (1))≥ 0 as you sell one less unit at p when Dn

t > Int (L− 1) and dispose one

less unit at the cost θ when Dn
t ≤ Int (L−1)−Int (1) in period t+1, resulting in the heuristic

clearance decision.

We conduct a numerical experiment on the same system parameters and demand dis-

tributions as in Section 4.3 for L= 4 under the LIFO rule. To emphasize the effect of the

disposal cost on the performance of the polices, we fix the salvage value s = 1 and vary

the disposal cost θ= 1,4. As one can see in Table EC.8 in the Appendix, policy RH works

very well for systems with reasonable sizes. Since policy H ignores clearance except at

the beginning, policy RH should outperform H when the disposal cost θ is high, which is

confirmed in Table 8 when θ= 4.

Lastly, we examine the performance of policy RH under the same settings in Li et al.

(2016), i.e., demand in each period is uniform with different c.v.s. and the results are sum-

marized in Table 9 (we omit the simple case with θ= 0.2). Compared with the performance

of policies MH2 and MH3 proposed in Li et al. (2016), policy RH outperforms MH2 but

underperforms MH3. Given that their heuristics require solving a non-linear optimization

problem to find both the ordering and clearance decisions in each period, heuristic RH

that provides closed forms for both decisions is of practical significance.

5.5. General demand distributions

So far, we have assumed that demand in each period follows a compound Poisson distribu-

tion. We now ask whether the fluid and newsvendor policies can continue to perform well

under other demand distributions. We conduct a numerical experiment on the same system

parameters but with five alternative demand distributions with the same mean for L= 4.

These distributions are Uniform(25,35), Uniform(20,40), Normal(30,52), Normal(30,102)

and Exponential(1/30). The performance gap under the two policies with zero initial inven-

tory are summarized in Table EC.9 (see the appendix for details). As we can see, although
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Constant Uniform Exponential Hyper-exp

Policy c mean max mean max mean max mean max

2 0.39 2.00 0.50 2.55 0.50 3.28 0.61 5.81

RH 4 0.79 1.98 0.97 2.01 1.21 2.61 2.46 4.91

6 1.07 2.12 1.38 2.41 1.76 3.12 3.53 5.91

2 4.61 4.95 5.83 6.30 7.61 8.07 11.07 12.64

H 4 3.86 4.88 4.63 5.93 5.98 7.66 11.04 12.69

6 3.87 5.28 4.60 6.32 5.63 7.90 9.67 13.58

Table 8 Mean and maximum percentage performance gap of policies H and RH under the LIFO issuing rule

for θ= 4 and L= 4.

L

c.v.=0.2

θ= 0.5

θ= 1.0

c.v.=0.3

θ= 0.5

θ= 1.0

c.v.=0.4

θ= 0.5

θ= 1.0

c.v.=0.5

θ= 0.6

θ= 1.0

p= 5 p= 10

3 4 5 6 3 4 5 6

0.92 0.77 0.68 0.62 0.62 0.54 0.52 0.51

0.98 0.69 0.58 0.54 0.59 0.52 0.51 0.51

1.28 1.01 0.86 0.74 0.76 0.62 0.58 0.57

1.37 0.89 0.70 0.62 0.72 0.59 0.57 0.56

2.06 1.65 1.41 1.23 1.20 1.02 0.96 0.94

2.08 1.40 1.14 1.04 1.13 0.98 0.95 0.94

2.12 1.72 1.49 1.32 1.31 1.11 1.06 1.04

2.20 1.47 1.21 1.11 1.22 1.06 1.04 1.04

Table 9 Percentage performance gap of RH under the LIFO rule.

the fluid policy may not work so well when demand is exponential or normal and highly

uncertain, the mean performance gap of the policy H are fairly small for all the distribu-

tions.
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6. An efficient parallel algorithm for finding an optimal solution

The bounds developed in sections 4.1 and 4.2 provide a rough idea about the system

sizes required to guarantee a desired performance gap under the heuristics. The minimum

system size may be much smaller and a comparison with the optimal performance can

provide more accurate information. However, solving a dynamic program to find an optimal

solution is time consuming for problems with reasonable large sizes. In this section, we will

exploit some properties of the problems that will aid in finding optimal solutions using

parallel computing for the discrete version of the problem. With discrete units, the state

variable I is of dimension L−1 and for convenience we let the `th element be the inventory

with remaining lifetime of ` in this section. Let J be the maximum order quantity in

each period, which can be the order quantity from the newsvendor problem with non-

perishable inventory. Then, the dynamic programming problem is one with a state space

of size (J+1)L−1 and the complexity of finding an optimal solution increases exponentially

in the life time L. Furthermore, since 0≤ q≤ J and 0≤ z ≤ J(L−1), an exhaustive search

finding the optimal decisions for a given state will require roughly O(J2) effort. Thus the

overall complexity of solving the dynamic program is O(TJL+1).

Next, we identify some structural properties of the optimal solution in Proposition 7

using a tree representation of the state space. We then develop an efficient algorithm to

reduce the computational complexity to O(TJL−1). Using parallel computing, we can solve

a problem where the system is of a reasonable size in minutes.

Figure 1 demonstrates the way the state is evolved when one unit of inventory is depleted

for the case with L = 4 and J = 2. For instance, clearing one unit at a time, the state

evolves according to the sequence (2,2,2)→ (1,2,2)→ · · · → (0,0,2)→ (0,0,1)→ (0,0,0).

So the diagram is a tree where a predecessor has a unique successor which may have up to

L−1 predecessors. Next, we present some properties of the optimal decisions along a path

from the bottom of the tree to the state 0, which will greatly reduce the computational

complexity.

Proposition 7. For any state, if the optimal clearance quantity (z) is positive, then it

is optimal for its successor to clear one less and order the same amount of inventory; else,

it is optimal for its successor to clear nothing and order the same or one more.
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(0,0,0)

(0,1,0)

(0,2,0)

(1,0,0)

(1,1,0)

(1,2,0)

(2,0,0)

(2,1,0)

(2,2,0)

(2,0,1)

(2,1,1)

(2,2,1)

(1,0,1)

(1,1,1)

(1,2,1)

(0,1,1)

(0,2,1)

(0,0,1)

(2,0,2)

(2,1,2)

(2,2,2)

(1,0,2)

(1,1,2)

(1,2,2)

(0,1,2)

(0,2,2)

(0,0,2)

batch(3,1)

batch(3,2) batch(3,1)

batch(3,2) batch(3,1)

batch(3,2)

batch(2,2)

batch(2,1)

batch(0,0)

batch(1,1)

batch(2,1)

batch(2,2)

batch(1,2)

batch(2,1)

batch(2,2)

Figure 1 A tree representation of the states when L= 4, J = 2.

For instance, if the optimal action of state (2,2,2) is (z∗, q∗) = (3,2), then we know from

the above proposition that the optimal action of (1,2,2) is (2,2); if (z∗, q∗) = (0,2), then

the optimal action of (1,2,2) is (0,2) or (0,3).

In each period from the last to the first, we need to evaluate all the possible options

of (z, q) for each state, referred to as a job. Since there are a total of (J + 1)L−1 number

of states, a number that is far bigger than the available number of computing units, we

send the jobs for evaluating and finding the optimal decisions for all the states in parallel

batch by batch. Several parallel computing application program interfaces (API) such as

OpenCl and CUDA can take advantage of to utilize a large number of computing cores

(about 2000) in a graphics processing unit. The computation of the optimal decisions in

each period starts with the state 0 and followed by its predecessors.

To take advantage of the properties of the optimal decisions along the paths on a tree,

we devise a batching and sequencing rule for sending the jobs. We batch the jobs with the

same index (`, k) where L− ` is the position of the first non-zero element in a state and

k is its value. The jobs are sent to be processed according to the ascending ordering first

of ` and then of k. We say that a batch (`, k) has a smaller index than (`′, k′) if ` < `′ or
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` = `′ but k < k′. The next proposition shows that such a batching and sequencing rule

guarantees that, starting from state 0, all the predecessors will be processed after their

successors as demonstrated in Figure 1. An algorithm based on the proposition can be

easily devised.

Proposition 8. All the successors of batch (`, k) must be in a batch with smaller

indices.

Algorithm 1 Parallel Computing of Dynamic Program

Initialization V (·) = VT (·);

for t= T : 1 do

compute the optimal policy for state 0 (i.e., batch (0,0)) using an exhaustive search;

for `= 1 :L do

for k= 1 : (J − 1) do

compute the optimal policy for all states in batch (`, k) using proposition 7;

end for

end for

Update V (·) = Vt−1(·);

end for

Output V (·) = V0(·).

7. Conclusions

It is well known that perishable inventory problems are difficult to optimize due to curse

of dimensionality and even heuristic ordering and clearance policies involving solving com-

plicated equations or optimization problems. Inspired by the asymptotic behavior of per-

ishable inventory systems, we consider two extremely simple policies that ignore clearance

except at the very beginning of the planning horizon and order up to the mean demand

(called a fluid based policy) and a newsvendor type of solution (called a newsvendor type

of policy), respectively. We provide analytical performance bounds for the policies which

vanish as the size of the system increases, implying asymptotic optimality of the poli-

cies and providing lower bounds of the system size to achieve any desired performance.

Numerical experiments against the bounds as well as the optimal solutions show that these
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policies either work reasonably well or extremely well for small-to-medium-sized systems,

suggesting that managing perishable inventory systems of reasonable sizes may be just as

simple as managing a non-perishable ones. In addition, it is observed that when lifetime

is small (L= 2) or the demand distribution has high coefficient of variations (e.g., hyper-

exponential), the performance of our policies deteriorates. It remains an open question for

simple polices in such circumstances. Given that analytical and tight bounds on the perfor-

mance of heuristic policies are rarely established in the perishable inventory literature, our

research makes a significant contribution to both the existing literature and real practice.

Acknowledgments

References

Allon G, Van Mieghem JA (2010) Global dual sourcing: Tailored base-surge allocation to near-and offshore

production. Mgt. Sci. 56(1):110–124.

Armony M, Shimkin N, Whitt W (2009) The impact of delay announcements in many-server queues with

abandonment. Oper. Res. 57(1):66–81.

Baron O, Berman O, Perry D (2010) Continuous review inventory models for perishable items ordered in

batches. Mathematical Methods of Operations Research 72(2):217–247.

Bassamboo A, Randhawa RS (2010) On the accuracy of fluid models for capacity sizing in queueing systems

with impatient customers. Oper. Res. 58(5):1398–1413.

Bassamboo A, Randhawa RS (2016) Scheduling homogeneous impatient customers. Mgt. Sci. 62(7):2129–

2147.

Bassamboo A, Randhawa RS, van Mieghem JA (2012) A little flexibility is all you need: On the asymptotic

value of flexible capacity in parallel queuing systems. Oper. Res. 60(6):1423–1435.

Chao X, Gong X, Shi C, Zhang H (2015) Approximation algorithms for perishable inventory systems. Oper.

Res. 63(3):585–601.

Chen X, Pang Z, Pan L (2014) Coordinating inventory control and pricing strategies for perishable products.

Oper. Res. 62(2):284–300.

Cohen MA (1976) Analysis of single critical number ordering policies for perishable inventories. Oper. Res.

24(4):726–741.

Cooper WL (2001) Pathwise properties and performance bounds for a perishable inventory system. Oper.

Res. 49(3):455–466.

David I, Mehrez A (1995) An inventory model with exogenous failures. Oper. Res. 43(5):902–903.

Durrett R (2010) Probability: Theory and Examples (Cambridge University Press), 4th edition.



31

Fries BE (1975) Optimal ordering policy for a perishable commodity with fixed lifetime. Oper. Res. 23(1):46–

61.

Goldberg DA, Katz-Rogozhnikov DA, Lu Y, Sharma M, Squillante MS (2016) Asymptotic optimality of

constant-order policies for lost sales inventory models with large lead times. Math. Oper. Res. 41(3):898–

913.
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Appendix: Managing Perishable Inventory Systems as
Non-perishable Ones

EC.1. Technical proofs

Proof of Lemma 1. It is easy to see that the lemma holds for t = T . Suppose

it is true for t + 1 ≤ T . Since G(I, z, q,D) is piecewise linear and differentiable except

at finitely many points, vt(I, z, q,D) is differentiable in each element almost every-

where. Let (z∗(I), q∗(I)) be the maximizer of E[vt(I, z, q,D)]. Since ∂vt(I,z,q,D)
∂z

∣∣∣ z=z∗(I)
q=q∗(I)

=

∂vt(I,z,q,D)
∂q

∣∣∣ z=z∗(I)
q=q∗(I)

= 0, using the chain rule, the following holds

∂Vt(I)

∂I(`)
=E

[
∂vt(I, z, q,D)

∂I(`)

]
z=z∗(I)
q=q∗(I)

+E

[
∂vt(I, z, q,D)

∂z

∣∣∣∣ z=z∗(I)
q=q∗(I)

∂z∗(I)

∂I(`)

]

+E

[
∂vt(I, z, q,D)

∂q

∣∣∣∣ z=z∗(I)
q=q∗(I)

∂q∗(I)

∂I(`)

]

=E
[
∂vt
∂I(`)

(I, z∗(I), q∗(I),D)

]
exists almost everywhere, where in the first equality we used the fact that ∂z∗(I)

∂I(`)
and ∂q∗(I)

∂I(`)

are bounded by Corollary 1 of Chen et al. (2014). Hence, Vt(I) is differentiable in each

component almost everywhere. �

Proof of Lemma 2. Let ϕ(t) be the characteristic function of the batch size distri-

bution, then the characteristic function of D̂n
t can be expressed as (after some calculation)

exp
(
−1

2
t2 ϕ

′′(ξ)
σ2

)
. Now by the discussion on P.98 of Durrett (2010), ϕ′′(ξ) is bounded near

0, so by Theorem 3.3.5 of Durrett (2010), we reach the desired conclusion. �

Proof of Proposition 1. We first note that z∗0 ≥ max
1≤`≤L−1

[I0(`)− `D]+ as it only

incurs holding costs to hold a unit that is due to expire. Likewise, z∗t = 0 when t≥ 1 as any

unit of inventory that will be cleared at t should either be depleted at the end of period
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0 or not be ordered in the first place. It is obvious that, at the beginning of period t, an

order is placed only if there is not enough inventory to meet the demand of that period.

Thus, q∗t =
[
Dt− It−1(L− 1) + z∗t−1

]+
and there is no inventory will expire after period 0.

Next, we derive the optimal clearance quantity z∗0 . Let q∗1(z0) be the optimal order quan-

tity given that we deplete z0 at the end of period 0. We first claim that z∗0 ≤ [I0(L− 1)−D]+

because, for any z0 > [I0(L− 1)−D]+, an order up to D1 is placed in period 1 and
dq∗1(z)

dz
|z=z0= 1. In this case,

dv0(I0,z,q∗1(z))

dz
|z=z0= s+ h− αc < 0, thus z0 cannot be optimal.

For any max
1≤`≤L−1

[I0(`)− `D]+ ≤ z0 < [I0(L− 1)−D]+ , q∗1(z0) = 0 and

∂v0(I0, z,0,D)

∂z
|z=z0 =

∂G(I0, z,0,D)

∂z
|z=z0 +α

∂V1(Γ(I0, z,0,D))

∂z
|z=z0

= s+h+α
∂V1(Γ(I0, z,0,D))

∂z
|z=z0 . (EC.1)

Fix δ > 0. Note that Γ(I0, z0 + δ,0,D) and Γ(I0, z0,0,D) differ by δ units. If the extra δ

units are consumed in period `= `(z0)∈ {2, · · · ,L− 1}, which depends on z0, then

V1(Γ(I0, z0,0,D))−V1(Γ(I0, z0 + δ,0,D) =

(
α`−1c−

`−2∑
i=0

αih

)
δ =

(
α`−1c− 1−α`−1

1−α
h

)
δ.

That is, with the extra δ units, one needs to order δ units less in period ` but incurs the

holding costs. Thus, by (EC.1), ∂v0(I0,z,0,D)
∂z

|z=z0= s+h−α
(
α`−1c− 1−α`−1

1−α h
)

= s+ 1−α`
1−α h−

α`c, which is increasing in `.

If s + 1−αL−1

1−α h < αL−1c, then ∂v0(I0,z,0,D)
∂z

|z=z0< 0, and one depletes as little inven-

tory as possible and only those inventory items that are due to expire, i.e., z∗0 =

max
1≤`≤L−1

[I0(`)− `D]+. Otherwise, by the definition of `0 in (5), z∗0 is the minimum quantity

such that `(z∗0)≤ `0, i.e., I0(L− 1)− z∗0 ≤ `D. Combing these two cases (4) holds. �

Proof of Proposition 3. By Lemma 3,

V n
0 (In0 )−V f,n

0 (In0 )≤ nV̄0(Ī0)−V f,n
0 (In0 ) = n

T∑
t=0

αtE∆Ḡn
t ,

where

∆Ḡn
t =G(Īt, z̄

∗
t , q̄
∗
t+1, λ)−G(Īnt , z̄

n
t , q̄

n
t+1, D̄

n
t+1)

is the difference between the single-period costs of the fluid model and that of the stochastic

model under the fluid policy in period t. According to the definition of the fluid policy,

∆Ḡn
t = h

[
Īnt (L− 1)− Īt(L− 1)

]
+αc

([
λ− Īnt (L− 1)

]+− [λ− Īt(L− 1)
]+)

+αθŌn
t+1
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+αp
(
λ−min

{
D̄n
t+1, λ+

[
Īnt (L− 1)−λ

]+})
≤ h

[
Īnt (L− 1)− Īt(L− 1)

]
+αc

([
λ− Īnt (L− 1)

]+− [λ− Īt(L− 1)
]+)

+αθŌn
t+1

+αp
[
λ− D̄n

t+1

]+
. (EC.2)

1. When t≥L, using the order-up-to structure and given that the lifetime of the inven-

tory is L, it is easy to show that Īt(L− 1) = 0 and Īnt (L− 1) =
[
λ− D̄n

t − Ōn
t

]+ ≤ λ, so in

this case

∆Ḡn
t ≤−(αc−h)

[
λ− D̄n

t − Ōn
t

]+
+αθŌn

t+1 +αp
[
λ− D̄n

t+1

]+
≤−(αc−h)

[
λ− D̄n

t

]+
+ (αc−h)Ōn

t +αθŌn
t+1 +αp

[
λ− D̄n

t+1

]+
.

Using EŌn
t ≤E

[
λ− D̄n

[L]

]+

, we have

T∑
t=L

αtE∆Ḡn
t ≤

T∑
t=L

αt
(

(αp−αc+h)E
[
D̄n

1 −λ
]+

+ (αc+αθ−h)E
[
λ− D̄n

[L]

]+)
=
αL−αT+1

1−α
(αp−αc+h)E

[
D̄n

1 −λ
]+

+
αL−αT+1

1−α
(αc+αθ−h)E

[
λ− D̄n

[L]

]+
=
αL−αT+1

1−α
(αp−αc+h)E

[
D̄n

1 −λ
]+

+K2E
[
λ− D̄n

[L]

]+
.

2. When 0≤ t < L,

L−1∑
t=0

αt∆Ḡt ≤ αc

{
L−1∑
t=0

αt
[
Īt(L− 1)− Īnt (L− 1)

]+}
+h

{
L−1∑
t=0

αt
[
Īnt (L− 1)− Īt(L− 1)

]+}

+αθ
L−1∑
t=0

αtŌn
t+1 +αp

L−1∑
t=0

αt
[
λ− D̄n

t+1

]+
.

The last two terms are easy to bound and, in the second term,

[
Īnt (L− 1)− Īt(L− 1)

]+
=
[
Īnt−1(L− 1) + q̄nt − Ōn

t − D̄n
t

]+− [Īt−1(L− 1) + q̄t−λ
]+

≤
[
Īnt−1(L− 1)− Īt−1(L− 1)

]+
+
[
λ− D̄n

t

]+
=

t∑
k=1

[
λ− D̄n

k

]+
.

It remains for us to find an upper bound of the first term. Let τ̄ ≤L−1 be the first time

such that Īt(L− 1)< λ and τn = min{t : Īnt (L− 1)< λ}. We only need to consider those

periods in which the stochastic model orders more than the fluid model, i.e., the periods
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from τn to τ̄ if τn < τ̄ . The first term is the extra ordering cost beyond that incurred

in the fluid model, which is bounded by c[(τ̄ − τn)λ − Īnτn(L − 1) + Īτ̄ (L − 1)]1{τ̄>τn} ≤
c
[
Īτn(L− 1)− Īnτn(L− 1)

]+
.

Note that [
Īt(L− 1)− Īnt (L− 1)

]+ ≤ t∑
k=1

([
D̄n
k −λ

]+
+ Ōn

k

)
,

And the first term is bounded by

c

τn∑
k=1

([
D̄n
k −λ

]+
+ Ōn

k

)
≤ c

L−1∑
k=1

([
D̄n
k −λ

]+
+ Ōn

k

)
.

By taking expectation and using the fact that
t∑

k=1

Ōn
k = max

{
0, λ− D̄n

1 , · · · , λt− D̄n
[t]

}
,

we obtain the desired bound. Noting that both E
[
D̄n

1 −λ
]+

and H(n) are of order 1√
n
,

and E
[
λ− D̄n

[L]

]+

is of lower order of 1√
n

(see the end of the proof of Proposition 4), the

conclusion follows by multiplying both sides of (EC.2) by n. �

Lemma EC.1.
∣∣∣FD̃nt (x)−Φ(x)

∣∣∣ ≤ C0√
n

for any x > 0, where C0 = m3+2λ3

2σ3 and m3 is the

third moment of the batch size distribution.

Proof of Lemma EC.1. Since a Poisson process is infinitely divisible, Dn
t can be

written as
n∑
i=1

Xi where Xi = ξi,1 + · · ·+ ξi,N(1) ≥ 0, ξi,j are independently and identically

distributed random variables representing the batch size, and N(1) ∼ Poisson(1). Then,

the scaled demand can be written as the normalized sum as D̃n
t =

n∑
i=1

Xi−λn
√
nσ

. Since Xi are

i.i.d. with mean λ and second moment σ2, the Berry-Esseen Theorem (see Tyurin (2010))

establishes the convergence ∣∣∣FD̃nt (x)−Φ(x)
∣∣∣≤ E|Xi−λ|3

2σ3
√
n

.

Since E|Xi − λ|3 = E(Xi − λ)3 + 2E|Xi − λ|31{Xi≤λ} ≤ E(Xi − λ)3 + 2λ3 = m3 + 2λ3, we

obtain the desired result. �

Lemma EC.2. Let β = FDn(yn) = p−c
p−αc+h , γ = FDn(wn) = αc−s−h

αc+θ−h and

C2(y,n) = min
{
φ(Φ−1

(
y−C0/

√
n)
)
, φ(Φ−1

(
y+C0/

√
n)
)}

(EC.3)

where φ(·) is the probability density function of the standard normal distribution. Then,

|yn− y?,n| ≤ σC0

C2(β,n)
, when n>

C2
0

min{β2, (1−β)2}
, (EC.4)
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|wn−w?,n| ≤ σC0

C2(γ,n)
, when n>

C2
0

min{γ2, (1− γ)2}
, (EC.5)

E

[
y?,n−

L∑
t=1

Dn
t

]+
≤ y?,n(1−Θ?)Ln, when n>

σΦ−1
(

p−c
p−αc+h

)
(L− 1)λ

2

, (EC.6)

E

[
yn−

L∑
t=1

Dn
t

]+
≤
[
y?,n +

σC0

C2(β,n)

]
(1−Θ)Ln, when y?,n +

σC0

C2(β,n)
<Lλn, (EC.7)

where Θ? = (Lλn−y?,n)2

4L2n2(2λ2+σ2)
,Θ =

(
Lλn−y?,n− σC0

C2(β,n)

)2
4L2n2(2λ2+σ2)

.

Proof of Lemma EC.2. Since the proofs of (EC.5) and (EC.7) are similar to those

of (EC.4) and (EC.6), respectively, we will only prove (EC.4) and (EC.6). Since FDnt (yn) =

FD̃nt

(
yn−nλ√

nσ

)
= β = Φ(y

?,n−nλ√
nσ

), by Lemma EC.1,∣∣∣∣Φ(y?,n−nλ√
nσ

)
−Φ

(
yn−nλ√

nσ

)∣∣∣∣≤ C0√
n
. (EC.8)

Using the Taylor expansion, there exists some ξ between y?,n−nλ√
nσ

and yn−nλ√
nσ

,

|yn− y?,n|√
nσ

≤ C0

φ(ξ)
√
n
≤ C0

min
{
φ
(
y?,n−nλ√

nσ

)
, φ
(
yn−nλ√

nσ

)}√
n

=
C0

C2(β,n)
√
n
,

where the last inequality follows from (EC.3) and Φ−1(β − C0/
√
n) ≤ yn−nλ√

nσ
≤ Φ−1(β +

C0/
√
n), by (EC.8). When n >

C2
0

min{β2,(1−β)2} , we have C2(β,n) > 0 and the above upper

bound is finite.

Same as in the proof of Lemma EC.1, we can write the demand as Dn
t =

n∑
i=1

Xti and have

E

[
y?,n−

L∑
t=1

Dn
t

]+

≤ y?,nP

(
L∑
t=1

Dn
t ≤ y?,n

)
= y?,nP

(
L∑
t=1

n∑
i=1

(
y?,n

Ln
−Xti

)
≥ 0

)
.

Similarly, we have a bound of the same form for E
[
yn−

L∑
t=1

Dn
t

]+

. Now using Lemma 10

of Goldberg et al. (2016), the desired result follows. �

Proof of Proposition 5. First let n be an integer such that all the results in

Lemma EC.2 hold when n> n. Throughout the proof we assume n> n. Since the derivative

of V n
t (·) with respect to any inventory level is bounded by αc−h,

V n
0 (In0 )−V ?,n

0 (In0 ) = max
(z,q)∈Ω(I)

{EG(In0 , z, q,D
n
1 ) +αEV n

1 (In1 )}−{EG(In0 , z
?,n
0 , q?,n1 ,Dn

1 ) +αEV ?,n
1 (I?,n1 )}

≤ max
(z,q)∈Ω(I)

{
EG(In0 , z, q,D

n
1 ) +α(αc−h)E [In0 (L− 1)− z+ q−Dn

1 −On
1 ]+
}

+αV n
1 (0)
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−{EG(In0 , z
?,n, q?,n,Dn

1 ) +α(αc−h)EI?,n1 (L− 1)}

+ {α(αc−h)EI?,n1 (L− 1)−αEV ?,n
1 (I?,n1 )}

=
{
M(In0 , z

H,n
0 , qH,n1 )−M(In0 , z

?,n
0 , q?,n1 )

}
+ {α(αc−h)EI?,n1 (L− 1)−αEV ?,n

1 (I?,n1 ) +αV ?,n
1 (0)}

+ [αV n
1 (0)−αV ?,n

1 (0)]

= (I) + (II) + (III)

where M(In0 , z, q), EG(In0 , z, q,D
n
1 ) +α(αc− h)E [In0 (L− 1)− z+ q−Dn

1 −On
1 ]+. Next we

bound each of the three terms on the right hand side.

Using the second order Taylor expansion, and by the fact that (zH,n0 , qH,n1 ) is the maxi-

mizer of M(In0 , z, q), we have

(I) =−∂
2M(In0 , z, q)

2∂z2
|(z,q)

(
z?,n0 − z

H,n
0

)2

− ∂
2M(In0 , z, q)

2∂q2
|(z,q)

(
q?,n1 − q

H,n
1

)2

− ∂
2M(In0 , z, q)

∂z∂q
|(z,q)

(
q?,n1 − q

H,n
1

)(
z?,n1 − z

H,n
1

)
where z is between z?,n0 and zH,n0 , and q is between q?,n1 and qH,n1 . Let C1 be a uniform

bound of the probability density function of the scaled demand D̃n in Assumption 2. Note

that

−∂
2M(In0 , z, q)

2∂z2
|(z,q) = α(p−αc+h)fDn(In0 (L− 1)− z + q) +α(αc−h+ θ)fDn(In0 (L− 1)− z)

≤ α(p+ θ)C1n
−1/2,

−∂
2M(In0 , z, q)

2∂q2
|(z,q) = α(p−αc+h)fDn(In0 (L− 1)− z + q)≤ α(p−αc+h)C1n

−1/2,

−∂
2M(In0 , z, q)

∂z∂q
|(z,q) = α(p−αc+h)fDn(In0 (L− 1)− z + q)≤ α(p−αc+h)C1n

−1/2.

Combined the above with Lemma EC.2, we obtain

(I)≤ αC1(σC0)
2

√
n

[
p+ θ

C2
2(β,n)

+
p−αc+h

C2(γ,n)

(
1

C2(γ,n)
+

1

C2(β,n)

)]
.

(II) is bounded by the loss incurred due to the expected expiry of inventory items in I?,n1

during periods 2, · · · ,L , i.e.,

L∑
t=2

O?,n
t = max

{
0, In0 (1)− z?,n0 −Dn

1 , · · · , In0 (L− 1) + q?,n1 − z
?,n
0 −Dn

[L]

}
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−max{0, In0 (1)− z?,n0 −Dn
1}

≤max{0, In0 (L− 1) + q?,n1 −Dn
1 −Dn

2}

≤max{0, yn ∨ y?,n−Dn
1 −Dn

2} .

Since each unit of expired inventory can bring at most a loss of αc−h+ θ, we have

(II)≤ (αc−h+ θ)E
L∑
t=2

O?,n
t ≤ (αc−h+ θ)Emax{0, yn ∨ y?,n−Dn

1 −Dn
2}

≤ (αc−h+ θ)

[
y?,n +

σC0

C2(β,n)

]
(1−Θ)2n

where the last inequality follows from Lemma EC.2. Following the same procedure as in

the proof of Proposition 2, we can obtain

(III)≤ α−αT+1

1−α

{
C1

2σ
√
n

(p−αc+h)(yn− y?,n)2 + (αc−h+ θ)E
[
y?,n−Dn

[L]

]+}
≤ α−αT+1

1−α

{
C1

2σ
√
n

(p−αc+h)

(
σC0

C2(β,n)

)2

+ (αc−h+ θ)y?,n(1−Θ?)Ln

}
where the last inequality follows from Lemma EC.2. The proof is complete by observing

that the sum of the three bounds is of the order O(
√
n) (note that C2(·, n) is bounded

away from 0 when n→∞). �

Proof of Proposition 6. Since

V n(0)−V f,n(0) =
[
V n(0)−nV̄ (0)

]
+
[
nV̄ (0)−V f,n(0)

]
,

we only need to show that the two terms in [ ] are of the order O(
√
n). We first note that

∂V n(I)
∂I(`)

≤ αp+K as any extra unit of inventory can avoid at most an order at the cost K

now and delayed sales at αp. Since V n(I) and nV̄ (I) follow a recursive equation of the

same form, we obtain

V n(0) = max
z,q∈Ω(I)

{EG(0, z, q,Dn
1 ) +αEV n(Γ(0, z, q,Dn

1 ))}

≤ max
z,q∈Ω(I)

{EG(0, z, q,nλ) +αEV n(Γ(0, z, q,nλ)) +α(p+ θ+h+K)E|Dn
1 −nλ|}

≤ ...≤ α

1−α
(p+ θ+h+K)E|Dn

1 −nλ|+nV̄ (0). (EC.9)

Thus, [V n(0)−nV̄ (0)] =O(
√
n). Next we identify an upper bound of the second term by

a sample-path argument. Note that the difference between nV̄ (0) and V f,n(0) is caused
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by the deviation of demand from its mean nλ. Furthermore, any demand above the mean

[Dn
t −nλ]+ is either lost, which has no effect on the difference, or satisfied, which will bring

more profit even though it may reduce sales in the future due to discounting. Any demand

below its mean [nλ−Dn
t ]+ will incur a revenue loss of αp and a holding cost bounded by

h+ αh+ ...+ αt
∗−1h = 1−αt∗

1−α h, plus a potential disposal cost αθ, compared with nV̄ (0).

Thus,

nV̄ (0)−V f,n(0)≤
∞∑
t=0

αt
[
α(p+ θ) +

1−αt∗

1−α
h

]
E [nλ−Dn

t ]+

=

[
α

1−α
(p+ θ) +

1−αt∗

(1−α)2
h

]
E [nλ−Dn

t ]+ ,

and [nV̄ (0)−V f,n(0)] =O(
√
n). �

Proof of Proposition 7. By a similar argument to Theorem 1 of Chen et al. (2014),

we can show that, for any given I,

0≤ ∂z∗(I)

∂I`
≤ 1, −1≤ ∂q∗(I)

∂I`
≤ 0, 1≤ `≤L− 1. (EC.10)

That is, with one fewer unit of inventory as we move up the path, at most one fewer

unit is cleared and at most one more unit is ordered. Suppose the path starts from state

I> 0 at the bottom of the tree.

If z∗(I) = 0, then along the path to 0, the optimal clearance quantity is 0 and the optimal

order quantity increases at most by one unit. Now suppose that z∗(I) > 1. We want to

show that if I′ is the successor of I, then z∗(I′) = z0− 1, and q∗(I′) = q∗(I).

Let q∗(I, z) = arg max
q≥0
{v(I, z, q)} (if multiple maximizers exist, pick the largest one).

Then,

max
z,q
{v(I, z, q)}= max

z
{v(I, z, q∗(I, z))}.

If z∗(I) = I(L − 1), then it is optimal to clear the entire inventory and order the same

quantity at any of the successors. Otherwise, at its immediate predecessor I′,

v(I′, z∗(I)− 1, q∗(I′, z∗(I)− 1)) = v(I, z∗(I), q∗(I, z∗(I)))− s

> v(I, z∗(I) + 1, q∗(I, z∗(I) + 1))− s= v(I′, z∗(I), q∗(I′, z∗(I))),

which implies z∗(I′) = z∗(I) − 1 and hence q∗(I′) = q∗(I) as the inventory profiles after

clearance are the same under the two states. �
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EC.2. Extended numerical experiments

Tables EC.1 and EC.2 summarise the lower bounds of n to guarantee certain levels of

performance gap for polices f and H. Tables EC.3-EC.9 provide numerical results for

various polices discussed in this paper under various scenarios and initial inventory levels.

Performance gap c Constant Uniform Exponential Hyper-exp

2 59 79 91 184

5% 4 32 43 64 104

6 25 33 35 50

2 133 177 251 471

3% 4 72 112 143 253

6 44 52 68 74

2 256 334 491 1001

2% 4 149 191 253 508

6 69 101 88 137
Table EC.1 Lower bounds on n to guarantee the desired performance gap under policy f for L= 4 when In0 = 0.

Performance gap c L Constant Uniform Exponential Hyper-exp

2 2 6 10 15 38

4 2 6 9 14 35

3% 6 2 6 8 14 33

2 4 3 4 5 15

4 4 2 2 5 12

6 4 2 2 4 11

2 2 8 11 18 42

4 2 9 10 17 40

2% 6 2 7 11 16 37

2 4 3 4 7 19

4 4 2 4 6 15

6 4 2 2 5 13

2 2 10 14 23 52

4 2 10 14 20 49

1% 6 2 8 13 19 46

2 4 5 6 9 23

4 4 3 5 9 21

6 4 2 5 8 19
Table EC.2 Lower bounds on n to guarantee the desired performance gap under policy H when In0 = 0.
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Constant Uniform Exponential Hyper-exp

n c s mean max mean max mean max mean max

2 1.0 9.71 10.43 11.34 12.30 13.46 14.77 17.55 19.95

4 2.0 7.41 8.17 8.76 9.73 10.28 11.55 12.66 14.67

10 6 3.0 4.54 5.27 5.37 6.30 6.14 7.29 6.53 8.05

2 1.5 9.79 10.51 11.42 12.40 13.60 14.89 18.27 20.20

4 3.0 7.55 8.29 8.91 9.87 10.50 11.72 13.24 15.07

6 4.5 4.66 5.47 5.51 6.51 6.32 7.65 6.94 9.14

2 1.0 6.81 7.38 8.12 8.66 9.35 10.48 14.92 14.97

4 2.0 5.35 5.80 6.24 6.82 7.55 8.18 9.66 11.27

20 6 3.0 3.28 3.72 3.85 4.39 4.45 5.18 5.66 6.58

2 1.5 6.86 7.45 8.14 8.73 9.44 10.56 15.00 15.10

4 3.0 5.41 5.89 6.31 6.92 7.77 8.31 10.13 11.45

6 4.5 3.34 3.85 3.91 4.53 4.57 5.39 5.71 7.15

2 1.0 4.98 6.03 7.32 7.05 8.01 8.55 9.42 12.38

4 2.0 4.19 4.73 4.76 5.54 6.09 6.67 8.60 9.39

30 6 3.0 2.63 3.03 3.12 3.56 3.88 4.23 4.45 5.59

2 1.5 5.13 6.08 7.46 7.11 8.02 8.62 9.42 12.49

4 3.0 4.21 4.80 4.81 5.63 6.36 6.78 8.78 9.53

6 4.5 2.69 3.13 3.23 3.67 3.92 4.40 4.53 6.00

2 1.0 5.63 5.23 5.03 6.10 4.15 7.40 4.92 10.77

4 2.0 3.36 4.10 5.08 4.79 5.41 5.78 3.73 8.19

40 6 3.0 2.17 2.63 2.65 3.07 3.49 3.66 4.27 4.92

2 1.5 5.63 5.27 5.03 6.15 4.15 7.47 4.92 10.86

4 3.0 3.42 4.16 5.09 4.86 5.41 5.87 4.27 8.32

6 4.5 2.25 2.71 2.72 3.17 3.49 3.80 4.85 5.25
Table EC.3 Mean and maximum percentage gap under policy f for L= 4. “mean” and “max” are with respect

to different initial inventory levels, the same below.
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n c s Constant Uniform Exponential Hyper-exp

2 1.0 10.43 12.30 14.77 19.95

4 2.0 8.17 9.73 11.55 14.67

10 6 3.0 5.27 6.30 7.29 8.05

2 1.5 10.51 12.40 14.89 20.20

4 3.0 8.29 9.87 11.72 15.00

6 4.5 5.38 6.41 7.40 8.16

2 1.0 7.38 8.66 10.48 14.97

4 2.0 5.80 6.82 8.18 11.27

20 6 3.0 3.72 4.39 5.18 6.58

2 1.5 7.45 8.73 10.56 15.10

4 3.0 5.89 6.92 8.31 11.45

6 4.5 3.79 4.47 5.27 6.67

2 1.0 6.03 7.05 8.55 12.38

4 2.0 4.73 5.54 6.67 9.39

30 6 3.0 3.03 3.56 4.23 5.59

2 1.5 6.08 7.11 8.62 12.49

4 3.0 4.80 5.63 6.78 9.53

6 4.5 3.09 3.63 4.31 5.67

2 1.0 5.23 6.10 7.40 10.77

4 2.0 4.10 4.79 5.78 8.19

40 6 3.0 2.63 3.07 3.66 4.92

2 1.5 5.27 6.15 7.47 10.86

4 3.0 4.16 4.86 5.87 8.32

6 4.5 2.68 3.13 3.73 5.00
Table EC.4 Percentage gap of policy f for L= 4 when In0 = 0.
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L= 2 L= 4

n c s Const Uniform Exp Hyp-exp Const Uniform Exp Hyp-exp

2 1.0 0.13 0.37 0.89 3.79 0.05 0.06 0.09 0.31

4 2.0 0.11 0.61 1.42 7.17 0.10 0.18 0.23 0.51

10 6 3.0 0.33 0.82 1.81 9.34 0.32 0.38 0.48 0.93

2 1.5 0.18 0.57 1.49 6.45 0.01 0.01 0.01 0.24

4 3.0 0.14 0.73 1.97 9.74 0.00 0.02 0.03 0.22

6 4.5 0.18 0.73 2.04 10.74 0.04 0.05 0.06 0.17

2 1.0 0.07 0.07 0.20 1.46 0.04 0.04 0.05 0.11

4 2.0 0.08 0.13 0.30 2.19 0.08 0.11 0.15 0.28

20 6 3.0 0.19 0.26 0.42 2.41 0.19 0.25 0.32 0.57

2 1.5 0.03 0.06 0.27 2.33 0.01 0.00 0.01 0.00

4 3.0 0.01 0.05 0.27 2.87 0.01 0.01 0.02 0.03

6 4.5 0.02 0.05 0.21 2.54 0.02 0.03 0.04 0.07

2 1.0 0.02 0.03 0.07 0.68 0.02 0.03 0.04 0.07

4 2.0 0.09 0.09 0.13 0.90 0.09 0.09 0.12 0.21

30 6 3.0 0.16 0.20 0.25 0.95 0.16 0.20 0.25 0.43

2 1.5 0.00 0.01 0.05 1.01 0.00 0.00 0.00 0.00

4 3.0 0.01 0.01 0.04 1.05 0.01 0.01 0.01 0.02

6 4.5 0.02 0.03 0.04 0.77 0.02 0.03 0.03 0.05
Table EC.5 Percentage gap of policy H when In0 = 0.
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Constant Uniform Exponential Hyper-exponential

L n c s mean max mean max mean max mean max

2 1.0 0.12 0.13 0.35 0.37 0.85 0.89 3.69 3.79

4 2.0 0.10 0.11 0.56 0.61 1.32 1.42 6.74 7.17

10 6 3.0 0.30 0.33 0.75 0.82 1.61 1.81 8.24 9.34

2 1.5 0.17 0.18 0.55 0.57 1.44 1.49 6.28 6.45

4 3.0 0.13 0.14 0.68 0.73 1.85 1.97 9.18 9.74

6 4.5 0.17 0.18 0.65 0.73 1.82 2.04 9.55 10.74

2 1.0 0.06 0.07 0.07 0.07 0.19 0.20 1.41 1.46

4 2.0 0.08 0.08 0.12 0.13 0.28 0.30 2.05 2.19

2 20 6 3.0 0.18 0.19 0.24 0.26 0.38 0.42 2.15 2.41

2 1.5 0.03 0.03 0.05 0.06 0.25 0.27 2.27 2.33

4 3.0 0.01 0.01 0.04 0.05 0.25 0.27 2.72 2.87

6 4.5 0.02 0.02 0.05 0.05 0.19 0.21 2.28 2.54

2 1.0 0.02 0.02 0.03 0.03 0.06 0.07 0.65 0.68

4 2.0 0.09 0.09 0.09 0.09 0.13 0.13 0.84 0.90

30 6 3.0 0.15 0.16 0.19 0.20 0.24 0.25 0.86 0.95

2 1.5 0.00 0.00 0.01 0.01 0.05 0.05 0.98 1.01

4 3.0 0.01 0.01 0.01 0.01 0.04 0.04 0.99 1.05

6 4.5 0.02 0.02 0.03 0.03 0.04 0.04 0.69 0.77

2 1.0 0.05 0.05 0.06 0.08 0.09 0.15 0.32 0.74

4 2.0 0.09 0.10 0.17 0.18 0.21 0.26 0.48 0.92

10 6 3.0 0.28 0.32 0.34 0.38 0.42 0.48 0.80 1.08

2 1.5 0.01 0.04 0.01 0.09 0.02 0.25 0.35 1.29

4 3.0 0.00 0.03 0.02 0.11 0.03 0.29 0.28 1.48

6 4.5 0.04 0.06 0.05 0.11 0.06 0.27 0.20 1.46

2 1.0 0.04 0.04 0.04 0.04 0.05 0.06 0.12 0.22

4 2.0 0.08 0.08 0.10 0.11 0.14 0.15 0.25 0.34

4 20 6 3.0 0.17 0.19 0.22 0.25 0.28 0.32 0.50 0.57

2 1.5 0.01 0.01 0.00 0.01 0.01 0.04 0.00 0.01

4 3.0 0.01 0.01 0.01 0.02 0.02 0.04 0.04 0.40

6 4.5 0.02 0.02 0.03 0.03 0.04 0.05 0.07 0.33

2 1.0 0.02 0.02 0.03 0.03 0.04 0.04 0.07 0.08

4 2.0 0.08 0.09 0.08 0.09 0.12 0.12 0.23 0.21

30 6 3.0 0.13 0.16 0.17 0.20 0.24 0.25 0.39 0.43

2 1.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

4 3.0 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02

6 4.5 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.11
Table EC.6 Mean and maximum percentage gap under policy H.
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Constant Uniform Exponential Hyper-exp

L n c s mean max mean max mean max mean max

2 1.0 0.09 0.10 0.13 0.14 0.28 0.31 0.92 1.01

4 2.0 0.26 0.27 0.36 0.39 0.89 0.97 4.42 4.82

10 6 3.0 0.29 0.31 0.64 0.71 1.79 2.00 10.96 12.53

2 1.5 0.15 0.16 0.34 0.35 0.91 0.93 3.74 3.82

4 3.0 0.26 0.28 0.49 0.53 1.46 1.55 7.18 7.54

6 4.5 0.17 0.18 0.56 0.63 2.00 2.22 12.41 13.73

2 1.0 0.03 0.03 0.03 0.03 0.06 0.06 0.32 0.35

4 2.0 0.09 0.10 0.10 0.10 0.18 0.18 1.22 1.33

2 20 6 3.0 0.22 0.24 0.23 0.24 0.38 0.42 2.67 2.99

2 1.5 0.01 0.01 0.03 0.03 0.13 0.14 1.25 1.28

4 3.0 0.02 0.02 0.03 0.03 0.16 0.17 1.97 2.06

6 4.5 0.05 0.06 0.04 0.04 0.19 0.21 2.81 3.08

2 1.0 0.02 0.02 0.03 0.03 0.03 0.03 0.13 0.15

4 2.0 0.08 0.08 0.08 0.08 0.10 0.11 0.49 0.53

30 6 3.0 0.16 0.17 0.18 0.19 0.24 0.25 1.02 1.13

2 1.5 0.00 0.00 0.01 0.01 0.02 0.03 0.49 0.50

4 3.0 0.02 0.02 0.01 0.01 0.03 0.03 0.67 0.71

6 4.5 0.03 0.03 0.02 0.02 0.04 0.04 0.85 0.93

2 1.0 0.08 0.08 0.08 0.09 0.14 0.20 0.38 0.78

4 2.0 0.13 0.14 0.15 0.16 0.20 0.25 0.37 0.80

10 6 3.0 0.31 0.34 0.32 0.36 0.44 0.50 1.10 1.35

2 1.5 0.05 0.07 0.04 0.12 0.10 0.32 0.49 1.44

4 3.0 0.02 0.05 0.03 0.11 0.05 0.30 0.24 1.45

6 4.5 0.08 0.09 0.04 0.10 0.07 0.28 0.42 1.62

2 1.0 0.03 0.03 0.04 0.04 0.06 0.07 0.25 0.34

4 2.0 0.09 0.09 0.10 0.11 0.13 0.14 0.25 0.32

4 20 6 3.0 0.21 0.23 0.21 0.24 0.28 0.32 0.55 0.65

2 1.5 0.00 0.01 0.02 0.02 0.04 0.07 0.22 0.51

4 3.0 0.01 0.01 0.02 0.02 0.02 0.05 0.07 0.43

6 4.5 0.05 0.05 0.03 0.03 0.04 0.05 0.11 0.36

2 1.0 0.02 0.02 0.03 0.03 0.04 0.05 0.15 0.16

4 2.0 0.07 0.08 0.08 0.08 0.11 0.11 0.19 0.20

30 6 3.0 0.15 0.17 0.17 0.19 0.24 0.25 0.46 0.47

2 1.5 0.00 0.00 0.01 0.01 0.02 0.02 0.08 0.22

4 3.0 0.02 0.02 0.01 0.01 0.02 0.02 0.04 0.12

6 4.5 0.03 0.03 0.02 0.02 0.03 0.03 0.06 0.12
Table EC.7 The mean and maximum percentage gap for policy ?.
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Constant Uniform Exponential Hyper-exp

n c θ mean max mean max mean max mean max

2 1 0.33 1.45 0.67 2.19 0.80 2.97 1.48 5.89

4 1 3.06 4.14 4.19 5.44 5.79 7.27 12.15 14.08

5 6 1 1.08 1.58 1.30 1.82 2.05 2.71 5.39 7.52

2 4 0.36 4.10 0.50 5.52 0.60 7.41 1.25 13.73

4 4 1.75 3.70 2.54 4.88 3.86 7.15 8.73 16.10

6 4 3.12 5.28 3.74 5.82 5.74 8.75 13.30 19.70

2 1 0.47 1.20 0.52 1.45 0.62 1.94 0.96 3.74

4 1 1.83 2.47 2.79 3.66 3.64 4.78 7.45 9.14

10 6 1 0.84 1.45 0.79 1.12 1.03 1.46 2.66 3.90

2 4 0.50 3.11 0.47 3.69 0.50 4.88 0.81 9.08

4 4 0.90 2.13 1.44 3.01 1.98 4.06 4.92 8.92

6 4 2.05 3.42 2.18 3.64 2.99 4.97 7.04 10.83

2 1 0.28 0.73 0.44 1.00 0.50 1.30 0.68 2.36

4 1 1.59 1.99 1.93 2.44 2.46 3.19 4.48 5.86

20 6 1 0.44 2.00 0.53 1.71 0.64 1.34 1.23 1.83

2 4 0.39 2.00 0.50 2.55 0.50 3.28 0.61 5.81

4 4 0.79 1.98 0.97 2.01 1.21 2.61 2.46 4.91

6 4 1.07 2.12 1.38 2.41 1.76 3.12 3.53 5.91

2 1 0.31 0.64 0.39 0.81 0.45 1.02 0.47 1.58

4 1 1.14 1.41 1.60 1.98 1.97 2.52 3.78 4.59

30 6 1 0.41 2.41 0.42 2.12 0.55 1.72 0.96 1.31

2 4 0.45 1.68 0.48 2.05 0.52 2.59 0.57 5.32

4 4 0.56 2.35 0.79 2.10 1.01 2.05 1.89 3.65

6 4 0.92 2.52 1.04 2.25 1.35 2.45 2.58 4.36
Table EC.8 Mean and maximum percentage gap for policy RH under the LIFO issuing rule for L= 4.
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Policy L c s Unif(25,35) Unif(20,40) Norm(30,52) Norm(30,102) Exp(1/30)

2 1.0 3.02 6.84 4.87 10.12 20.72

4 2.0 2.41 5.65 3.75 7.64 8.55

2 6 3.0 1.54 3.81 2.30 4.52 0.86

2 1.5 3.04 6.88 4.92 10.34 26.75

4 3.0 2.45 5.74 3.81 7.94 18.17

6 4.5 1.57 3.88 2.35 4.81 11.90

f 2 1.0 3.02 6.84 4.87 10.69 27.48

4 2.0 2.41 5.65 3.75 8.52 19.06

4 6 3.0 1.54 3.81 2.30 5.57 8.98

2 1.5 3.04 6.88 4.92 10.78 28.89

4 3.0 2.45 5.74 3.82 8.65 21.03

6 4.5 1.57 3.88 2.35 5.67 10.77

2 1.0 0.00 0.01 0.03 0.22 8.57

4 2.0 0.04 0.06 0.06 0.32 19.47

2 6 3.0 0.11 0.18 0.13 0.61 35.05

2 1.5 0.00 0.00 0.00 0.33 15.10

4 3.0 0.01 0.01 0.01 0.39 27.05

6 4.5 0.02 0.02 0.01 0.54 40.69

H 2 1.0 0.00 0.01 0.03 0.05 1.73

4 2.0 0.04 0.06 0.06 0.13 2.33

4 6 3.0 0.11 0.18 0.13 0.32 2.81

2 1.5 0.00 0.00 0.00 0.01 3.07

4 3.0 0.01 0.01 0.01 0.02 3.67

6 4.5 0.02 0.02 0.01 0.04 3.32
Table EC.9 Percentage gap for policies f and H (with general demand distribution).


