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We study customer service chat (CSC) systems with generally distributed service and patience times by
developing measure-valued processes to model and analyze the system dynamics. We first prove that these
processes are tight in the many-server asymptotic regime and then show that their limits satisfy a set of
fluid model equations. We then establish the invariant states of these limits and use these invariant states
to obtain (non-asymptotic) approximations for various performance metrics of CSC systems in the steady
state. We also demonstrate the accuracy of these approximations using extensive numerical experiments.
These approximations allow us to establish the impact of service and patience time distributions on the

system performance and to devise effective dynamic routing policies.
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1. Introduction

Customer service chat (CSC) systems have become an integral part of effective customer service.
As much as 40% of customer contact centers now provide service through chat, see ICMI (2013)
and International (2011]). One of the reasons behind CSC systems’ popularity is their efficiency: a
chat agent can serve multiple customers simultaneously, whereas a call-center agent can only serve
one customer at a time (see Tezcan and Zhang| (2014)) for more details). However, as an agent tries
to chat simultaneously with more customers, the service speed will diminish along with the quality
of service provided. This novel trade-off introduces new challenges in making operational decisions
(which are well studied in other service systems), especially for staffing decisions (i.e., the number
of agents scheduled to provide service) and the routing decisions (i.e., how to dynamically match
arriving customers with available agents). Another distinct challenge in CSC systems concerns the

maximum number of customers an agent should be allowed to handle at any one time. In this paper



we further explore how to make these decisions effectively in view of this trade-off by building on
the earlier work in [Tezcan and Zhang (2014).

Tezcan and Zhang (2014) studied the optimal routing and staffing in CSC systems to minimize
the staffing costs while keeping the abandonment probability below a certain threshold under
the assumption that service and abandonment times are exponential. Similar problems have been
studied extensively for call center systems where customers are impatient and will abandon the
system from the queue if their request is not handled in a timely manner, see Gans et al.| (2003]).
However, unlike call center systems, abandonment during service should be taken into account
in CSC systems when making operational decisions because with increased multitasking an agent
becomes less and less responsive.

By explicitly modelling customer abandonment during service, |Tezcan and Zhang| (2014]) estab-
lished two important results. First, they showed that it may be optimal to avoid having agents at
leveldT] that satisfy certain conditions, referred to as inefficient levels. In other words, surprisingly
it is not always optimal to serve customers at the lowest possible level. (This is true, for example,
when the total service rate is concave in a certain sense as a function of level, see equation (5)
in Tezcan and Zhang (2014).) However agents’ levels change dynamically when customers leave
service or new customers are assigned to them. Hence they also provided routing policies that avoid
having agents working at inefficient levels in an optimal way in the long run. However they assumed
throughout their analysis that service and patience times follow exponential distributions, which is
unlikely to hold in practice, for analytical tractability and our numerical simulations (see show
that the actual distributions of service and patience times (beyond their first two moments) have
a significant impact on the system performance in steady state.

The main goal of this paper is to provide closed-form approximations for various performance
measures, such as the steady-state abandonment probability and the expected time in system, for
CSC systems with general service and patience time distributions. We assume that routing decisions
are made using the policy Tezcan and Zhang| (2014) proposed in cases where the arrival rate is
not known precisely. The main goal of this policy is to avoid having agents at “inefficient” levels
but it is not clear how the concepts of efficient and inefficient levels can even be extended to the
case with general distributions. Also, a straightforward extension of the definitions in [Tezcan and
Zhang| (2014) is not possible because their definitions use the exponential distribution assumption
explicitly.

We begin our analysis by formulating an adaptation of the static planning linear program-
ming (LP) in Tezcan and Zhang (2014)), which they used to identify efficient and inefficient levels, to

! We use the term “level i to refer to the activity (or task) of helping i customers at the same time, and an agent is
said to be at level i if that agent is chatting with i customers.



the current case. However, to formulate this program we need to estimate the system performance
and it is not clear how this can be done even if we were to ignore the routing problem. Therefore we
propose a surprisingly simple and novel approximation method for system performance. We use the
solution of this program to provide general definitions for efficiency and then apply the dynamic
routing policy in [Tezcan and Zhang| (2014) with these definitions. We verify the accuracy of the
proposed approximations and hence the validity of our definitions of efficient and inefficient levels
in two ways: i) we show that our approximations are asymptotically accurate in certain situations
by proving that the invariant state of a many-server fluid limit of a queueing system that is similar
to the CSC model coincides with our approximations, and ii) we carry out extensive numerical
experiments and show that our approximations are highly accurate (for example, our approxima-
tions for the abandonment probability are generally within 5% of the simulation results). We also
demonstrate that the system performance can be improved significantly by applying the dynamic
routing policy in [Tezcan and Zhang (2014) (and also demonstrate that this policy avoids having
agents at inefficient levels) relative to a commonly used policy that sends customers to one of the
least-busy agents.

Technical contributions: A CSC system is essentially a many-server limited processor-sharing
queue. Each agent in the server pool is a processor-sharing server who can serve up to I customers
simultaneously and the service speed varies with the number of customers the agent is chatting
with. Queues with a single processor-sharing server have been studied (Gromoll et al.[2002} Puha
and Williams| 2004, Zhang et al. 2009) using measure-valued processes and a similar modeling
approach is also used in analyzing many-server queues with general distributions, see (Zhang 2013,
Long and Zhang|2014)). We take a similar modeling approach to these papers and use measure-
valued processes to keep track of the system state.

Our analysis, however, is significantly different from these papers because of the inherent dif-
ference of CSC systems from processor-sharing and many-server systems. In a standard processer-
sharing system, all customers are served by a single server or by a pool of servers whose service
capacity can be divided equally among all customers. Hence all customers in service are served at
the same rate. In many-server queues each agent can only serve one customer at a time. Therefore,
there is no need to keep track of the number of agents at each level in these systems because one can
identify the level of servers from the number of customers in service. On the other hand, a server
can be operating at any level (up to a limit) in a CSC system and service completions and new
arrivals will change the level of servers dynamically. Therefore a more extensive state descriptor
than those used in (Gromoll et al. 2002, [Puha and Williams| 2004, |Zhang et al.|2009) and (Zhang
2013|, lLong and Zhang|2014)) is needed.



In our analysis of CSC systems, we first demonstrate that CSC systems can be approximated by
a simpler system where the dependence among customers who are assigned to the same server is
removed unequivocally. Then we define a measure-valued process that keeps track of the remaining
service and patience times of customers in service. (The analysis of the buffer follows Zhang (2013])
closely.) Then we show that as the number of servers and the arrival rate go to infinity, the fluid
scaled version of this process is tight and every limit satisfies a set of fluid model equations.
We then identify invariant states of these fluid models and show that our approximations are
asymptotically accurate. Using these results we show that the steady-state behavior of the fluid
model of our CSC system depends on the entire distributions of service and patience times and
unlike G/GI/N + GI queues, see [Whitt| (2006]), even the steady-state abandonment probability
depends on both distributions.

Summary of contributions: The main contributions of this paper can be summarized as
follows. i) We extend the definition of efficient and inefficient levels to CSC systems with general
distributions; ii) we provide closed-form approximations for various performance measures and
show that the entire service and patience time distributions affect the performance of these systems;
iii) we provide analytical support for the accuracy of the proposed approximations by showing that
they match the invariant state of the measure-valued fluid limit of a similar system; and iv) we
verify the accuracy of proposed approximations and support the concept of efficient and inefficient

levels using simulation experiments for systems with various sizes and distributions.

1.1. Literature Review

The analysis of many-server and processor-sharing systems is challenging when the service/patience
time distributions are general. The CSC system combines both, making the analysis even more
difficult. For the processor-sharing (PS) systems, a sequence of works Gromoll et al. (2002)), Gromoll
(2004), [Puha and Williams| (2004)) developed a framework of using measure-valued processes to
obtain both the fluid and diffusion approximations. The framework was extended to the limited
processor-sharing (LPS) systems by Zhang and Zwart| (2008), |Zhang et al.| (2009, 2011)). |Gromoll
et al. (2008) studied a PS model with abandonment during service, which is similar to each of the
servers in our model. All of the above mentioned works are only for a single PS (or LPS) server.
For many-server systems where servers do not multi-task, Whitt| (2006) proposed an innovative
way of modeling together with a fluid limit. The invariant state of the fluid limit provides fairly
accurate approximations for various performance metrics when the system is overloaded. The fluid
limit was rigorously proven to serve as the fluid approximation in the many-server heavy traffic
regime by [Zhang| (2013)) using measure-valued processes. |[Long and Zhang) (2014) proved that the

fluid limit (which is a deterministic dynamic system) converges to the invariant state as time goes



to infinite. It is clear in the literature that the invariant state of a fluid model provides an insightful
approximation for the steady state of the original system. |Bassamboo and Randhawa, (2010) and
Bassamboo et al.| (2010]) showed additional evidence that such fluid approximations yield accurate
approximations to the underlying queueing system. Recently, Bassamboo and Randhawa| (2016)
used such an approximation to estimate patience levels and dynamically prioritize customers based
on their time in the system in order to optimize any given system performance metric. Our work
follows this line of research by proposing a fluid model to capture the system dynamics and study
the invariant states of the fluid model.

This paper is part of our continuing effort to understand the CSC systems. In [Luo and Zhang
(2013)), CSC systems without abandonment were analyzed under a fairly simple routing policy with
new arrivals assigned to one of the least-busy agents. Later [Tezcan and Zhang) (2014)) analyzed
CSC systems with abandonment. A routing policy based on a linear programming was proposed
and shown to be asymptotically optimal in terms of minimizing the abandonment probability. The
routing policy, jointly with an LP-based staffing policy, was shown to minimize the required staffing
level while keeping the abandonment probability below a desired level for high arrival rates. Both
of the previous works heavily relied on the assumption of exponential distributions. This work aims
to extend [Tezcan and Zhang] (2014)) to generally distributed service and patience times.

The rest of this paper is organized as follows. §2|describes the system dynamics of the CSC system
and presents the concept of efficient and inefficient levels based on a static planning problem and its
optimal solution. We also present an effective routing policy that does not require knowledge of the
exact external arrival rate. §3| proposes a framework involving measure-valued processes to model
the system dynamics. The corresponding fluid model and the fluid approximation are presented
in §4 The invariant state of the fluid model is analyzed in We establish approximations for
various performance metrics of the CSC system based on the invariant state of the fluid model
in §6] We demonstrate the effectiveness of the approximations in §7 and conclude in Finally,

technical proofs and detailed simulation results are collected in the appendices.

2. Queueing Model and Preliminary Results

In this section we first introduce the queueing model and then present preliminary results that are
fundamental to our analysis. We also review the results from our previous work [Tezcan and Zhang
(2014)) that we need in the current context and highlight the additional complexity induced by

non-exponential distributions.

2.1. System Dynamics

Consider a CSC model where customers arrive at the system according to a renewal process A(t)

with rate A to seek service from a pool of N agents. Agents provide service by chatting with the



customers who are in the system and each agent may serve up to I customers simultaneously ﬂ
If all agents are busy serving I customers, arriving customers will join the queue and be served
according to the first-come-first-served (FCFS) discipline. We assume that agents work in a “non-
idling” fashion: if they finish serving a customer and the queue is nonempty, they will start serving
the next customer at the head of the queue. Therefore customers wait in queue only when all agents
are entirely busy, i.e., at level 1.

The operation of a chat system is quite complex. It involves sending messages back and forth
between an agent and the customers assigned to that agent and it takes a random number of
messages to complete the service of a customer. However, modeling the details of how a chat session
actually proceeds is challenging and provides very little insight on how these systems should be
managed. Instead, following the models in (Luo and Zhang| [2013, [Tezcan and Zhang|2014)), we
assume that an agent serves all customers assigned to him or her simultaneously at a rate that
depends on the number of assigned customers. Let p; denote the rate at which each customer
receives service from an agent serving i customers simultaneously, i = 1,2,...,I, and [(s) denote the

level a specific customer is served at time s. Then the cumulative amount of service this customer

T+t
/ ,ul(s)ds. (1)

The service of a customer is completed once the cumulative amount of service that the customer

receives from 7 to 7+ ¢ is

receives exceeds his or her service time V', which is assumed to be a random variable with distri-
bution G.

Customers may abandon CSC systems while waiting in queue or during service. The abandon-
ment in queue is modeled in the same way as in call center applications; each customer has a
limited patience time following distribution F| for waiting in queue, and abandons the queue once
the time the customer has been waiting exceeds his or her patience time (see e.g., Garnett et al.
(2002), |Gans et al.| (2003)), Aksin et al. (2007), Reed and Ward, (2008), Tezcan and Behzad| (2012)
for similar models). In a similar manner, we assume that customers have a limited patience for
their service to be completed and we use F' to denote its distribution. To illustrate how customers
abandon during service, suppose a customer starts receiving service at time 7 and is willing to wait
U amount of time (i.e., his or her patience time during service) for service to be completed. The

customer’s service will be completed successfully if

T4+U
/ Hisyds > V.

Otherwise, the customer abandons the system during service at time 7+ U.

2 We assume I is exogenous for now. We discuss how to choose it optimally below.



We assume customers’ service times, patience times for waiting, and patience times during service
are mutually independent and follow the distributions G, F,, and F, respectively, for analytical
tractability. To avoid subtle technical issues, we assume that all of the distribution functions are
absolutely continuous and Fj, is strictly increasing. Without loss of generality, we rescale the time

by normalizing the mean service time to 1, i.e.,

/000[1 Gla)de = 1. )

Naturally, the amount of service each customer receives per unit time from an agent decreases

as the agent chats with more customers. Therefore we assume that
1> o > > Ug. (3)

Next we introduce the notation used throughout the paper. Define

Vv .
T,=—ANU, i=1,...,1. (4)
122
The random variable T; is the time a customer spends in service if that customer always receives

service from an agent at level i. Also we set

1 ~
and di = Y:O[Z‘. (5)

Here d; is the total rate (per unit time) that customers depart (by service completion or abandon-
ment during service) from an agent always serving i customers. We define
Ab Vv ‘
P; :IP’<—>U> for each i=1,2,...,1. (6)
i
The term P2’ can be understood as the probability that a customer abandons during service if

the customer is always served by an agent at level 4. It follows directly from and @ that
P < PM<...< P (7)

2.2. Intuitive Explanation for Our Approximation

Our definition of CSC systems is not yet complete as we still need to describe a routing policy
that determines which agent an arriving customer should be routed to (if there is more than one
available agent), and whether a customer should be routed to the queue or to one of the agents
upon arrival. As we explained above, we need to identify efficient and inefficient levels to be able
to use the policy proposed in [Tezcan and Zhang (2014)). However, in order to be able to identify
these levels, we need accurate approximations for system performance and the system performance

depends on the routing policy!



We resolve this dilemma by using a simple (but impractical) routing policy, whose performance
can be approximated by applying existing results, to determine efficient and inefficient levels.
Consider a routing policy that only allows each agent to work only at a predetermined level. To
demonstrate the details, consider a system where agents can serve at most two levels with the
following parameters: the arrival rate is 20 customers per unit time; service rates for levels 1 and 2
are ch =1 and J2 = 3; and the number of servers is N = 10. To be able to meet the demand while
keeping the agents at the lowest possible level we assign five agents to level 1 and five agents to
level 2. If an agent is assigned to level 2 and there is only one customer assigned to that agent we
assume that the service rate is still fixed at u,. Because agents are assumed to be serving customers
at a fixed level, the probability of abandonment during service in steady state can be determined
from the number of servers assigned to each level. (We ignore the abandonment from queue for
now for simplicity.) Specifically, in this case the probability of abandonment can be approximated
by P/"x5/20 + P;'* % 15/20 because in steady state five customers per unit time are routed to level
1 and the rest to level ﬂ This is the approximation we use for abandonment probability in steady
state. In addition we use the performance of agents at each level to determine whether a level is
efficient or not, as will be explained in the next section.

Before we proceed we highlight the need to use a more sophisticated policy than the simple
policy we just explained. First, the exact arrival rate is not known in advance (and it might be time
dependent). Therefore it is not clear how the allocation of servers to different levels can be done in
practice. Second, not allowing servers to change levels freely may degrade the system performance
since the server pool is effectively divided into two smaller independent server pools. However the
steady state of this simple routing scheme can be used for identifying efficient and inefficient levels
because we will show that this steady state is identical in the limit to that of a more sophisticated
routing policy that does not require knowledge of the arrivals rate and allocates agents to levels
efficiently. We next introduce the concept of efficient and inefficient levels and then describe the

routing policy we use.

2.3. Efficient and Inefficient Levels

One of the fundamental results in Tezcan and Zhang] (2014]) is the fact that if agents work at certain
inefficient levels, the system performance may deteriorate. They also developed routing policies
that “avoid” having agents in these levels (asymptotically). The definition of inefficient levels was
motivated by an asymptotic analysis but that analysis does not extend to general distributions,
% The validity of this approximation can be proved using the result for G/GI/N + GI queues in [Whitt| (2006) because

the two queueing systems with separate pool of agents operate as many-server queueing systems where agents work
at a fixed rate.



except in certain trivial cases. However, using our approximations (introduced in the previous

section), we can define the efficiency concept (see §2.3.1)) and motivate the definition of “efficiency”
using a static planning program (see §2.3.2)).
2.3.1. Definition: A level i is said to be inefficient if

A~ ~

d; <dy for some 1 <i' <1, (8)
or if there exist k; and k,, such that 1 <k; <i <k, <1 and
(Plébdkz - Pébdh)dl < (Pkébczkz - PiAbCZi)CZh + (PiAbdi - Plébdh)dkz' (9)

All other levels are referred to as efficient levels. The precise form of these definitions is based on a
static planning problem which we will describe below but for which we give an intuitive explanation
here. By , customers served at level ¢ have a higher abandonment probability during service
than those at level i’ < i. If condition holds, the throughput of an agent working at level ¢ is also
lower than that of an agent at level ¢’. Thus, it is not desirable to have any agents work at level i.
The intuition behind @ is more intricate and is based on the fact that if @ holds, allocating an
agent to levels k; and k, for a certain amount of time will result in a higher throughput and a lower
probability of abandonment than having that agent serve customers at level ¢ that is in between
these two levels.

The definition of efficiency for levels 1 and I is slightly different and obviously condition @D
cannot be checked for levels 1 and I and condition cannot be checked for level 1. Level 1 is said
to be efficient if pu; > p; for all i =1,..., N, which holds by assumption . If level 1 is inefficient
then it is more efficient to have agents at level 2 or above because then the abandonment rate does

not increase but the service rate does. On the other hand, level I is efficient if
(1-PM)d;>(1-P*)d;, foralli=1,...,I. (10)

(Note that implies that cannot hold for ¢ = I by ) Intuitively, implies that the
departure rate due to completion of service by an agent working at the maximum level I should be
higher than that for any other level. In fact, we show in Lemma that if does not hold, it
is not optimal to use level I, under the assumption that our approximations are exact and we use a
non-idling policy in the sense that agents continue accepting customers up to level I (see |Legrosa
and Jouinib| (2018) for the case when this decision is made dynamically). Hence if does not
hold, it is optimal to have customers wait in queue instead of having them served by an agent at
level I and we can restrict the maximum level to I — 1. If is still invalid for level I — 1, we
will keep reducing the maximum level by 1 until is valid for a level, which will then be set as
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the maximum level of the CSC system. Thus we assume that level [ is efficient for the rest of the
paper. We highlight the fact that gives a simple condition that can be used to determine the
mazimum number of customers an agent should simultaneously serve. For notational simplicity
we denote the set of efficient levels by % = {iy,1s,...,i;} where J is the total number of efficient

levels and 7; <1y < ...<1y. Note that we have ¢, =1 and i; =1.

2.3.2. Static Planning Problem We motivate the definition of efficient levels based on the
solution of a static planning problem for CSC systems, which we describe next. We will later also
demonstrate numerically that having agents at inefficient levels decreases system performance. In
addition, we use the solution of the static planning problem to identify the invariant state of the
fluid models.

Static planning problems are used as a standard initial step to analyze complex queueing net-
works, see for example Williams) (1998]) and Harrison! (2000)). The goal of a static planning program
is to gain insight into how best to allocate resources to different tasks in the long run. We next
present the static planning program discussed in Tezcan and Zhang (2014). The only difference
between our formulation and that in Tezcan and Zhang (2014) is the fact that we use approxima-
tions for the PA* we discussed above. For fixed A and N, consider

I
> AP+ A (11)
=1

min
{A;>0, i=1,...,[+1}

I

st Y 2 <N, (12)
i=1

I+1

d A=A (13)

Intuitively A; represents the rate at which customers are served by agents at level ¢ in the long run
for 1 <¢<1I and A;;; can be viewed as the rate at which customers abandon from queue. Thus,
the objective in is to minimize the abandonment rate by choosing appropriate \;’s. Constraint
states that \;’s must be chosen so that the number of required agents (based on Little’s law)
does not exceed the capacity V. Constraint implies that all arriving customers must depart
from the system.

The following result, which extends Lemma 1 in Tezcan and Zhang| (2014)) to general service and

patience times, establishes the reason we defined efficient levels as in and @D

Lemma 1. (i) If A< le, an optimal solution of the routing LP is given by

Al=A, and X\ =0 fori>1.
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(i) If A\ > d;N, an optimal solution of the routing LP is given by
N;=d;N, N;,, =A—d;N, and \; =0 fori<1I.

(iii) If diN <A< d;N, an optimal solution of the routing LP is given by

d« . dy+ .
A;:%(dﬁ N—A), AL :A—A;_:%(A—diw), (14)
AR 1 Y
where
o ::min{z’:cziz)\/N, ieﬁ‘}. (15)

and X; =0 fori#i3,i7,, ]

The proof is similar to that in Tezcan and Zhang| (2014)) and we just need to verify that certain
properties of efficient levels still hold under general distributions, see §EC.I] for details. For the
rest of the paper, we refer to those levels that have positive arrival rates in the optimal solution
as basic levels. Lemma [I| shows that if a level is inefficient, then it is suboptimal to have agents
working at this level in the long run and agents should serve customers only at efficient levels. This
result motivates our definition of efficient and inefficient levels. Also, by Lemma (iii), if there is
more than one basic level, these basic levels must be two consecutive efficient levels. This follows
from the fact that as agents serve fewer customers at efficient levels, the abandonment probability
decreases. Hence it is optimal to keep agents at the lowest indexed efficient levels while making
sure that the system has enough capacity to serve all customers, when possible. In the next section,

we will describe a routing policy that allocates agents among different levels in an optimal way.

Remark 1 (Exponential service and patience times). When service and patience times are
exponentially distributed, the definition of inefficiency can be stated in a much simpler form. To
demonstrate, assume that V' and U are independent and follow exponential distributions with rates
1 and v, respectively. By (f]) and (), d; =i(p; +v) and PA* = v/ (p; +v). Hence, PA%d; = iv. Thus
@ simplifies to

- ko —1i - i—ky

d, < d
= ky —ky k1+k:2—k:1

This is equivalent to condition (5) in Tezcan and Zhang (2014). With a little algebra, it can be

dy,.- (16)

checked that the abandonment rate v does not play a role in in determining the efficiency of
a level in the exponential case unlike in the case with general distributions where P/* depends on

the entire distribution of patience times during service.

4 The optimal solution in is well defined because we have cfi;H > afi; by Lemma [EC.1
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2.4. Routing Policy

The static planning problem provides insights into how agents should be allocated to different
levels in the long run. However, it is not clear how this can be accomplished dynamically by routing
arriving customers to available agents. Assuming that service and patience times are exponentially
distributed, [Tezcan and Zhang| (2014)) studied this problem and devised novel routing policies that
were shown to be asymptotically optimal in terms of minimizing the steady-state probability of
abandonment. We focus on one of the policies proposed in | Tezcan and Zhang (2014)) that does not
require knowledge of the exact arrival rate. Other policies studied in Tezcan and Zhang| (2014) can
be similarly analyzed once the efficient and inefficient levels are identified.

Consider the following policy. Let i denote the index of the lowest indexed non-empty (i.e. there
are agents working at that level) level and i; denote the index of the efficient level with the highest

index below 7 or set ¢; =1 if ¢ is efficient. Denote by

all of the inefficient levels strictly between the two efficient levels i; and ¢;,,. The proposed policy
routes a new arrival as follows:

e If i =0, route the customer to an agent at level 0.

e If 1 <i < I, route the customer to an agent at the highest non-empty level in {i;} U%; =
{ij,... ij41 — 1}

e If =1, the customer has to join the queue.

We denote this policy by 7. The lack of dependence on the arrival rate makes this policy fairly
robust and easy to implement. The intuition behind this policy is to force agents away from levels
in %;, to efficient levels, see Tezcan and Zhang| (2014)) for more details. Also if %, = () (equivalently
ij+1=1;41), for all i; € Z, ie., all levels are efficient, then this policy reduces to the lightest-
load-first policy (i.e., customers are routed to one of the least busy agents) in |[Luo and Zhang
(2013).

We will later show that this policy achieves the optimal allocations of arrivals identified by the
static planning problem in the fluid limits. However we are not able to extend the asymptotic
optimality of 7 established in Tezcan and Zhang (2014) for exponential service and patience time
distributions. This is mainly due to the difficulty in analyzing the asymptotic behavior of the

underlying fluid model as t goes to infinity.

3. Model Formulation

In this section, we present an asymptotic analysis of CSC systems in the many-server regime.

We use a measure-valued state descriptor to model CSC systems as a Markovian process because
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using the standard head count processes (as commonly done in traditional queueing theory under
Markovian assumptions) is not sufficient with general distributions. We use a measure that keeps
track of the remaining service and patience times of each customer in the system following the
previous work on many-server systems, similar to Zhang| (2013]), Gromoll et al. (2002) and |Gromoll
(2004). However, even such a state space descriptor is not rich enough because customers who are
served by the same agent also move between levels together when the agent finishes serving one of
the customers or is assigned a new customer. Yet modeling this in detail does not yield insightful
results and removing the connection among customers does not result in a huge information loss,

hence we make the following simplifying assumption.

Assumption 1 (A Modified System). Assume that each agent moving from level i to level i —1
causes 1 — 1 randomly selected customers to leave level i and join level i — 1; and each agent
moving from level i — 1 to level i causes i — 1 randomly selected customers to leave level i — 1

and join level 1.

Clearly the queueing model under Assumption [I] is not identical to the underlying chat service
system. We believe, however, that the queueing model under this assumption is very similar to
the original CSC system for two reasons: i) When service and patience times are exponential, the
modified and the original systems are equivalent in distribution due to the memoryless property;
and ii) for general distributions these two systems perform almost identically in terms of various
performance metrics in various numerical experiments (for example, the difference in the steady-
state abandonment probability is less than 10~* on average across in a variety of scenarios, see
for details). For the rest of this paper, our analysis will focus on the modified system without

any further mention.

3.1. Measure-valued Process

Let £;(t) denote a measure describing the status of all the customers who are currently served by
level i (for i > 1) agents at time ¢. More precisely, set C,, x C,, = (x,00) X (y,00). Then L;(t)(C, x C,),
x,y > 0, denotes the number of customers with remaining service time larger than x and remaining
patience time during service larger than y. (In general, we can use a Borel set B C R? instead of

C, x C,.) From the definition, we have
Li(O(R2) = iZi(t), (18)

where Z;(t) is the number of agents at level ¢ at time ¢, for i =1, ..., I. The number of idle (level 0)

servers is given simply by

Zo(t) =N = 5" Z(t) (19)
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as there are N agents in total.

If all agents are completely occupied, i.e., they are at level I, arrivals must wait in the queue and
will be served later according to the FCFS discipline. When there are customers in the queue, the
system dynamics will become exactly the same as call center models if we view the pool as - N
agents. To capture the dynamics of customers waiting in queue we use a virtual buffer as in |[Zhang
(2013). The idea behind the virtual buffer is to keep customers in the queue until it is their turn
for service even when their patience is exhausted. Specifically, when an agent becomes available,
the customer who has been waiting in the queue for the longest is admitted to service if his or
her remaining patience time is non-negative; otherwise that customer abandons the system. This
process is repeated until a customer with positive remaining patience time is identified or until all
customers have abandoned the queue. Working with the virtual buffer simplifies the analysis and
the actual queue can easily be recovered from this process as we explain next.

Set C, = (x,00) and let R(t)(C,), x € R, denote the number of customers in the queue with
remaining patience time for waiting larger than x at time ¢. Then the number of customers in the
actual queue can be expressed as Q(t) = R(t)(Cy). Clearly the following non-idling constraint must

be satisfied at any time ¢ >0,
Q(t)(N — Z;(t)) =0. (20)

3.2. Dynamics of the Modified System

To present the dynamic equations that govern the evolution of the system under Assumption [1} we

introduce an operator, X', on measures. Let X = Zi’_ O¢v. u.) Where &, ..y denote the Dirac point
j=1 (j7 j) (]’ ])

measure at (v;,u;) € R%. We use ®* for k£ < .J to denote a random selection operator defined by

k

(I)k()() = Z(S(Uji’uji)’ (21>

i=1
where the set of indices {ji,...,jx} are chosen randomly from {1,...,J}.

Server Pool: Assume that customers arrive according to the renewal process A(-) with rate A.
For each i =1,...,1, let A;(t) denote the number of “arrivals” to level i, that is, those customers
whose service commences at level ¢ by time ¢. For levels 1 to I — 1, these are those customers
who, at the time of their arrival, were routed to an agent at level ¢ — 1 and so matched with ¢ — 1
customers at level ¢ — 1. For level I, A;(t) captures not only the customers who were routed to an
agent at level I — 1 but also those customers who commenced service at level I after waiting in
the queue upon a departure from level I. Also, let S;(t) denote the number of customers who have
departed the system (due to either service completion or abandonment during service) from level 4

by time t.
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Let 7, ; denote the time of the jth arrival at level i, and v;; and u,;; denote the service and
patience times of this arrival, respectively. We use M;;_; to denote the number of times agents
go to level i — 1 from level i, and similarly M,_;; to denote the number of times agents go to
level i from level 7 — 1. For notational simplicity, we set My _1 =M_1 0= M 1+1 =M1, =0. The

measure-valued process £;(+) satisfies the following stochastic dynamic equation:
t
Li(t)(Cr x Cy) = Li(0)(Coppyt X Cype) / 7 (Li(5)) (Cotpya—s) X Cyems)AMi i1 (5)
0

t
+/ D' (Li1(8)) (Cappyt—s) X Cyyr—s)dM; 1 ;(5)
0
Aq(?)
T Z Lo j>atis(t=rig) i y>y+t—7i 5} %)

j=1

t
+ / B (L001(5)) (Coe(r—sy X Copr—s)AMi 1 1(5)
0

t
—/ D (Li(5)) (Cotpyt—s) X Cyit—s)dMi11(s)
0

for any x,y >0 and i =1,..., I, where we use the convention that ®° (X') =0, with 0 denoting the
zero measure. The first term on the right-hand side of captures the influence from the initial
state. In order for a customer at level ¢ at time 0 to be still at level ¢ at time ¢ and with their
remaining service and patience times to be larger than x and y, respectively, his or her remaining
service and patience times at time 0 must be larger than = 4 p;t and y+t¢, respectively. The second
term captures the fact that an agent moving from level i to level ¢ — 1 causes i — 1 randomly selected
customers to leave level 7, so we have to remove ¢ — 1 customers from this level using the random
selection operator ®*~!. The third and fourth terms captures the impact of customers routed to
level ¢ — 1. Each customer who is routed to level ¢ — 1 brings ¢ — 1 customers from level ¢ — 1 to
level ¢ in addition to himself. These customers are accounted for in the third term. Also if there
are customers in the queue when a service is completed, the customer at the head of the queue will
be immediately served at level I, without changing the state of the agent to which the customer is
assigned. Similar to the second and the third terms, each agent moving from level i + 1 to level ¢
will cause i customers to move from level i + 1 to level i, which is described in the fifth term;
and each agent moving from level ¢ to level ¢ + 1 will cause 7 customers to leave level i, which is
described in the last term in .
The processes M, ;_y and M,_;; satisfy

Jo Liats—=0ydSi(s), i=1,
M'L'i— t == 0 2
1) {Si(t), i=1,...,1—1, (23)
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The two equations above follow from the fact that once a customer ends a chat with an agent at
level i for i € {1,...,1 — 1} and leaves the system, that agent goes to level i — 1. Similarly, once
a customer is assigned to an agent at level i for i € {0,1,...,1 — 2}, the agent goes to level i+ 1.
However, this is not true for a customer leaving from level I: after a customer departs from level I,
an agent at level I goes to level I — 1 only if the queue is empty; otherwise that agent remains at
level 1. Similarly a customer can be assigned to an agent at level I — 1 only if not all agents are at

level I. It can be seen from and that
Mi,ifl(t) _Mifl,i(t) :Sl(t) —Al(t) for all 7 = ].,...,I. (25)

From the above discussion, we also have the following balance equation for the number of agents

at each level:

where we assume Sy = Ag = S;.1 = A;,1 =0 to omit a separate discussion for levels 0 and I. For
notational simplicity, we assume that those customers who are initially present in the system have
been there for a certain bounded amount of time. We also assume that the actual service and
patience times (in queue and in service) of customers who are in the system at time zero have the
same distributions as other customers.

Buffer: Let R(t) =R(t)(R) denote the total number of customers in the virtual buffer. Initially,
there are R(0) customers in the virtual buffer. Index them by j = —R(0)+1,...,0 according to
their arrival time a;, which is a negative number indicating how long the jth customer had been
there by time 0. Similarly, index the newly arrivals on the time interval (0,¢] by j =1,2,...,A(t) in
the order of arrival with a; being the jth arrival time. For both customers initially in the virtual
buffer and those who are newly arrivals, let u] be the patience time for waiting of the jth customer.

Define
B(t) = A(t) — R(t). (27)

It is clear that at time ¢ the index of the head-of-the-line customer in the virtual buffer is B(t) + 1.
Moreover, B(t) — B(s) can be viewed as the number of customers who leave the virtual buffer and
is about to be admitted into service during time interval (s,t].

Denote by ~; the time when the jth customer starts service for all j > —R(0) + 1. Note that the

Jjth customer enters service only if v; — a; is less than the patience time uf. Then

(t)
R(t)(cw) = Z ]l{ug>a:+t7a]-} (28)

J=B()+1
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for any x € R. And the cumulative number of customers who have entered service can be written

as

B(t) I
E(t) = Z ]l{u?>'yj—aj} = Z Az(t)7 (29)
J=—R(0)+1 i=1

where the second equality follows from the fact that customers who enter service will commence
their service at a certain level. The abandonment process, D(t), can be recovered from the following

balance equation of the physical queue:

Q(t) = Q(0) + A(t) — D(t) — E(b). (30)
Departure process: Similar to how captures the system dynamics, the following equation
determines how the departure process S; from level 7, i=1,...,1, evolves. Define the set
Az, y)={(2",y) € ]R2+ ' <zory <y}=(C,xC,)". (31)
Then

S(0) = L0 (At ) = [ 7 (£:(6)) (Als(t = 3), = )My 15

t
+/ D (Lia(s)) (A(pi(t — 5),t = 8))dM; 1 i(s)
0
Ay (t)
+ Z Lws j<pitt—ri ) or ws j<t—mi 5} .

j=1

+ / B (Lia1()) (Alps(t — 5),t — 5))dM; 1 4(s)

t
— [ 900D (A= 51 = )M ).

Allocation of arrivals: The final process we define captures the allocation of customers to
available servers; that is, process A;, i =1,...,I. Any static priority policy basically specifies a
one-to-one mapping p:{0,...,I —1} = {0,...,I — 1} such that for any i,j € {0,...,1 — 1}, level j
has priority over level i if and only if p(j) < p(i). This means that a new arrival cannot be routed
to a level ¢ agent whenever there are agents at any level j with p(j) < p(i). Therefore any static
priority policy has to satisfy

/t > Z;(s)dAi1(s) =0, i=1,...,1—1. (33)
O {j=0,....1-1:p(j)<p(i)}
Note that under our policy proposed in level 0 has the highest priority hence we set p(0) = 0.

For other levels the priorities under this rule can be set as follows:

U =1.

p(ij) =i — 1, p(i;+1) =i —2,..., p(ijp — 1) =1d;, %, #0, (34)
p(i;) =1;, i =
As mentioned above, if %;, = () for all i; € .#, then the policy = simply becomes the lightest-load-

first policy with p(i) =1,i=0,...,1 —1.
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4. Asymptotic Analysis

In this section we first introduce a deterministic measure-valued fluid model, and then show that
it serves as the fluid limit of the CSC system in the many-server asymptotic regime.

A fluid model. The underlying idea behind constructing fluid models is to replace the stochas-
tic components in the system dynamics with their corresponding distributional but deterministic
information. We use the bar sign to indicate fluid model processes associated with the queuing
processes we defined above. Specifically, A; is the fluid amount of “arrivals” to level i and S; is
the fluid amount of departures from level i, for i =1,..., I. Moreover, M, ;_; is the fluid amount of
agents moving to level i — 1 from level i, and similarly M;_, ; is the fluid amount of agents moving
to level ¢ from level ¢ — 1. For the CSC model, we first construct the fluid dynamic equation for the

server pool, corresponding to as follows:
Li(t)(Co x Cy) = Li(0)(Cot e % Cyot)

-1 _
7.05) Li(8)(Coortpsgi—s) X Cyrra—s)dMii1(5)
1

h |

_I_
) Q

o~
.

-
s

5_ 1(8)(Crpput—s) X Cyp—s)dM;i—1 4(8)

+
NN \

(35)
(o + pi(t—3s))F(y+t—s)dA(s)

~+

—+

Ei+1(5)(cz+m(t7s) X Cy+tfs)dMi+1,i(5)

+
=
N <

z+1(3)
i(s)(cm"l‘#z‘(t_s) X Cy+t_5)dMi,i+1(s),

~

(Y

N
»
N

t>0, x,y >0 for all i =1,...,I, where we again take M—l,o = M07_1 = MI,I+1 = MH_M =0.
However, if Z;(t) =0 the fluid model equation is defined as follows
1

70 L,(t)(C, x C)dM; ;1 (t) =0 (36)
and
7. £ X CA (1) = s Eaa (€ x Cy )N 1) + G () () (1)

1
+
(Z + 1)Zv+1< )
When Z;(t) =0 we need a separate equation because L£;(t)/Z;(t) is not well defined. Intuitively,
indicates that the rate at which the fluid content moves from level ¢ to level i — 1 should

Li1(t)(Cr x Cy)dMi1i(t). (37)

be 0 when there are no agents at level i. Meanwhile, customers from the adjacent levels will be
immediately pushed to level i+ 1 by new arrivals who are routed to level i. Thus, (37)) means that
the customers moving between levels ¢ and 74 1 consist of a mix of customers from levels 1 — 1 and

1+ 1.
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Corresponding to and ,

Mi,i—l(t) = S’Z(t) and Mi—l,i(t) = Az(t) for i = ]., ey I—1. (38)

The processes ]\7[1,1,1 and ]\_41,1’1 satisfy

[ @@t )= [ Qa6 =0, (39)
and
dM; ;1 (t)=dS;(t) and dM;_,;(t)=dA;(t) if Z;(t) < N. (40)
Moreover,
M 1 (t)— M;_1,(t)=S;(t) — A;(t) foralli=1,... 1. (41)

The fluid amount of customers at level 7 satisfies

Li(t)(R2)=1iZ;(t) fori=1,...,1, (42)
and
Zo(t) =N — Zj; Zi(t) (43)
Also _
Zi(t) = Z;(0) — S;(t) + Ai(t) + Sia(t) — Ay (t) fori=0,1,...,1. (44)

Similar to , we also set Sy = Ay = 51+1 = A1+1 =0 to make compatible with ¢ =0 and I.
Corresponding to (32), the (fluid) departure process S; from level i satisfies

Si(t) = Li(0)(A;(puit, 1))

_/0 1 Zi(s)(A(,ui(t—S),t—s))dMi,i—‘rl(s)'
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The fluid dynamics for the buffer is given by

t
R(t)(C’w):)\/ o Fiett=s)ds, 120, 2€R, (46)
t_i

A
where R(t) = R(t)(R) is the fluid content in the virtual buffer. (Recall that F, is the patience
time distribution for waiting in queue and we set F’(-) =1— F,(-), the complementary cumulative

distribution of F.) Also

B(t)=A(t) —

ao]]

(2)- (47)

The (fluid) queue content can be represented as Q(t) = R(t)(Cy), which satisfies the balance equa-

tion
Q(t) = Q(0) +A(t) — D(t) — E(t). (48)

Here A(t) = At is the external arrival process, D(t) is the abandonment process from the buffer,

and the total amount that enters service is
- L (RGN N
E(t):/o Fe(= )dB(s):;Ai(t). (49)

The static priority policy corresponds to

/t > Z;(s)dAi1(s) =0, i=1,...,1—1. (50)

{3=0,....I-1:p(j)<p(i)}
For our policy 7, p(-) is defined as in (34)).

The following non-idling constraint always holds for all £ > 0:

Q(t)(N — Zi(t))

0. (51)

satisfies f as a fluid model solution.

Fluid limits. We next show that the limit of the fluid scaled queueing processes in the many-
server regime satisfies the fluid model equations. Consider a sequence of CSC systems indexed
by n=1,2,... (thus we append a superscript n to the notation for the corresponding stochastic
processes). Assume that both the arrival rate and the number of agents increase to infinity. More
precisely

AT;I(')=>/\-and %—)N, as n— oo, (52)

where = denotes weak convergence in Skorohod (J;) topology. Define the fluid scaled processes as

() =~ :L(t), (53)
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where X" is a symbolic notation for R", £, R", Q", Z', A, B", D", E™, A", S, M[,_, and

1‘7

M, ;. We assume that the initial states satisfy
R™(0)=R(0), LI0)=L;(0), i=1,...,1, (54)
for measures R(0) and £(0) = (£,(0),...,£;(0)) satisfying

R(0)({x})=0 for any z€R, (55)
Li(0)({z} xRy) = Li(0)(Ry x {y}) =0 for any z,y>0. (56)

Theorem 1 (Fluid Limits). In the many-server regime specified by (52), if the ini-
tial state satisfies 7, then the sequence of fluid scaled stochastic processes
{(R™,L",R",Q", Z", A", B", D", E", A", S" M") : n € N} under any static priority policy 18
tight in the Skorohod (Jy) topology. Denote by Z;(-), i=1,...,1, the weak limit of Z"(-). Assume
Zi(+), i=1,...,1, switches between 0 and positive values only finitely many times in any bounded

time interval, then every weak limit of the fluid scaled stochastic processes satisfies the fluid model
equations 7.

The proof, presented in consists of two major steps. The first step is to show that the
sequence is tight (which implies that every subsequence has a converging subsequence). The second

step is to verify that the limit of any convergent subsequence satisfies the fluid model equations.

Remark 2 (Connection to Exponential Service and Patience Times). To facilitate the
understanding of the fluid model equations we consider exponential service time and exponential
patience time during service, i.e., G¢(z) = e " and F*(z) = e *. By (1§), at time ¢ there are iZ(t)
customers being served at level i. Index them by k=1,...,iZ"(t). Note that the order could be
arbitrary. We also use v, and u,j to denote the remaining service time and remaining patience
time during service of the kth customer at time ¢. Then by definition

iZ(t)

n 1
L3 () (Cy % CU) = n Z ]]'{Ui,k>1xui,k>y}’
k=1

By the memoryless property, v; ;’s follow the same distribution as G and u; ;’s follow distribution

F. Tt then follows from the tightness proved in Theorem [I] and the Glivenko-Cantelli estimate
(EC.12)) that
Li(t)(C,xCy)=iZ;(t)e "e ¥ (57)

for all levels with Z;(t) > 0. Obviously, also holds for the case with Z;(t) = 0. Plugging the
above equation to and yields

dSi(t) = i(p: +v) Z(t)dt. (58)
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Then the fluid dynamic equation becomes

t t
Zi(t) = Z;(0)e~ i+t _ (j — 1)/ (s +v) Zy(s)e” Hatt=) g —i—/ e~ mtII=9) G A, (s)
' ’ ’ ’ (59)
+(i+1) / (fig1 + ) Zig (s)e” it =) gg / e WFtIE=)g A, (s).
0 0

The proof of the above two equations is placed in Lemma, Taking derivatives of both sides

yields the following ordinary differential equation:
Zi(t) = =i +v) Zi(t) + A (8) + (i + 1) (a1 +v) Ziga () — A (1), (60)
which is precisely the same fluid dynamic equation for exponential service and patience times in

Tezcan and Zhang| (2014).

5. Invariant State

In this section we identify invariant states of the fluid model of CSC systems. First we show in
Proposition [1] that there will be at most two levels the agents will provide service in the invariant
state and those levels must be efficient and consecutive (when there are two). This proves that
the proposed policy avoids having agents at inefficient levels. Then we prove in Theorem [2] that
there exists an invariant state, which can be stated in a relatively simple closed form, when two
basic levels are non-adjacent or when there is only one basic level. Unfortunately, we are not able
to obtain a similar result if the basic levels are adjacent, so instead we study two special cases in
Theorem [3 and show that the form of invariant state we obtain in Theorem [2is still valid. Finally
we propose an approximation for the systems that are not covered by Theorems [2] and [3] We will
later use the invariant states to derive approximations for various performance metrics in and
we will verify the accuracy of these approximations numerically in

Definition: A state (L£(c0),R(c0)) is said to be an invariant state of the fluid model if
(£(0),R(0)) = (£(0),R(c)). Then

(L(1),R(t)) = (£(00), R(c0)) (61)

is a solution to the fluid model — for all t > 0.

For an invariant state (£(oc0), R(00)), let

i £1(00)(A(110.6))

6—0 )

(the limit exists a.e. by Lemma [EC.7)). Then by and (EC.52), S;(t) = A;t. From ({44]), we have

=\ (62)

Al(t):gl(t):)\lt fOI'Z:]_,,I (63)
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Similar to the static planning problem —, the rates (A1,...,A;) can be interpreted as a
long-run allocation of the external arrivals to each service level. We now show that there can be
at most two non-negative arrival rates allocated to efficient levels in the invariant state. This also
verifies that the routing policy 7 avoids having agents at inefficient levels in the long run. The

proof of the following proposition is placed in

Proposition 1. If (£(c0),R(c0)) is an invariant state of the fluid model [35)~(51)), then there

can be at most two efficient levels i;,1;41 € F satisfying Ai; >0 and A;;, > 0.
We next identify invariant states in several special cases.

Theorem 2. Let (A},...,\}) be defined as follows under the following cases:

(i) IfA<d\N, then Xt =X and X =0 fori>1.

(i) IfA>d;N, then Xi =d;N and \: =0 fori<1I.

(i) If N <A <d;N and di = \/N, then Ao =X and A =0 fori £,

(iv) If d,N <A< d;N, CZ% > A/N and 5., #1i5+1, then )\% and )\%H are given as in ([14), and
X =0 for i 3,0,

The CSC fluid model (B5)—(B1) has an invariant state (L£(c0),R(c0)) defined as follows:

If X\ >0, then

L;(0)(Cy x C) :)\f/ G(x+ps)F(y+s)ds, z,y>0, (64)
0
7.(00) = 2 (65)

If Xy =0 but A7, >0 then

£i(00) =0, Zi(00) =0, and (66)
Ze ) Tz ) o7
IF A =0 and Xy, =0 then
Li(00)=0, Z;j(x)=0, and L;(00)/Z;(c00) = 0. (68)
And R(00) is given by
R(00)(C) = A /O CFe(ets)ds, zeR, (69)

where w is a unique solution to F,(w) =max <’\_f’N,0>.



24

The proof is presented in In cases (i), (ii) and (iii) all customers are served only at a single
level and in case (iv) customers are served at two basic levels that are non-adjacent. It is easy
to verify that the arrival rates, A!’s, for the invariant states agree with the optimal solution of
the static planning problem (L1)-(13) in these cases. Also the invariant state of the buffer R(co)
is identical to that of the G/GI/N + GI queue described by (3.13) in |Zhang| (2013), which is
expected since overloaded CSC systems are similar to multi-server queues where all servers serve
I customers.

We will show below that the system performance mainly depends on the invariant states of basic
levels (those with A\* > 0 or those with Z;(c0) > 0). However, we will need the invariant states of
non-basic levels in proving Theorem [2l Also because £;/Z; is the limit of £/Z" we express its
limit separately. The limit is well defined, even when Z;(c0) = 0, as we proved in

Unfortunately, if the two basic levels i; and i,,, are adjacent, i.e., 7;;1 =4; + 1, then we cannot
obtain a closed-form expression for the invariant state. In the following theorem, we present two
special cases for which the closed-form invariant state can still be obtained and has the same form

as part (iv) of Theorem [2| The proof is provided in §EC.4]

Theorem 3. If N <A< CZ]N, cZi;,H > \/N and i}, =i;+1, and one of the following conditions
holds

Condition I:  service times and patience times during service follow exponential distributions,
i.e., G(x)=e"" and F°(y) =e ",

Condition II:  customers have unlimited patience during service, i.e., F(y) =0 for any y >0,
then the fluid models of the CSC systems f have the invariant state given in part (iv) of
Theorem [2.

For general service and patience time distributions it can be easily verified that the simple form
is no longer an invariant state of the fluid model if there are exactly two basic levels and these
two levels are adjacent (i.e., i;,, =45+ 1). The main issue here is that because customers move
between these two levels, the distributions of customers’ service and patience times in the invariant
state interact in a complicated manner and we are not able to capture this interaction in a closed
form. This is not an issue, for example, when the two basic levels are non-adjacent because they
do not interact or when both service and patience times have exponential distributions, in which
case the remaining service and patience time distributions are identical because of the memoryless
property of the exponential distribution.

For the rest of this paper we use as an approximation for the invariant state of the fluid
model. To obtain further insight as to when this approximation is accurate, it is easy to see that

the invariant state is given as in part (iv) of Theorem [2| when e = His - Clearly this contradicts
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our assumption but it does imply that if the service rates between two adjacent levels are not
significantly different, might provide a sensible approximation for the system’s invariant state.

Next, we will build approximations for various performance measures based on this approximation.

6. Approximations

In this section we build approximations based on the results in in a manner similar to |[Whitt
(2006)) and Bassamboo and Randhawa| (2016) who focus on call center models. We mainly focus on
the probability of abandonment, and the mean and variance of time in the system in steady state.

Other performance metrics can also be estimated based on the invariant state of the fluid model.

6.1. Approximations for Probability of Abandonment

We now use the invariant state of the CSC model to develop our approximation for the probability of
abandonment from each level, which serves as the building block for other approximation formulae
to follow in §6.2| and The results in this section also support our idea of approximation
presented in which we have been using throughout the paper.

It follows from that

L00) Cos x Co) =, [ G ()P (s)ds

for any & > 0. Therefore the total departure rate due to service completion and abandonment from

level i is given by

s EZ(OO)(CU X Co) — EZ(OO)(CM(s X 05) d o
di=lim : = £(00) (s < )| =0

The rate at which fluid content at level i departs that level by abandonment, ¢, is

8 = lim L;(00)(Cy x Cy) — Li(00)(Cy x Cs)

6—0 1)

O L,(00)(Ch  C)

—)\/ G(w;s) f(s)ds,

where f is the pdf associated with the distribution function F and the last equality follows from

6=0

(64). Hence the proportion of customers who abandon the system among those who depart the

system from level ¢ is given by
/lvz)a c Ab
G (uis)f(s)ds = P; (70)

where the last equality follows from the definition of P2 in @
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Remark 3. Based on this approximation the abandonment probability during service is given
by Zfil A\:PAY. This approximation is identical to that we described in providing further

evidence that our definitions of efficient and inefficient levels are valid.

Remark 4. By , our approximation for the probability of abandonment depends on the infor-
mation regarding both the service and patience time distributions. We also demonstrate this via
numerical experiments below where we show that the abandonment probability can change as
much as by 31.6% when we switch from log-normal service and patience time distributions to
exponential ones without altering their mean and variance. This is significantly different from the
approximations for the traditional many-server systems based on fluid models. In those models the
abandonment probability (in the fluid limit) only depends on the mean service time and not on
the distribution of service or abandonment times. However, the other performance measures (such
as expected time in queue) may also depend on the entire patience time distribution for those
systems, see |Whitt| (2006]), [Bassamboo and Randhawa| (2016), |Long and Zhang| (2014) for more
details.

We next use to build approximations for the other performance metrics for underloaded

and overloaded systems.

6.2. Approximations for Underloaded Systems

First assume that the system is underloaded, i.e.,
A<dN. (71)

Under this condition, the system nominally has sufficient capacity to serve all customers. We next
provide approximations in steady state for the probability of abandonment P4?, the expected time
in system E[I¥], the standard deviation of time in system stdev(V), and the conditional expected
time in system given that the customer will eventually complete service successfully, E[W|S], and
abandon the system, E[W]A].

If d,N < A< d;N, then by the invariant state of the fluid limit and , a fraction

of arriving customers is served by an agent at level i}, and the remaining 1 — Qi is served by an

agent at level ¢}, in the fluid invariant state. According to the probability of abandonment

for those customers served by level i} agents can be approximated by P2%. Hence, the probability
J

that an arriving customer abandons the system in steady state can be approximated by

Ab _  pAb — g ) PAb
P =g P+ (1 - qi5) P -
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By the expected number of agents at level i, N;, is given by N; = \!/ d;. Using Little’s Law,
we have
j+1

A

i3 Nix +5,, N;

E[W] ey (72)

Next we focus on the conditional expected time in system and the variance of the time in system.

Let

V.V
—|—<U
Hi M
where U and V are defined in In words, S’i(c) is the conditional expected service time of

S§c>:E[ ] and 5§G>ZE[U\V>U], i=1,...,1, (73)

)

a customer given that the customer’s service is completed and Si(a) is the conditional expected
patience time of a customer given that the customer abandons service, if the customer is served
by an agent at level ¢ in steady state. Then, conditional on the level of the agent that a customer

is served by, we have

E[W|S] = MS(S) n (1 _qﬁ) (1 _Pi?i) g©

1—pa 75 1— pab G
and
0P o (ma) P
— J a N I gl a
E[W|A] = 280 + TS |

Next we consider the standard deviation of the time spent in system in steady state. Conditional

on the level of the agent that a customer is served by, we have
2l = g+E[T? — 2
E[W?) = g;EIT3] + (1-a; ) EITE ], (74)

where T is defined as in (4)). Therefore, the standard deviation of the time spent in system in
steady state, stdev(W), can be approximated by

stdev(W) = (IE W?] - (E[W])2>1/2, (75)

where E[IW?] is defined as in and E[W] is defined as in (72).

If A\<d,N, then by Theorem |2| all of the arrivals will be served at level 1 in the fluid invariant
state, thus P4’ = P{**. By , the expected number of agents at level 1, V1, is given by N; = )\/czl.
Applying Little’s law yields E[W] =1/ d;. Since all customers are served by agents at level 1,

E[W|S) =5 and E[W|A]=S".

Moreover, E[W?] = E[T?] and so the standard deviation can be found as in (75).
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6.3. Approximations for Overloaded Systems

We now turn our attention to overloaded systems, i.e., when the inequality in is reversed. The
approximations we build in this case follows closely those for the multi-server queue (e.g., [Whitt
(2006)) ). However there are still certain differences due to the fact that customers can also abandon
during service in CSC systems.

First note that a customer can exit the system in three different ways: i) abandonment from the
queue, ii) abandonment during service, and iii) service completion. From , a customer have
to wait in queue for w time units before entering service. Then, the probability that a customer
abandons from queue is F;,(w) and reaches service is Fy(w) =1 — F,(w). Because all customers
are served at level I, the probability of abandonment during service provided that the customer
reaches service is P{’. Therefore, the probability that a customer abandons the system in steady
state is given by

P = Fy(w) + Fy(w)P{*.

Next we find an approximation for the expected time in system. By Theorem [2| the expected
number of customers in queue is given by A fow F¢(s)ds and the expected number of agents at level I
is N. Therefore we have "

_ A, F;(f\)ds +IN (76)

by Little’s law. We now consider the expected time in system conditional on the exit point of a

E[W]

customer. Let A, denote the event that a customer abandons the queue. Then the conditional

expected time in system in steady state given that a customer abandons from queue is given by
E[W[A,] =E[Y, Y, <w], (77)

where Y, is a random variable with distribution F,. For those who reach service, the expected total
time in system in steady state is given by
. 1
EW]A]l =w+ —,
Qar
where we use A7 to denote the event that a customer reaches service and «; is defined in . To
approximate the standard deviation of time in system, conditional on whether a customer enters

service or not, we can obtain

E[W?] =E[W?|A,JP(4,) + E[W?|AJJP(A))
=E[Y|Y, S w]F,(w) +E[(w +T7)*1Fy (w),

q

where Y, is the same as the one in and Ty is defined in (4). The standard deviation can easily
be obtained from this equation and .
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7. Numerical Experiments

In this section, we present the results of extensive numerical experiments in systems with the
number of agents ranging from 25 to 100 and in two different experiment sets. We have three goals:
i) to demonstrate the accuracy of our approximations based on the asymptotic analysis; ii) to show
that the distribution of service and patience times have a significant impact on the performance
of CSC systems; and iii) to demonstrate that carefully crafted routing policies can significantly
improve system performance.

In §7.1) we explain the parameters used in our experiments and in we present the results
when all the service levels are efficient. We illustrate in the effect of inefficient levels on system
performance. Due to space constraints we mainly focus on the probability of abandonment in
underloaded systems. Results on other performance measures can be found in Appendix

where we also present the results of additional experiments for overloaded systems.

7.1. Simulation Parameters

We consider two different experimental settings with the main difference being that customers
are less patient in the first than in the second setting. In both settings we set I =6 and assume
that arrivals follow a Poisson process and that customers’ patience for waiting in queue has an
exponential distribution with mean 1.

In the first experimental setting we let u = {4,3.8,3.3,3,2.75,2.5} and consider three different
pairs of values of A and N, the arrival rate and the number of agents. The details are presented
in Table [Ifa)l For each (A, N) pair, we simulate the system under three different combinations of
service and patience time distributions (see Table for details). From here on we use “expo(x)”
to denote an exponential random variable with mean x and “In(x,y)” to denote a log-normal

distribution with mean z and variance y.

System| A | N System| A | N
1, 281.25 | 25 1, 375 | 25
2, 562.5 | 50 25 750 | 50
31 1125 | 100 32 1500 | 100

(a) Experiment set 1 (b) Experiment set 2

Table 1 Arrival rates and number of agents in each set of experiments

The setup of the second set of experiments is similar. We set p={10,7,5.1,4,3.3,2.8} and use
three different pairs of values of A and N presented in Table|l|(b)l For each (A, N) pair we simulate
the system under three different combinations of service and patience time distributions presented

in Table [A(b)l Therefore, we consider nine systems in total in each set of experiments.
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Combination | Service Time | Patience Time ~ Combination | Service Time | Patience Time

I, expo(1) expo(1) I, expo(1) expo(2)

11, In(1,0.2) expo(1) 11, In(1,0.2) expo(2)

111, In(1,1) In(1,1) 111, In(1,1) In(2,4)
(a) Experiment set 1 (b) Experiment set 2

Table 2 Combinations of service and patience time distributions

We choose arrival rates such that the agents are distributed between two basic levels (i} and 4%, )
at different ratios in different experiments to explore its affect on our approximations. For example,
in systems 1; through 3;, the arrival rates are chosen so that when the service and patience times
are exponential we have Zl-;f = Zl-;ﬂ and in systems 1, through 3, there is only one basic level. (The
optimal values of ZZ-]*, and Zig*'ﬂ for each setting are presented in Appendix W) In addition the
parameters are chosen to observe the effect of the coefficient of variation of service times on the
accuracy of our approximations — they are lower in experiments II; and II,.

We run each simulation long enough to observe 2 million arrivals. The first 10% of the simula-
tion time is regarded as the warm-up period, and thus is discarded when computing steady-state
performance metrics. The last 10% of the simulation time is also discarded to avoid the potential

impact of customers who are still in service at the end of the simulation.

7.2. Experiments with All Efficient Levels

In both set of experiments all the levels are efficient under the service rates specified in §7.]]
and the experimental parameters in Tables [I| and [2| Hence in these cases the proposed policy
reduces to the lightest-load-first policy that gives priority to the least busy agents and chooses one
randomly when necessary. In this section we explore how various parameters affect the accuracy
of our approximations and demonstrate the impact of service and abandonment time distributions

on system performance.

Combination | System | P P oprox | Rel. Error (%)
1, 0.2234(40.0004)  0.2222 0.54
I; 2 0.2227(40.0004)  0.2222 0.22
31 0.2223(4+0.0003)  0.2222 0.04
1; 0.2520(4+0.0005)  0.2511 0.36
11, 2, 0.2513(4+0.0004) 0.2511 0.08
3, | 0.2510(+0.0004) 0.2511 0.04
1, 0.1530(40.0003)  0.1519 0.72
111, 2 0.1524(40.0003)  0.1519 0.33
31 0.1521(40.0003) 0.1519 0.13

Table 3 Comparison of simulation results and approximations for P4? of experiment set 1

The results of the first and second sets of simulation experiments are presented in Tables [3|and
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respectively, where we show the results for the abandonment probability along with the relative
error of our approximations for each combination. For example, in system 1; when both distribu-
tions are exponential, our approximations underestimate (compared with the simulation results)
the abandonment probability by 0.54%. More detailed results of the experiments along with 95%
confidence intervals are presented in Appendix

We first point out that the service and patience time distributions have a significant effect on the
performance of the systems in both sets of experiments. To illustrate this, we note that the average
abandonment probability when both distributions are exponential is around 22% in systems 1, — 3,
and it is only 15% when both distributions are log-normal with the mean and standard deviation
of service and patience distributions kept fixed. Similarly, in the second set of experiments, the
results are similar with an average abandonment probability of 7.3% vs. 1.9% for combinations I
and III,, respectively. This should come as no surprise in the light of our approximations for P
in @, where both distributions play a role.

In the first set of experiments, our approximations are highly accurate. In almost all the experi-
ments, errors are less than 1%, with an average of just 0.27%. The relative errors of the approxima-
tions for expected time in system, conditional expected time in system for abandoned and served
customers, and standard deviation of time in system are about the same (see Appendix .

The quality of our approximations improves with system size, as expected.

Combination | System | pAv, P prox | Rel. Error (%)
1, 0.0752(40.0003)  0.0667 11.30
I, 24 0.0728(%0.0003)  0.0667 8.38
39 0.0702(%0.0002)  0.0667 4.99
1, 0.0806(40.0003)  0.0748 7.20
11, 29 0.0781(4+0.0003) 0.0748 4.23
39 0.0766(+0.0002)  0.0748 2.35
1, 0.0212(i0.0001) 0.0187 11.79
111, 24 0.0197(40.0001)  0.0187 5.08
39 0.0189(40.0001)  0.0187 1.06

Table 4 Comparison of simulation results and approximations for P“? of experiment set 2

The quality of the approximations in the second set of experiments is relatively worse, especially
when the number of agents is equal to 25. For larger systems the relative error decreases: on average,
for systems with 50 and 100 agents, the relative errors are around 5.5% and 2.8%, respectively.

When the agents are estimated to be more evenly distributed between two basic levels, our
approximations are much more accurate. For example, in experiment I;, our estimates for the
expected number of agents at levels 2 and 3 are equal (see Table in Appendix and
in experiment I,, all of the agents are estimated to be working at level 2 (see Table in
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Appendix when service times and patience times during service are exponential. This is
mainly due to the fact that in the actual system, especially when N is small, “second-order”
fluctuations have a bigger impact on experiments when agents are unevenly distributed. This is in a
way similar to the analysis of traditional queueing systems because fluid limits do not provide very
accurate estimates in heavy traffic, but approximations based on diffusion limits, which capture
the second-order fluctuations, are reasonably accurate. The diffusion limits of CSC systems have
been studied in |Cui and Tezcan| (2016) under exponential assumptions. For general distributions,

we leave the diffusion analysis to future research.

7.3. Experiments with Inefficient Levels

In order to illustrate the effect of inefficient levels we run simulations using the first experimental
setting except we set uz =2.9 and py = 2.8 (instead of their original values pz = 3.3 and py = 3)
making levels 3 and 4 inefficient under each distribution pair in Table We carry out simulation
experiments with this change for the same arrival rates and number of agents given in Table [Ij(a)|
Now the order of priority for policy m becomes p(1) =1, p(2) =4, p(3) =3, p(4) =2, p(5) =5,
which is obviously different from the lightest-load-first policy, and we have i} =2 and ij,, =5 in
all experiments.

The results of the relative errors and the improvements from using our proposed policies are
presented in Table[5] Specifically, in the last column titled “Improvement”, we display the improve-
ments in abandonment probability if the proposed policy 7 is used as opposed to the lightest-load-
first policy. We observe that the abandonment probability can be reduced significantly by as much
as 12.34% with an average of 8.5%.

Combination | System | P iighiest | PAY P pproxr | Rel. Error (%) Improvement (%)
1, 0.2441(+£0.0005) | 0.2303(+0.0003) 0.2259 1.91 5.65
I 24 0.2451(i0.0005) 0.2286(+£0.0004) 0.2259 1.18 6.73
31 0.2461(=£0.0006) | 0.2275(%0.0005) 0.2259 0.70 7.56
1 0.2809(=£0.0005) | 0.2619(£0.0003) 0.2578 1.57 6.76
11, 2y 0.2828(£0.0004) | 0.2603(£0.0004) 0.2578 0.96 7.96
31 0.2842(+0.0005) | 0.2593(40.0004) 0.2578 0.58 8.76
1, 0.1801(=£0.0003) | 0.1629(+0.0002) 0.1590 2.39 9.55
111, 24 0.1819(+£0.0003) | 0.1614(40.0003) 0.1590 1.49 11.27
31 0.1832(£0.0002) | 0.1605(%0.0003) 0.1590 0.93 12.34

Table 5 Comparison of simulation results and approximations for P of experiment set 1 with inefficient levels

Under the column “Rel. Error”, we present the error of the approximation for the abandonment
probability relative to the simulation result. The errors of our approximations are slightly higher

in this case than those observed in the previous section, especially when the number of agents is
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equal to 25. However, even in systems with 25 agents the average error is less than 2.39% across all
combinations and performance metrics. Besides, for larger systems the relative error is much lower:
on average, for systems with 50 and 100 agents, the relative error is around 1.15% and 0.72%,
respectively. The main reason behind increased errors is the fact that the inefficient levels between
two basic levels are asymptotically empty (i.e. there are no agents working at those levels) at all
times but they are not in finite size systems because of the randomness in arrivals and service

completions.

8. Conclusions

In this paper, we analyze CSC systems with generally distributed service and patience times.
Typically these systems have multiple agents and each agent can serve multiple customers simul-
taneously. These unique features make the analysis challenging, especially when combined with
general service and patience time distributions. We present a tractable alternative system to serve
as a proxy for the original CSC system. We then use measure-valued processes and construct equa-
tions that capture the dynamics of the alternative system. We then establish the fluid limits of
these processes and show that they satisfy a set of fluid model equations. We then analyze the
invariant state of the fluid model and obtain approximations for various performance metrics of
the system in the steady state based on these invariant states.

Our numerical experiments demonstrate that our approximations are accurate in general and
easy to calculate once the service and patience time distributions are determined. Due to their
simplicity, our approximations would be especially effective i) in making staffing decisions even
when the arrival rate itself is random (see Bassamboo et al. (2010)) and ii) in performing various
kinds of what-if analyses, for example, when the system manager can influence the service rates,
for example, via additional agent training. In employing our approximations, however, caution
must be taken when the service rates between two adjacent basic levels are significantly different.
Nevertheless, we did not observe a significant degradation in the performance of our approximations
even in these cases in our numerical experiments.

Our results rely on several assumptions that can be verified in future research. First, we did not
prove the convergence of the fluid model solutions to the invariant state and it is not clear if the
invariant state is unique. Second, we used a modified system for tractability without establishing
analytically whether or not it is a good approximation for the original system. Third, we did not
try to optimize the routing decisions and instead used the ones that have been established to be
asymptotically optimal when service and patience times are exponential. Finally, we assumed that
the arrival rate is constant. Having said that, our approximations can still be used to manage

systems by dividing the day into non-overlapping intervals if the arrival rate does not change too
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rapidly, see |Gans et al.| (2003)). However, if the arrival rate change quickly (compared to service

times), analysis similar to Liu and Whitt| (2014) might be more practical.
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Appendix: Customer Service Chat Systems with General
Service and Patience Times

We prove Lemma [T} in §EC.1] In §EC.2] we present the numerical results to compare the original

CSC system with the modified system. Then we present the related results about the fluid model
in §EC.3] and prove the results of the invariant state in The proofs of the convergence of
the stochastic model to its fluid limits are presented in In the end, the details of the results

of the simulation experiments in §7] appear in
EC.1. Proofs of Efficient and Inefficient Levels

Proof of Lemma [Il The proof of the result is similar to that of Lemma 1 in[Tezcan and Zhang
(2014) once we establish the properties of efficient levels, namely (EC.1), (EC.2) and Lemma EC1
in [Tezcan and Zhang| (2014)). First it can be easily checked that condition (9] is equivalent to the

following;:
(d,c2 - dkl) (P,gbcikz - P;“%Zi) < (de - cii) (P,gbde - P,gbcikl) : (EC.1)
(di, = iy ) Pdi = (d = i, ) P, + (dby — di) P, (EC.2)
Note that the above two equivalent conditions are identical to those in Remark EC1 of |Tezcan and
Zhang| (2014)), though in the context of general service and patience time distributions. Also, by
13), Py > P; if i’ > i. We show in Lemma that results of Lemma EC1 in [Tezcan and Zhang

(2014) holds in the current case as well. The proof is then identical to that of Lemma 1 in Tezcan

and Zhang| (2014). O

Lemma EC.1. Assume that and hold.
(i) If for a level j, 1 <j <1, afj = ch/ for some j' < j, then level j cannot be efficient.

(ii) For any efficient level i;

(1 - Pi;‘b> di, > (1=P™)d;,  for all i <i;. (EC.3)
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Proof.  Assume that for j > 1, afj = ch/ for some j' < j. Set ky =j',i =4 and set ks = I. Then we
have dkl = di. And by and ,

(dy — diy ) (P dy, = Pdi) = (dyy — d) (P iy — P, )
(di, — di) (Pbd,, — PAdy,).

IN

Hence j is inefficient by (EC.1J).
Now assume that i, is efficient. By and by part (i) d; > czl-j > d; for any ¢ < i;. Then, by

(EC.2) and (10), for any i <,

Ab 3

>

2 ) ~ L prd+ < AJ)Pf“bdi

:I )> |
) (dl—d +PAbd) (d

~d)

>
>

~

i, —di ) + P,

IN
A/\/—\/—\/—\
o~
>

giving the desired result. O

Lemma EC.2. If there exists j =1,2,...,1 — 1 such that d; <d; or (1— PA")d; < (1 — PjAb)CZj,
then any optimal solution of the routing linear program f must satisfy A5 =0.

Proof. If d; < cij for some j=1,2,...,1 —1 the results follows from the proof of Lemma |1} So
assume that d; ZCZ]- forall j=1,2,...,1—1.

Assume that (1 — PA)d; < (1 — PAY)d; for some j =1,2,...,] — 1. We prove the result by
contradiction. Assume that given A, for an optimal solution we have A} > 0. Choose level j such that

(1—PA)d, < (1— PjAb)ch. Consider the following solution of the routing linear program (11)—(13),

A ifief{l,....,I}\{j,1},
B A‘;f+/\72—j if i =,
‘ 0 ifi=1I,

" N d; o
)‘I+1+)‘1(1*ﬁ) ifi=1I+1.
Note that a?j < ci;. It can also be easily seen that the above is a feasible solution of the static

planning problem f. Moreover, the objective function value with this solution satisfies

}:AP +AHr—§:NPM+AHJ

i=1 i=1

A~

d.
= Xj(1- P - 31— P <o,

I
where the last inequality follows from the assumption that (1 — PA)d; < (1 — PjAb)cZJ—. Hence any
optimal solution of f must satisfy A5 =0. O
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EC.2. Difference between the Original and the Modified Systems

In this section we present the results of the numerical experiments to compare the original CSC
system with the modified system under Assumption [l We consider three systems 1; — 3; with
different arrival rate and number of agents; see Table for details. For patience and service time
distributions, we use the combinations from Table The service rate u={4,3.8,3.3,3,2.75,2.5}
is also kept the same as that of the first experiment set in We apply our proposed policy m

to the original and the modified systems.

Combination | System |

Ab
P sim-original

Ab .
P sim-modified ‘ Difference

1, [0.2234(£0.0004) 0.2231(£0.0005) [ 3 x 10~*
I, 2, | 0.2227(£0.0004) 0.2225(40.0005) | 2 x 10~
3, | 0.2223(£0.0003) 0.2220(£0.0005) | 3 x 10~*
1, |0.2520(£0.0005) 0.2521(£0.0009) | 1x 10~4
1L, 2, | 0.2513(£0.0004) 0.2514(40.0003) | 1 x 10~*
3, | 0.2510(+0.0004) 0.2511(40.0003) | 1x 10~*
1, |0.1530(£0.0003) 0.1529(£0.0002) | 1x 104
11, 2, | 0.1524(+0.0003) 0.1522(40.0002) | 2 x 10~*
3, | 0.1521(+0.0003) 0.1519(40.0001) | 2 x 10~*

Table EC.1 Comparison of simulation results P4 of the original and modified systems

Table [EC.1] summarizes the difference in the steady-state abandonment probability between the
original and the modified systems under a range of different parameter setting described in the
above. Though the original CSC system and the modified one are equivalent under exponential
service and patience time distributions, we also simulate the result as a benchmark. Obviously
these two systems are also nearly identical for general distributions (other performance metrics

besides abandonment probability are also very close).

EC.3. Analysis of the Fluid Model

Lemma EC.3. Consider the CSC fluid model f. If customers’ service times and patience
times during service follow exponential distributions, saying that G¢(x) = e * and F°(y) =e ",
then and hold.
Proof. Setting x,y in to be zero and plugging yield
t t
Zi(t) =i 1(0) (it )t — (i — 1)/ e W ANy (5) + (i~ 1)/ e W=D AN, 4(s)
0 0
t t
4 [ e g 4, () + / e~ =G, | (5) — Z/ D T ()
0 0

t t
=iZ;(0)e it (i—l)/ e_(lii"!‘y)(t_s)dgi(s)_'_i/ e Wit=9)q A, (s)
0 0

t t
+i / e~ Wt=)qG,  \(s) —i / “t =g A, (s), (EC.4)
0 0
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where the first equality follows from , and the second one is due to . One can check that
the definition at Z(-) =0 in and is also satisfied.

On the other hand, by and we have £;(t)(A(z,y)) =iZ;(t)(1 — e~ @*¥)). Plugging this
to yields

t

t
8i0)=iZ,(0)(1 e ) — (= 1) [ (L e AL ()4 =) [ (1 e 0N ()
0

0

t t t
_|_/ (1_e_(ﬂi‘i‘V)(t_S))dAi(S)_'_Z'/ (1—e_(”ﬁ”)(t_s))dMiH,i(s)—i/ (1_e‘(ﬂi+”)(t_s))dMi7i+l(8)
0 0 0
t t
=i Z;(0)(1 — ety (5 — 1) / (1— e WtIE=)qG, (s) +i / (1— e WtIE=9)q A, (s)
0 0
t t
+’L/ (1—6(#i+y)(ts))d§i+1(8)—’i/ (1—67(#i+y)(tis))df_1i+1(8),
0 0

where the last equality follows from . Applying the chain rule yields

t t
aSi(t) = (s +v) [iZi(0)e™ 7 — (i =1) / e~ (it 5 (5) +i / e~ (=) 4 4, (5)
0 0

t t
Z/ e(uﬁﬂ)(tS)dSiH(s)_i/ ef<ui+u><tfs>dgi+1<s)}dt

0 0

_l’_
= (i +v)iZ(t)dt,

where the last equality follows from (EC.4)). This also proves (58)). Thus, the above together with
(EC.4) immediately implies ([59). O

EC.4. Analysis of the Invariant State

Proof of Proposition Let (£(00),R(00)) denote an invariant state. First we show that
A; =0 for any inefficient level i ¢ .%. Suppose that there exists i ¢ % such that \; >0 and let k be
one of these levels.. By , Ap(t) = Ait, where )\, > 0. Based on our policy 7 described in ,
p(k) <p(k—1) since k ¢ .%. This together with yields, for all ¢ >0,

0= Z,(t)dAy(t) = \p Z),(t)dt.

The above implies A\, Z(t) = 0. Thus, Z,(t) = 0 since A\, > 0. However, by and , Ar=0
whenever Z,(t) = 0. This clearly is a contradiction. Therefore no such k exists. This proves that
Ai=0foralli¢.Z.

Now we prove that there are at most two efficient levels with \; >0, i € .# and that there cannot
be any efficient levels between these two levels. Let i;,1 € .% be the efficient level with the highest
index among those efficient levels with \; > 0. By (63), flij L) =A
A

i;4,¢ and from our assumption

> 0. Recall that & = {iy,ia,...,i,}, where i, <iy <...<i; (see §2.3.1). Again by our policy

ij+1
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7 described in , we have p(i) < p(i;4+1 —1) =1, for all i =45, 4s,...,4;_;. This together with
yields, for all ¢t >0,

0 - Zi(t)dAij+1 (t) - )\ij+1Zi (t)dt, 1= ’il, 1:2, e ,ij,l.
Since A, , >0, the above implies Z;(t)=0 for all i =iy, 1is,... ,%;—1. This with and yields

A; =0 for all ¢ =144,49,...,%,_1, giving the desired result. ]
Proof of Theorem 2l Let (L£(c0),R(c0)) denote the state defined in the theorem. First

assume that one of the conditions in (i), (ii), (iii) or (iv) of the theorem holds. Let

A(t) = At. (EC.5)

We prove that (£(o0), R(c0)) with A; is an invariant state. By (F)), di=1i/ I Ge(pis)Fe(s)ds.
From the conditions of the theorem, two basic levels are non-adjacent or there is only one basic
level. Let i; denote one of these levels. Then, Z;,_(t) = Z; 41 (t) = 0 for all ¢ > 0. By the definition
of the invariant state (64)—(68) and (EC.5), and are satisfied if Z;(c0) = 0. Then, (64])—
(68) satisfy for all i =1,...,I. Other fluid model equations f are verified similarly.
One can verify that R(cc) defined as in is a solution to in a similar way. O
Proof of Theorem Bl Assume that d;N < A < d;N, CZ% > A/N and i%,, =45+ 1. Let £(c0)
defined as in f and A; be defined as in for all ¢ =1,...,1. By the definition of
the invariant state (64)—(68) and (EC.5), and are satisfied if Z;(o0) = 0. Therefore, (35))

becomes

£4(00(Cox =X [ Gt o) Foy-+5)ds
0

J

oo 1 3
A *—ﬁi”.‘ C:v s X C s d
T Zj“/o U1 Zi5,,(00) (00 i e )ds (EC.6)

k) K > 1 r
—EN /0 7oy £i3 (0 (Clt e x Gy ),

Lo (00)(Cox C) =X | /O G+ s, 8)F<(y + 5)ds
k) kK > 1 r
“i% | F T (o) D (0N ot X Cods - (mO.T)

LA

"
AR

oo 1 _
/ L= (OO)(Cm“r#ﬁ s X Cy+5)d57
0 J+1

i;Zi;s (c0) 7
and L;(o0) = 0 for all i # i%,15,,- Note that the last two terms on the right-hand side of
and are the interactions between the two adjacent basic levels.
Assume that Condition I holds. By
1 _

iZi(oo)Ei(oo)(Cx xCy)=e "e " fori=ij,

-5
Vit
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This satisfies and ( -

Now assume that Condition IT holds. By

Li(00)(C, x C,)) = )\f/ G(x+ pis)ds  for i =74,
0

Jr Ui+l
This with gives
1 G+ ps)d o0
———L;(0)(C, x C,) = s N @+ pis)ds :/ G(x+s)ds fori=1i},i}, .
i2:(0) G s Jo >
This clearly satisfies (EC.6)) and (EC.7]). The other fluid model equations can be checked similarly.
O

EC.5. Analysis of the Stochastic Model

By (22)
L2)(Co X Cy) = £2(t0) (Crtptt1 % Cyrate)
1
/ G (L2(5)) (o)  Copre )M (5)
ton
¥ / S0 (L14(5)) (Cornt) X Cre JAME ()
AT (1)
1 EC.8
+H Z ]1{ S aobpg(t—rl )l Syt—rl) (ECS)
= A7 (to)+
t
/ L0t (£241()) (Corrte—s) X Cpra)AME, (5)
to

t
1 7 n n
[ L) (Cort X o)A, (),
to

Actually, the above equation is a shifted fluid scaled dynamic equation treating t, as a start point.
When setting ¢, =0, (EC.8) becomes the fluid scaled version of ([22)). Let S} (to,t) = S™(t) — S™(to).
Then, similar to (EC.8)), we can also shift to to and it becomes

i (to,t) = L7 (to) (Ai(ua(t —to), t —to))
t
1 i— n n

- / STH(LY(9)) (Alpa(t = ), (= 9))) M (5)

to

t
1 . . §
+/ @ (L1 (9)) (AQualt = 5), (£ = 9)))AM 1(s)
to
1 A7 (t)
+ﬁ Z ]1{ ”Suz(t ) or uf  <t—7l }
J=A7 (to)+1

+ / (L7, (5)) (At — s), (¢ — )))dM ,(5)

(EC.9)

t
—/ (L (5)) (Alpi(t = s), (t = 5)))dM; 11 (s)-
0
We assume all random variables and processes associated with the nth system are defined on the
probability space (2", F", P™).
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EC.5.1. Tightness

To prove the tightness we use an approach similar to that in Zhang (2013]), which studied measure-
valued process underlying a many-server queue with a single pool and a single customer class.
By Theorem 3.7.2 in [Ethier and Kurtz (1986)), it suffices to verify (a) the compact containment

condition and (b) the oscillation bound in the following two subsections.

EC.5.1.1. Compact Containment The objective of this subsection is to prove the compact
containment, Lemma[EC.4] below. To state the result, we need to introduce the concept of compact-
ness in the space of measures. Let M denote the space of all non-negative Borel measures on R%
equipped with Prohorov metric (see §6 in Billingsley (1999)) for details). A set K C M is relatively
compact if sup,cg § (R%) < o0, and there exists a sequence of nested compact sets B; C R% such
that UB; =R?2 and

lim sup &(B5) =0, (EC.10)

j—o0 (eEK

where B denotes the complement of B;; see Kallenberg) (1986), Theorem A7.5.

Lemma EC.4. Fiz T > 0. For any n >0 there exists a compact set K C M such that

limian"<7_2"(t) eK and £(t) €K foralli=1,....1 andte [0,T]> >1-1.

n—oo

To make the presentation self-contained, we briefly cite the Glivenko-Cantelli estimates (e.g.,

Appendix B in Zhang| (2013)). Define

[nl]

- 1

g;b(l):ﬁz:am,un‘), (EC.11)
j=1

4,37 71,7

where d, .y denotes the Dirac measure of point (x,y) on R x R. Recall that {v};}°2, is i.i.d. sequence
of random variables following distribution G, and {uj,}52, is i.i.d. sequence of random variables
following distribution F'. Denote vg and vy the probability measures corresponding to the service
time distribution GG and the patience time distribution during service F', respectively. Introduce

the family of testing functions
V= {1Cz><cy('7') XY GR} .

There exists a function f:R, x R, — R satisfying

f is increasing and unbounded,
f<fforal feV,

(f?,v) < oo,
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where (f?,v) denote the integration of function f? with respect to measure v, see Appendix B in
Zhang| (2013). Denote V = {f} UV. The function f is referred to as the envelop function for V. It
follows from Lemma 5.1 in Zhang et al.| (2009) and Lemma B.1 in Zhang (2013) that

lim P (QgC(L)) =1, (EC.12)

n— oo

for any fixed L > 0, where the event Qf (L) is defined as

QgC(L):{ max_ sup sup]<f,5}”(1)>—z<f,(uF,yG)>‘geGC(n)}, (EC.13)

ic{L....I} 1ef0,1] fev
for some function egc(-) which vanishes at infinity. Intuitively, on the event Q% (L) (whose prob-
ability goes to 1 as n — 00), the measures £"'(1) is “close” to v.
We also need to introduce another “good” events to work with later in our analysis. It follows
from condition and Lemma 5.2 in |Zhang et al. (2009) that
lim P” (Q}{(T)) =1, (EC.14)

n—oo

for any fixed T > 0, where the event (2} is defined as
O (T) :{ sup |A"(t) — At| <6E(n)}, (EC.15)
t€[0,7)
for some function €x(-) which vanishes at infinity.

Proof of Lemma [EC.4. The buffer part of the customer service chat systems is identical
that of the call center model studied in [Zhang| (2013), therefore the compact containment property
of R™ follows from the same argument in Lemma 5.1 of [Zhang (2013). Hence we mainly focus on
the compact containment property of E?.

Fix n > 0. First, for any i € {1,...,I} and ¢t >0, £7(t)(R%) < I- N < oo due to the fluid scaling.
It remains to verify . By the convergence of the initial condition , for any € > 0, there
exists a relatively compact set Ko C M such that

hmmﬂ@”(ﬁ"(o) € Ko and £7(0) € K, for all i € {1,...,1}) >1-1/2.

n— oo

Denote the event in the above probability by € .. On this event, by the definition of relatively

compact set in the space M, there exists a function k(-) with lim,_, ., ko(x) =0 such that
I
ST LH0)(Cy x Cu) < Fo(2). (EC.16)
=1

Define
Mmin = Min },uz-. (EC.17)
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On the event Q7},
0<A™(t)<20T, t€[0,T] (EC.18)

for all large enough n. By (EC.§|), on the event 2, we have

I I I A7)
Z 1
E ( C X C : : Z+Un11nt X CIJ"t + : : : : ]]'{vz ]>I+Nm1n(t 7—' ) uZ.L’j>a:+t—TZ’Lj}
=1 i=1 i=1 ji=1

I A" (t)

< "QO + Z Z ]l{vl 1> ul >x} (EClg)

We can think of (EC.19) in terms of the total mass: at time ¢, those with remaining service time
large than x must be either one of those initially in the system and with remaining service time

larger than x + gt or arrive after with remaining service time larger than x + iy, (t — 7) if he

arrives at time 7. Since we are on the event Q} (see (EC.18])) and Q% (2AT),

"3

(t)

%ZZ ) <2AT(f,v) +

for all large n. Applying Markov’s inequality to (EC.19),

20T (f,v) +1
fl@)

which converges to 0 as z — co. So we can define the set K={{ e M: {(RxR) <1,{(C, x C,) <

Ko(z) + %}, which is compact in M according to the definition. On the event Qf N Q% N

Q%o (2AT) (which has probability larger than 1 — 7 for all large n), £I'(t) € K for all i € {1,...,1}

and t € [0,T]. Thus the desired result follows from (EC.12) and (EC.14). O

L) (Cy x Cy) < Kolx) + (EC.20)

EC.5.1.2. Oscillation Bound The oscillation of a function ((-) taking values in the metric
space M with metric d on a fixed interval [0,7] is defined as
wr(¢(-),0)= " sup  d[¢(s),C(t)]-
$,t€[0,T],|s—t|<6
If the metric space is R, we just use the Euclidean metric; if the space is all finite measures, we
use the Prohorov metric defined in §6 of Billingsley| (1999). For vy, v, € M, the Prohorov metric is
defined as

d[v1,ve] =inf {e>0:11(A) <1(A°) + € and
(EC.21)
vo(A) <vi(A) + e for all Borel set A C R},

where A°={beR:inf,c4|a—b| <€}
The second major step to prove tightness is to show that the oscillation is small with large

probability, we show this next.
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Lemma EC.5. Fiz T > 0. For each ¢,n >0 there ezists a 6 >0 (depending on € and n) such that

lim inf P" <WT > >1-—n, (EC.22)
hmianP’”( max, WT L£1(+),6) < e) >1-n, (EC.23)
lim inf P" ( IIllaX wr(A2(4),8) < 6) >1—mn, (EC.24)
n—00 16 geees

i n Sny(. <e)|>1—n. .
hglolgfl[” <i€¥{r11?%1} wr(S](+),0) < e) >1—n (EC.25)

The rest of this section is devoted to the proof of this result. We begin with the following auxiliary

result. Given k > 0 we define

Ay (z,y) :=Cy x Oy \ Cyyre X Cype. (EC.26)

Lemma EC.6. Fiz T > 0. For each ¢, >0 there exists k >0 (depending on € and n) such that

limian”( max sup sup L'(t)(Ax(x,y)) ge) >1—n. (EC.27)

n—00 ie{l,....1} te[0,T] z,yeR4

Proof. Fix € >0 and n > 0. Similar to the proof of Lemma [EC.4] we only consider the event
Q5 . NQR N QG for the rest of this proof. The customers who receive service must be either those
initially in the server pool or those who arrive after time 0. We index the customers initially at
level i by [ =1,...,iZ*(0) according to the time spent during service wj; by time 0. Recall that
w; is assumed to be bounded. Also let s}, denote the amount of service of Ith such received by
time 0. And v;';” and u;';” denote the remaining service time and remaining patience during service
of the Ith such customer. In view of (1)), we use u¢,(s), s € [0,1], to denote the service rate of this
customer at time s. Similarly, we index those customers who arrived after time 0 and whose service
commences at level i by j=1,..., A?(t) based on their service start time 7}, for j=1,..., A}(t).
We also use p;(s), s €[0,t], to denote the service rate of the jth customer at time s. We use
v;'; and u;; to denote the service time and patience time during service of the jth such customer,

2¥)

respectively. Then by the definition of £(t), we have

I 1 iZ[(0)

;E?(t)( 21: Z S umer ( :c+/ ug (s)ds, y+1t))
I _A"(t
+ — 225(%] ar) x—i—/ ,uw s)ds,y+t—17;)).
=1 j=1

Note that 5(”Zio>“§fi°)(A x4 [yuo(s)ds,y + 1)), 1= 1,...,iZ7(0), and 5(vzj,u3j)(An(x +
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ftt_fn. wij(s)ds,y+t— Tﬁj)), j=1,...,A?(t), are Bernoulli random variables, which are indepen-
2V
dent and their variances are all bounded by 1. Then by Kolmogorov’s strong law of large numbers

(Theorem 2.3.10 in [Sen and Singer| (1994))), we have a.s.

I I iZ;'(0)
S LA <Y Z E Ao (& x+/ (s y-+0)|
=1 =1 =
) An@ (EC.28)
€
E _
+= 2; Sun ) x—i—/ u” s)ds,y+t—7")) +3

for all large n.

Now we consider the first term on the right-hand side of (EC.28|). We have

t
|:(S(vn O,u? 0) (An (x + / :uz?,l(s)ds7 Yy + t)):l
’ 0
S E |:]1{UZ;OE($+IOt M?’l(s)ds,m—‘y—f l(S )ds+k] :| + ]E |:]l {uzzoe(y+t,y+t+fi]}:|

1 t
— n ° (s)d _ n 0 (s)d
GC(S?J) [G<x+3271+/0 i (8) s—i—n) G(a:—i—sl,ﬁ—/o ,uzyl(s) s)}

[F(y+w, +t+k)—Fy+w, +1)].

1
+ =
F c(wi,l)
Note that because v;ff is the remaining service time of the Ith customer initially at level ¢, it follows

GC(leer)

distribution function 1 — —zz=7=. Similarly, for this customer, u;’. Because wy, is bounded, s,
4,1 ’

is also bounded because 511 < PmaxWy, where fimax = maX;eq1,... 1y pti- Therefore,

.....

1 t ‘
E— " 0 d _ n 0 d
GC(S?,I) {G (3: Tt /o MZ’I(S) st ,i) G(x tsit /0 Hz,z(s) 8>]

1
+—— [Fly+w,+t+r)— Fly+w}, +1)] <

Fe(w],) ~ANI?

for x small enough, where IV is defined in . It then follows from the above two inequalities that

1 iZj'(0) t T

o - 7n € €
22 DB e (aet [ is )] 20 i <

Now we consider the second term on the right-hand side of (EC.28)). By and , we have

Ar(t) <E™(t) <A™ (1) + Q(0) < My +2)T. (EC.29)

In fact, on the event QF ,NQ%, Q"(0) < M, for some constant My by Lemma and A™(t) < 2AT.
On the other hand,

t
£ [5<w up ) (Bn(z+ / i (8)ds,y+t —17')
t—7n

4,377,
@]
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S E |:]l{v;(fj€(m+ftt7_lnj Hi,j (s)ds,x+ftt77_?j Hij (5)d5+n]}:| + E |:]l{u:ﬁ] e(y+t7'ri’fj’y+t77{fj+ﬁ]}

G(az—l—/t:ﬁj ,ui,l(s)ds—l—ﬁ) —G(a:—l—/ti

) ui,l(s)ds) FF(y+t+r)—Fy+t).

T!
¥

Also

G(:c+/t;£jui,l(s)ds+/<;) —G(:c+/ti

for k small enough. Then we can conclude from the above two inequalities and (EC.29)) that

€
) _ < -

7!
2]

I A?(t) t I
1 - € €
nz [ wp ) K(H/t_ﬁ'/‘w(S) Y+ Tw))] =< Zizl i )4I(M0+2)\T) 4

irj
It then follows from that S21_, £7(t)(A.(z,y)) < e. This completes the proof. [
Proof of Lemma [EC.5l Fix ¢ >0 and n > 0. Similar to the compact containment property
of R™ in Lemma the proof of the oscillation of R" in also follows from the same
argument in Lemma 5.4 of of [Zhang] (2013). So we will focus on (EC.23)—(EC.25). To this end,

we just need to restrict the stochastic processes on the event €2f N Q7 N QY N QLq, which has
probability larger than 1 —n for large enough n. Note that (2, is denoted to be the event in
[ECZ).

Fix 6 > 0 and choose ty <t such that ¢t —t5 <. We use Lemma to study the oscillations
in the departure process during this interval. To simplify the notation, let f"(to,t) = f(t) — f(to),
for any function f. Recall that A(t)(z,y) = {(2/,y’) € R% : 2’ <z or y' <y} is the compliment of

AZ ()

I I
Qn ~n 1
Z St (Lo, t) < Z L7 (o) (Apmax(t —to) T — o)) + Z - Z Lgop, <pmax(t—77) or up  <t—r 3+
X =1

57
J=AT(t0)+1

(EC.30)
This follows from the argument we use to arrive ; the departures during (o, t| must be either
those customers initially in system at ¢, and with remaining service time less than .. (t —to) or
remaining patience time less than ¢ — ¢y, or those newly arrivals with remaining service time less
than pi,.x(t — 7) or remaining patience time less than ¢ — 7 if the customer arrives at time 7.
By , we can choose § sufficiently small such that the first term on the right-hand side of
(EC.30) is less than €/2. On the other hand, we have shown in that A?(t) < My + 2T,
where My is chosen as in (EC.29). Since 77", € [to, ]

AT ()

1
n Z L <max(t=rpy) or up <t—rp)
J=AT (1) +1



e-companion ecl3

AL (1)
< ]1{ ”jg,umax(t*to) or u?jgtfto}

Al (tg)+1
€

<(4 () A7 (to ))(G(:u’max(t_tO))+F(t_t0))+ﬂa

where the last inequality in the above follows from Glivenko-Cantelli estimate (EC.13)). For distri-

bution functions F' and G, we can choose ¢ small enough such that,

3\H

€

G(pmax(t—10)) + F(t —tg) < m.

Hence, from the above two inequalities, we can conclude that the second term on the right-hand

side of (EC.30) is bounded by €/2. Thus,
I
> Sr(te,t) <e, (EC.31)

for ¢t and ¢ty close enough. This proves (KC.25).
By the definition of Q7 in (EC.1H), we have A" (to,t) <, for t —t, small enough. Because each

customer enters service either upon a service completion or if upon arrival we have

I I

D Ar(to,t) SA"(to,t)+ > SP(to,t) < 2e. (EC.32)

i=1 i=1

Thus (EC.24]) holds.

Next we prove the oscillation bound for £. Let C C R be a Borel subset and define the “shift”
of set C by (a,b) as

C+(a,b)={(z+a,y+b)|(x,y) € C}.

Note that the fluid scaled dynamic equation (EC.8) still holds for any such Borel set if we replace
C, x Cy and Cyypy,(1—s) X Cypi—s with any Borel set C' and its shift C'+ (u;(t —s),t — s), respectively.

Thus (EC.8)) becomes

_[ B (L1(5)) (C + (st — 5),t — ))dM],_, (5)

ot (5771( )) (C+ (:U’Z( )7t— 3))szn 1 7,( )

P LS g (Ol =) i
J=AT () +1
[0 (£24(5)) (€ (= 5). = )M, (0

Lot (£2(5)) (C+ (alt = 5),t— ) A2, (5).

S

| +
— \“
S

to
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Let C° denote the e-enlargement of the set C, ie., C° = {(2/,vy) € R} |max(|z’ — z|, |y —y|) <
€, ¢,y € C'}. Choose 0 < €/(1+ pimax), then C+ (u;(t —s),t —s) C C* for all t, <s<t<ty+d. So
the above equation together with and implies that

L1 (1)(C) < L1 (to) (C) + 7 (to,£) +i87, (to, )
< L7 (to)(C7) +3Ie,

where the last inequality follows from (EC.31)) and (EC.32). Since C' is arbitrary, let Cy = C +
(ui(t—to),t —to). We also have that C' C Cy° when ty < s <t <ty+0d. Therefore (EC.33) also yields

the other direction of bound estimate
LH(t)(Co) = L7 (to)(Co) — (i — 1) 8] (to, t) — i A7, (Lo, 1)

These with (EC.31) and (EC.32)) give
L7 (to)(Co) < L2 (1)(Co°) + 3.

By the definition of Prohorov metric between two finite measures, we have d[L7(t), L7 (to)] < 31e.

This gives (EC.23) since € is arbitrary. U

EC.5.2. Convergence to Fluid Model

In this section we prove Theorem [1] It follows from Lemmas [EC.4] and [EC.5| that the sequence of
fluid scaled processes {(R",L",S™, A")},en is tight. Since R™(t) = R"(t)(R), Q"(t) = R"(t)(R,)
and E™(t) =31 A?(t), the sequence of fluid scaled processes {(R",Q", E™)} e is also tight. The
tightness of M, _; and M, ; follows from the fact that M,_,(t) — M,_,(s) < Sr(t) — S/'(s) and
My () — My (s) < Ar(t) — A7 (s) for any 0 < s <t by and and that these processes
are non-decreasing. The tightness of Z", B" and D™ can be seen from , and , respec-
tively. The tightness of the external arrival process A" is given by . So every subsequence of

the fluid scaled processes {(R",L",R",Q",Z",A", B", D", E", A", 8", M™) : n. € N} has a further

notational simplicity, we still use index n for the convergent subsequence. By Skorohod represen-
tation theorem (Lemma C.1 in Zhang (2013)) we can map all the random objects to the same
probability space so that all weak convergence becomes almost sure convergence (see the discussion
of §5.2 in [Zhang| (2013) for technical details). Again for simplicity we use the same notation for

these processes in the new space. Therefore,

(R*,L",R",Q",Z",A",B", D", E", A", 8", M") = (R,L,R,Q,Z,A,B,D,E,A,S,M) (EC.34)

almost surely as n — oo.

In order to complete the proof of Theorem [1 we need to verify that every such limit satisfies
the fluid dynamic equations 7.
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Proof of Theorem [Il Note that the fluid dynamic equations , 7, , , the
second equation of (49), and as well the non-idling constraint can be verified easily by the

corresponding stochastic equations and convergence of these processes as stated in . By
Lemma 2.4 in|Dai and Williams (1996), the fluid equation also holds. Combining Lemma [EC.5|
with Theorem 15.5 of Billingsley]| (1968) yields that Q(t) = R(t)(Cy), S;(t) and A,(t) are continuous.
Thus we also have the continuity of Z;(t) by (44). Therefore, if Z;(t) < N, we have for all n
large enough Z7'(s) < N for |s —t| <4, 6 > 0. It implies that Q"(s) =0 for |s —t| < d by (20).
This together with the first entries of and yields M7, \(t) — M7, ,(s) = S} (t) — St (s)
and M}, ;(t) — M}, ;(s) = A}(t) — A}(s) for |s —t| < §. Thus holds. On the other hand,
if Q(t) > 0, then we have for all n large enough Q"(s) > 0 for |s —t| <, 6 > 0. This yields
My ()= M7, (s) =My, (t)— M}, ;(s) =0. Consequently, dMy ;1 (t) = dM;_y (t) = 0. This
proves . Moreover, since the buffer of the CSC systems is same as that of the call center model
studied in Zhang| (2013)), the fluid equations and the first equation of that relate to the
buffer follow the same argument in Lemma 5.5 of [Zhang] (2013).

It remains to verify and . Comparing the stochastic dynamic equation and the fluid
one , we first show that as n — oo

AF (1) t
Z Lo >etpi@—rp))un >yte—rny = / G(x+ pi(t— ) F(x+t—s)dA;(s). (EC.35)
0

j=1

1
n
Let 0=ty <ty <...<txg =1 be a partition of the interval [0,¢] such that max;<p<x |t —tx_1| <.

Using the partition, we divide the integration into K parts. Since 77; € [ty,tx41] for those j €

(A2 (t) 4+ 1, A7 (t41)], we have

A7 (trg1)

1
— E 1 .
n {1)171’].>:17+/L,L(t—7-i7fj) "?,j >y+t—7-i7fj}
J=AT(t)+1
A7 (tg41)
E : ]]'{UZ]'>w+ﬂi(t*tk+1)’u2j>y+t*tk+1}
=AT () +1

S AT (b i) G (@ 4 i (E = tegr)) FE(y + 1 — tpn) + 6,

IN
S|

where the last inequality follows from the Glivenko-Cantelli estimate (KC.13)). Since € can be

arbitrary, we have

A7 (1) K—1
lim sup - Z Lion satpyt—rr))un sy+t—rn } < G (x4 i (t = tpg1) ) F(y +t — tigr) Ai(tr, trgr)
n—oo =1 ? ? > ’ =0

(EC.36)
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as n — oo. By a similar argument, we also have

A7 ()

ligiolgf n Z Lo >etpi—rp)up >yrt—rp 32> > G (z+ pi(t — ) F(y +t — t) Ai(tr, tegr)-

=

-
Il

j=1

(EC.37)

The terms (EC.36) and (EC.37) are Riemann-Stieltjes upper and lower sum of the integral on the
right-hand of . Since the partition is arbitrary, (EC.36) and (EC.37) give .

Next we prove that the four other terms on the right-hand side of also converge to their
corresponding terms in . We start from the second term on the right-hand side of and

show that as n — oo

1. Li—1 .
|20 () Cottema % O )M (5 [ L) Coptamsy X )N (),
o N o 1Z;(s)
(EC.38)
Recall that we assume Z;(-), i =1,...,I, has only finitely many switches between 0 and positive
value in any bounded time interval. Then on the interval [0,¢] we have a finite partition 0= ag <

a; < ...<ap =t for some L < oo, where a;’s are the switch points of Z;(-). Then (EC.38) is

equivalent to

SECS N -1 -
| R ) Cotpamn X Copie )M () [ s £6) Cotion X i (3)
l l (EC.39)

asn— oo forall [=0,...,L— 1. Based on the definition of a;’s, either Z;(s) = 0 for all s € (a;, a41)
or Z;(s) >0 for all s € (a;,a;41). Thus we consider the following two cases:

Case 1: Assume that Z;(s) =0 for all s € (a;,a;,1). By , the right-hand side of (EC.39) equals

to zero. So we just need to prove that as n — oo

a+1 1
/ @' (L7(5)) (Crtpati—s) X Cypa-s)AM];_1(5) = 0. (EC.40)

2,0—1
l

This follows since

: a 1 i— n n
fimsup [0 (£2(5)) (Copemsy X Cpras)AM (5

n— o0 a;

< lim (i — 1)Mirji—1(al7 art1) = (i — 1) M; -1 (ar, aigq).

n—oo

Obviously, the left-hand side of is non-negative. By , M 1(ar,aip1) < Si(ag, a1). By
Lemma we have Sz(t) =0 for t € (a;,a;41) because Z;(t) =0 for all t € (a;,a;41). This with
Lemma implies S;(a;,a;41) =0 . Thus, holds.

Case 2: Assume that Z;(s) >0 for all s € (a;,a;41). We also need to verify in this case.

Note that number of customers who moved from level ¢ to level i — 1 during the time interval
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(ar,ai41) is given by there are M, (a;,ai41). Let 75 € (aj,a141), j=1,..., M _,(a;,a;11), denote

i,0—1 1,1—1
the time points such that M}, (7;) — M};,_,(7;—) > 0. Then the left-hand side of (EC.39)) can be

written as

a4 ]
/ —@! (ﬁ?(s)) (Cr—hui(t—s) X Cy“’t—s)dMZ}i_l(s)

. n
M _q(ag,a141)

= E Z (bi_l (E:L(Tj)) (CﬂﬁLlJi(t*Tj) X Cy+t*7j)‘ (EC41)
j=1

The term &' (L7(7;)) (Caqpy(t-7;) X Cyre—r;) is a hypergeometric random variable, representing
the number of elements in £ (Tj)(or_;,_m(t_.,-j) X C’y+t_7j) out of i —1 draws from a total of L7 (7;)(Co x
Co) =i} (1;) elements. And it has variance

E?(Tj)(oﬁw(t*ﬁ) X Cy+t*7j) (1 o E?(Tj)(cﬁm(t*‘fy‘) X Cert‘rj)) iZZL(Tj) - (2 - 1)

<i—1.
iZ7(T5) iZ7 (1) l

?

(i-1)

Since each hypergeometric random variable ®~' (L7(7;)) (Catpy(t—r;) X Cyy1—r;) is sampled inde-
pendently and has a finite second moment, we can conclude from Kolmogorov’s strong law of large
numbers (Theorem 2.3.10 in Sen and Singer| (1994)) that for any € > 0 we have

M _q(ag,a141)

> OTHLHT)) (Coppitr—ry X Cyrery)

J=1

S|

M _q(ag,apqq)

Z E [CI)FI (‘C?(Tj)) (C$+ui(t—7j) x Cy+t—7j)] +e

Jj=1

IN
SER

Miyfi71(alval+1)

1 —1 "
Z %Ez (Tj)(o’ﬂ"rlli(t_Tj) X Cy+t—7j) te

j=1

3=

for all large n. Note that £7(7;)/Z"(7;) = 0 whenever ZP(7;) = 0. Here the last equality holds
since the expectation of the hypergeometric random variable ®~' (L7'(7;)) (Cotpy(t—r;) X Cysi—r;)

is s £7(75)(Copuy(t—7;) X Cyti—r;). Plugging the above into (EC.41) and considering a further

partition a; =tg <t;...<txg =a;y; of the interval [a;, a;,1] yields

e 1 L — n n
/ L1 (L2(5)) (Coppteny X Cyaros)dAM?:_ (5)

K1 - (EC.42)
7 — _ _
‘C?(S)(Cwﬂu(t—s) X Cy+t—s>M£¢71(tku tk+1) +e

for all large n. Since Z;(s) >0 for all s € (a;,a;41), by continuous mapping theorem L(s)/Z"(s)

converges u.0.c. to L£;(s)/Z;(s) a.s. as n — oo on the interval (a;,a;4;). Therefore

. e ]‘ i— n n
fimsup [ 20 (£1(5) (Corpyin X Cynrmo)dM 1 (5

n— oo 1



ecl8 e-companion

1—1
sup
0 S€[tx thy] ZZ( )

MN

Li(8)(Cotpit—s) % Cyrrims) My (i, trsr)- (EC.43)

Using a similar argument, we can show the inequality in the other direction

n—oo

S
lim inf / 0L (5)) (oo X Core o) AME_y (5)
ag

=

-1

> inf
S€[tg trq1] ZZ ( )

Z (8)(Cotpyt—s) X Cyvms) My i1 (tis tgr)- (EC.44)

>
Il
o

The terms and are Riemann-Stieltjes upper and lower sum of the integral on
the right-hand of . Because the partition of (a;,a;+1) is arbitrary, we have . This
completes the proof of by combining the results of Cases 1 and 2.

Next we focus on the fifth term on the right-hand side of , which is very similar to the second

term whose convergence we studied above. Specifically we show that as n — oo

t
1 _.
/ — 0" (L741(5)) (Cospite—s) X Cyyes)AML i (5)
0 (EC.45)

t .
1 5 _
—_—L; o VAot (s,
%/0 (i+1)Ziy(s )EHI(S)(CH”N 9 X Cypi—s)dMip1,:(s)

Note that is similar to and can be obtained by replacing the index ¢ in
by i+ 1 (wherever applicable) and i — 1 by i+ 1, except for the service rate term p;. However the
actual value of u; does not play a role in the proof of hence proof of is identical.

We next consider the third term and the last term on the right-hand side of together and

show that as n — oo

‘1 ‘1,
| () Cottn % Con DM ()= [ 8 (£2) Coppte—n X Cose-JAME ()

t
1 5 _
- / A Corption ¥ Coie) il s(8) = [ s L) oty % Cypice )Mo (3),
0o Zi
(EC.46)
Because Z;(+), i=1,..., 1, has only finitely many switches between 0 and non-zero values in any

bounded time interval, there exists a finite partition 0 = by < b, < ... <b; =1, J < 0o, of the interval
[0,#] such that on each open interval (b;,b;,;) the values of Z; and Z;_; only have the following
four situations: 1) Z;(s) >0 and Z;_,(s) >0 for all s € (b;,b;41); 2) Zi(s) =0 and Z;_,(s) >0 for
all s € (b;,bj41); 3) Zi(s) >0 and Z;_1(s) =0 for all s€ (bj bJH) and 4) Z;(s)=0and Z;_;(s)=0
for all s € (b;,bj41). Then it is enough to prove that ) holds for each interval, that is,

bis1 |
[ R ) Crrm X Coaec AME () (BC.AT

. n
J

i+ ]
- / 0 (£7(5)) (Cosn-) X Copes)dMY(5) (EC.48)

J
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bj+1 1 _
IR /b T Eet ) Contion X Cprima)ics ()

J

bjt+1 1 _
- /bj Z, 8)£¢(5)(Cr+m(t—s) X Cyyi—s)dM; i1(8)

asn— oo for all j=0,...,J — 1. According to the values of Z; and Z,_; we study the four cases:

Case i: Assume that Z;(s) >0 and Z;,_,(s) >0 for all s € (b;,b;y1). In this situation,
follows from the argument we used to prove (EC.43|) and (EC.44]).

Case ii: Assume that Z;(s) =0and Z;_,(s) >0 for all s € (b;,b;11). As in Case 1, converges
since Z;_1(s) > 0. So we just need to consider the limit of and show that

bj+1 1
/b 0 (£1(5)) (ot X Cre o)AMY (5
J

j+1 _ -
- /bj Z(S)ﬁi(s)(c’”ﬂ”“‘s) X Cyo-s)dMi iy (5)

as n — oo. The right-hand side of the above limit is defined through . Plugging to the

right-hand side of the above limit, it is equivalent to

j+1 1
/ 0 (L(5)) (Corpten X Cove )M (5

41 _ bjt1 _
—>/ Li—1(8)(Cogpiy(t—s) X Cypi—s)dM;_y () + G (w4 pi(t — 8))F(y +t —s)dAi(s)
J 7, 1

bj

~.

J+1 3 B
1102009 Fit Oty X Oy )AMig it EC.49
+/1; (1+1)ZZ+1(8) +1(8)( +pi(t—s) X Uyt ) +1, ( ) ( )

as n — 0o. Replacing t, and ¢t in (EC.8|) by b; and b, 1, respectively, yields
[’_ ( J+1>(C xC ) b )(Cw+m(bg+1 —tg) X Cy+(bg+1 to)

J+1 1 Z n n
/ L (5)) (ot 1 % Cot )AL ()

]+1 1 1 n n
[ (EL ) (Crrpatyarn X ity )M 1 (9

<

Af(bj1)

+E Z Lion s atus(ojn—rp )l >ubiaa =7}
J=AR(bj)+1
J+11 Z n n

" / 0 (L21(9)) (Cotpatoy a9 X Corayir)AM ()
b

J

bj+1
- / L8 (£2(5)) (Corpatas s X Cyry 11— )M (5),

) n
J

where the first two terms converge to 0 since Z;(b;) = Z;(b;41) = 0 due to the continuity of the

fluid limit, the second term on the right-hand side converges to 0 similar to (EC.40|), the third



ec20 e-companion

term on the right-hand side converges to the first term on the right-hand side of (proof is
similar to that of and ), the fourth term on the right-hand side converges to the
second term on the right-hand side of (EC.49)) by (EC.35)), and the fifth term on the right-hand
side converges to the third term on the right-hand side of (EC.49) by (EC.45)). It then follows that

as n— oo

bj+1 1
/ E(I)l (E?(s)) (Cr+lti(bj+1—s) X Cy+bj+1—5)dMiT,Li+1(s)
bj
bj+1
H
b.

1 - _
Zz_l(s) Ll*l (S)<CZ+Ml(b‘7+178) X Cy+b]+178)dM’Lfl,Z(s)

J

bjt1 _
b [ G by = )P+ by = 5)AL)
bj

bj+1 i _
+/bv m£i+1(3)(cx+m(bj+rs) X Cy+b]-+rs)dMi+1,z‘(5)-

Because x and y are arbitrary non-negative number this implies (EC.49)).
Case iii: Assume that Z;(s) >0 and Z;_;(s) =0 for all s € (b;,b;41). In this situation, the limit of
(EC.48)) follows from the same argument we used to prove (EC.43) and (EC.44) since Z;(s) > 0.

Therefore we just need to show that as n — oo

bj+1 1 .
/ E(I)l ('C?—l(s)) (Cotpit—s) X Cyia—s)AM, ;(5)

o (EC.50)
i+l 1 . C x C, YAM;_ 1 i(s)
- bj Zifl(s) 1_1<S)( atpg(t—s) y+t—s i—1,i(S)-
By (just by changing indices)
1 ) . ) 7
7 Li1()(Co x Cy)dM;—1,(t) = Li 2(t)(Cox Cy)dM;_,;1(t) + G (2) F(y)dA; 1 (t)
Zi_l(t) Z7,—2 t)
1 )
+ ¢ Li(t)(Cy x Cy)dM; ;1 (t).

iZi(t)

Therefore, to prove (EC.50)), it is enough to show that

bjt1 1
[0 (E9) ooy % )M ()

bj
bjt+1 1 _ - bjt )
— 3 (s)ﬁi—2(5)(c‘x+m(t75) X Cyyrs)dM; 5, (1) +/ G+ pus(t — ) F(y + — 8)d A1 (5)
bj 1—2 bj
bjt1 i—1 - -
+/b 7.0 -1 (&) Corniti—s X Cyris)dMiia (5) (EC.51)

j
as n — 0o0. As we argued for the relation between ([EC.38) and (EC.45)), the proof of (EC.51)) follows
from (EC.49).
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Case iv: Z;(s)=0 and Z;,_,(s) =0 for all s € (b;,b;41). In this situation, we need to consider the

limit of (EC.47) and (EC.48) simultaneously. Their fluid limit is also defined through (37), which

implies

I 5 -~ 1 .
70 Li 1 (t)(Cy x Cy)dM; 1 ;(t) — 700 Li(1)(C, x C)dM, ;4+(t)
= —G*(@) F*(y)dAi(t) = o Lot (A0 1,40,

(i+1)Ziwa(t)
Plugging the above equation to the limit of (EC.47)) and (EC.48)), it suffices to prove that as n — oo
bi+1 q -
/ ECI)Z ([’?71(3)) (Cw-wi(t—S) X Cy+t—5)dMinfLi(s)
bj

bji+1 1
- / L& (£(5)) (Cosony X Cyars)dM? (5)

;n
bjt1 N
— — G(x+pi(t—9))F(y+t—s)dA;(s)
bj
bj+1 i _ _
—/b mﬁiﬂ(s)(cmwi(m) X Cyyi—s)dMiii(s).
j 3

But we can still use the same argument we used to prove (KC.49)), the only difference here is that
we combine the limit of (EC.47)) and (EC.48)) together.

Combining these results with (EC.35)), (EC.38)) and (EC.45|), we can conclude that corre-
sponds to a fluid limit of . The proof of follows the same argument as that of . Thus

we omit it for brevity. [
EC.5.2.1. Auxiliary Results

Lemma EC.7. For any fluid limit, S; is differentiable almost everywhere and the derivative

Si(t) == (d/dt)S,(t) satisfies
- L;(t)(A(:9,9))

a.e. fori=1,...,1.
Proof. For any i=1,...,I, S; is the cumulative amount of departure from level i, so it is

nondecreasing. Thus, S; is differentiable almost everywhere (see (1988), Page 100). We

prove (EC.52) using (EC.9)). Following the same argument we used to prove (EC.35|) we have the
following limit for the fourth term on the right hand-side of (EC.9),

AP ()

t
lim — Z ﬂ{vn '<Hi(t—7—ﬁj) or “ﬁjft_ﬁfj} = / [1 — Gc(uz(t - S))Fc(t — 8)] dAZ(S) (EC53)

o = to
J=A}(to)+1
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We use Y;"(t) to denote the other four terms on the right-hand side of (EC.9),

Vo)== [ 20 (L) (At~ 5)y (= )M ()

+ / 0 (L1 (5)) (AQult — 5), (¢ = 5))ML ,(5)
to 1 (EC.54)
4 / O (L24(9)) (At = ), (= 5)AM, ()

- / %qﬂ (L2 (5)) (At — s), (£ — )M, (5),

to
where we append a subscript £, to Ytg(t) to emphasize the dependence on ty. It can be seen from
(EC.9), (EC.34) and (EC.53) that the limit of ¥;(¢) exists. Let Y, (t) = lim Y,"(¢). Then by (EC.9)
and (EC.34) S, satisfies

Si(t) = Si(to) + Li(to) (As (ps(t —to),t — to)) + /t [1—G(pi(t — 5)) Fo(t — 5)] dAi(s) + Vi, (t).

to
(EC.55)
Taking derivative of the above equation at t, yields
N d - d -
dt t=tgp dt t=tg

Note that the first term on the right-hand side of (EC.56|) is identical to the right-hand side of
(EC.52). Thus it suffices to prove that £V, (t)],—, =0.
By (EC.54)

OESS / Lot (£2(5)) (At — ), (t — $)))dMs_ (5)
to " (EC.57)

- /t l(bi (L7 (s)) (A(pi(t —s), (t—5)))dM"; 1 (s).

n

Now we consider the first term on the right-hand side of the above inequality. The number of
customers that switches from level i to level ¢ — 1 during the time interval (¢y,t] is given by
(i = DMy (to, ) == (i = D[M7;_,(t) — M7,
1M

ii—1

(to)]. We index these customers by [ =1,...,(i —
(to,t) according to their switch time and we use 7;* to denote the switch time of Ith
customer. Let s be the amount of service that the /th customer has already received by time 7,
and w}* the time that the /th customer has already spent during service by time 7;*. Also let v}
and u}* denote the remaining service time and remaining patience during service of this customer,
respectively. Then we have
- | DM (0.0

/t —O (L7 (5)) (At —5), (E=))AMT; ()=~ D> Spapy (At =), (E=77")))-
' - (EC.58)
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Note that dn un)(A(pi(t — s), (t —s))) has a binomial distribution with mean

B GC(S?‘FHi(t_Tln)) Fc(wlrl+t—Tln)
E[0wp,um) (A(ps(t — ), (t—5)))] =1— G°(s7) Fe(wl) ’

where the equality follows from the fact that the remaining service time v;* follows distribution

function 1 — G;(C?i:f ) and the remaining patience time during service ] follows distribution function
1
Fe(w]'+y) )
1— W It then follows follows from (EC.58|) and Kolmogorov’s strong law of large numbers

that for any € > 0,

/t L1 (£2()) (A(ui(t — 9), (t — 8)))dM?,_, ()

n
(i—1)M;";_1(to,t)

5 (1_ G (sp + it — 7)) F”(wHt—Tz")) L (EC.59)

: G<(s7) Fe(up)

S|

=1
for all large n. By our assumption the time spent during service w;® is bounded. Thus, s} is also
bounded since s < pmaxw)'. So there exists My > 0 such that w}*, s} < M, for all [ and n.

Let O=ap<a;1<...<aj=Myand 0=0by < b; <...<bgx =M, be two partitions of the interval
[0, My]. Among all the (i —1)M"

2,0—1

(to,t) randomly selected customers from level i to level i — 1 on

the time interval (to,t], let M"?" (t,,t) denote the number of customers whose total amount of ser-

7,5—1
vice and time spent in service satisfy (s7',w;') € (a;,a;41] ¥ (bk, bp41]. We have, (i —1)M";_,(to,t) =
ijl Zle M7% (t,t). And the limit of the fluid scaled process of M“’" (t,,t) also exists and let

3,5—1 7,5—1
ik
M:
i,0—1

(to,t) denote its limit. Also

<
AN
=
A

(i — 1) M1 (to,t) = M3, (to, ). (EC.60)

0

I
<
£
Il

J
We can also see from the above discussion that the right-hand side of (EC.59|) satisfies

(i=1)M]"; _1(to,t)

3 (1 Gl e )

— Ge(s1') Fe(wy)
1k MR (o)
1 JZ:IKZ:I ’21:0 <1 Ge(sp + pi(t — 7)) Fc(wzl‘*‘t_ﬁn))]l
= — — o o st owl)E(as,a; by.,b
i k=0 1= Ge(s}) Fe(wy) B
1 g1 MR (oot
1 Jo1K 1Mol ® Gc(ajﬂ—l—ui(t—n")) Fc(bk+1+t—7'ln)
<= 1— . > . (EC.61)
[ =1 G<(ay) Fe(be)

Again by the same argument we used to prove (EC.35|), we have

MZ;J,kl (t07t) P n c n
Z <1_ G (aj1+pi(t —775))F (bk+1+t_7i7j)>
G<(a;)Fe(by)

lim —
n—oo M
=1
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G(a;y1 + p(t—38) (b +t—s
( j+1 M( )) ( k+1 )>dMljf 1( )

t
= 1 —
/to < G°(a;)F(br)
Combing the above limit with (EC.59|) and (EC.61)) yields

sznz 1( )

/ Zo 1 (L2 (s)) (At — 5), (t— 5))
(EC.62)

J—1K-1 c ¢
( G(ajsr + pi(t — 5)) F(bryr +1 — )> szjl: 1(8) +2¢

Z 2 Ge(a;)Fe(b)

0 k=0

3

u

for all large n.
Now we consider the second term on the right-hand side of (EC.57)). Using the same partitions

(to,t) to denote the number of customers with (s, w}') € (a;j,a;41] X

{a;} and {by}, we use Mfzikl
(to,t) as m — 0o exists.

(to,t) = 327 Soie MW (to,1). Also it’s limit MY,

(b, bry1]. Then i M,
Then
J-1K-1
(EC.63)

iM; i1 (to, t) Z Z sz’;+1 (to,t)

7=0 k=0

Using the same argument we used to prove (EC.62)), we also have

t
1._.
/ S OHL(s)) (Alpilt = ), (¢ = 5)))dM 1 (5)
to
EC.64
Kz:/ Gc aj+1 +1uz(t_s))Fc(bk+1 ‘I‘t—s) dM]k ( )+2€ ( )
G(aj)Fe(by) .
for all large n. Since the € is arbitrary, we have by (EC.57), (EC.62|) and (EC.64]) that
J-1K-1 t
= G(aji1 + pi(t —5)) Fo(bra +t—3)> ik
Y, (t) > — 1— Ch dm!
to()— ' /to ( Gc(aj)FC(bk) 1,0— 1( )
(EC.65)

J-1K-1 ¢ Gc(aj+1+,Uz'(t_s))FC(bk+1+t_s) ik
B 1 dM; i+1(5)'
to G<(a;)Fe(by) 7

=0 k=0

Taking derivative at t, yields
J-1K-1
G(a Fe(b
< J+1) ( k+1)) Mz]’: 1( )_
0

d —
Sy =-

dt t=tg parde

Also because the partitions {a;} and {b;} are arbitrary, we can assume without loss of generality

< g for given § > 0. Then the above inequality implies

G<(a;)Fe(b)

G(aj41)F(bgy1)
that 1 — —Gj(a E0s;

d B —1K-1 ' . .
dt tO s > 5 Z szf 1 to + M,L z+1(t0)) (5((7, — 1) i,i—l(tO) =+ ZMi,i—i—l(tO))a (ECGG)
0 j=0 k=0

where the last equality follows from (EC.60) and (EC.63]).
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It remains to consider the other direction. Similar to (EC.57)), by (EC.54)

Yot < / Lot (£ 1(9)) (AQualt — 5), (¢ — )M, ,(s)

[ (L0, 9)) (At =), =)D (5)

Then we can apply exactly the same argument to obtain

%YZO (t) <6((i—- 1)Mi—1,i(t0) + iMi+1,i(to))~

t=tg

Combing the above inequality with (EC.66) immediately yields %Yto (t)|¢=t, =0 because ¢ is arbi-
trary, proving the result. ]

Lemma EC.8. Consider the fluid limit in (EC.34). If Z;(t) =0 for all t € [to,t1], for to < ti, then

S;i(t) is absolutely continuous on [to,t].

Proof. We need to show that (see 7.17 in |[Rudin| (1987))) for any € > 0, there exists a 6 > 0 such

that for any m and any disjoint collection of segments (aq, 1), .. ,(Qm, Bm) In [tg,t1] such that

Zm(ﬁm - am) < 5’ we have Zm |'§z(ﬁm) - Sz(am)| <e
We use the notation introduced in the proof of Lemma throughout. Since Z;(ty) =0, we

have £;(ty) = 0 from and (EC.34). Then by (EC.55)

Si(t) = S;(to) + /t [1—G(ui(t — 8))FO(t — 8)]dAi(s) + Yy, (t)  for all t € [to, 1], (EC.67)

where Y}, (t) is the fluid limit of (EC.54)). Due to the reason that G and F are absolutely continuous,

we have

D1 Gt (1)) = g st (1) + G () 1 1), (EC.68)

where g and f are the probability density functions of G and F', respectively. Hence by changing

the order of integration, we get

[ =Gttt - )Pt - 9] dAs) (EC.69)

- t /tr[ﬂig(#i(l‘ —8))F(x —8) + G (ui(z — 8)) f(x — 5)]dA;(s)dx.

The above implies that (EC.69)) is absolutely continuous.
Since Z;(t) =0 for all t € [to,1], we can find that (EC.67) still holds after replacing ¢, and ¢ by

., and f,,, respectively. Thus,

Bm
5:(Bm) = Si(cum) + / 1= G (pa(Bor — ) F* (B — )] dAs(5) + Yo, (Bun)-
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The above implies

Bm
1Si(Bm) — Silom)| < / [1— G (i (B — ) F* (B — 8)] dAi() + [Var,,, (Ba) . (EC.70)

We first study the first term on the right-hand side of the above inequality. By (EC.69)),

Bm
/ (1= G (1 (B — 8))F* (B — 5] dL(s

~—

Bm x
- / / a9 (as( — ) F°(& — 8) + G (s (& — ) f (& — 8)]d () de

Bm
< / / s (s — ) F°(x — 8) + G (s — ) f (& — 8)]d A (), (BC.71)

where the last inequality holds since ¢y < «,,. One can find that (EC.71]) is just the difference of the
absolutely continuous function (EC.69)). So we can see from (EC.70)) and (EC.71)) that if |Y,, (5,.)]

can also be bounded by a difference of a certain absolutely continuous function then the absolutely

continuity of S;(-) will immediately follow.
We use an argument similar to (EC.71)) to analyze the last term in (EC.70). To simplify the

notation, we use X{fto (t) to denote the absolute value of the first term on the right-hand side of

(ECHA), i.e.,

X7 (1) = / SOTH(LY(9)) (Alps(t = ), (t = 9)))AM 5 (5)- (EC.72)

to
Similarly, we use X;to (1), X;to (t) and tho (t) to denote the absolute values of the last three
terms on the right-hand side of (EC.54). Then by (EC.54)), by replacing t, and ¢ by «,, and S,,,
respectively,

Y., (Bm)| = hm ]Y” (Bm)| <hmsupZXl o (Bim)- (EC.73)

The above inequality provides an upper bound to the |Y,,, (8,,)] in (EC.70). So we just need to study
X[}am(ﬁm), I=1,...,4, one by one. As the arguments are same, we mainly focus on Xﬁam(ﬁm).

In view of (EC.62), we denote

X (t ; ;%/ (1 ~ Go(ajm +Mé(ct(—J;2§;£l;k+1 +t— )) dMlj;; (5). (EC.74)

Similar to (EC.68)),

d 1 G(aj 1+ pit) Fo(bgyy +1)
at Ge(a,) F<(by)
1

= G(a,) Fe(br) [ig(ajp1 + pat) F€(bra +1) + G(aj1 + pit) f(breyr +1)] -
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Then similar to (EC.69)), we have

=33 [ (1- Sl at o (EC.T9
J-1K—1 .t )
RPNy Gc<aj>Fc<bk>[Migww(w—s))mbm+x—s>

+ Gz + i@ = 9)f (b + @ — 5) | dDE (s)da,
where the equality also follows from changing the order of integration. Clearly, the second term on

the right-hand side of the above equation is absolutely continuous. With regards to (EC.72)) and

(EC.74), we have proven in (EC.62) that limsup,,_,, X7, () < X1, (t). Replacing to and ¢ by oy,
and (,, yields

limsupXﬁa (Br) < X0y, (Brm)- (EC.76)
Moreover, it can be seen from (EC.75|) that
J-1K-1
_ G*(a, 1)Fc(bk+1)) ik
Xia,,(Bm) < 1— AX dM" EC.77
1, m(ﬂ )—;Z/ < GC<CL]*)FC(Z)]€) iyi— 1( ) ( )
-1K-1 8, prz 1
+ ———— | pig(aj11 + pi(x — 8)) F(bpsr +x — s
~ ; /am /to GC(CL])FC(bk) |:/'L g( 741 M ( )) ( k+1 )

+ Gz + palw = 9)f(br + 2 — 8) | dBEE (s)de,

where the inequality follows due to the same reason as , ie., ty < a,,. Same as , the
second term on the right-hand side of the above inequality is also the difference of an absolutely
continuous function (the second term on the right-hand side of (EC.75)). Now we consider the first
term on the right-hand side of . Since G and F' are absolutely continuous, we can choose
{a;} and {b;} such that (see the definition above (EC.60))

G(a;j41)F°(bry1) < €

1-— -
Gc(aj)Fc(bk) T 81— 1)M;_q (to,t1)+1
for all a;’s and b;’s. Considering the disjoint segments (aq, 51),. . . ,(Qm, Bm) in [to, 1] yields
J-1K-1 c
TR (SR
c i,0—1
m j=0 k=0 )F (bk>
J-1K-1 ) (b )
< / (1- Cloe ey o
;z; a;) e (by) (EC.78)
€ J—-1K-1
< M3 (to,t)

(i —1)M; i1 (to,t) +1 4

A\
|l

)
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where the last inequality follows from .

In view of and (EC.77)), we can obtain similar upper bounds for limsup, _, . X Loy (Bm)s
Il =2,3,4. Three similar inequalities like can also be obtained. By (EC.71)), (EC.73),
(EC.77) and (EC.78), we can conclude from that for any € > 0 there exists a § > 0 such
that when ) (8, — a.,) <0 there will be ) |Si(Bm) — Si(cm)| < €. This proves the result. [0

EC.6. Detailed Results of Simulation Experiments

In this section we provide the details of the results of the simulation experiments in §7]and compare
them with our approximations. The results are presented in Tables for the experi-
ments in §7.2] where our policy 7 reduces to the lightest-load-first policy. The results presented
in Tables correspond to the experiments in In this case, we present the both
results under the policy m and the lightest-load-first policy as they are different in experiments
with inefficient levels.

Each table includes the simulation results for a combination of service and patience times that
are presented in Table [2| Each of these tables provides the results for the expected number of
agents at each level in columns EZ; through EZ; for levels 1-6, the total abandonment rate under
column Ab. Rate in our simulation experiments. And, we also provide the results for expected
time in system: in the column E[W] for the expected time in system, in the column E[W|C] for
customers whose service is completed, in the column E[W|A] for customers who abandoned the
system, and in the last column stdev(W) for the standard deviation of time in system. We present
our approximations for the associated quantities in the rows of “Approx”, and we also present 95%

confidence intervals found using the batch-means technique, whenever applicable.

System | EZ, | EZ, | EZs | EZ, |EZs|EZs|Ab. Rate| EW] | EW|S] | EW|A] | stdev(W)
0835 | 11.039 [ 12368 | 0.691 | 0 | 0 | 62.780 | 0.2236 | 0.2235 | 0.2240 | 0.2239

1 Sim. £0.010 | £0.058 | £0.060 | £0.032 | +0 | +£0 | £0.173 | £0.0002 | £0.0004 | £0.0005 | 40.0004
Approx. 0 12.5 12.5 0 0 0 62.5 0.2222 | 0.2220 | 0.2229 0.2229
S 0.888 | 23.284 | 25.502 | 0.317 0 0 125.160 | 0.2228 | 0.2227 | 0.2232 0.2230

2y M 10,009 | £0.164 | £0.152 | £0.034 | £0 | +£0 | £0.371 | £0.0002 | £0.0004 | £0.0005 | +0.0004
Approx. 0 25 25 0 0 0 125 0.2222 | 0.2220 | 0.2229 0.2229

Sim 0.843 | 48.311 | 50.779 | 0.063 0 0 | 249.871 | 0.2224 | 0.2223 | 0.2228 0.2226
31 " | £0.014 | £0.383 | £0.389 | £0.016 | =0 | £0 | +0.664 | £0.0002 | £0.0004 | £0.0005 | £0.0004
Approx. 0 50 50 0 0 0 250 0.2222 | 0.2220 | 0.2229 0.2229

Table EC.2 Results for combination I1: Exponential service and patience times
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System | EZ, | EZ, | EZ, | EZ, | EZs |EZ|Ab. Rate| EW] | E[W|S] | E[W|A] | stdev(W)
5 0333 | 6.320 | 15.462 | 2.862 | 0.018 | 0 | 70.814 | 0.2523 | 0.2826 | 0.1623 | 0.1347
1| O™ 0,005 | £0.047 | £0.049 | £0.061 | £0.003 | £0 | £0.204 | £0.0001 | £0.0002 | £0.0005 | £0.0001

Approx. 0 4.390 | 20.610 0 0 0 70.610 0.2511 | 0.2811 | 0.1613 0.1340

Si 0.264 | 11.284 | 35.204 | 3.245 0 0 141.267 | 0.2516 | 0.2819 | 0.1617 0.1341

2; M 10.004 | £0.115 | £0.127 [ £0.131 | +0 £0 | £0.392 | 40.0001 | £0.0002 | £0.0005 | £0.0001
Approx. 0 8.780 | 41.220 0 0 0 141.220 | 0.2511 | 0.2811 | 0.1613 0.1340

Si 0.215 | 20.217 | 76.432 | 3.135 0 0 282.181 | 0.2513 | 0.2814 | 0.1614 0.1337
31 M1 10,005 | 4£0.281 | +£0.199 | £0.177 | 40 +0 | £0.732 | £0.0001 | £0.0001 | £0.0005 | £0.0001

Approx. 0 17.560 | 82.440 0 0 0 282.440 | 0.2511 | 0.2811 | 0.1613 0.1340

Table EC.3 Results for combination I1;: Log-normal service and exponential patience times

System | EZ, | EZ, | EZs | EZ, | EZ5; |EZs|Ab. Rate| E[W] | E[W|S] | E[W|A] | stdev(W)

Si 0.321 | 6.123 | 15.521 | 3.009 | 0.021 0 43.010 | 0.2536 | 0.2363 | 0.3496 0.2056
14 M1 40,006 | +0.064 | £0.069 | £0.058 | £0.003 | +0 | £0.112 | £0.0002 | £0.0003 | +0.0007 | £0.0005

Approx. 0 3.962 | 21.038 0 0 0 42.731 0.2526 | 0.2352 | 0.3490 0.2049

Si 0.251 | 10.795 | 35.435 | 3.516 0 0 85.671 0.2530 | 0.2358 | 0.3491 0.2052
2, M1 10,004 | £0.141 | £0.135 | £0.121 | +0 +£0 | £0.222 | £0.0002 | £0.0003 | £0.0006 | £0.0005

Approx. 0 7.923 | 42.077 0 0 0 85.461 0.2526 | 0.2352 | 0.3490 0.2049

Si 0.201 | 19.084 | 77.132 | 3.582 0 0 171.005 | 0.2527 | 0.2355 | 0.3487 0.2048
31 M 40,006 | £0.317 | £0.248 | £0.189 | +0 +0 | £0.464 | =+0.0002 | £0.0003 | £0.0006 | £0.0005
Approx. 0 15.846 | 84.154 0 0 0 170.922 | 0.2526 | 0.2352 | 0.3490 0.2049

Table EC.4 Results for combination I1I;: Log-normal service and patience times

System | EZ | EZ, | EZs | EZ, | EZ; |EZs|Ab. Rate| E[W] | E[W|S] | E[W|A] | stdev(W)

Si 2.889 | 12.295 | 7.963 | 0.734 | 0.012 0 28.179 | 0.1504 | 0.1502 | 0.1536 0.1535
1y M 40,042 | £0.119 | £0.109 | £0.067 | £0.003 | +0 | +0.113 | £0.0005 | £0.0004 | +£0.0015 | +0.0004

Approx. 0 24.997 0 0 0 0 25.001 0.1333 | 0.1333 | 0.1333 0.1334

Si 4.478 | 31.986 | 13.233 | 0.226 0 0 54.523 | 0.1455 | 0.1454 | 0.1476 01475
2 M1 10,078 | £0.345 | £0.351 | £0.059 |  +0 £0 | £0.241 | £0.0005 | £0.0005 | £0.0016 | £0.0005
Approx. 0 49.995 | 0.005 0 0 0 50.003 | 0.1333 | 0.1333 | 0.1333 0.1334

Si 7.163 | 75.286 | 17.484 | 0.008 0 0 105.146 | 0.1403 | 0.1402 | 0.1415 0.1413
39 M 40,173 | £0.577 | £0.690 | £0.006 | +0 +0 | £0.374 | £0.0004 | £0.0004 | £0.0013 | £0.0004

Approx. 0 99.989 | 0.011 0 0 0 | 100.005 | 0.1333 | 0.1333 | 0.1333 0.1334

Table EC.5 Results for combination I2: Exponential service and patience times

Si 2.040 | 11.794 | 9.626 | 1.420 | 0.051 0 30.203 | 0.1613 | 0.1666 | 0.1014 0.0815
1, M 40,038 | +£0.106 | £0.051 | £0.105 | £0.011 | +0 | +0.132 | £0.0006 | -£0.0006 | +0.0006 | +0.0004

Approx. 0 18.911 | 6.089 0 0 0 28.045 | 0.1496 | 0.1544 | 0.0934 0.0747

Si 2.752 | 27.981 | 18.521 | 0.701 | 0.002 0 58.502 | 0.1562 | 0.1612 | 0.0973 0.0770
2 M1 10,069 | £0.312 | £0.272 | £0.123 | +0 £0 | £0.263 | £0.0005 | £0.0005 | £0.0006 | £0.0003

Approx. 0 37.822 | 12.178 0 0 0 56.089 | 0.1496 | 0.1544 | 0.0934 0.0747

Si 3.381 | 63.618 | 32.829 | 0.147 0 0 114.836 | 0.1532 | 0.1581 | 0.0950 0.0746

32 M1 40,112 | £0.761 | £0.808 | £0.056 |  +0 +0 | +0.470 | £0.0005 | +0.0005 | £0.0004 | £0.0003
Approx. 0 75.643 | 24.357 0 0 0 112.178 | 0.1496 | 0.1544 | 0.0934 0.0747

Table EC.6 Results for combination II2: Log-normal service and exponential patience times
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Sim 1.335 | 9.421 | 11.189 | 2.809 | 0.196 | 0.006 7.943 0.1761 | 0.1708 | 0.4210 0.1673
1o © | £0.024 | £0.086 | £0.104 | £0.121 | £0.044 | £0.003 | +0.062 | £0.0006 | +0.0005 | £0.0030 | £0.0009
Approx. 0 12.500 | 12.500 0 0 0 7.009 0.1667 | 0.1620 | 0.4115 0.1588

Si 1.522 | 21.266 | 24.749 | 2.420 | 0.020 0 14.762 0.1709 | 0.1661 | 0.4120 0.1614
2 M1 10,033 | £0.250 | £0.233 | £0.274 | £0.012 | +0 +0.110 | £0.0005 | £0.0005 | £0.0028 | +0.0008

Approx. 0 25.001 | 24.999 0 0 0 14.018 | 0.1667 | 0.1620 | 0.4115 0.1588
Sim 1.501 | 46.295 | 50.900 | 1.293 0 0 28.391 | 0.1681 | 0.1635 | 0.4074 0.1582

35 " | £0.066 | £0.652 | £0.557 | £0.237| +£0 +0 +0.191 | £0.0005 | £0.0005 | +0.0031 | +0.0007
Approx. 0 50.002 | 49.998 0 0 0 28.035 | 0.1667 | 0.1620 | 0.4115 0.1588

Table EC.7 Results for combination IIIs: Log-normal service and patience times

System | Policy | EZ | EZ | EZ; | EZy | EZs; |EZs|Ab. Rate| E[W] | E[W|S] | E[W]A] | stdev(W)

lightest-load 0.525 | 7.484 | 14.740 | 2.234 | 0.007 | O 68.602 | 0.2444 | 0.2441 | 0.2452 0.2448

1 Sim. +0.007 | £0.063 | £0.060 | £0.058 | £0.002 | £0 | +0.205 | £0.0003 | £0.0004 | £0.0004 | £0.0002
! 1.469 | 16.875 | 1.038 | 1.488 | 4.102 0 64.728 | 0.2306 | 0.2300 | 0.2325 0.2325
T £0.007 | £0.030 | £0.006 | £0.005 | £0.033 | £0 | £0.177 | £0.0003 | +0.0004 | £0.0003 | +0.0004

Approx. 0 20.492 0 0 4.508 0 63.525 | 0.2259 | 0.2249 | 0.2290 0.2290
lightest-load 0.425 | 13.710 | 33.368 | 2.493 0 0 137.786 | 0.2446 | 0.2452 | 0.2460 0.2459

9 Sim. +0.008 | £0.184 | +£0.161 | £0.103 | +0 +0 | +0.434 | £0.0005 | £0.0005 | £0.0004 | £0.0005
! 1.733 | 36.396 | 1.455 | 2.273 | 8127 | 0O 128.485 | 0.2288 | 0.2281 | 0.2312 0.2309
T £0.009 | £0.066 | £0.006 | £0.009 | £.059 | £0 | +£0.377 | £0.0002 | £0.0004 | £0.0005 | £0.0005

Approx. 0 40.983 0 0 9.017 | 0 127.050 | 0.2259 | 0.2249 | 0.2290 0.2290
lightest-load 0.333 | 24.774 | 72.501 | 2.390 0 0 | 276.616 | 0.2464 | 0.2462 | 0.2469 0.2467

3 Sim. +0.009 | £0.440 | £0.365 | £0.155 | =+0 +0 | £0.910 | 40.0004 | £0.0005 | £0.0004 | £0.0005
! 1.921 | 76.233 | 2.067 | 3.447 | 16.322 | 0 | 255.762 | 0.2271 | 0.2270 | 0.2302 0.2300
T £0.016 | £0.128 | £0.008 | £0.019 | £0.128 | £0 | +0.819 | £0.0002 | £0.0003 | £0.0003 | £0.0003

Approx. 0 81.967 0 0 18.033 | 0 | 254.099 | 0.2259 | 0.2249 | 0.2290 0.2290

Table EC.8 Results for combination I; with inefficient levels: Exponential service and patience times

System | Policy | EZ | EZ, | EZ; | EZ, | EZs |EZs|Ab. Rate| E[W] | E[W|S] | E[W]|A] | stdev(W)

. lichtest-load 0.133 | 2.982 | 14.753 | 6.991 | 0.139 0 78.943 | 0.2811 | 0.3197 | 0.1824 0.1529

1 Sim. | "° £0.004 | £0.040 | £0.054 | £0.058 | £0.013 | £0 | £0.221 | £0.0001 | £0.0002 | £0.0004 | £0.0001
! - 0.886 | 14.558 | 1.111 | 1.808 | 6.623 0 73.605 | 0.2622 | 0.2943 | 0.1715 0.1452
£0.007 | £0.031 | £0.003 | £0.006 | £0.034 | £0 | £0.160 | £0.0002 | £0.0001 | £0.0004 | £0.0001

Approx. 0 17.497 0 0 7.503 0 72.508 | 0.2578 | 0.2886 | 0.1692 0.1442

. lichtest-load 0.068 | 3.584 | 33.537 | 12.790 | 0.020 | 0O 158.973 | 0.2831 | 0.3223 | 0.1836 0.1539

9 Sim. | "° +£0.002 | £0.071 | £0.122 | £0.159 | £0.007 | £0 | £0.418 | £0.0001 | £0.0001 | £0.0003 | £0.0002
! - 0.992 | 31.239 | 1.541 | 2.712 | 13.508 | 0 146.302 | 0.2606 | 0.2923 | 0.1706 0.1447
+0.006 | £0.070 | £0.05 | £0.011 | £0.072 | £0 | £0.393 | £0.0001 | £0.0002 | £0.0003 | £0.0001

Approx. 0 34.995 0 0 15.005 | 0 145.016 | 0.2578 | 0.2886 | 0.1692 0.1442

. lichtest-load 0.032 | 3.794 | 72.591 | 23.583 0 0 | 319.506 | 0.2844 | 0.3241 | 0.1845 0.1546

3 Sim. | "° +£0.001 | £0.124 | £0.302 | £0.342 | 0 +0 | £0.863 | 40.0001 | £0.0002 | £0.0004 | £0.0001
! - 1.067 | 65.178 | 2.160 | 4.024 | 27.566 | 0 | 291.505 | 0.2596 | 0.2909 | 0.1701 0.1443
£0.009 | £0.145 | £0.012 | £0.210 | £0.137 | £0 | £0.778 | £0.0001 | £0.0002 | £0.1697 | £0.0001

Approx. 0 69.990 0 0 30.010 | 0 | 290.031 | 0.2578 | 0.2886 | 0.1692 0.1442

Table EC.9 Results for combination II; with inefficient levels: Log-normal service and exponential patience

times

Overloaded systems: Next we provide the results of simulation experiments for overloaded
systems. Our goal is to show that the distribution of service time also has significant impact on

the steady-state behavior of the queue length of CSC systems. We assume that the patience time



e-companion ec3l

System | Policy | EZ | EZ | EZ; | EZ, | EZ, |EZs

| EW] | EW|S] | EW|A] | stdev(W)

_ lightest-load 0.140 | 3.060 | 14.850 | 6.819 | 0.128 0 50.625 | 0.2801 | 0.2607 | 0.3686 0.2236

1 Sim. £0.004 | £0.051 | £0.057 | £0.072 | £0.011 | £0 | £0.122 | £0.0002 | £0.0003 | £0.0006 | £0.0005
! - 0.867 | 14.521 | 1.126 | 1.805 | 6.666 0 45.789 | 0.2627 | 0.2441 | 0.3583 0.2136
£0.006 | £0.038 | £0.003 | £0.006 | £0.038 | £0 | £0.115 | £0.0002 | £0.0003 | £0.0006 | £0.0005

Approx. 0 17.404 0 0 7.596 0 44.711 0.2588 | 0.2400 | 0.3577 0.2123

_ lightest-load 0.074 | 3.758 | 33.821 | 12.330 | 0.017 | 0O 102.258 | 0.2819 | 0.2624 | 0.3696 0.2246

9 Sim. £0.002 | £0.080 | £0.157 | £0.191 | £0.005 | £0 | £0.238 | £0.0003 | £0.0003 | £0.0003 | £0.0005
! - 0.969 | 31.126 | 1.559 | 2.703 | 13.633 | 0O 90.736 | 0.2613 | 0.2427 | 0.3579 0.2130
£0.009 | £0.075 | £0.007 | £0.010 | £0.075 | £0 | £0.265 | £0.0002 | £0.0003 | £0.0007 | £0.0001

Approx. 0 34.808 0 0 15192 | 0 89.423 | 0.2588 | 0.2400 | 0.3577 0.2123

_ lightest-load 0.036 | 4.058 | 73.426 | 22.479 0 0 | 205.994 | 0.2832 | 0.2636 | 0.3705 0.2254

3 Sim. £0.002 | £0.157 | £0.320 | £0.385| =0 +0 | £0.496 | 40.0002 | £0.0003 | 0.0006 | £0.0006
! - 1.040 | 64.920 | 2.172 | 4.008 | 27.855 | 0O 180.476 | 0.2604 | 0.2418 | 0.3575 0.2126
+£0.010 | £0.175 | £0.018 | £0.007 | £0.176 | £0 | £0.579 | £0.0003 | +0.0002 | £0.0007 | 30.0006

Approx. 0 69.616 0 0 30.384 | 0O 178.845 | 0.2588 | 0.2400 | 0.3577 0.2123

Table EC.10 Results for combination I1I; with inefficient levels: Log-normal service and patience times

distributions for waiting and during service are both log-normal with mean and variance equal to
1. We compare the simulation results with two service time distributions expo(1) and In(1,1). And
we use the service rate p = {4,3.8,3.3,3,2.75,2.5} same as the first experiment set in The
parameters of each experiment along with the simulation results (with 95% confidence intervals in
parentheses) are presented in Table In these experiments we consider two different pairs of
values of A and NN such that the systems are overloaded. Our approximations for the probability
of abandonment (see Table and the queue length (see Table are clearly very
accurate. We note that the difference of the queue length for systems with expo(1l) and In(1,1)
service time distributions is around 20 when (A, N) = (1100,50). This shows the impact of service
time distributions on system performance. The impact of patience time distributions for waiting

and during service can be verified in a similar way. This consists with the approximations in

Service Time| X | N pAv b approx | Rel. Error (%)

expo(1) 550 |25 {0.3175(=£0. 0011) 0.3181 0.19

In(1,1) 550 |25 0.3243(4+0.0012) | 0.3250 0.22

expo(1) 1100 | 50 | 0.3175(£0.0012) | 0.3181 0.19

In(1,1) 1100 | 50 | 0.3242(+0.0012) | 0.3250 0.25
(a) Relative error for P4* (in %)

Service Time | A | N | Qsim | Qapprox | Rel. Error (%)
expo(1) 550 |25 | 140.9464(+5.8438) | 139.8579 0.77
In(1,1) 550 [ 25| 151.5935(+4.5686) | 149.6885 1.26
expo(1) 1100 | 50 | 283.7241(£11.0558) | 279.7157 1.41
In(1,1) 1100 | 50 | 303. 7658 +9.0692) |299.3770 1.44

(b) Relative error for @ (in %)

Table EC.11 Comparison of simulation results and approximations for overloaded systems
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