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We study customer service chat (CSC) systems with generally distributed service and patience times by

developing measure-valued processes to model and analyze the system dynamics. We first prove that these

processes are tight in the many-server asymptotic regime and then show that their limits satisfy a set of

fluid model equations. We then establish the invariant states of these limits and use these invariant states

to obtain (non-asymptotic) approximations for various performance metrics of CSC systems in the steady

state. We also demonstrate the accuracy of these approximations using extensive numerical experiments.

These approximations allow us to establish the impact of service and patience time distributions on the

system performance and to devise effective dynamic routing policies.
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1. Introduction

Customer service chat (CSC) systems have become an integral part of effective customer service.

As much as 40% of customer contact centers now provide service through chat, see ICMI (2013)

and International (2011). One of the reasons behind CSC systems’ popularity is their efficiency: a

chat agent can serve multiple customers simultaneously, whereas a call-center agent can only serve

one customer at a time (see Tezcan and Zhang (2014) for more details). However, as an agent tries

to chat simultaneously with more customers, the service speed will diminish along with the quality

of service provided. This novel trade-off introduces new challenges in making operational decisions

(which are well studied in other service systems), especially for staffing decisions (i.e., the number

of agents scheduled to provide service) and the routing decisions (i.e., how to dynamically match

arriving customers with available agents). Another distinct challenge in CSC systems concerns the

maximum number of customers an agent should be allowed to handle at any one time. In this paper
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we further explore how to make these decisions effectively in view of this trade-off by building on

the earlier work in Tezcan and Zhang (2014).

Tezcan and Zhang (2014) studied the optimal routing and staffing in CSC systems to minimize

the staffing costs while keeping the abandonment probability below a certain threshold under

the assumption that service and abandonment times are exponential. Similar problems have been

studied extensively for call center systems where customers are impatient and will abandon the

system from the queue if their request is not handled in a timely manner, see Gans et al. (2003).

However, unlike call center systems, abandonment during service should be taken into account

in CSC systems when making operational decisions because with increased multitasking an agent

becomes less and less responsive.

By explicitly modelling customer abandonment during service, Tezcan and Zhang (2014) estab-

lished two important results. First, they showed that it may be optimal to avoid having agents at

levels1 that satisfy certain conditions, referred to as inefficient levels. In other words, surprisingly

it is not always optimal to serve customers at the lowest possible level. (This is true, for example,

when the total service rate is concave in a certain sense as a function of level, see equation (5)

in Tezcan and Zhang (2014).) However agents’ levels change dynamically when customers leave

service or new customers are assigned to them. Hence they also provided routing policies that avoid

having agents working at inefficient levels in an optimal way in the long run. However they assumed

throughout their analysis that service and patience times follow exponential distributions, which is

unlikely to hold in practice, for analytical tractability and our numerical simulations (see §7) show

that the actual distributions of service and patience times (beyond their first two moments) have

a significant impact on the system performance in steady state.

The main goal of this paper is to provide closed-form approximations for various performance

measures, such as the steady-state abandonment probability and the expected time in system, for

CSC systems with general service and patience time distributions. We assume that routing decisions

are made using the policy Tezcan and Zhang (2014) proposed in cases where the arrival rate is

not known precisely. The main goal of this policy is to avoid having agents at “inefficient” levels

but it is not clear how the concepts of efficient and inefficient levels can even be extended to the

case with general distributions. Also, a straightforward extension of the definitions in Tezcan and

Zhang (2014) is not possible because their definitions use the exponential distribution assumption

explicitly.

We begin our analysis by formulating an adaptation of the static planning linear program-

ming (LP) in Tezcan and Zhang (2014), which they used to identify efficient and inefficient levels, to

1 We use the term “level i” to refer to the activity (or task) of helping i customers at the same time, and an agent is
said to be at level i if that agent is chatting with i customers.
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the current case. However, to formulate this program we need to estimate the system performance

and it is not clear how this can be done even if we were to ignore the routing problem. Therefore we

propose a surprisingly simple and novel approximation method for system performance. We use the

solution of this program to provide general definitions for efficiency and then apply the dynamic

routing policy in Tezcan and Zhang (2014) with these definitions. We verify the accuracy of the

proposed approximations and hence the validity of our definitions of efficient and inefficient levels

in two ways: i) we show that our approximations are asymptotically accurate in certain situations

by proving that the invariant state of a many-server fluid limit of a queueing system that is similar

to the CSC model coincides with our approximations, and ii) we carry out extensive numerical

experiments and show that our approximations are highly accurate (for example, our approxima-

tions for the abandonment probability are generally within 5% of the simulation results). We also

demonstrate that the system performance can be improved significantly by applying the dynamic

routing policy in Tezcan and Zhang (2014) (and also demonstrate that this policy avoids having

agents at inefficient levels) relative to a commonly used policy that sends customers to one of the

least-busy agents.

Technical contributions: A CSC system is essentially a many-server limited processor-sharing

queue. Each agent in the server pool is a processor-sharing server who can serve up to I customers

simultaneously and the service speed varies with the number of customers the agent is chatting

with. Queues with a single processor-sharing server have been studied (Gromoll et al. 2002, Puha

and Williams 2004, Zhang et al. 2009) using measure-valued processes and a similar modeling

approach is also used in analyzing many-server queues with general distributions, see (Zhang 2013,

Long and Zhang 2014). We take a similar modeling approach to these papers and use measure-

valued processes to keep track of the system state.

Our analysis, however, is significantly different from these papers because of the inherent dif-

ference of CSC systems from processor-sharing and many-server systems. In a standard processer-

sharing system, all customers are served by a single server or by a pool of servers whose service

capacity can be divided equally among all customers. Hence all customers in service are served at

the same rate. In many-server queues each agent can only serve one customer at a time. Therefore,

there is no need to keep track of the number of agents at each level in these systems because one can

identify the level of servers from the number of customers in service. On the other hand, a server

can be operating at any level (up to a limit) in a CSC system and service completions and new

arrivals will change the level of servers dynamically. Therefore a more extensive state descriptor

than those used in (Gromoll et al. 2002, Puha and Williams 2004, Zhang et al. 2009) and (Zhang

2013, Long and Zhang 2014) is needed.
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In our analysis of CSC systems, we first demonstrate that CSC systems can be approximated by

a simpler system where the dependence among customers who are assigned to the same server is

removed unequivocally. Then we define a measure-valued process that keeps track of the remaining

service and patience times of customers in service. (The analysis of the buffer follows Zhang (2013)

closely.) Then we show that as the number of servers and the arrival rate go to infinity, the fluid

scaled version of this process is tight and every limit satisfies a set of fluid model equations.

We then identify invariant states of these fluid models and show that our approximations are

asymptotically accurate. Using these results we show that the steady-state behavior of the fluid

model of our CSC system depends on the entire distributions of service and patience times and

unlike G/GI/N +GI queues, see Whitt (2006), even the steady-state abandonment probability

depends on both distributions.

Summary of contributions: The main contributions of this paper can be summarized as

follows. i) We extend the definition of efficient and inefficient levels to CSC systems with general

distributions; ii) we provide closed-form approximations for various performance measures and

show that the entire service and patience time distributions affect the performance of these systems;

iii) we provide analytical support for the accuracy of the proposed approximations by showing that

they match the invariant state of the measure-valued fluid limit of a similar system; and iv) we

verify the accuracy of proposed approximations and support the concept of efficient and inefficient

levels using simulation experiments for systems with various sizes and distributions.

1.1. Literature Review

The analysis of many-server and processor-sharing systems is challenging when the service/patience

time distributions are general. The CSC system combines both, making the analysis even more

difficult. For the processor-sharing (PS) systems, a sequence of works Gromoll et al. (2002), Gromoll

(2004), Puha and Williams (2004) developed a framework of using measure-valued processes to

obtain both the fluid and diffusion approximations. The framework was extended to the limited

processor-sharing (LPS) systems by Zhang and Zwart (2008), Zhang et al. (2009, 2011). Gromoll

et al. (2008) studied a PS model with abandonment during service, which is similar to each of the

servers in our model. All of the above mentioned works are only for a single PS (or LPS) server.

For many-server systems where servers do not multi-task, Whitt (2006) proposed an innovative

way of modeling together with a fluid limit. The invariant state of the fluid limit provides fairly

accurate approximations for various performance metrics when the system is overloaded. The fluid

limit was rigorously proven to serve as the fluid approximation in the many-server heavy traffic

regime by Zhang (2013) using measure-valued processes. Long and Zhang (2014) proved that the

fluid limit (which is a deterministic dynamic system) converges to the invariant state as time goes
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to infinite. It is clear in the literature that the invariant state of a fluid model provides an insightful

approximation for the steady state of the original system. Bassamboo and Randhawa (2010) and

Bassamboo et al. (2010) showed additional evidence that such fluid approximations yield accurate

approximations to the underlying queueing system. Recently, Bassamboo and Randhawa (2016)

used such an approximation to estimate patience levels and dynamically prioritize customers based

on their time in the system in order to optimize any given system performance metric. Our work

follows this line of research by proposing a fluid model to capture the system dynamics and study

the invariant states of the fluid model.

This paper is part of our continuing effort to understand the CSC systems. In Luo and Zhang

(2013), CSC systems without abandonment were analyzed under a fairly simple routing policy with

new arrivals assigned to one of the least-busy agents. Later Tezcan and Zhang (2014) analyzed

CSC systems with abandonment. A routing policy based on a linear programming was proposed

and shown to be asymptotically optimal in terms of minimizing the abandonment probability. The

routing policy, jointly with an LP-based staffing policy, was shown to minimize the required staffing

level while keeping the abandonment probability below a desired level for high arrival rates. Both

of the previous works heavily relied on the assumption of exponential distributions. This work aims

to extend Tezcan and Zhang (2014) to generally distributed service and patience times.

The rest of this paper is organized as follows. §2 describes the system dynamics of the CSC system

and presents the concept of efficient and inefficient levels based on a static planning problem and its

optimal solution. We also present an effective routing policy that does not require knowledge of the

exact external arrival rate. §3 proposes a framework involving measure-valued processes to model

the system dynamics. The corresponding fluid model and the fluid approximation are presented

in §4. The invariant state of the fluid model is analyzed in §5. We establish approximations for

various performance metrics of the CSC system based on the invariant state of the fluid model

in §6. We demonstrate the effectiveness of the approximations in §7 and conclude in §8. Finally,

technical proofs and detailed simulation results are collected in the appendices.

2. Queueing Model and Preliminary Results

In this section we first introduce the queueing model and then present preliminary results that are

fundamental to our analysis. We also review the results from our previous work Tezcan and Zhang

(2014) that we need in the current context and highlight the additional complexity induced by

non-exponential distributions.

2.1. System Dynamics

Consider a CSC model where customers arrive at the system according to a renewal process Λ(t)

with rate λ to seek service from a pool of N agents. Agents provide service by chatting with the
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customers who are in the system and each agent may serve up to I customers simultaneously 2.

If all agents are busy serving I customers, arriving customers will join the queue and be served

according to the first-come-first-served (FCFS) discipline. We assume that agents work in a “non-

idling” fashion: if they finish serving a customer and the queue is nonempty, they will start serving

the next customer at the head of the queue. Therefore customers wait in queue only when all agents

are entirely busy, i.e., at level I.

The operation of a chat system is quite complex. It involves sending messages back and forth

between an agent and the customers assigned to that agent and it takes a random number of

messages to complete the service of a customer. However, modeling the details of how a chat session

actually proceeds is challenging and provides very little insight on how these systems should be

managed. Instead, following the models in (Luo and Zhang 2013, Tezcan and Zhang 2014), we

assume that an agent serves all customers assigned to him or her simultaneously at a rate that

depends on the number of assigned customers. Let µi denote the rate at which each customer

receives service from an agent serving i customers simultaneously, i= 1,2, . . . , I, and l(s) denote the

level a specific customer is served at time s. Then the cumulative amount of service this customer

receives from τ to τ + t is ∫ τ+t

τ

µl(s)ds. (1)

The service of a customer is completed once the cumulative amount of service that the customer

receives exceeds his or her service time V , which is assumed to be a random variable with distri-

bution G.

Customers may abandon CSC systems while waiting in queue or during service. The abandon-

ment in queue is modeled in the same way as in call center applications; each customer has a

limited patience time following distribution Fq for waiting in queue, and abandons the queue once

the time the customer has been waiting exceeds his or her patience time (see e.g., Garnett et al.

(2002), Gans et al. (2003), Akşin et al. (2007), Reed and Ward (2008), Tezcan and Behzad (2012)

for similar models). In a similar manner, we assume that customers have a limited patience for

their service to be completed and we use F to denote its distribution. To illustrate how customers

abandon during service, suppose a customer starts receiving service at time τ and is willing to wait

U amount of time (i.e., his or her patience time during service) for service to be completed. The

customer’s service will be completed successfully if∫ τ+U

τ

µl(s)ds≥ V.

Otherwise, the customer abandons the system during service at time τ +U .

2 We assume I is exogenous for now. We discuss how to choose it optimally below.
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We assume customers’ service times, patience times for waiting, and patience times during service

are mutually independent and follow the distributions G, Fq, and F , respectively, for analytical

tractability. To avoid subtle technical issues, we assume that all of the distribution functions are

absolutely continuous and Fq is strictly increasing. Without loss of generality, we rescale the time

by normalizing the mean service time to 1, i.e.,∫ ∞
0

[1−G(x)]dx= 1. (2)

Naturally, the amount of service each customer receives per unit time from an agent decreases

as the agent chats with more customers. Therefore we assume that

µ1 >µ2 > · · ·>µI . (3)

Next we introduce the notation used throughout the paper. Define

Ti =
V

µi
∧U, i= 1, . . . , I. (4)

The random variable Ti is the time a customer spends in service if that customer always receives

service from an agent at level i. Also we set

αi =
1

E[Ti]
and d̂i = iαi. (5)

Here d̂i is the total rate (per unit time) that customers depart (by service completion or abandon-

ment during service) from an agent always serving i customers. We define

PAb
i = P

(V
µi
>U

)
for each i= 1,2, . . . , I. (6)

The term PAb
i can be understood as the probability that a customer abandons during service if

the customer is always served by an agent at level i. It follows directly from (3) and (6) that

PAb
1 <PAb

2 < · · ·<PAb
I . (7)

2.2. Intuitive Explanation for Our Approximation

Our definition of CSC systems is not yet complete as we still need to describe a routing policy

that determines which agent an arriving customer should be routed to (if there is more than one

available agent), and whether a customer should be routed to the queue or to one of the agents

upon arrival. As we explained above, we need to identify efficient and inefficient levels to be able

to use the policy proposed in Tezcan and Zhang (2014). However, in order to be able to identify

these levels, we need accurate approximations for system performance and the system performance

depends on the routing policy!
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We resolve this dilemma by using a simple (but impractical) routing policy, whose performance

can be approximated by applying existing results, to determine efficient and inefficient levels.

Consider a routing policy that only allows each agent to work only at a predetermined level. To

demonstrate the details, consider a system where agents can serve at most two levels with the

following parameters: the arrival rate is 20 customers per unit time; service rates for levels 1 and 2

are d̂1 = 1 and d̂2 = 3; and the number of servers is N = 10. To be able to meet the demand while

keeping the agents at the lowest possible level we assign five agents to level 1 and five agents to

level 2. If an agent is assigned to level 2 and there is only one customer assigned to that agent we

assume that the service rate is still fixed at µ2. Because agents are assumed to be serving customers

at a fixed level, the probability of abandonment during service in steady state can be determined

from the number of servers assigned to each level. (We ignore the abandonment from queue for

now for simplicity.) Specifically, in this case the probability of abandonment can be approximated

by PAb
1 ∗5/20+PAb

2 ∗15/20 because in steady state five customers per unit time are routed to level

1 and the rest to level 23. This is the approximation we use for abandonment probability in steady

state. In addition we use the performance of agents at each level to determine whether a level is

efficient or not, as will be explained in the next section.

Before we proceed we highlight the need to use a more sophisticated policy than the simple

policy we just explained. First, the exact arrival rate is not known in advance (and it might be time

dependent). Therefore it is not clear how the allocation of servers to different levels can be done in

practice. Second, not allowing servers to change levels freely may degrade the system performance

since the server pool is effectively divided into two smaller independent server pools. However the

steady state of this simple routing scheme can be used for identifying efficient and inefficient levels

because we will show that this steady state is identical in the limit to that of a more sophisticated

routing policy that does not require knowledge of the arrivals rate and allocates agents to levels

efficiently. We next introduce the concept of efficient and inefficient levels and then describe the

routing policy we use.

2.3. Efficient and Inefficient Levels

One of the fundamental results in Tezcan and Zhang (2014) is the fact that if agents work at certain

inefficient levels, the system performance may deteriorate. They also developed routing policies

that “avoid” having agents in these levels (asymptotically). The definition of inefficient levels was

motivated by an asymptotic analysis but that analysis does not extend to general distributions,

3 The validity of this approximation can be proved using the result for G/GI/N +GI queues in Whitt (2006) because
the two queueing systems with separate pool of agents operate as many-server queueing systems where agents work
at a fixed rate.
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except in certain trivial cases. However, using our approximations (introduced in the previous

section), we can define the efficiency concept (see §2.3.1) and motivate the definition of “efficiency”

using a static planning program (see §2.3.2).

2.3.1. Definition: A level i is said to be inefficient if

d̂i < d̂i′ for some 1≤ i′ < i, (8)

or if there exist k1 and k2, such that 1≤ k1 < i< k2 ≤ I and

(PAb
k2
d̂k2
−PAb

k1
d̂k1

)d̂i ≤ (PAb
k2
d̂k2
−PAb

i d̂i)d̂k1
+ (PAb

i d̂i−PAb
k1
d̂k1

)d̂k2
. (9)

All other levels are referred to as efficient levels. The precise form of these definitions is based on a

static planning problem which we will describe below but for which we give an intuitive explanation

here. By (7), customers served at level i have a higher abandonment probability during service

than those at level i′ < i. If condition (8) holds, the throughput of an agent working at level i is also

lower than that of an agent at level i′. Thus, it is not desirable to have any agents work at level i.

The intuition behind (9) is more intricate and is based on the fact that if (9) holds, allocating an

agent to levels k1 and k2 for a certain amount of time will result in a higher throughput and a lower

probability of abandonment than having that agent serve customers at level i that is in between

these two levels.

The definition of efficiency for levels 1 and I is slightly different and obviously condition (9)

cannot be checked for levels 1 and I and condition (8) cannot be checked for level 1. Level 1 is said

to be efficient if µ1 >µi for all i= 1, . . . ,N , which holds by assumption (3). If level 1 is inefficient

then it is more efficient to have agents at level 2 or above because then the abandonment rate does

not increase but the service rate does. On the other hand, level I is efficient if

(
1−PAb

I

)
d̂I ≥

(
1−PAb

i

)
d̂i, for all i= 1, . . . , I. (10)

(Note that (10) implies that (8) cannot hold for i = I by (7).) Intuitively, (10) implies that the

departure rate due to completion of service by an agent working at the maximum level I should be

higher than that for any other level. In fact, we show in Lemma EC.2 that if (10) does not hold, it

is not optimal to use level I, under the assumption that our approximations are exact and we use a

non-idling policy in the sense that agents continue accepting customers up to level I (see Legrosa

and Jouinib (2018) for the case when this decision is made dynamically). Hence if (10) does not

hold, it is optimal to have customers wait in queue instead of having them served by an agent at

level I and we can restrict the maximum level to I − 1. If (10) is still invalid for level I − 1, we

will keep reducing the maximum level by 1 until (10) is valid for a level, which will then be set as
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the maximum level of the CSC system. Thus we assume that level I is efficient for the rest of the

paper. We highlight the fact that (10) gives a simple condition that can be used to determine the

maximum number of customers an agent should simultaneously serve. For notational simplicity

we denote the set of efficient levels by F = {i1, i2, . . . , iJ} where J is the total number of efficient

levels and i1 < i2 < . . . < iJ . Note that we have i1 = 1 and iJ = I.

2.3.2. Static Planning Problem We motivate the definition of efficient levels based on the

solution of a static planning problem for CSC systems, which we describe next. We will later also

demonstrate numerically that having agents at inefficient levels decreases system performance. In

addition, we use the solution of the static planning problem to identify the invariant state of the

fluid models.

Static planning problems are used as a standard initial step to analyze complex queueing net-

works, see for example Williams (1998) and Harrison (2000). The goal of a static planning program

is to gain insight into how best to allocate resources to different tasks in the long run. We next

present the static planning program discussed in Tezcan and Zhang (2014). The only difference

between our formulation and that in Tezcan and Zhang (2014) is the fact that we use approxima-

tions for the PAb
i we discussed above. For fixed λ and N , consider

min
{λi≥0, i=1,...,I+1}

I∑
i=1

λiP
Ab
i +λI+1 (11)

s.t.
I∑
i=1

λi

d̂i
≤N, (12)

I+1∑
i=1

λi ≥ λ. (13)

Intuitively λi represents the rate at which customers are served by agents at level i in the long run

for 1≤ i≤ I and λI+1 can be viewed as the rate at which customers abandon from queue. Thus,

the objective in (11) is to minimize the abandonment rate by choosing appropriate λi’s. Constraint

(12) states that λi’s must be chosen so that the number of required agents (based on Little’s law)

does not exceed the capacity N . Constraint (13) implies that all arriving customers must depart

from the system.

The following result, which extends Lemma 1 in Tezcan and Zhang (2014) to general service and

patience times, establishes the reason we defined efficient levels as in (8) and (9).

Lemma 1. (i) If λ≤ d̂1N , an optimal solution of the routing LP is given by

λ∗1 = λ, and λ∗i = 0 for i > 1.
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(ii) If λ≥ d̂IN , an optimal solution of the routing LP is given by

λ∗I = d̂IN, λ
∗
I+1 = λ− d̂IN, and λ∗i = 0 for i < I.

(iii) If d̂1N <λ< d̂IN , an optimal solution of the routing LP is given by

λ∗i∗j
=

d̂i∗j

d̂i∗j+1
− d̂i∗j

(
d̂i∗j+1

N −λ
)
, λ∗i∗j+1

= λ−λ∗i∗j =
d̂i∗j+1

d̂i∗j+1
− d̂i∗j

(
λ− d̂i∗jN

)
, (14)

where

i∗j+1 := min
{
i : d̂i ≥ λ/N, i∈F

}
. (15)

and λ∗i = 0 for i 6= i∗j , i
∗
j+1.4

The proof is similar to that in Tezcan and Zhang (2014) and we just need to verify that certain

properties of efficient levels still hold under general distributions, see §EC.1 for details. For the

rest of the paper, we refer to those levels that have positive arrival rates in the optimal solution

as basic levels. Lemma 1 shows that if a level is inefficient, then it is suboptimal to have agents

working at this level in the long run and agents should serve customers only at efficient levels. This

result motivates our definition of efficient and inefficient levels. Also, by Lemma 1(iii), if there is

more than one basic level, these basic levels must be two consecutive efficient levels. This follows

from the fact that as agents serve fewer customers at efficient levels, the abandonment probability

decreases. Hence it is optimal to keep agents at the lowest indexed efficient levels while making

sure that the system has enough capacity to serve all customers, when possible. In the next section,

we will describe a routing policy that allocates agents among different levels in an optimal way.

Remark 1 (Exponential service and patience times). When service and patience times are

exponentially distributed, the definition of inefficiency can be stated in a much simpler form. To

demonstrate, assume that V and U are independent and follow exponential distributions with rates

1 and ν, respectively. By (5) and (6), d̂i = i(µi +ν) and PAb
i = ν/(µi +ν). Hence, PAb

i d̂i = iν. Thus

(9) simplifies to

d̂i ≤
k2− i
k2− k1

d̂k1
+

i− k1

k2− k1

d̂k2
. (16)

This is equivalent to condition (5) in Tezcan and Zhang (2014). With a little algebra, it can be

checked that the abandonment rate ν does not play a role in (16) in determining the efficiency of

a level in the exponential case unlike in the case with general distributions where PAb
i depends on

the entire distribution of patience times during service.

4 The optimal solution in (14) is well defined because we have d̂i∗j+1
> d̂i∗j by Lemma EC.1.
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2.4. Routing Policy

The static planning problem provides insights into how agents should be allocated to different

levels in the long run. However, it is not clear how this can be accomplished dynamically by routing

arriving customers to available agents. Assuming that service and patience times are exponentially

distributed, Tezcan and Zhang (2014) studied this problem and devised novel routing policies that

were shown to be asymptotically optimal in terms of minimizing the steady-state probability of

abandonment. We focus on one of the policies proposed in Tezcan and Zhang (2014) that does not

require knowledge of the exact arrival rate. Other policies studied in Tezcan and Zhang (2014) can

be similarly analyzed once the efficient and inefficient levels are identified.

Consider the following policy. Let i denote the index of the lowest indexed non-empty (i.e. there

are agents working at that level) level and ij denote the index of the efficient level with the highest

index below i or set ij = i if i is efficient. Denote by

Uij = {ij + 1, . . . , ij+1− 1} (17)

all of the inefficient levels strictly between the two efficient levels ij and ij+1. The proposed policy

routes a new arrival as follows:

• If i= 0, route the customer to an agent at level 0.

• If 1 ≤ i < I, route the customer to an agent at the highest non-empty level in {ij} ∪Uij =

{ij, . . . , ij+1− 1}.

• If i= I, the customer has to join the queue.

We denote this policy by π. The lack of dependence on the arrival rate makes this policy fairly

robust and easy to implement. The intuition behind this policy is to force agents away from levels

in Uij to efficient levels, see Tezcan and Zhang (2014) for more details. Also if Uij = ∅ (equivalently

ij + 1 = ij+1), for all ij ∈F , i.e., all levels are efficient, then this policy reduces to the lightest-

load-first policy (i.e., customers are routed to one of the least busy agents) in Luo and Zhang

(2013).

We will later show that this policy achieves the optimal allocations of arrivals identified by the

static planning problem in the fluid limits. However we are not able to extend the asymptotic

optimality of π established in Tezcan and Zhang (2014) for exponential service and patience time

distributions. This is mainly due to the difficulty in analyzing the asymptotic behavior of the

underlying fluid model as t goes to infinity.

3. Model Formulation

In this section, we present an asymptotic analysis of CSC systems in the many-server regime.

We use a measure-valued state descriptor to model CSC systems as a Markovian process because
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using the standard head count processes (as commonly done in traditional queueing theory under

Markovian assumptions) is not sufficient with general distributions. We use a measure that keeps

track of the remaining service and patience times of each customer in the system following the

previous work on many-server systems, similar to Zhang (2013), Gromoll et al. (2002) and Gromoll

(2004). However, even such a state space descriptor is not rich enough because customers who are

served by the same agent also move between levels together when the agent finishes serving one of

the customers or is assigned a new customer. Yet modeling this in detail does not yield insightful

results and removing the connection among customers does not result in a huge information loss,

hence we make the following simplifying assumption.

Assumption 1 (A Modified System). Assume that each agent moving from level i to level i−1

causes i− 1 randomly selected customers to leave level i and join level i− 1; and each agent

moving from level i− 1 to level i causes i− 1 randomly selected customers to leave level i− 1

and join level i.

Clearly the queueing model under Assumption 1 is not identical to the underlying chat service

system. We believe, however, that the queueing model under this assumption is very similar to

the original CSC system for two reasons: i) When service and patience times are exponential, the

modified and the original systems are equivalent in distribution due to the memoryless property;

and ii) for general distributions these two systems perform almost identically in terms of various

performance metrics in various numerical experiments (for example, the difference in the steady-

state abandonment probability is less than 10−4 on average across in a variety of scenarios, see

§EC.2 for details). For the rest of this paper, our analysis will focus on the modified system without

any further mention.

3.1. Measure-valued Process

Let Li(t) denote a measure describing the status of all the customers who are currently served by

level i (for i≥ 1) agents at time t. More precisely, set Cx×Cy = (x,∞)×(y,∞). Then Li(t)(Cx×Cy),
x, y≥ 0, denotes the number of customers with remaining service time larger than x and remaining

patience time during service larger than y. (In general, we can use a Borel set B ⊂R2
+ instead of

Cx×Cy.) From the definition, we have

Li(t)(R2
+) = iZi(t), (18)

where Zi(t) is the number of agents at level i at time t, for i= 1, . . . , I. The number of idle (level 0)

servers is given simply by

Z0(t) =N −
I∑
i=1

Zi(t) (19)
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as there are N agents in total.

If all agents are completely occupied, i.e., they are at level I, arrivals must wait in the queue and

will be served later according to the FCFS discipline. When there are customers in the queue, the

system dynamics will become exactly the same as call center models if we view the pool as I ·N

agents. To capture the dynamics of customers waiting in queue we use a virtual buffer as in Zhang

(2013). The idea behind the virtual buffer is to keep customers in the queue until it is their turn

for service even when their patience is exhausted. Specifically, when an agent becomes available,

the customer who has been waiting in the queue for the longest is admitted to service if his or

her remaining patience time is non-negative; otherwise that customer abandons the system. This

process is repeated until a customer with positive remaining patience time is identified or until all

customers have abandoned the queue. Working with the virtual buffer simplifies the analysis and

the actual queue can easily be recovered from this process as we explain next.

Set Cx = (x,∞) and let R(t)(Cx), x ∈ R, denote the number of customers in the queue with

remaining patience time for waiting larger than x at time t. Then the number of customers in the

actual queue can be expressed as Q(t) =R(t)(C0). Clearly the following non-idling constraint must

be satisfied at any time t≥ 0,

Q(t)(N −ZI(t)) = 0. (20)

3.2. Dynamics of the Modified System

To present the dynamic equations that govern the evolution of the system under Assumption 1, we

introduce an operator, X , on measures. Let X =
∑J

j=1 δ(vj ,uj) where δ(vj ,uj) denote the Dirac point

measure at (vj, uj)∈R2
+. We use Φk for k≤ J to denote a random selection operator defined by

Φk(X ) =
k∑
i=1

δ(vji ,uji )
, (21)

where the set of indices {j1, . . . , jk} are chosen randomly from {1, . . . , J}.

Server Pool: Assume that customers arrive according to the renewal process Λ(·) with rate λ.

For each i= 1, . . . , I, let Ai(t) denote the number of “arrivals” to level i, that is, those customers

whose service commences at level i by time t. For levels 1 to I − 1, these are those customers

who, at the time of their arrival, were routed to an agent at level i− 1 and so matched with i− 1

customers at level i− 1. For level I, AI(t) captures not only the customers who were routed to an

agent at level I − 1 but also those customers who commenced service at level I after waiting in

the queue upon a departure from level I. Also, let Si(t) denote the number of customers who have

departed the system (due to either service completion or abandonment during service) from level i

by time t.
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Let τi,j denote the time of the jth arrival at level i, and vi,j and ui,j denote the service and

patience times of this arrival, respectively. We use Mi,i−1 to denote the number of times agents

go to level i − 1 from level i, and similarly Mi−1,i to denote the number of times agents go to

level i from level i− 1. For notational simplicity, we set M0,−1 =M−1,0 =MI,I+1 =MI+1,I = 0. The

measure-valued process Li(·) satisfies the following stochastic dynamic equation:

Li(t)(Cx×Cy) =Li(0)(Cx+µit×Cy+t)−
∫ t

0

Φi−1 (Li(s)) (Cx+µi(t−s)×Cy+t−s)dMi,i−1(s)

+

∫ t

0

Φi−1 (Li−1(s)) (Cx+µi(t−s)×Cy+t−s)dMi−1,i(s)

+

Ai(t)∑
j=1

1{vi,j>x+µi(t−τi,j),ui,j>y+t−τi,j}

+

∫ t

0

Φi (Li+1(s)) (Cx+µi(t−s)×Cy+t−s)dMi+1,i(s)

−
∫ t

0

Φi (Li(s)) (Cx+µi(t−s)×Cy+t−s)dMi,i+1(s)

(22)

for any x, y≥ 0 and i= 1, . . . , I, where we use the convention that Φ0 (X )≡ 0, with 0 denoting the

zero measure. The first term on the right-hand side of (22) captures the influence from the initial

state. In order for a customer at level i at time 0 to be still at level i at time t and with their

remaining service and patience times to be larger than x and y, respectively, his or her remaining

service and patience times at time 0 must be larger than x+µit and y+ t, respectively. The second

term captures the fact that an agent moving from level i to level i−1 causes i−1 randomly selected

customers to leave level i, so we have to remove i− 1 customers from this level using the random

selection operator Φi−1. The third and fourth terms captures the impact of customers routed to

level i− 1. Each customer who is routed to level i− 1 brings i− 1 customers from level i− 1 to

level i in addition to himself. These customers are accounted for in the third term. Also if there

are customers in the queue when a service is completed, the customer at the head of the queue will

be immediately served at level I, without changing the state of the agent to which the customer is

assigned. Similar to the second and the third terms, each agent moving from level i+ 1 to level i

will cause i customers to move from level i + 1 to level i, which is described in the fifth term;

and each agent moving from level i to level i+ 1 will cause i customers to leave level i, which is

described in the last term in (22).

The processes Mi,i−1 and Mi−1,i satisfy

Mi,i−1(t) =

{∫ t
0
1{Q(s−)=0}dSI(s), i= I,

Si(t), i= 1, . . . , I − 1,
(23)

Mi−1,i(t) =

{∫ t
0
1{ZI (s−)<N}dAI(s), i= I,

Ai(t), i= 1, . . . , I − 1.
(24)
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The two equations above follow from the fact that once a customer ends a chat with an agent at

level i for i ∈ {1, . . . , I − 1} and leaves the system, that agent goes to level i− 1. Similarly, once

a customer is assigned to an agent at level i for i ∈ {0,1, . . . , I − 2}, the agent goes to level i+ 1.

However, this is not true for a customer leaving from level I: after a customer departs from level I,

an agent at level I goes to level I − 1 only if the queue is empty; otherwise that agent remains at

level I. Similarly a customer can be assigned to an agent at level I− 1 only if not all agents are at

level I. It can be seen from (23) and (24) that

Mi,i−1(t)−Mi−1,i(t) = Si(t)−Ai(t) for all i= 1, . . . , I. (25)

From the above discussion, we also have the following balance equation for the number of agents

at each level:

Zi(t) =Zi(0)−Si(t) +Ai(t) +Si+1(t)−Ai+1(t) for i= 0,1, . . . , I, (26)

where we assume S0 =A0 = SI+1 =AI+1 ≡ 0 to omit a separate discussion for levels 0 and I. For

notational simplicity, we assume that those customers who are initially present in the system have

been there for a certain bounded amount of time. We also assume that the actual service and

patience times (in queue and in service) of customers who are in the system at time zero have the

same distributions as other customers.

Buffer: Let R(t) =R(t)(R) denote the total number of customers in the virtual buffer. Initially,

there are R(0) customers in the virtual buffer. Index them by j = −R(0) + 1, . . . ,0 according to

their arrival time aj, which is a negative number indicating how long the jth customer had been

there by time 0. Similarly, index the newly arrivals on the time interval (0, t] by j = 1,2, . . . ,Λ(t) in

the order of arrival with aj being the jth arrival time. For both customers initially in the virtual

buffer and those who are newly arrivals, let uqj be the patience time for waiting of the jth customer.

Define

B(t) = Λ(t)−R(t). (27)

It is clear that at time t the index of the head-of-the-line customer in the virtual buffer is B(t) + 1.

Moreover, B(t)−B(s) can be viewed as the number of customers who leave the virtual buffer and

is about to be admitted into service during time interval (s, t].

Denote by γj the time when the jth customer starts service for all j ≥−R(0) + 1. Note that the

jth customer enters service only if γj − aj is less than the patience time uqj . Then

R(t)(Cx) =

Λ(t)∑
j=B(t)+1

1{uqj>x+t−aj} (28)
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for any x ∈R. And the cumulative number of customers who have entered service can be written

as

E(t) =

B(t)∑
j=−R(0)+1

1{uqj>γj−aj}
=

I∑
i=1

Ai(t), (29)

where the second equality follows from the fact that customers who enter service will commence

their service at a certain level. The abandonment process, D(t), can be recovered from the following

balance equation of the physical queue:

Q(t) =Q(0) + Λ(t)−D(t)−E(t). (30)

Departure process: Similar to how (22) captures the system dynamics, the following equation

determines how the departure process Si from level i, i= 1, . . . , I, evolves. Define the set

A(x, y) = {(x′, y′)∈R2
+ : x′ ≤ x or y′ ≤ y}= (Cx×Cy)c. (31)

Then

Si(t) =Li(0)(Ai(µit, t))−
∫ t

0

Φi−1 (Li(s)) (A(µi(t− s), t− s))dMi,i−1(s)

+

∫ t

0

Φi−1 (Li−1(s)) (A(µi(t− s), t− s))dMi−1,i(s)

+

Ai(t)∑
j=1

1{vi,j≤µi(t−τi,j) or ui,j≤t−τi,j}

+

∫ t

0

Φi (Li+1(s)) (A(µi(t− s), t− s))dMi+1,i(s)

−
∫ t

0

Φi (Li(s)) (A(µi(t− s), t− s))dMi,i+1(s).

(32)

Allocation of arrivals: The final process we define captures the allocation of customers to

available servers; that is, process Ai, i = 1, . . . , I. Any static priority policy basically specifies a

one-to-one mapping p : {0, . . . , I − 1}→ {0, . . . , I − 1} such that for any i, j ∈ {0, . . . , I − 1}, level j

has priority over level i if and only if p(j)< p(i). This means that a new arrival cannot be routed

to a level i agent whenever there are agents at any level j with p(j)< p(i). Therefore any static

priority policy has to satisfy∫ t

0

∑
{j=0,...,I−1:p(j)<p(i)}

Zj(s)dAi+1(s) = 0, i= 1, . . . , I − 1. (33)

Note that under our policy proposed in §2.4 level 0 has the highest priority hence we set p(0) = 0.

For other levels the priorities under this rule can be set as follows:{
p(ij) = ij+1− 1, p(ij + 1) = ij+1− 2, . . . , p(ij+1− 1) = ij, Uij 6= ∅,
p(ij) = ij, Uij = ∅.

(34)

As mentioned above, if Uij = ∅ for all ij ∈F , then the policy π simply becomes the lightest-load-

first policy with p(i) = i, i= 0, . . . , I − 1.
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4. Asymptotic Analysis

In this section we first introduce a deterministic measure-valued fluid model, and then show that

it serves as the fluid limit of the CSC system in the many-server asymptotic regime.

A fluid model. The underlying idea behind constructing fluid models is to replace the stochas-

tic components in the system dynamics with their corresponding distributional but deterministic

information. We use the bar sign to indicate fluid model processes associated with the queuing

processes we defined above. Specifically, Āi is the fluid amount of “arrivals” to level i and S̄i is

the fluid amount of departures from level i, for i= 1, . . . , I. Moreover, M̄i,i−1 is the fluid amount of

agents moving to level i− 1 from level i, and similarly M̄i−1,i is the fluid amount of agents moving

to level i from level i−1. For the CSC model, we first construct the fluid dynamic equation for the

server pool, corresponding to (22) as follows:

L̄i(t)(Cx×Cy) = L̄i(0)(Cx+µit×Cy+t)

−
∫ t

0

i− 1

iZ̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i−1(s)

+

∫ t

0

1

Z̄i−1(s)
L̄i−1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i−1,i(s)

+

∫ t

0

Gc(x+µi(t− s))F c(y+ t− s)dĀi(s)

+

∫ t

0

i

(i+ 1)Z̄i+1(s)
L̄i+1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i+1,i(s)

−
∫ t

0

1

Z̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i+1(s),

(35)

t ≥ 0, x, y ≥ 0 for all i = 1, . . . , I, where we again take M̄−1,0 = M̄0,−1 = M̄I,I+1 = M̄I+1,I = 0.

However, if Z̄i(t) = 0 the fluid model equation is defined as follows

1

Z̄i(t)
L̄i(t)(Cx×Cy)dM̄i,i−1(t) = 0 (36)

and

1

Z̄i(t)
L̄i(t)(Cx×Cy)dM̄i,i+1(t) =

1

Z̄i−1(t)
L̄i−1(t)(Cx×Cy)dM̄i−1,i(t) +Gc(x)F c(y)dĀi(t)

+
i

(i+ 1)Z̄i+1(t)
L̄i+1(t)(Cx×Cy)dM̄i+1,i(t). (37)

When Z̄i(t) = 0 we need a separate equation because L̄i(t)/Z̄i(t) is not well defined. Intuitively,

(36) indicates that the rate at which the fluid content moves from level i to level i − 1 should

be 0 when there are no agents at level i. Meanwhile, customers from the adjacent levels will be

immediately pushed to level i+ 1 by new arrivals who are routed to level i. Thus, (37) means that

the customers moving between levels i and i+ 1 consist of a mix of customers from levels i−1 and

i+ 1.
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Corresponding to (23) and (24),

M̄i,i−1(t) = S̄i(t) and M̄i−1,i(t) = Āi(t) for i= 1, . . . , I − 1. (38)

The processes M̄I,I−1 and M̄I−1,I satisfy∫ t

0

Q̄(s)dM̄I,I−1(s) =

∫ t

0

Q̄(s)dM̄I−1,I(s) = 0, (39)

and

dM̄I,I−1(t) = dS̄I(t) and dM̄I−1,I(t) = dĀI(t) if Z̄I(t)<N. (40)

Moreover,

M̄i,i−1(t)− M̄i−1,i(t) = S̄i(t)− Āi(t) for all i= 1, . . . , I. (41)

The fluid amount of customers at level i satisfies

L̄i(t)(R2
+) = iZ̄i(t) for i= 1, . . . , I, (42)

and

Z̄0(t) =N −
I∑
i=1

Z̄i(t). (43)

Also

Z̄i(t) = Z̄i(0)− S̄i(t) + Āi(t) + S̄i+1(t)− Āi+1(t) for i= 0,1, . . . , I. (44)

Similar to (26), we also set S̄0 = Ā0 = S̄I+1 = ĀI+1 ≡ 0 to make (44) compatible with i= 0 and I.

Corresponding to (32), the (fluid) departure process S̄i from level i satisfies

S̄i(t) = L̄i(0)(Ai(µit, t))

−
∫ t

0

i− 1

iZ̄i(s)
L̄i(s)(A(µi(t− s), t− s))dM̄i,i−1(s)

+

∫ t

0

1

Z̄i−1(s)
L̄i−1(s)(A(µi(t− s), t− s))dM̄i−1,i(s)

+

∫ t

0

[
1−Gc(µi(t− s))F c(t− s)

]
dĀi(s)

+

∫ t

0

i

(i+ 1)Z̄i+1(s)
L̄i+1(s)(A(µi(t− s), t− s))dM̄i+1,i(s)

−
∫ t

0

1

Z̄i(s)
L̄i(s)(A(µi(t− s), t− s))dM̄i,i+1(s).

(45)
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The fluid dynamics for the buffer is given by

R̄(t)(Cx) = λ

∫ t

t− R̄(t)
λ

F c
q (x+ t− s)ds, t≥ 0, x∈R, (46)

where R̄(t) = R̄(t)(R) is the fluid content in the virtual buffer. (Recall that Fq is the patience

time distribution for waiting in queue and we set F c
q (·) = 1−Fq(·), the complementary cumulative

distribution of Fq.) Also

B̄(t) = Λ̄(t)− R̄(t). (47)

The (fluid) queue content can be represented as Q̄(t) = R̄(t)(C0), which satisfies the balance equa-

tion

Q̄(t) = Q̄(0) + Λ̄(t)− D̄(t)− Ē(t). (48)

Here Λ̄(t) = λt is the external arrival process, D̄(t) is the abandonment process from the buffer,

and the total amount that enters service is

Ē(t) =

∫ t

0

F c
q

(R̄(s)

λ

)
dB̄(s) =

I∑
i=1

Āi(t). (49)

The static priority policy (33) corresponds to∫ t

0

∑
{j=0,...,I−1:p(j)<p(i)}

Z̄j(s)dĀi+1(s) = 0, i= 1, . . . , I − 1. (50)

For our policy π, p(·) is defined as in (34).

The following non-idling constraint always holds for all t≥ 0:

Q̄(t)(N − Z̄I(t)) = 0. (51)

We refer to (35)–(51) as the fluid model and any tuple (R̄, L̄, R̄, Q̄, Z̄, Λ̄, B̄, D̄, Ē, Ā, S̄, M̄) that

satisfies (35)–(51) as a fluid model solution.

Fluid limits. We next show that the limit of the fluid scaled queueing processes in the many-

server regime satisfies the fluid model equations. Consider a sequence of CSC systems indexed

by n= 1,2, . . . (thus we append a superscript n to the notation for the corresponding stochastic

processes). Assume that both the arrival rate and the number of agents increase to infinity. More

precisely
Λn(·)
n
⇒ λ · and

Nn

n
→N, as n→∞, (52)

where ⇒ denotes weak convergence in Skorohod (J1) topology. Define the fluid scaled processes as

X̄n(t) =
Xn(t)

n
, (53)
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where Xn is a symbolic notation for Rn, Lni , Rn, Qn, Zni , Λn, Bn, Dn, En, Ani , Sni , Mn
i,i−1 and

Mn
i−1,i. We assume that the initial states satisfy

R̄n(0)⇒R̄(0), L̄ni (0)⇒L̄i(0), i= 1, . . . , I, (54)

for measures R̄(0) and L̄(0) = (L̄1(0), . . . , L̄I(0)) satisfying

R̄(0)({x}) = 0 for any x∈R, (55)

L̄i(0)({x}×R+) = L̄i(0)(R+×{y}) = 0 for any x, y≥ 0. (56)

Theorem 1 (Fluid Limits). In the many-server regime specified by (52), if the ini-

tial state satisfies (54)–(56), then the sequence of fluid scaled stochastic processes

{(R̄n, L̄n, R̄n, Q̄n, Z̄n, Λ̄n, B̄n, D̄n, Ēn, Ān, S̄n, M̄n) : n ∈ N} under any static priority policy (33) is

tight in the Skorohod (J1) topology. Denote by Z̄i(·), i= 1, . . . , I, the weak limit of Z̄ni (·). Assume

Z̄i(·), i= 1, . . . , I, switches between 0 and positive values only finitely many times in any bounded

time interval, then every weak limit of the fluid scaled stochastic processes satisfies the fluid model

equations (35)–(51).

The proof, presented in §EC.5, consists of two major steps. The first step is to show that the

sequence is tight (which implies that every subsequence has a converging subsequence). The second

step is to verify that the limit of any convergent subsequence satisfies the fluid model equations.

Remark 2 (Connection to Exponential Service and Patience Times). To facilitate the

understanding of the fluid model equations we consider exponential service time and exponential

patience time during service, i.e., Gc(x) = e−x and F c(x) = e−νx. By (18), at time t there are iZ̄(t)

customers being served at level i. Index them by k = 1, . . . , iZni (t). Note that the order could be

arbitrary. We also use vi,k and ui,k to denote the remaining service time and remaining patience

time during service of the kth customer at time t. Then by definition

L̄ni (t)(Cx×Cy) =
1

n

iZni (t)∑
k=1

1{vi,k>x,ui,k>y}.

By the memoryless property, vi,k’s follow the same distribution as G and ui,k’s follow distribution

F . It then follows from the tightness proved in Theorem 1 and the Glivenko-Cantelli estimate

(EC.12) that

L̄i(t)(Cx×Cy) = iZ̄i(t)e
−xe−νy (57)

for all levels with Z̄i(t) > 0. Obviously, (57) also holds for the case with Z̄i(t) = 0. Plugging the

above equation to (35) and (45) yields

dS̄i(t) = i(µi + ν)Z̄i(t)dt. (58)
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Then the fluid dynamic equation (35) becomes

Z̄i(t) = Z̄i(0)e−(µi+ν)t− (i− 1)

∫ t

0

(µi + ν)Z̄i(s)e
−(µi+ν)(t−s)ds+

∫ t

0

e−(µi+ν)(t−s)dĀi(s)

+ (i+ 1)

∫ t

0

(µi+1 + ν)Z̄i+1(s)e−(µi+ν)(t−s)ds−
∫ t

0

e−(µi+ν)(t−s)dĀi+1(s).

(59)

The proof of the above two equations is placed in Lemma EC.3. Taking derivatives of both sides

yields the following ordinary differential equation:

˙̄Zi(t) =−i(µi + ν)Z̄i(t) + ˙̄Ai(t) + (i+ 1)(µi+1 + ν)Z̄i+1(t)− ˙̄Ai+1(t), (60)

which is precisely the same fluid dynamic equation for exponential service and patience times in

Tezcan and Zhang (2014).

5. Invariant State

In this section we identify invariant states of the fluid model of CSC systems. First we show in

Proposition 1 that there will be at most two levels the agents will provide service in the invariant

state and those levels must be efficient and consecutive (when there are two). This proves that

the proposed policy avoids having agents at inefficient levels. Then we prove in Theorem 2 that

there exists an invariant state, which can be stated in a relatively simple closed form, when two

basic levels are non-adjacent or when there is only one basic level. Unfortunately, we are not able

to obtain a similar result if the basic levels are adjacent, so instead we study two special cases in

Theorem 3 and show that the form of invariant state we obtain in Theorem 2 is still valid. Finally

we propose an approximation for the systems that are not covered by Theorems 2 and 3. We will

later use the invariant states to derive approximations for various performance metrics in §6 and

we will verify the accuracy of these approximations numerically in §7.

Definition: A state (L̄(∞), R̄(∞)) is said to be an invariant state of the fluid model if

(L̄(0), R̄(0)) = (L̄(∞), R̄(∞)). Then

(L̄(t), R̄(t)) = (L̄(∞), R̄(∞)) (61)

is a solution to the fluid model (35)–(51) for all t > 0.

For an invariant state (L̄(∞), R̄(∞)), let

lim
δ→0

L̄i(∞)(A(µiδ, δ))

δ
=: λi (62)

(the limit exists a.e. by Lemma EC.7). Then by (61) and (EC.52), S̄i(t) = λit. From (44), we have

Āi(t) = S̄i(t) = λit for i= 1, . . . , I. (63)
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Similar to the static planning problem (11)-(13), the rates (λ1, . . . , λI) can be interpreted as a

long-run allocation of the external arrivals to each service level. We now show that there can be

at most two non-negative arrival rates allocated to efficient levels in the invariant state. This also

verifies that the routing policy π avoids having agents at inefficient levels in the long run. The

proof of the following proposition is placed in §EC.4.

Proposition 1. If (L̄(∞), R̄(∞)) is an invariant state of the fluid model (35)–(51), then there

can be at most two efficient levels ij, ij+1 ∈F satisfying λij > 0 and λij+1
> 0.

We next identify invariant states in several special cases.

Theorem 2. Let (λ∗1, . . . , λ
∗
I) be defined as follows under the following cases:

(i) If λ≤ d̂1N , then λ∗1 = λ and λ∗i = 0 for i > 1.

(ii) If λ≥ d̂IN , then λ∗I = d̂IN and λ∗i = 0 for i < I.

(iii) If d̂1N <λ< d̂IN and d̂i∗j+1
= λ/N , then λ∗i∗j+1

= λ and λ∗i = 0 for i 6= i∗j+1.

(iv) If d̂1N <λ< d̂IN , d̂i∗j+1
>λ/N and i∗j+1 6= i∗j + 1, then λ∗i∗j

and λ∗i∗j+1
are given as in (14), and

λ∗i = 0 for i 6= i∗j , i
∗
j+1.

The CSC fluid model (35)–(51) has an invariant state (L̄(∞), R̄(∞)) defined as follows:

If λ∗i > 0, then

L̄i(∞)(Cx×Cy) = λ∗i

∫ ∞
0

Gc(x+µis)F
c(y+ s)ds, x, y≥ 0, (64)

Z̄i(∞) =
λ∗i

d̂i
. (65)

If λ∗i = 0 but λ∗i+1 > 0 then

L̄i(∞) = 0, Z̄i(∞) = 0, and (66)

1

iZ̄i(∞)
L̄i(∞) =

1

(i+ 1)Z̄i+1(∞)
L̄i+1(∞). (67)

If λ∗i = 0 and λ∗i+1 = 0 then

L̄i(∞) = 0, Z̄i(∞) = 0, and L̄i(∞)/Z̄i(∞) = 0. (68)

And R̄(∞) is given by

R̄(∞)(Cx) = λ

∫ w

0

F c
q (x+ s)ds, x∈R, (69)

where w is a unique solution to Fq(w) = max
(
λ−d̂IN

λ
,0
)

.
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The proof is presented in §EC.4. In cases (i), (ii) and (iii) all customers are served only at a single

level and in case (iv) customers are served at two basic levels that are non-adjacent. It is easy

to verify that the arrival rates, λ∗i ’s, for the invariant states agree with the optimal solution of

the static planning problem (11)-(13) in these cases. Also the invariant state of the buffer R̄(∞)

is identical to that of the G/GI/N + GI queue described by (3.13) in Zhang (2013), which is

expected since overloaded CSC systems are similar to multi-server queues where all servers serve

I customers.

We will show below that the system performance mainly depends on the invariant states of basic

levels (those with λ∗i > 0 or those with Z̄i(∞)> 0). However, we will need the invariant states of

non-basic levels in proving Theorem 2. Also because L̄i/Z̄i is the limit of L̄ni /Z̄ni we express its

limit separately. The limit is well defined, even when Z̄i(∞) = 0, as we proved in §4.

Unfortunately, if the two basic levels ij and ij+1 are adjacent, i.e., ij+1 = ij + 1, then we cannot

obtain a closed-form expression for the invariant state. In the following theorem, we present two

special cases for which the closed-form invariant state can still be obtained and has the same form

as part (iv) of Theorem 2. The proof is provided in §EC.4.

Theorem 3. If d̂1N <λ< d̂IN , d̂i∗j+1
>λ/N and i∗j+1 = i∗j +1, and one of the following conditions

holds

Condition I: service times and patience times during service follow exponential distributions,

i.e., Gc(x) = e−x and F c(y) = e−νy,

Condition II: customers have unlimited patience during service, i.e., F (y)≡ 0 for any y≥ 0,

then the fluid models of the CSC systems (35)–(51) have the invariant state given in part (iv) of

Theorem 2.

For general service and patience time distributions it can be easily verified that the simple form

(64) is no longer an invariant state of the fluid model if there are exactly two basic levels and these

two levels are adjacent (i.e., i∗j+1 = i∗j + 1). The main issue here is that because customers move

between these two levels, the distributions of customers’ service and patience times in the invariant

state interact in a complicated manner and we are not able to capture this interaction in a closed

form. This is not an issue, for example, when the two basic levels are non-adjacent because they

do not interact or when both service and patience times have exponential distributions, in which

case the remaining service and patience time distributions are identical because of the memoryless

property of the exponential distribution.

For the rest of this paper we use (64) as an approximation for the invariant state of the fluid

model. To obtain further insight as to when this approximation is accurate, it is easy to see that

the invariant state is given as in part (iv) of Theorem 2 when µi∗j = µi∗j+1
. Clearly this contradicts
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our assumption (3) but it does imply that if the service rates between two adjacent levels are not

significantly different, (64) might provide a sensible approximation for the system’s invariant state.

Next, we will build approximations for various performance measures based on this approximation.

6. Approximations

In this section we build approximations based on the results in §5, in a manner similar to Whitt

(2006) and Bassamboo and Randhawa (2016) who focus on call center models. We mainly focus on

the probability of abandonment, and the mean and variance of time in the system in steady state.

Other performance metrics can also be estimated based on the invariant state of the fluid model.

6.1. Approximations for Probability of Abandonment

We now use the invariant state of the CSC model to develop our approximation for the probability of

abandonment from each level, which serves as the building block for other approximation formulae

to follow in §6.2 and §6.3. The results in this section also support our idea of approximation

presented in §2.2, which we have been using throughout the paper.

It follows from (64) that

L̄i(∞)(Cµiδ ×Cδ) = λ∗i

∫ ∞
δ

Gc(µis)F
c(s)ds

for any δ > 0. Therefore the total departure rate due to service completion and abandonment from

level i is given by

ψi = lim
δ→0

L̄i(∞)(C0×C0)−L̄i(∞)(Cµiδ ×Cδ)
δ

=− d

dδ
L̄i(∞)(Cµiδ ×Cδ)

∣∣∣
δ=0

= λ∗i .

The rate at which fluid content at level i departs that level by abandonment, ψai , is

ψai = lim
δ→0

L̄i(∞)(C0×C0)−L̄i(∞)(C0×Cδ)
δ

=− d

dδ
L̄i(∞)(C0×Cδ)

∣∣∣
δ=0

= λ∗i

∫ ∞
0

Gc(µis)f(s)ds,

where f is the pdf associated with the distribution function F and the last equality follows from

(64). Hence the proportion of customers who abandon the system among those who depart the

system from level i is given by

ψai
ψi

=

∫ ∞
0

Gc(µis)f(s)ds= PAb
i , (70)

where the last equality follows from the definition of PAb
i in (6).
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Remark 3. Based on this approximation the abandonment probability during service is given

by
∑I

i=1 λ
∗
iP

Ab
i . This approximation is identical to that we described in §2.2, providing further

evidence that our definitions of efficient and inefficient levels are valid.

Remark 4. By (70), our approximation for the probability of abandonment depends on the infor-

mation regarding both the service and patience time distributions. We also demonstrate this via

numerical experiments below where we show that the abandonment probability can change as

much as by 31.6% when we switch from log-normal service and patience time distributions to

exponential ones without altering their mean and variance. This is significantly different from the

approximations for the traditional many-server systems based on fluid models. In those models the

abandonment probability (in the fluid limit) only depends on the mean service time and not on

the distribution of service or abandonment times. However, the other performance measures (such

as expected time in queue) may also depend on the entire patience time distribution for those

systems, see Whitt (2006), Bassamboo and Randhawa (2016), Long and Zhang (2014) for more

details.

We next use (70) to build approximations for the other performance metrics for underloaded

and overloaded systems.

6.2. Approximations for Underloaded Systems

First assume that the system is underloaded, i.e.,

λ< d̂IN. (71)

Under this condition, the system nominally has sufficient capacity to serve all customers. We next

provide approximations in steady state for the probability of abandonment PAb, the expected time

in system E[W ], the standard deviation of time in system stdev(W ), and the conditional expected

time in system given that the customer will eventually complete service successfully, E[W |S], and

abandon the system, E[W |A].

If d̂1N <λ< d̂IN , then by the invariant state of the fluid limit and (14), a fraction

qi∗j =
d̂i∗j+1

N −λ

d̂i∗j+1
− d̂i∗j

·
d̂i∗j
λ

of arriving customers is served by an agent at level i∗j , and the remaining 1− qi∗j is served by an

agent at level i∗j+1 in the fluid invariant state. According to (70) the probability of abandonment

for those customers served by level i∗j agents can be approximated by PAb
i∗j

. Hence, the probability

that an arriving customer abandons the system in steady state can be approximated by

PAb = qi∗jP
Ab
i∗j

+ (1− qi∗j )P
Ab
i∗j+1

.
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By (65) the expected number of agents at level i, Ni, is given by Ni = λ∗i /d̂i. Using Little’s Law,

we have

E[W ] =
i∗jNi∗j

+ i∗j+1Ni∗j+1

λ
. (72)

Next we focus on the conditional expected time in system and the variance of the time in system.

Let

S
(c)
i =E

[
V

µi
|V
µi
≤U

]
and S

(a)
i =E

[
U |V
µi
>U

]
, i= 1, . . . , I, (73)

where U and V are defined in §2.1. In words, S
(c)
i is the conditional expected service time of

a customer given that the customer’s service is completed and S
(a)
i is the conditional expected

patience time of a customer given that the customer abandons service, if the customer is served

by an agent at level i in steady state. Then, conditional on the level of the agent that a customer

is served by, we have

E[W |S] =
qi∗j

(
1−PAb

i∗j

)
1−PAb

S
(c)
i∗j

+

(
1− qi∗j

)(
1−PAb

i∗j+1

)
1−PAb

S
(c)
i∗j+1

,

and

E[W |A] =
qi∗jP

Ab
i∗j

PAb
S

(a)
i∗j

+

(
1− qi∗j

)
PAb
i∗j+1

PAb
S

(a)
i∗j+1

.

Next we consider the standard deviation of the time spent in system in steady state. Conditional

on the level of the agent that a customer is served by, we have

E
[
W 2
]

= qi∗jE[T 2
i∗j

] +
(

1− qi∗j
)
E[T 2

i∗j+1
], (74)

where Ti is defined as in (4). Therefore, the standard deviation of the time spent in system in

steady state, stdev(W ), can be approximated by

stdev(W ) =
(
E
[
W 2
]
−
(
E[W ]

)2
)1/2

, (75)

where E[W 2] is defined as in (74) and E[W ] is defined as in (72).

If λ≤ d̂1N , then by Theorem 2 all of the arrivals will be served at level 1 in the fluid invariant

state, thus PAb = PAb
1 . By (65), the expected number of agents at level 1, N1, is given by N1 = λ/d̂1.

Applying Little’s law yields E[W ] = 1/d̂1. Since all customers are served by agents at level 1,

E[W |S] = S
(c)
1 and E[W |A] = S

(a)
1 .

Moreover, E[W 2] =E[T 2
1 ] and so the standard deviation can be found as in (75).
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6.3. Approximations for Overloaded Systems

We now turn our attention to overloaded systems, i.e., when the inequality in (71) is reversed. The

approximations we build in this case follows closely those for the multi-server queue (e.g., Whitt

(2006)). However there are still certain differences due to the fact that customers can also abandon

during service in CSC systems.

First note that a customer can exit the system in three different ways: i) abandonment from the

queue, ii) abandonment during service, and iii) service completion. From (69), a customer have

to wait in queue for w time units before entering service. Then, the probability that a customer

abandons from queue is Fq(w) and reaches service is F c
q (w) = 1− Fq(w). Because all customers

are served at level I, the probability of abandonment during service provided that the customer

reaches service is PAb
I . Therefore, the probability that a customer abandons the system in steady

state is given by

PAb = Fq(w) +F c
q (w)PAb

I .

Next we find an approximation for the expected time in system. By Theorem 2, the expected

number of customers in queue is given by λ
∫ w

0
F c
q (s)ds and the expected number of agents at level I

is N . Therefore we have

E[W ] =
λ
∫ w

0
F c
q (s)ds+ IN

λ
(76)

by Little’s law. We now consider the expected time in system conditional on the exit point of a

customer. Let Aq denote the event that a customer abandons the queue. Then the conditional

expected time in system in steady state given that a customer abandons from queue is given by

E[W |Aq] =E[Yq|Yq ≤w], (77)

where Yq is a random variable with distribution Fq. For those who reach service, the expected total

time in system in steady state is given by

E[W |Acq] =w+
1

αI
,

where we use Acq to denote the event that a customer reaches service and αI is defined in (5). To

approximate the standard deviation of time in system, conditional on whether a customer enters

service or not, we can obtain

E[W 2] =E[W 2|Aq]P(Aq) +E[W 2|Acq]P(Acq)

=E[Y 2
q |Yq ≤w]Fq(w) +E[(w+TI)

2]F c
q (w),

where Yq is the same as the one in (77) and TI is defined in (4). The standard deviation can easily

be obtained from this equation and (76).
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7. Numerical Experiments

In this section, we present the results of extensive numerical experiments in systems with the

number of agents ranging from 25 to 100 and in two different experiment sets. We have three goals:

i) to demonstrate the accuracy of our approximations based on the asymptotic analysis; ii) to show

that the distribution of service and patience times have a significant impact on the performance

of CSC systems; and iii) to demonstrate that carefully crafted routing policies can significantly

improve system performance.

In §7.1 we explain the parameters used in our experiments and in §7.2 we present the results

when all the service levels are efficient. We illustrate in §7.3 the effect of inefficient levels on system

performance. Due to space constraints we mainly focus on the probability of abandonment in

underloaded systems. Results on other performance measures can be found in Appendix EC.6,

where we also present the results of additional experiments for overloaded systems.

7.1. Simulation Parameters

We consider two different experimental settings with the main difference being that customers

are less patient in the first than in the second setting. In both settings we set I = 6 and assume

that arrivals follow a Poisson process and that customers’ patience for waiting in queue has an

exponential distribution with mean 1.

In the first experimental setting we let µ= {4,3.8,3.3,3,2.75,2.5} and consider three different

pairs of values of λ and N , the arrival rate and the number of agents. The details are presented

in Table 1(a). For each (λ,N) pair, we simulate the system under three different combinations of

service and patience time distributions (see Table 2(a) for details). From here on we use “expo(x)”

to denote an exponential random variable with mean x and “ln(x, y)” to denote a log-normal

distribution with mean x and variance y.

System λ N

11 281.25 25
21 562.5 50
31 1125 100

(a) Experiment set 1

System λ N

12 375 25
22 750 50
32 1500 100

(b) Experiment set 2

Table 1 Arrival rates and number of agents in each set of experiments

The setup of the second set of experiments is similar. We set µ= {10,7,5.1,4,3.3,2.8} and use

three different pairs of values of λ and N presented in Table 1(b). For each (λ,N) pair we simulate

the system under three different combinations of service and patience time distributions presented

in Table 2(b). Therefore, we consider nine systems in total in each set of experiments.
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Combination Service Time Patience Time

I1 expo(1) expo(1)
II1 ln(1,0.2) expo(1)
III1 ln(1,1) ln(1,1)

(a) Experiment set 1

Combination Service Time Patience Time

I2 expo(1) expo(2)
II2 ln(1,0.2) expo(2)
III2 ln(1,1) ln(2,4)

(b) Experiment set 2

Table 2 Combinations of service and patience time distributions

We choose arrival rates such that the agents are distributed between two basic levels (i∗j and i∗j+1)

at different ratios in different experiments to explore its affect on our approximations. For example,

in systems 11 through 31, the arrival rates are chosen so that when the service and patience times

are exponential we have Zi∗j =Zi∗j+1
and in systems 12 through 32 there is only one basic level. (The

optimal values of Zi∗j and Zi∗j+1
for each setting are presented in Appendix EC.6.) In addition the

parameters are chosen to observe the effect of the coefficient of variation of service times on the

accuracy of our approximations – they are lower in experiments II1 and II2.

We run each simulation long enough to observe 2 million arrivals. The first 10% of the simula-

tion time is regarded as the warm-up period, and thus is discarded when computing steady-state

performance metrics. The last 10% of the simulation time is also discarded to avoid the potential

impact of customers who are still in service at the end of the simulation.

7.2. Experiments with All Efficient Levels

In both set of experiments all the levels are efficient under the service rates specified in §7.1

and the experimental parameters in Tables 1 and 2. Hence in these cases the proposed policy π

reduces to the lightest-load-first policy that gives priority to the least busy agents and chooses one

randomly when necessary. In this section we explore how various parameters affect the accuracy

of our approximations and demonstrate the impact of service and abandonment time distributions

on system performance.

Combination System PAb
sim PAb

approx Rel. Error (%)

11 0.2234(±0.0004) 0.2222 0.54
I1 21 0.2227(±0.0004) 0.2222 0.22

31 0.2223(±0.0003) 0.2222 0.04

11 0.2520(±0.0005) 0.2511 0.36
II1 21 0.2513(±0.0004) 0.2511 0.08

31 0.2510(±0.0004) 0.2511 0.04

11 0.1530(±0.0003) 0.1519 0.72
III1 21 0.1524(±0.0003) 0.1519 0.33

31 0.1521(±0.0003) 0.1519 0.13

Table 3 Comparison of simulation results and approximations for PAb of experiment set 1

The results of the first and second sets of simulation experiments are presented in Tables 3 and 4,
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respectively, where we show the results for the abandonment probability along with the relative

error of our approximations for each combination. For example, in system 11 when both distribu-

tions are exponential, our approximations underestimate (compared with the simulation results)

the abandonment probability by 0.54%. More detailed results of the experiments along with 95%

confidence intervals are presented in Appendix EC.6.

We first point out that the service and patience time distributions have a significant effect on the

performance of the systems in both sets of experiments. To illustrate this, we note that the average

abandonment probability when both distributions are exponential is around 22% in systems 11−31

and it is only 15% when both distributions are log-normal with the mean and standard deviation

of service and patience distributions kept fixed. Similarly, in the second set of experiments, the

results are similar with an average abandonment probability of 7.3% vs. 1.9% for combinations I2

and III2, respectively. This should come as no surprise in the light of our approximations for PAb
i

in (6), where both distributions play a role.

In the first set of experiments, our approximations are highly accurate. In almost all the experi-

ments, errors are less than 1%, with an average of just 0.27%. The relative errors of the approxima-

tions for expected time in system, conditional expected time in system for abandoned and served

customers, and standard deviation of time in system are about the same (see Appendix EC.6).

The quality of our approximations improves with system size, as expected.

Combination System PAb
sim PAb

approx Rel. Error (%)

12 0.0752(±0.0003) 0.0667 11.30
I2 22 0.0728(±0.0003) 0.0667 8.38

32 0.0702(±0.0002) 0.0667 4.99

12 0.0806(±0.0003) 0.0748 7.20
II2 22 0.0781(±0.0003) 0.0748 4.23

32 0.0766(±0.0002) 0.0748 2.35

12 0.0212(±0.0001) 0.0187 11.79
III2 22 0.0197(±0.0001) 0.0187 5.08

32 0.0189(±0.0001) 0.0187 1.06

Table 4 Comparison of simulation results and approximations for PAb of experiment set 2

The quality of the approximations in the second set of experiments is relatively worse, especially

when the number of agents is equal to 25. For larger systems the relative error decreases: on average,

for systems with 50 and 100 agents, the relative errors are around 5.5% and 2.8%, respectively.

When the agents are estimated to be more evenly distributed between two basic levels, our

approximations are much more accurate. For example, in experiment I1, our estimates for the

expected number of agents at levels 2 and 3 are equal (see Table EC.2 in Appendix EC.6) and

in experiment I2, all of the agents are estimated to be working at level 2 (see Table EC.5 in
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Appendix EC.6) when service times and patience times during service are exponential. This is

mainly due to the fact that in the actual system, especially when N is small, “second-order”

fluctuations have a bigger impact on experiments when agents are unevenly distributed. This is in a

way similar to the analysis of traditional queueing systems because fluid limits do not provide very

accurate estimates in heavy traffic, but approximations based on diffusion limits, which capture

the second-order fluctuations, are reasonably accurate. The diffusion limits of CSC systems have

been studied in Cui and Tezcan (2016) under exponential assumptions. For general distributions,

we leave the diffusion analysis to future research.

7.3. Experiments with Inefficient Levels

In order to illustrate the effect of inefficient levels we run simulations using the first experimental

setting except we set µ3 = 2.9 and µ4 = 2.8 (instead of their original values µ3 = 3.3 and µ4 = 3)

making levels 3 and 4 inefficient under each distribution pair in Table 2(a). We carry out simulation

experiments with this change for the same arrival rates and number of agents given in Table 1(a).

Now the order of priority for policy π becomes p(1) = 1, p(2) = 4, p(3) = 3, p(4) = 2, p(5) = 5,

which is obviously different from the lightest-load-first policy, and we have i∗j = 2 and i∗j+1 = 5 in

all experiments.

The results of the relative errors and the improvements from using our proposed policies are

presented in Table 5. Specifically, in the last column titled “Improvement”, we display the improve-

ments in abandonment probability if the proposed policy π is used as opposed to the lightest-load-

first policy. We observe that the abandonment probability can be reduced significantly by as much

as 12.34% with an average of 8.5%.

Combination System PAb
sim-lightest PAb

sim-π PAb
approx-π Rel. Error (%) Improvement (%)

11 0.2441(±0.0005) 0.2303(±0.0003) 0.2259 1.91 5.65
I1 21 0.2451(±0.0005) 0.2286(±0.0004) 0.2259 1.18 6.73

31 0.2461(±0.0006) 0.2275(±0.0005) 0.2259 0.70 7.56

11 0.2809(±0.0005) 0.2619(±0.0003) 0.2578 1.57 6.76
II1 21 0.2828(±0.0004) 0.2603(±0.0004) 0.2578 0.96 7.96

31 0.2842(±0.0005) 0.2593(±0.0004) 0.2578 0.58 8.76

11 0.1801(±0.0003) 0.1629(±0.0002) 0.1590 2.39 9.55
III1 21 0.1819(±0.0003) 0.1614(±0.0003) 0.1590 1.49 11.27

31 0.1832(±0.0002) 0.1605(±0.0003) 0.1590 0.93 12.34

Table 5 Comparison of simulation results and approximations for PAb of experiment set 1 with inefficient levels

Under the column “Rel. Error”, we present the error of the approximation for the abandonment

probability relative to the simulation result. The errors of our approximations are slightly higher

in this case than those observed in the previous section, especially when the number of agents is
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equal to 25. However, even in systems with 25 agents the average error is less than 2.39% across all

combinations and performance metrics. Besides, for larger systems the relative error is much lower:

on average, for systems with 50 and 100 agents, the relative error is around 1.15% and 0.72%,

respectively. The main reason behind increased errors is the fact that the inefficient levels between

two basic levels are asymptotically empty (i.e. there are no agents working at those levels) at all

times but they are not in finite size systems because of the randomness in arrivals and service

completions.

8. Conclusions

In this paper, we analyze CSC systems with generally distributed service and patience times.

Typically these systems have multiple agents and each agent can serve multiple customers simul-

taneously. These unique features make the analysis challenging, especially when combined with

general service and patience time distributions. We present a tractable alternative system to serve

as a proxy for the original CSC system. We then use measure-valued processes and construct equa-

tions that capture the dynamics of the alternative system. We then establish the fluid limits of

these processes and show that they satisfy a set of fluid model equations. We then analyze the

invariant state of the fluid model and obtain approximations for various performance metrics of

the system in the steady state based on these invariant states.

Our numerical experiments demonstrate that our approximations are accurate in general and

easy to calculate once the service and patience time distributions are determined. Due to their

simplicity, our approximations would be especially effective i) in making staffing decisions even

when the arrival rate itself is random (see Bassamboo et al. (2010)) and ii) in performing various

kinds of what-if analyses, for example, when the system manager can influence the service rates,

for example, via additional agent training. In employing our approximations, however, caution

must be taken when the service rates between two adjacent basic levels are significantly different.

Nevertheless, we did not observe a significant degradation in the performance of our approximations

even in these cases in our numerical experiments.

Our results rely on several assumptions that can be verified in future research. First, we did not

prove the convergence of the fluid model solutions to the invariant state and it is not clear if the

invariant state is unique. Second, we used a modified system for tractability without establishing

analytically whether or not it is a good approximation for the original system. Third, we did not

try to optimize the routing decisions and instead used the ones that have been established to be

asymptotically optimal when service and patience times are exponential. Finally, we assumed that

the arrival rate is constant. Having said that, our approximations can still be used to manage

systems by dividing the day into non-overlapping intervals if the arrival rate does not change too
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rapidly, see Gans et al. (2003). However, if the arrival rate change quickly (compared to service

times), analysis similar to Liu and Whitt (2014) might be more practical.
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Appendix: Customer Service Chat Systems with General
Service and Patience Times

We prove Lemma 1 in §EC.1. In §EC.2 we present the numerical results to compare the original

CSC system with the modified system. Then we present the related results about the fluid model

in §EC.3 and prove the results of the invariant state in §EC.4. The proofs of the convergence of

the stochastic model to its fluid limits are presented in §EC.5. In the end, the details of the results

of the simulation experiments in §7 appear in §EC.6.

EC.1. Proofs of Efficient and Inefficient Levels

Proof of Lemma 1. The proof of the result is similar to that of Lemma 1 in Tezcan and Zhang

(2014) once we establish the properties of efficient levels, namely (EC.1), (EC.2) and Lemma EC1

in Tezcan and Zhang (2014). First it can be easily checked that condition (9) is equivalent to the

following: (
d̂k2
− d̂k1

)(
PAb
k2
d̂k2
−PAb

i d̂i

)
≤
(
d̂k2
− d̂i

)(
PAb
k2
d̂k2
−PAb

k1
d̂k1

)
, (EC.1)(

d̂k2
− d̂k1

)
PAb
i d̂i ≥

(
d̂i− d̂k1

)
PAb
k2
d̂k2

+
(
d̂k2
− d̂i

)
PAb
k1
d̂k1

. (EC.2)

Note that the above two equivalent conditions are identical to those in Remark EC1 of Tezcan and

Zhang (2014), though in the context of general service and patience time distributions. Also, by

(3), Pi′ > Pi if i′ > i. We show in Lemma EC.1 that results of Lemma EC1 in Tezcan and Zhang

(2014) holds in the current case as well. The proof is then identical to that of Lemma 1 in Tezcan

and Zhang (2014). �

Lemma EC.1. Assume that (3) and (10) hold.

(i) If for a level j, 1< j < I, d̂j = d̂j′ for some j′ < j, then level j cannot be efficient.

(ii) For any efficient level ij(
1−PAb

ij

)
d̂ij ≥

(
1−PAb

i

)
d̂i, for all i≤ ij. (EC.3)
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Proof. Assume that for j > 1, d̂j = d̂j′ for some j′ < j. Set k1 = j′, i= j and set k2 = I. Then we

have d̂k1
= d̂i. And by (7) and (10),

(d̂k2
− d̂k1

)(PAb
k2
d̂k2
−PAb

i d̂i) = (d̂k2
− d̂i)(PAb

k2
d̂k2
−PAb

i d̂k1
)

≤ (d̂k2
− d̂i)(PAb

k2
d̂k2
−PAb

k1
d̂k1

).

Hence j is inefficient by (EC.1).

Now assume that ij is efficient. By (10) and by part (i) d̂I > d̂ij > d̂i for any i < ij. Then, by

(EC.2) and (10), for any i < ij

PAb
ij
d̂ij ≤

(
d̂ij − d̂i

)
(
d̂I − d̂i

) PAb
I d̂I +

(
d̂I − d̂ij

)
(
d̂I − d̂i

) PAb
i d̂i

≤

(
d̂ij − d̂i

)
(
d̂I − d̂i

) (d̂I − d̂i +PAb
i di

)
+

(
d̂I − d̂ij

)
(
d̂I − d̂i

) PAb
i d̂i

=
(
d̂ij − d̂i

)
+PAb

i d̂i

giving the desired result. �

Lemma EC.2. If there exists j = 1,2, . . . , I − 1 such that d̂I < d̂j or (1− PAb
I )d̂I < (1− PAb

j )d̂j,

then any optimal solution of the routing linear program (11)–(13) must satisfy λ∗I = 0.

Proof. If d̂I < d̂j for some j = 1,2, . . . , I − 1 the results follows from the proof of Lemma 1. So

assume that d̂I ≥ d̂j for all j = 1,2, . . . , I − 1.

Assume that (1 − PAb
I )d̂I < (1 − PAb

j )d̂j for some j = 1,2, . . . , I − 1. We prove the result by

contradiction. Assume that given λ, for an optimal solution we have λ∗I > 0. Choose level j such that

(1−PAb
I )d̂I < (1−PAb

j )d̂j. Consider the following solution of the routing linear program (11)–(13),

λi =


λ∗i if i∈ {1, . . . , I} \ {j, I},
λ∗j +λ∗I

d̂j

d̂I
if i= j,

0 if i= I,

λ∗I+1 +λ∗I(1−
d̂j

d̂I
) if i= I + 1.

Note that d̂j ≤ d̂I . It can also be easily seen that the above is a feasible solution of the static

planning problem (11)–(13). Moreover, the objective function value with this solution satisfies

I∑
i=1

λiP
Ab
i +λI+1− (

I∑
i=1

λ∗iP
Ab
i +λ∗I+1)

= λ∗I(1−PAb
I )−λ∗I(1−PAb

j )
d̂j

d̂I
< 0,

where the last inequality follows from the assumption that (1−PAb
I )d̂I < (1−PAb

j )d̂j. Hence any

optimal solution of (11)–(13) must satisfy λ∗I = 0. �
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EC.2. Difference between the Original and the Modified Systems

In this section we present the results of the numerical experiments to compare the original CSC

system with the modified system under Assumption 1. We consider three systems 11 − 31 with

different arrival rate and number of agents; see Table 1(a). for details. For patience and service time

distributions, we use the combinations from Table 2(a). The service rate µ= {4,3.8,3.3,3,2.75,2.5}

is also kept the same as that of the first experiment set in §7.1. We apply our proposed policy π

to the original and the modified systems.

Combination System PAb
sim-original PAb

sim-modified Difference

11 0.2234(±0.0004) 0.2231(±0.0005) 3× 10−4

I1 21 0.2227(±0.0004) 0.2225(±0.0005) 2× 10−4

31 0.2223(±0.0003) 0.2220(±0.0005) 3× 10−4

11 0.2520(±0.0005) 0.2521(±0.0009) 1× 10−4

II1 21 0.2513(±0.0004) 0.2514(±0.0003) 1× 10−4

31 0.2510(±0.0004) 0.2511(±0.0003) 1× 10−4

11 0.1530(±0.0003) 0.1529(±0.0002) 1× 10−4

III1 21 0.1524(±0.0003) 0.1522(±0.0002) 2× 10−4

31 0.1521(±0.0003) 0.1519(±0.0001) 2× 10−4

Table EC.1 Comparison of simulation results PAb of the original and modified systems

Table EC.1 summarizes the difference in the steady-state abandonment probability between the

original and the modified systems under a range of different parameter setting described in the

above. Though the original CSC system and the modified one are equivalent under exponential

service and patience time distributions, we also simulate the result as a benchmark. Obviously

these two systems are also nearly identical for general distributions (other performance metrics

besides abandonment probability are also very close).

EC.3. Analysis of the Fluid Model

Lemma EC.3. Consider the CSC fluid model (35)–(51). If customers’ service times and patience

times during service follow exponential distributions, saying that Gc(x) = e−x and F c(y) = e−νy,

then (58) and (59) hold.

Proof. Setting x, y in (35) to be zero and plugging (57) yield

iZ̄i(t) = iZ̄i(0)e−(µi+ν)t− (i− 1)

∫ t

0

e−(µi+ν)(t−s)dM̄i,i−1(s) + (i− 1)

∫ t

0

e−(µi+ν)(t−s)dM̄i−1,i(s)

+

∫ t

0

e−(µi+ν)(t−s)dĀi(s) + i

∫ t

0

e−(µi+ν)(t−s)dM̄i+1,i(s)− i
∫ t

0

e−(µi+ν)(t−s)dM̄i,i+1(s)

= iZ̄i(0)e−(µi+ν)t− (i− 1)

∫ t

0

e−(µi+ν)(t−s)dS̄i(s) + i

∫ t

0

e−(µi+ν)(t−s)dĀi(s)

+ i

∫ t

0

e−(µi+ν)(t−s)dS̄i+1(s)− i
∫ t

0

e−(µi+ν)(t−s)dĀi+1(s), (EC.4)
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where the first equality follows from (35), and the second one is due to (41). One can check that

the definition at Z̄(·) = 0 in (36) and (37) is also satisfied.

On the other hand, by (31) and (57) we have L̄i(t)(A(x, y)) = iZ̄i(t)(1− e−(x+νy)). Plugging this

to (45) yields

S̄i(t) = iZ̄i(0)(1− e−(µi+ν)t)− (i− 1)

∫ t

0

(1− e−(µi+ν)(t−s))dM̄i,i−1(s) + (i− 1)

∫ t

0

(1− e−(µi+ν)(t−s))dM̄i−1,i(s)

+

∫ t

0

(1− e−(µi+ν)(t−s))dĀi(s) + i

∫ t

0

(1− e−(µi+ν)(t−s))dM̄i+1,i(s)− i
∫ t

0

(1− e−(µi+ν)(t−s))dM̄i,i+1(s)

= iZ̄i(0)(1− e−(µi+ν)t)− (i− 1)

∫ t

0

(1− e−(µi+ν)(t−s))dS̄i(s) + i

∫ t

0

(1− e−(µi+ν)(t−s))dĀi(s)

+ i

∫ t

0

(1− e−(µi+ν)(t−s))dS̄i+1(s)− i
∫ t

0

(1− e−(µi+ν)(t−s))dĀi+1(s),

where the last equality follows from (41). Applying the chain rule yields

dS̄i(t) = (µi + ν)
[
iZ̄i(0)e−(µi+ν)t− (i− 1)

∫ t

0

e−(µi+ν)(t−s)dS̄i(s) + i

∫ t

0

e−(µi+ν)(t−s)dĀi(s)

+ i

∫ t

0

e−(µi+ν)(t−s)dS̄i+1(s)− i
∫ t

0

e−(µi+ν)(t−s)dĀi+1(s)
]
dt

= (µi + ν)iZ̄i(t)dt,

where the last equality follows from (EC.4). This also proves (58). Thus, the above together with

(EC.4) immediately implies (59). �

EC.4. Analysis of the Invariant State

Proof of Proposition 1. Let (L̄(∞), R̄(∞)) denote an invariant state. First we show that

λi = 0 for any inefficient level i /∈F . Suppose that there exists i /∈F such that λi > 0 and let k be

one of these levels.. By (63), Āk(t) = λkt, where λk > 0. Based on our policy π described in (34),

p(k)< p(k− 1) since k /∈F . This together with (50) yields, for all t≥ 0,

0 = Z̄k(t)dĀk(t) = λkZ̄k(t)dt.

The above implies λkZ̄k(t) = 0. Thus, Z̄k(t) = 0 since λk > 0. However, by (42) and (62), λk = 0

whenever Z̄k(t) = 0. This clearly is a contradiction. Therefore no such k exists. This proves that

λi = 0 for all i /∈F .

Now we prove that there are at most two efficient levels with λi > 0, i∈F and that there cannot

be any efficient levels between these two levels. Let ij+1 ∈F be the efficient level with the highest

index among those efficient levels with λi > 0. By (63), Āij+1
(t) = λij+1

t and from our assumption

λij+1
> 0. Recall that F = {i1, i2, . . . , iJ}, where i1 < i2 < . . . < iJ (see §2.3.1). Again by our policy
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π described in (34), we have p(i)< p(ij+1−1) = ij for all i= i1, i2, . . . , ij−1. This together with (50)

yields, for all t≥ 0,

0 = Z̄i(t)dĀij+1
(t) = λij+1

Z̄i(t)dt, i= i1, i2, . . . , ij−1.

Since λij+1
> 0, the above implies Z̄i(t) = 0 for all i= i1, i2, . . . , ij−1. This with (42) and (62) yields

λi = 0 for all i= i1, i2, . . . , ij−1, giving the desired result. �

Proof of Theorem 2. Let (L̄(∞), R̄(∞)) denote the state defined in the theorem. First

assume that one of the conditions in (i), (ii), (iii) or (iv) of the theorem holds. Let

Āi(t) = λ∗i t. (EC.5)

We prove that (L̄(∞), R̄(∞)) with Āi is an invariant state. By (5), d̂i = i/
∫∞

0
Gc(µis)F

c(s)ds.

From the conditions of the theorem, two basic levels are non-adjacent or there is only one basic

level. Let ij denote one of these levels. Then, Z̄ij−1(t) = Z̄ij+1(t) = 0 for all t≥ 0. By the definition

of the invariant state (64)–(68) and (EC.5), (36) and (37) are satisfied if Z̄i(∞) = 0. Then, (64)–

(68) satisfy (35) for all i = 1, . . . , I. Other fluid model equations (38)–(51) are verified similarly.

One can verify that R̄(∞) defined as in (69) is a solution to (46) in a similar way. �

Proof of Theorem 3. Assume that d̂1N <λ< d̂IN , d̂i∗j+1
>λ/N and i∗j+1 = i∗j + 1. Let L̄(∞)

defined as in (64)–(68) and Āi be defined as in (EC.5) for all i = 1, . . . , I. By the definition of

the invariant state (64)–(68) and (EC.5), (36) and (37) are satisfied if Z̄i(∞) = 0. Therefore, (35)

becomes

L̄i∗j (∞)(Cx×Cy) = λ∗i∗j

∫ ∞
0

Gc(x+µi∗j s)F
c(y+ s)ds

+ i∗jλ
∗
i∗j+1

∫ ∞
0

1

i∗j+1Z̄i∗j+1
(∞)
L̄i∗j+1

(∞)(Cx+µi∗
j
s×Cy+s)ds

− i∗jλ∗i∗j+1

∫ ∞
0

1

i∗j Z̄i∗j (∞)
L̄i∗j (∞)(Cx+µi∗

j
s×Cy+s)ds,

(EC.6)

L̄i∗j+1
(∞)(Cx×Cy) = λ∗i∗j+1

∫ ∞
0

Gc(x+µi∗j+1
s)F c(y+ s)ds

− i∗jλ∗i∗j+1

∫ ∞
0

1

i∗j+1Z̄i∗j+1
(∞)
L̄i∗j+1

(∞)(Cx+µi∗
j+1

s×Cy+s)ds

+ i∗jλ
∗
i∗j+1

∫ ∞
0

1

i∗j Z̄i∗j (∞)
L̄i∗j (∞)(Cx+µi∗

j+1
s×Cy+s)ds,

(EC.7)

and L̄i(∞) = 0 for all i 6= i∗j , i
∗
j+1. Note that the last two terms on the right-hand side of (EC.6)

and (EC.7) are the interactions between the two adjacent basic levels.

Assume that Condition I holds. By (64)

1

iZ̄i(∞)
L̄i(∞)(Cx×Cy) = e−xe−vy for i= i∗j , i

∗
j+1.
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This satisfies (EC.6) and (EC.7).

Now assume that Condition II holds. By (64)

L̄i(∞)(Cx×Cy) = λ∗i

∫ ∞
0

Gc(x+µis)ds for i= i∗j , i
∗
j+1.

This with (42) gives

1

iZ̄i(∞)
L̄i(∞)(Cx×Cy) =

∫∞
0
Gc(x+µis)ds∫∞

0
Gc(µis)ds

=

∫ ∞
0

Gc(x+ s)ds for i= i∗j , i
∗
j+1.

This clearly satisfies (EC.6) and (EC.7). The other fluid model equations can be checked similarly.

�

EC.5. Analysis of the Stochastic Model

By (22)

L̄ni (t)(Cx×Cy) = L̄ni (t0)(Cx+µi(t−t0)×Cy+(t−t0)

−
∫ t

t0

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)

+

∫ t

t0

1

n
Φi−1

(
Lni−1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i−1,i(s)

+
1

n

Ani (t)∑
j=Ani (t0)+1

1{vni,j>x+µi(t−τni,j),u
n
i,j>y+t−τni,j}

+

∫ t

t0

1

n
Φi
(
Lni+1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i+1,i(s)

−
∫ t

t0

1

n
Φi (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i+1(s).

(EC.8)

Actually, the above equation is a shifted fluid scaled dynamic equation treating t0 as a start point.

When setting t0 = 0, (EC.8) becomes the fluid scaled version of (22). Let S̄ni (t0, t) = S̄n(t)− S̄n(t0).

Then, similar to (EC.8), we can also shift (32) to t0 and it becomes

S̄ni (t0, t) = L̄ni (t0)(Ai(µi(t− t0), t− t0))

−
∫ t

t0

1

n
Φi−1 (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i−1(s)

+

∫ t

t0

1

n
Φi−1

(
Lni−1(s)

)
(A(µi(t− s), (t− s)))dMn

i−1,i(s)

+
1

n

Ani (t)∑
j=Ani (t0)+1

1{vni,j≤µi(t−τ
n
i,j) or uni,j≤t−τ

n
i,j}

+

∫ t

0

Φi
(
Lni+1(s)

)
(A(µi(t− s), (t− s)))dMn

i+1,i(s)

−
∫ t

0

Φi (Lni (s)) (A(µi(t− s), (t− s)))dMn
i,i+1(s).

(EC.9)

We assume all random variables and processes associated with the nth system are defined on the

probability space (Ωn,Fn,Pn).
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EC.5.1. Tightness

To prove the tightness we use an approach similar to that in Zhang (2013), which studied measure-

valued process underlying a many-server queue with a single pool and a single customer class.

By Theorem 3.7.2 in Ethier and Kurtz (1986), it suffices to verify (a) the compact containment

condition and (b) the oscillation bound in the following two subsections.

EC.5.1.1. Compact Containment The objective of this subsection is to prove the compact

containment, Lemma EC.4 below. To state the result, we need to introduce the concept of compact-

ness in the space of measures. Let M denote the space of all non-negative Borel measures on R2
+

equipped with Prohorov metric (see §6 in Billingsley (1999) for details). A set K⊂M is relatively

compact if supξ∈K ξ(R2
+) <∞, and there exists a sequence of nested compact sets Bj ⊂ R2

+ such

that ∪Bj =R2
+ and

lim
j→∞

sup
ξ∈K

ξ(Bcj) = 0, (EC.10)

where Bcj denotes the complement of Bj; see Kallenberg (1986), Theorem A7.5.

Lemma EC.4. Fix T > 0. For any η > 0 there exists a compact set K⊂M such that

lim inf
n→∞

Pn
(
R̄n(t)∈K and L̄ni (t)∈K for all i= 1, . . . , I and t∈ [0, T ]

)
≥ 1− η.

To make the presentation self-contained, we briefly cite the Glivenko-Cantelli estimates (e.g.,

Appendix B in Zhang (2013)). Define

Ēni (l) =
1

n

bnlc∑
j=1

δ(vni,j ,u
n
i,j)
, (EC.11)

where δ(x,y) denotes the Dirac measure of point (x, y) on R×R. Recall that {vni,j}∞j=1 is i.i.d. sequence

of random variables following distribution G, and {uni,j}∞j=1 is i.i.d. sequence of random variables

following distribution F . Denote νG and νF the probability measures corresponding to the service

time distribution G and the patience time distribution during service F , respectively. Introduce

the family of testing functions

V =
{

1Cx×Cy(·, ·) : x, y ∈R
}
.

There exists a function f̄ :R+×R+→R satisfying

f̄ is increasing and unbounded,

f ≤ f̄ for all f ∈ V,

〈f̄2, ν〉<∞,
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where 〈f̄2, ν〉 denote the integration of function f̄2 with respect to measure ν, see Appendix B in

Zhang (2013). Denote V̄ = {f̄}∪V. The function f̄ is referred to as the envelop function for V. It

follows from Lemma 5.1 in Zhang et al. (2009) and Lemma B.1 in Zhang (2013) that

lim
n→∞

Pn
(

Ωn
GC(L)

)
= 1, (EC.12)

for any fixed L> 0, where the event Ωn
GC(L) is defined as

Ωn
GC(L) =

{
max

i∈{1,...,I}
sup
l∈[0,L]

sup
f∈V̄

∣∣∣〈f, Ēni (l)〉− l〈f, (νF , νG)〉
∣∣∣≤ εGC(n)

}
, (EC.13)

for some function εGC(·) which vanishes at infinity. Intuitively, on the event Ωn
GC(L) (whose prob-

ability goes to 1 as n→∞), the measures Ēni (l) is “close” to ν.

We also need to introduce another “good” events to work with later in our analysis. It follows

from condition (52) and Lemma 5.2 in Zhang et al. (2009) that

lim
n→∞

Pn
(

Ωn
Λ(T )

)
= 1, (EC.14)

for any fixed T > 0, where the event Ωn
Λ is defined as

Ωn
Λ(T ) =

{
sup
t∈[0,T ]

|Λ̄n(t)−λt|< εE(n)
}
, (EC.15)

for some function εE(·) which vanishes at infinity.

Proof of Lemma EC.4. The buffer part of the customer service chat systems is identical

that of the call center model studied in Zhang (2013), therefore the compact containment property

of R̄n follows from the same argument in Lemma 5.1 of Zhang (2013). Hence we mainly focus on

the compact containment property of L̄ni .

Fix η > 0. First, for any i∈ {1, . . . , I} and t≥ 0, L̄ni (t)(R2
+)≤ I ·N <∞ due to the fluid scaling.

It remains to verify (EC.10). By the convergence of the initial condition (54), for any ε > 0, there

exists a relatively compact set K0 ⊂M such that

lim inf
n→∞

Pn
(
R̄n(0)∈K0 and L̄ni (0)∈K0 for all i∈ {1, . . . , I}

)
≥ 1− η/2.

Denote the event in the above probability by Ωn
0,c. On this event, by the definition of relatively

compact set in the space M, there exists a function κ0(·) with limx→∞ κ0(x) = 0 such that

I∑
i=1

L̄ni (0)(Cx×Cx)≤ κ0(x). (EC.16)

Define

µmin = min
i∈{1,...,I}

µi. (EC.17)
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On the event Ωn
Λ,

0≤ Λ̄n(t)≤ 2λT, t∈ [0, T ] (EC.18)

for all large enough n. By (EC.8), on the event ΩΛ we have

I∑
i=1

L̄ni (t)(Cx×Cx)≤
I∑
i=1

L̄ni (0)(Cx+µmint×Cx+t) +
I∑
i=1

1

n

Ani (t)∑
j=1

1{vni,j>x+µmin(t−τni,j),u
n
i,j>x+t−τni,j}

≤ κ0(x) +
I∑
i=1

1

n

Ani (t)∑
j=1

1{vni,j>x,u
n
i,j>x}. (EC.19)

We can think of (EC.19) in terms of the total mass: at time t, those with remaining service time

large than x must be either one of those initially in the system and with remaining service time

larger than x+ µmint or arrive after with remaining service time larger than x+ µmin(t− τ) if he

arrives at time τ . Since we are on the event Ωn
Λ (see (EC.18)) and Ωn

GC(2λT ),

〈f̄ , 1

n

I∑
i=1

Ani (t)∑
j=1

δ(vni,j ,u
n
i,j)
〉 ≤ 2λT 〈f̄ , ν〉+ 1,

for all large n. Applying Markov’s inequality to (EC.19),

L̄ni (t)(Cx×Cx)≤ κ0(x) +
2λT 〈f̄ , ν〉+ 1

f̄(x)
, (EC.20)

which converges to 0 as x→∞. So we can define the set K = {ξ ∈M : ξ(R×R)≤ 1, ξ(Cx×Cx)≤

κ0(x) + 2λT 〈f̄ ,ν〉+1

f̄(x)
}, which is compact in M according to the definition. On the event Ωn

0,c ∩Ωn
Λ ∩

Ωn
GC(2λT ) (which has probability larger than 1− η for all large n), L̄ni (t) ∈K for all i ∈ {1, . . . , I}

and t∈ [0, T ]. Thus the desired result follows from (EC.12) and (EC.14). �

EC.5.1.2. Oscillation Bound The oscillation of a function ζ(·) taking values in the metric

space M with metric d on a fixed interval [0, T ] is defined as

wT (ζ(·), δ) = sup
s,t∈[0,T ],|s−t|<δ

d[ζ(s), ζ(t)].

If the metric space is R, we just use the Euclidean metric; if the space is all finite measures, we

use the Prohorov metric defined in §6 of Billingsley (1999). For ν1, ν2 ∈M, the Prohorov metric is

defined as

d[ν1, ν2] = inf
{
ε > 0 : ν1(A)≤ ν2(Aε) + ε and

ν2(A)≤ ν1(Aε) + ε for all Borel set A⊂R
}
,

(EC.21)

where Aε = {b∈R : infa∈A |a− b|< ε}.

The second major step to prove tightness is to show that the oscillation is small with large

probability, we show this next.
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Lemma EC.5. Fix T > 0. For each ε, η > 0 there exists a δ > 0 (depending on ε and η) such that

lim inf
n→∞

Pn
(
wT (R̄n(·), δ)≤ ε

)
≥ 1− η, (EC.22)

lim inf
n→∞

Pn
(

max
i∈{1,...,I}

wT (L̄ni (·), δ)≤ ε
)
≥ 1− η, (EC.23)

lim inf
n→∞

Pn
(

max
i∈{1,...,I}

wT (Āni (·), δ)≤ ε
)
≥ 1− η, (EC.24)

lim inf
n→∞

Pn
(

max
i∈{1,...,I}

wT (S̄ni (·), δ)≤ ε
)
≥ 1− η. (EC.25)

The rest of this section is devoted to the proof of this result. We begin with the following auxiliary

result. Given κ> 0 we define

∆κ(x, y) :=Cx×Cy \Cx+κ×Cy+κ. (EC.26)

Lemma EC.6. Fix T > 0. For each ε, η > 0 there exists κ> 0 (depending on ε and η) such that

lim inf
n→∞

Pn
(

max
i∈{1,...,I}

sup
t∈[0,T ]

sup
x,y∈R+

L̄ni (t)(∆κ(x, y))≤ ε
)
≥ 1− η. (EC.27)

Proof. Fix ε > 0 and η > 0. Similar to the proof of Lemma EC.4, we only consider the event

Ωn
0,c ∩Ωn

Λ ∩Ωn
GC for the rest of this proof. The customers who receive service must be either those

initially in the server pool or those who arrive after time 0. We index the customers initially at

level i by l = 1, . . . , iZni (0) according to the time spent during service wni,l by time 0. Recall that

wni,l is assumed to be bounded. Also let sni,l denote the amount of service of lth such received by

time 0. And vn,oi,l and un,oi,l denote the remaining service time and remaining patience during service

of the lth such customer. In view of (1), we use µoi,l(s), s∈ [0, t], to denote the service rate of this

customer at time s. Similarly, we index those customers who arrived after time 0 and whose service

commences at level i by j = 1, . . . ,Ani (t) based on their service start time τni,j for j = 1, . . . ,Ani (t).

We also use µi,j(s), s ∈ [0, t], to denote the service rate of the jth customer at time s. We use

vni,j and uni,j to denote the service time and patience time during service of the jth such customer,

respectively. Then by the definition of L̄ni (t), we have

I∑
i=1

L̄ni (t)(∆κ(x, y)) =
1

n

I∑
i=1

iZni (0)∑
l=1

δ(v
n,o
i,l

,u
n,o
i,l

)

(
∆κ(x+

∫ t

0

µoi,l(s)ds, y+ t)
)

+
1

n

I∑
i=1

Ani (t)∑
j=1

δ(vni,j ,u
n
i,j)

(
∆κ(x+

∫ t

t−τni,j

µi,j(s)ds, y+ t− τni,j)
)
.

Note that δ(v
n,o
i,l

,u
n,o
i,l

)

(
∆κ(x +

∫ t
0
µoi,l(s)ds, y + t)

)
, l = 1, . . . , iZni (0), and δ(vni,j ,u

n
i,j)

(
∆κ(x +
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t−τni,j

µi,j(s)ds, y+ t− τni,j)
)
, j = 1, . . . ,Ani (t), are Bernoulli random variables, which are indepen-

dent and their variances are all bounded by 1. Then by Kolmogorov’s strong law of large numbers

(Theorem 2.3.10 in Sen and Singer (1994)), we have a.s.

I∑
i=1

L̄ni (t)(∆κ(x, y))≤ 1

n

I∑
i=1

iZni (0)∑
l=1

E
[
δ(v

n,o
i,l

,u
n,o
i,l

)

(
∆κ(x+

∫ t

0

µoi,l(s)ds, y+ t)
)]

+
1

n

I∑
i=1

Ani (t)∑
j=1

E

[
δ(vni,j ,u

n
i,j)

(∆κ(x+

∫ t

t−τni,j

µi,j(s)ds, y+ t− τni,j))

]
+
ε

2

(EC.28)

for all large n.

Now we consider the first term on the right-hand side of (EC.28). We have

E
[
δ(v

n,o
i,l

,u
n,o
i,l

)

(
∆κ(x+

∫ t

0

µoi,l(s)ds, y+ t)
)]

≤E
[
1{vn,o

i,l
∈(x+

∫ t
0 µ

o
i,l

(s)ds,x+
∫ t
0 µ

o
i,l

(s)ds+κ]}

]
+E

[
1{un,o

i,l
∈(y+t,y+t+κ]}

]
=

1

Gc(sni,l)

[
G
(
x+ sni,l +

∫ t

0

µoi,l(s)ds+κ
)
−G

(
x+ sni,l +

∫ t

0

µ0
i,l(s)ds

)]
+

1

F c(wni,l)

[
F (y+wni,l + t+κ)−F (y+wni,l + t)

]
.

Note that because vn,oi,l is the remaining service time of the lth customer initially at level i, it follows

distribution function 1− Gc(sni,l+x)

Gc(sn
i,l

)
. Similarly, for this customer, un,oi,l . Because wni,l is bounded, sni,l

is also bounded because sni,l ≤ µmaxw
n
i,l, where µmax = maxi∈{1,...,I} µi. Therefore,

1

Gc(sni,l)

[
G
(
x+ sni,l +

∫ t

0

µoi,l(s)ds+κ
)
−G

(
x+ sni,l +

∫ t

0

µoi,l(s)ds
)]

+
1

F c(wni,l)

[
F (y+wni,l + t+κ)−F (y+wni,l + t)

]
≤ ε

4NI2

for κ small enough, where N is defined in (52). It then follows from the above two inequalities that

1

n

I∑
i=1

iZni (0)∑
l=1

E
[
δ(v

n,o
i,l

,u
n,o
i,l

)

(
∆κ(x+

∫ t

0

µoi,l(s)ds, y+ t)
)]
≤

I∑
i=1

iZ̄ni (0)
ε

4NI2
≤ ε

4
.

Now we consider the second term on the right-hand side of (EC.28). By (29) and (30), we have

Āni (t)≤ Ēn(t)≤ Λ̄n(t) + Q̄n(0)≤M0 + 2λT. (EC.29)

In fact, on the event Ωn
0,c∩Ωn

Λ, Q̄n(0)<M0 for some constant M0 by Lemma EC.4 and Λ̄n(t)≤ 2λT .

On the other hand,

E

[
δ(vni,j ,u

n
i,j)

(∆κ(x+

∫ t

t−τni,j

µi,j(s)ds, y+ t− τni,j))

]
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≤E
[
1{vni,j∈(x+

∫ t
t−τn

i,j
µi,j(s)ds,x+

∫ t
t−τn

i,j
µi,j(s)ds+κ]}

]
+E

[
1{uni,j∈(y+t−τni,j ,y+t−τni,j+κ]}

]
=G

(
x+

∫ t

t−τni,j

µi,l(s)ds+κ
)
−G

(
x+

∫ t

t−τni,j

µi,l(s)ds
)

+F (y+ t+κ)−F (y+ t).

Also

G
(
x+

∫ t

t−τni,j

µi,l(s)ds+κ
)
−G

(
x+

∫ t

t−τni,j

µi,l(s)ds
)

+F (y+ t+κ)−F (y+ t)≤ ε

4I(M0 + 2λT )

for κ small enough. Then we can conclude from the above two inequalities and (EC.29) that

1

n

I∑
i=1

Ani (t)∑
j=1

E

[
δ(vni,j ,u

n
i,j)

(∆κ(x+

∫ t

t−τni,j

µi,j(s)ds, y+ t− τni,j))

]
≤

I∑
i=1

Āni (t)
ε

4I(M0 + 2λT )
≤ ε

4
.

It then follows from (EC.28) that
∑I

i=1 L̄ni (t)(∆κ(x, y))≤ ε. This completes the proof. �

Proof of Lemma EC.5. Fix ε > 0 and η > 0. Similar to the compact containment property

of R̄n in Lemma EC.4, the proof of the oscillation of R̄n in (EC.22) also follows from the same

argument in Lemma 5.4 of of Zhang (2013). So we will focus on (EC.23)–(EC.25). To this end,

we just need to restrict the stochastic processes on the event Ωn
0,c ∩ Ωn

t,s ∩ Ωn
Λ ∩ Ωn

GC, which has

probability larger than 1 − η for large enough n. Note that Ωn
t,s is denoted to be the event in

(EC.27).

Fix δ > 0 and choose t0 < t such that t− t0 < δ. We use Lemma EC.6 to study the oscillations

in the departure process during this interval. To simplify the notation, let f̄n(t0, t) = f(t)− f(t0),

for any function f . Recall that A(t)(x, y) = {(x′, y′) ∈ R2
+ : x′ ≤ x or y′ ≤ y} is the compliment of

Cx×Cy defined in (31). Define µmax = maxi∈{1,...,I} µi. By (EC.9) for any level i

I∑
i=1

S̄ni (t0, t)≤
I∑
i=1

L̄ni (t0)(A(µmax(t− t0), t− t0)) +
I∑
i=1

1

n

Ani (t)∑
j=Ani (t0)+1

1{vni,j≤µmax(t−τni,j) or uni,j≤t−τ
n
i,j}.

(EC.30)

This follows from the argument we use to arrive (EC.19); the departures during (t0, t] must be either

those customers initially in system at t0 and with remaining service time less than µmax(t− t0) or

remaining patience time less than t− t0, or those newly arrivals with remaining service time less

than µmax(t− τ) or remaining patience time less than t− τ if the customer arrives at time τ .

By (EC.27), we can choose δ sufficiently small such that the first term on the right-hand side of

(EC.30) is less than ε/2. On the other hand, we have shown in (EC.29) that Āni (t)≤M0 + 2λT ,

where M0 is chosen as in (EC.29). Since τni,j ∈ [t0, t]

1

n

Ani (t)∑
j=Ani (t0)+1

1{vni,j≤µmax(t−τni,j) or uni,j≤t−τ
n
i,j}
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≤ 1

n

Ani (t)∑
j=Ani (t0)+1

1{vni,j≤µmax(t−t0) or uni,j≤t−t0}

≤ (Āni (t)− Āni (t0))(G(µmax(t− t0)) +F (t− t0)) +
ε

4I
,

where the last inequality in the above follows from Glivenko-Cantelli estimate (EC.13). For distri-

bution functions F and G, we can choose δ small enough such that,

G(µmax(t− t0)) +F (t− t0)≤ ε

4I(M0 + 2λT )
.

Hence, from the above two inequalities, we can conclude that the second term on the right-hand

side of (EC.30) is bounded by ε/2. Thus,

I∑
i=1

S̄ni (t0, t)≤ ε, (EC.31)

for t and t0 close enough. This proves (EC.25).

By the definition of Ωn
Λ in (EC.15), we have Λ̄n(t0, t)≤ ε, for t− t0 small enough. Because each

customer enters service either upon a service completion or if upon arrival we have

I∑
i=1

Āni (t0, t)≤ Λ̄n(t0, t) +
I∑
i=1

S̄ni (t0, t)≤ 2ε. (EC.32)

Thus (EC.24) holds.

Next we prove the oscillation bound for L̄ni . Let C ⊂R2
+ be a Borel subset and define the “shift”

of set C by (a, b) as

C + (a, b) = {(x+ a, y+ b)|(x, y)∈C}.

Note that the fluid scaled dynamic equation (EC.8) still holds for any such Borel set if we replace

Cx×Cy and Cx+µi(t−s)×Cy+t−s with any Borel set C and its shift C+(µi(t−s), t−s), respectively.

Thus (EC.8) becomes

L̄ni (t)(C) = L̄ni (t0)(C + (µi(t− t0), t− t0))

−
∫ t

t0

1

n
Φi−1 (Lni (s)) (C + (µi(t− s), t− s))dMn

i,i−1(s)

+

∫ t

t0

1

n
Φi−1

(
Lni−1(s)

)
(C + (µi(t− s), t− s))dMn

i−1,i(s)

+
1

n

Ani (t)∑
j=Ani (t0)+1

δ(vni,j ,u
n
i,j)

(C + (µi(t− τni,j), t− τni,j))

+

∫ t

t0

1

n
Φi
(
Lni+1(s)

)
(C + (µi(t− s), t− s))dMn

i+1,i(s)

−
∫ t

t0

1

n
Φi (Lni (s)) (C + (µi(t− s), t− s))dMn

i,i+1(s).

(EC.33)
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Let Cε denote the ε-enlargement of the set C, i.e., Cε = {(x′, y′) ∈ R2
+|max(|x′ − x|, |y′ − y|) <

ε, x, y ∈C}. Choose δ < ε/(1 +µmax), then C + (µi(t− s), t− s)⊂Cε for all t0 ≤ s≤ t≤ t0 + δ. So

the above equation together with (23) and (24) implies that

L̄ni (t)(C)≤ L̄ni (t0)(Cε) + iĀni (t0, t) + iS̄ni+1(t0, t)

≤ L̄ni (t0)(Cε) + 3Iε,

where the last inequality follows from (EC.31) and (EC.32). Since C is arbitrary, let C0 = C +

(µi(t− t0), t− t0). We also have that C ⊂C0
ε when t0 ≤ s≤ t≤ t0 +δ. Therefore (EC.33) also yields

the other direction of bound estimate

L̄ni (t)(C0
ε)≥ L̄ni (t0)(C0)− (i− 1)S̄ni (t0, t)− iĀni+1(t0, t).

These with (EC.31) and (EC.32) give

L̄ni (t0)(C0)≤ L̄ni (t)(C0
ε) + 3Iε.

By the definition of Prohorov metric between two finite measures, we have d[L̄ni (t), L̄ni (t0)]≤ 3Iε.

This gives (EC.23) since ε is arbitrary. �

EC.5.2. Convergence to Fluid Model

In this section we prove Theorem 1. It follows from Lemmas EC.4 and EC.5 that the sequence of

fluid scaled processes {(R̄n, L̄n, S̄n, Ān)}n∈N is tight. Since Rn(t) =Rn(t)(R), Qn(t) =Rn(t)(R+)

and En(t) =
∑I

i=1A
n
i (t), the sequence of fluid scaled processes {(R̄n, Q̄n, Ēn)}n∈N is also tight. The

tightness of M̄n
i,i−1 and M̄n

i−1,i follows from the fact that M̄n
i,i−1(t)− M̄n

i,i−1(s)≤ S̄ni (t)− S̄ni (s) and

M̄n
i−1,i(t)− M̄n

i−1,i(s)≤ Āni (t)− Āni (s) for any 0≤ s≤ t by (23) and (24) and that these processes

are non-decreasing. The tightness of Z̄n, B̄n and D̄n can be seen from (26), (27) and (30), respec-

tively. The tightness of the external arrival process Λ̄n is given by (52). So every subsequence of

the fluid scaled processes {(R̄n, L̄n, R̄n, Q̄n, Z̄n, Λ̄n, B̄n, D̄n, Ēn, Ān, S̄n, M̄n) : n ∈ N} has a further

subsequence which converges to some limit, denoted by (R̄, L̄, R̄, Q̄, Z̄, Λ̄, B̄, D̄, Ē, Ā, S̄, M̄). For

notational simplicity, we still use index n for the convergent subsequence. By Skorohod represen-

tation theorem (Lemma C.1 in Zhang (2013)) we can map all the random objects to the same

probability space so that all weak convergence becomes almost sure convergence (see the discussion

of §5.2 in Zhang (2013) for technical details). Again for simplicity we use the same notation for

these processes in the new space. Therefore,

(R̄n, L̄n, R̄n, Q̄n, Z̄n, Λ̄n, B̄n, D̄n, Ēn, Ān, S̄n, M̄n)→ (R̄, L̄, R̄, Q̄, Z̄, Λ̄, B̄, D̄, Ē, Ā, S̄, M̄) (EC.34)

almost surely as n→∞.

In order to complete the proof of Theorem 1, we need to verify that every such limit satisfies

the fluid dynamic equations (35)–(51).
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Proof of Theorem 1. Note that the fluid dynamic equations (38), (41)–(44), (47), (48), the

second equation of (49), and as well the non-idling constraint (51) can be verified easily by the

corresponding stochastic equations and convergence of these processes as stated in (EC.34). By

Lemma 2.4 in Dai and Williams (1996), the fluid equation (50) also holds. Combining Lemma EC.5

with Theorem 15.5 of Billingsley (1968) yields that Q̄(t) = R̄(t)(C0), S̄i(t) and Āi(t) are continuous.

Thus we also have the continuity of Z̄i(t) by (44). Therefore, if Z̄I(t) < N , we have for all n

large enough ZnI (s) < Nn for |s− t| < δ, δ > 0. It implies that Qn(s) = 0 for |s− t| < δ by (20).

This together with the first entries of (23) and (24) yields Mn
I,I−1(t)−Mn

I,I−1(s) = SnI (t)− SnI (s)

and Mn
I−1,I(t) −Mn

I−1,I(s) = AnI (t) − AnI (s) for |s − t| < δ. Thus (40) holds. On the other hand,

if Q̄(t) > 0, then we have for all n large enough Qn(s) > 0 for |s − t| < δ, δ > 0. This yields

Mn
I,I−1(t)−Mn

I,I−1(s) =Mn
I−1,I(t)−Mn

I−1,I(s) = 0. Consequently, dM̄I,I−1(t) = dM̄I−1,I(t) = 0. This

proves (39). Moreover, since the buffer of the CSC systems is same as that of the call center model

studied in Zhang (2013), the fluid equations (46) and the first equation of (49) that relate to the

buffer follow the same argument in Lemma 5.5 of Zhang (2013).

It remains to verify (35) and (45). Comparing the stochastic dynamic equation (22) and the fluid

one (35), we first show that as n→∞

1

n

Ani (t)∑
j=1

1{vni,j>x+µi(t−τni,j),u
n
i,j>y+t−τni,j}→

∫ t

0

Gc(x+µi(t− s))F c(x+ t− s)dĀi(s). (EC.35)

Let 0 = t0 < t1 < . . . < tK = t be a partition of the interval [0, t] such that max1≤k≤K |tk− tk−1|< δ.

Using the partition, we divide the integration into K parts. Since τni,j ∈ [tk, tk+1] for those j ∈

[Ani (tk) + 1,Ani (tk+1)], we have

1

n

Ani (tk+1)∑
j=Ani (tk)+1

1{vni,j>x+µi(t−τni,j),u
n
i,j>y+t−τni,j}

≤ 1

n

Ani (tk+1)∑
j=Ani (tk)+1

1{vni,j>x+µi(t−tk+1),uni,j>y+t−tk+1}

≤ Āni (tk, tk+1)Gc(x+µi(t− tk+1))F c(y+ t− tk+1) + ε,

where the last inequality follows from the Glivenko-Cantelli estimate (EC.13). Since ε can be

arbitrary, we have

limsup
n→∞

1

n

Ani (t)∑
j=1

1{vni,j>x+µi(t−τni,j),u
n
i,j>y+t−τni,j}≤

K−1∑
k=0

Gc(x+µi(t− tk+1))F c(y+ t− tk+1)Āi(tk, tk+1)

(EC.36)
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as n→∞. By a similar argument, we also have

lim inf
n→∞

1

n

Ani (t)∑
j=1

1{vni,j>x+µi(t−τni,j),u
n
i,j>y+t−τni,j}≥

K−1∑
k=0

Gc(x+µi(t− tk))F c(y+ t− tk)Āi(tk, tk+1).

(EC.37)

The terms (EC.36) and (EC.37) are Riemann-Stieltjes upper and lower sum of the integral on the

right-hand of (EC.35). Since the partition is arbitrary, (EC.36) and (EC.37) give (EC.35).

Next we prove that the four other terms on the right-hand side of (22) also converge to their

corresponding terms in (35). We start from the second term on the right-hand side of (22) and

show that as n→∞∫ t

0

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)→

∫ t

0

i− 1

iZ̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i−1(s).

(EC.38)

Recall that we assume Z̄i(·), i= 1, . . . , I, has only finitely many switches between 0 and positive

value in any bounded time interval. Then on the interval [0, t] we have a finite partition 0 = a0 <

a1 < . . . < aL = t for some L <∞, where al’s are the switch points of Z̄i(·). Then (EC.38) is

equivalent to∫ al+1

al

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)→

∫ al+1

al

i− 1

iZ̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i−1(s)

(EC.39)

as n→∞ for all l= 0, . . . ,L−1. Based on the definition of al’s, either Z̄i(s) = 0 for all s∈ (al, al+1)

or Z̄i(s)> 0 for all s∈ (al, al+1). Thus we consider the following two cases:

Case 1: Assume that Z̄i(s) = 0 for all s∈ (al, al+1). By (36), the right-hand side of (EC.39) equals

to zero. So we just need to prove that as n→∞∫ al+1

al

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)→ 0. (EC.40)

This follows since

limsup
n→∞

∫ al+1

al

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)

≤ lim
n→∞

(i− 1)M̄n
i,i−1(al, al+1) = (i− 1)M̄i,i−1(al, al+1).

Obviously, the left-hand side of (EC.40) is non-negative. By (23), M̄i,i−1(al, al+1)≤ S̄i(al, al+1). By

Lemma EC.7 we have ˙̄Si(t) = 0 for t ∈ (al, al+1) because Z̄i(t) = 0 for all t ∈ (al, al+1). This with

Lemma EC.8 implies S̄i(al, al+1) = 0 . Thus, (EC.39) holds.

Case 2: Assume that Z̄i(s)> 0 for all s ∈ (al, al+1). We also need to verify (EC.39) in this case.

Note that number of customers who moved from level i to level i − 1 during the time interval
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(al, al+1) is given by there are Mn
i,i−1(al, al+1). Let τj ∈ (al, al+1), j = 1, . . . ,Mn

i,i−1(al, al+1), denote

the time points such that Mn
i,i−1(τj)−Mn

i,i−1(τj−)> 0. Then the left-hand side of (EC.39) can be

written as ∫ al+1

al

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)

=
1

n

Mn
i,i−1(al,al+1)∑

j=1

Φi−1 (Lni (τj)) (Cx+µi(t−τj)×Cy+t−τj ). (EC.41)

The term Φi−1 (Lni (τj)) (Cx+µi(t−τj) ×Cy+t−τj ) is a hypergeometric random variable, representing

the number of elements in Lni (τj)(Cx+µi(t−τj)×Cy+t−τj ) out of i−1 draws from a total of Lni (τj)(C0×

C0) = iZni (τj) elements. And it has variance

(i− 1)
Lni (τj)(Cx+µi(t−τj)×Cy+t−τj )

iZni (τj)

(
1−
Lni (τj)(Cx+µi(t−τj)×Cy+t−τj )

iZni (τj)

)
iZni (τj)− (i− 1)

iZni (τj)− 1
≤ i− 1.

Since each hypergeometric random variable Φi−1 (Lni (τj)) (Cx+µi(t−τj) ×Cy+t−τj ) is sampled inde-

pendently and has a finite second moment, we can conclude from Kolmogorov’s strong law of large

numbers (Theorem 2.3.10 in Sen and Singer (1994)) that for any ε > 0 we have

1

n

Mn
i,i−1(al,al+1)∑

j=1

Φi−1 (Lni (τj)) (Cx+µi(t−τj)×Cy+t−τj )

≤ 1

n

Mn
i,i−1(al,al+1)∑

j=1

E
[
Φi−1 (Lni (τj)) (Cx+µi(t−τj)×Cy+t−τj )

]
+ ε

=
1

n

Mn
i,i−1(al,al+1)∑

j=1

i− 1

iZni (τj)
Lni (τj)(Cx+µi(t−τj)×Cy+t−τj ) + ε

for all large n. Note that L̄ni (τj)/Z̄
n
i (τj) = 0 whenever Z̄ni (τj) = 0. Here the last equality holds

since the expectation of the hypergeometric random variable Φi−1 (Lni (τj)) (Cx+µi(t−τj) ×Cy+t−τj )

is i−1
iZni (τj)

Lni (τj)(Cx+µi(t−τj)×Cy+t−τj ). Plugging the above into (EC.41) and considering a further

partition al = t0 < t1 . . . < tK = al+1 of the interval [al, al+1] yields∫ al+1

al

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)

≤
K−1∑
k=0

sup
s∈[tk,tk+1]

i− 1

iZ̄ni (s)
L̄ni (s)(Cx+µi(t−s)×Cy+t−s)M̄

n
i,i−1(tk, tk+1) + ε

(EC.42)

for all large n. Since Z̄i(s)> 0 for all s ∈ (al, al+1), by continuous mapping theorem L̄ni (s)/Z̄ni (s)

converges u.o.c. to L̄i(s)/Z̄i(s) a.s. as n→∞ on the interval (al, al+1). Therefore

limsup
n→∞

∫ al+1

al

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)



ec18 e-companion

≤
K−1∑
k=0

sup
s∈[tk,tk+1]

i− 1

iZ̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)M̄i,i−1(tk, tk+1). (EC.43)

Using a similar argument, we can show the inequality in the other direction

lim inf
n→∞

∫ al+1

al

1

n
Φi−1 (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i−1(s)

≥
K−1∑
k=0

inf
s∈[tk,tk+1]

i− 1

iZ̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)M̄i,i−1(tk, tk+1). (EC.44)

The terms (EC.43) and (EC.44) are Riemann-Stieltjes upper and lower sum of the integral on

the right-hand of (EC.39). Because the partition of (al, al+1) is arbitrary, we have (EC.39). This

completes the proof of (EC.38) by combining the results of Cases 1 and 2.

Next we focus on the fifth term on the right-hand side of (22), which is very similar to the second

term whose convergence we studied above. Specifically we show that as n→∞∫ t

0

1

n
Φi
(
Lni+1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i+1,i(s)

→
∫ t

0

i

(i+ 1)Z̄i+1(s)
L̄i+1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i+1,i(s).

(EC.45)

Note that (EC.45) is similar to (EC.38) and can be obtained by replacing the index i in (EC.38)

by i+ 1 (wherever applicable) and i− 1 by i+ 1, except for the service rate term µi. However the

actual value of µi does not play a role in the proof of (EC.38) hence proof of (EC.45) is identical.

We next consider the third term and the last term on the right-hand side of (22) together and

show that as n→∞∫ t

0

1

n
Φi−1

(
Lni−1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i−1,i(s)−

∫ t

0

1

n
Φi (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i+1(s)

→
∫ t

0

1

Z̄i−1(s)
L̄i−1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i−1,i(s)−

∫ t

0

1

Z̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i+1(s).

(EC.46)

Because Z̄i(·), i= 1, . . . , I, has only finitely many switches between 0 and non-zero values in any

bounded time interval, there exists a finite partition 0 = b0 < b1 < . . . < bJ = t, J <∞, of the interval

[0, t] such that on each open interval (bj, bj+1) the values of Z̄i and Z̄i−1 only have the following

four situations: 1) Z̄i(s)> 0 and Z̄i−1(s)> 0 for all s ∈ (bj, bj+1); 2) Z̄i(s) = 0 and Z̄i−1(s)> 0 for

all s∈ (bj, bj+1); 3) Z̄i(s)> 0 and Z̄i−1(s) = 0 for all s∈ (bj, bj+1); and 4) Z̄i(s) = 0 and Z̄i−1(s) = 0

for all s∈ (bj, bj+1). Then it is enough to prove that (EC.46) holds for each interval, that is,∫ bj+1

bj

1

n
Φi−1

(
Lni−1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i−1,i(s) (EC.47)

−
∫ bj+1

bj

1

n
Φi (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i+1(s) (EC.48)
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→
∫ bj+1

bj

1

Z̄i−1(s)
L̄i−1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i−1,i(s)

−
∫ bj+1

bj

1

Z̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i+1(s)

as n→∞ for all j = 0, . . . , J − 1. According to the values of Z̄i and Z̄i−1 we study the four cases:

Case i: Assume that Z̄i(s) > 0 and Z̄i−1(s) > 0 for all s ∈ (bj, bj+1). In this situation, (EC.47)

follows from the argument we used to prove (EC.43) and (EC.44).

Case ii: Assume that Z̄i(s) = 0 and Z̄i−1(s)> 0 for all s∈ (bj, bj+1). As in Case 1, (EC.47) converges

since Z̄i−1(s)> 0. So we just need to consider the limit of (EC.48) and show that∫ bj+1

bj

1

n
Φi (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i+1(s)

→
∫ bj+1

bj

1

Z̄i(s)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i+1(s)

as n→∞. The right-hand side of the above limit is defined through (37). Plugging (37) to the

right-hand side of the above limit, it is equivalent to∫ bj+1

bj

1

n
Φi (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i+1(s)

→
∫ bj+1

bj

1

Z̄i−1(s)
L̄i−1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i−1,i(s) +

∫ bj+1

bj

Gc(x+µi(t− s))F c(y+ t− s)dĀi(s)

+

∫ bj+1

bj

i

(i+ 1)Z̄i+1(s)
L̄i+1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i+1,i(t) (EC.49)

as n→∞. Replacing t0 and t in (EC.8) by bj and bj+1, respectively, yields

L̄ni (bj+1)(Cx×Cy) = L̄ni (bj)(Cx+µi(bj+1−t0)×Cy+(bj+1−t0)

−
∫ bj+1

bj

1

n
Φi−1 (Lni (s)) (Cx+µi(bj+1−s)×Cy+bj+1−s)dM

n
i,i−1(s)

+

∫ bj+1

bj

1

n
Φi−1

(
Lni−1(s)

)
(Cx+µi(bj+1−s)×Cy+bj+1−s)dM

n
i−1,i(s)

+
1

n

Ani (bj+1)∑
j=Ani (bj)+1

1{vni,j>x+µi(bj+1−τni,j),u
n
i,j>y+bj+1−τni,j}

+

∫ bj+1

bj

1

n
Φi
(
Lni+1(s)

)
(Cx+µi(bj+1−s)×Cy+aj+1−s)dM

n
i+1,i(s)

−
∫ bj+1

bj

1

n
Φi (Lni (s)) (Cx+µi(aj+1−s)×Cy+bj+1−s)dM

n
i,i+1(s),

where the first two terms converge to 0 since Z̄i(bj) = Z̄i(bj+1) = 0 due to the continuity of the

fluid limit, the second term on the right-hand side converges to 0 similar to (EC.40), the third
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term on the right-hand side converges to the first term on the right-hand side of (EC.49) (proof is

similar to that of (EC.43) and (EC.44)), the fourth term on the right-hand side converges to the

second term on the right-hand side of (EC.49) by (EC.35), and the fifth term on the right-hand

side converges to the third term on the right-hand side of (EC.49) by (EC.45). It then follows that

as n→∞ ∫ bj+1

bj

1

n
Φi (Lni (s)) (Cx+µi(bj+1−s)×Cy+bj+1−s)dM

n
i,i+1(s)

→
∫ bj+1

bj

1

Z̄i−1(s)
L̄i−1(s)(Cx+µi(bj+1−s)×Cy+bj+1−s)dM̄i−1,i(s)

+

∫ bj+1

bj

Gc(x+µi(bj+1− s))F c(y+ bj+1− s)dĀi(s)

+

∫ bj+1

bj

i

(i+ 1)Z̄i+1(s)
L̄i+1(s)(Cx+µi(bj+1−s)×Cy+bj+1−s)dM̄i+1,i(s).

Because x and y are arbitrary non-negative number this implies (EC.49).

Case iii: Assume that Z̄i(s)> 0 and Z̄i−1(s) = 0 for all s∈ (bj, bj+1). In this situation, the limit of

(EC.48) follows from the same argument we used to prove (EC.43) and (EC.44) since Z̄i(s)> 0.

Therefore we just need to show that as n→∞∫ bj+1

bj

1

n
Φi−1

(
Lni−1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i−1,i(s)

→
∫ bj+1

bj

1

Z̄i−1(s)
L̄i−1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i−1,i(s).

(EC.50)

By (37) (just by changing indices)

1

Z̄i−1(t)
L̄i−1(t)(Cx×Cy)dM̄i−1,i(t) =

1

Z̄i−2(t)
L̄i−2(t)(Cx×Cy)dM̄i−2,i−1(t) +Gc(x)F c(y)dĀi−1(t)

+
i− 1

iZ̄i(t)
L̄i(t)(Cx×Cy)dM̄i,i−1(t).

Therefore, to prove (EC.50), it is enough to show that∫ bj+1

bj

1

n
Φi−1

(
Lni−1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i−1,i(s)

→
∫ bj+1

bj

1

Z̄i−2(s)
L̄i−2(s)(Cx+µi(t−s)×Cy+t−s)dM̄i−2,i−1(t) +

∫ bj+1

bj

Gc(x+µi(t− s))F c(y+ t− s)dĀi−1(s)

+

∫ bj+1

bj

i− 1

iZ̄i(t)
L̄i(s)(Cx+µi(t−s)×Cy+t−s)dM̄i,i−1(s) (EC.51)

as n→∞. As we argued for the relation between (EC.38) and (EC.45), the proof of (EC.51) follows

from (EC.49).
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Case iv: Z̄i(s) = 0 and Z̄i−1(s) = 0 for all s ∈ (bj, bj+1). In this situation, we need to consider the

limit of (EC.47) and (EC.48) simultaneously. Their fluid limit is also defined through (37), which

implies

1

Z̄i−1(t)
L̄i−1(t)(Cx×Cy)dM̄i−1,i(t)−

1

Z̄i(t)
L̄i(t)(Cx×Cy)dM̄i,i+1(t)

=−Gc(x)F c(y)dĀi(t)−
i

(i+ 1)Z̄i+1(t)
L̄i+1(t)dM̄i+1,i(t).

Plugging the above equation to the limit of (EC.47) and (EC.48), it suffices to prove that as n→∞∫ bj+1

bj

1

n
Φi−1

(
Lni−1(s)

)
(Cx+µi(t−s)×Cy+t−s)dM

n
i−1,i(s)

−
∫ bj+1

bj

1

n
Φi (Lni (s)) (Cx+µi(t−s)×Cy+t−s)dM

n
i,i+1(s)

→−
∫ bj+1

bj

Gc(x+µi(t− s))F c(y+ t− s)dĀi(s)

−
∫ bj+1

bj

i

(i+ 1)Z̄i+1(s)
L̄i+1(s)(Cx+µi(t−s)×Cy+t−s)dM̄i+1,i(s).

But we can still use the same argument we used to prove (EC.49), the only difference here is that

we combine the limit of (EC.47) and (EC.48) together.

Combining these results with (EC.35), (EC.38) and (EC.45), we can conclude that (35) corre-

sponds to a fluid limit of (22). The proof of (45) follows the same argument as that of (35). Thus

we omit it for brevity. �

EC.5.2.1. Auxiliary Results

Lemma EC.7. For any fluid limit, S̄i is differentiable almost everywhere and the derivative

˙̄Si(t) := (d/dt)S̄i(t) satisfies

˙̄Si(t) = lim
δ→0

L̄i(t)(A(µiδ, δ))

δ
, (EC.52)

a.e. for i= 1, . . . , I.

Proof. For any i = 1, . . . , I, S̄i is the cumulative amount of departure from level i, so it is

nondecreasing. Thus, S̄i is differentiable almost everywhere (see Royden (1988), Page 100). We

prove (EC.52) using (EC.9). Following the same argument we used to prove (EC.35) we have the

following limit for the fourth term on the right hand-side of (EC.9),

lim
n→∞

1

n

Ani (t)∑
j=Ani (t0)+1

1{vni,j≤µi(t−τ
n
i,j) or uni,j≤t−τ

n
i,j} =

∫ t

t0

[1−Gc(µi(t− s))F c(t− s)]dĀi(s). (EC.53)
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We use Ȳ n
t0

(t) to denote the other four terms on the right-hand side of (EC.9),

Ȳ n
t0

(t) :=−
∫ t

t0

1

n
Φi−1 (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i−1(s)

+

∫ t

t0

1

n
Φi−1

(
Lni−1(s)

)
(A(µi(t− s), (t− s)))dMn

i−1,i(s)

+

∫ t

t0

1

n
Φi
(
Lni+1(s)

)
(A(µi(t− s), (t− s)))dMn

i+1,i(s)

−
∫ t

t0

1

n
Φi (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i+1(s),

(EC.54)

where we append a subscript t0 to Ȳ n
t0

(t) to emphasize the dependence on t0. It can be seen from

(EC.9), (EC.34) and (EC.53) that the limit of Ȳ n
t0

(t) exists. Let Ȳt0(t) = lim
n→∞

Ȳ n
t0

(t). Then by (EC.9)

and (EC.34) S̄i satisfies

S̄i(t) = S̄i(t0) + L̄i(t0)(Ai(µi(t− t0), t− t0)) +

∫ t

t0

[1−Gc(µi(t− s))F c(t− s)]dĀi(s) + Ȳt0(t).

(EC.55)

Taking derivative of the above equation at t0 yields

˙̄Si(t0) =
d

dt
L̄i(t0)(Ai(µi(t− t0), t− t0))

∣∣∣
t=t0

+
d

dt
Ȳt0(t)

∣∣∣
t=t0

. (EC.56)

Note that the first term on the right-hand side of (EC.56) is identical to the right-hand side of

(EC.52). Thus it suffices to prove that d
dt
Ȳt0(t)|t=t0 = 0.

By (EC.54)

Ȳ n
t0

(t)≥−
∫ t

t0

1

n
Φi−1 (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i−1(s)

−
∫ t

t0

1

n
Φi (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i+1(s).

(EC.57)

Now we consider the first term on the right-hand side of the above inequality. The number of

customers that switches from level i to level i − 1 during the time interval (t0, t] is given by

(i − 1)Mn
i,i−1(t0, t) := (i − 1)[Mn

i,i−1(t) −Mn
i,i−1(t0)]. We index these customers by l = 1, . . . , (i −

1)Mn
i,i−1(t0, t) according to their switch time and we use τnl to denote the switch time of lth

customer. Let snl be the amount of service that the lth customer has already received by time τnl

and wnl the time that the lth customer has already spent during service by time τnl . Also let vnl

and unl denote the remaining service time and remaining patience during service of this customer,

respectively. Then we have∫ t

t0

1

n
Φi−1 (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i−1(s) =
1

n

(i−1)Mn
i,i−1(t0,t)∑
l=1

δ(vn
l
,un
l

)(A(µi(t− τnl ), (t− τnl ))).

(EC.58)
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Note that δ(vn
l
,un
l

)(A(µi(t− s), (t− s))) has a binomial distribution with mean

E[δ(vn
l
,un
l

)(A(µi(t− s), (t− s)))] = 1− G
c(snl +µi(t− τnl ))

Gc(snl )

F c(wnl + t− τnl )

F c(wnl )
,

where the equality follows from the fact that the remaining service time vnl follows distribution

function 1− Gc(τnl +x)

Gc(τn
l

)
and the remaining patience time during service unl follows distribution function

1− F c(wnl +y)

F c(wn
l

)
. It then follows follows from (EC.58) and Kolmogorov’s strong law of large numbers

that for any ε > 0, ∫ t

t0

1

n
Φi−1 (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i−1(s)

≤ 1

n

(i−1)Mn
i,i−1(t0,t)∑
l=1

(
1− G

c(snl +µi(t− τnl ))

Gc(snl )

F c(wnl + t− τnl )

F c(wnl )

)
+ ε (EC.59)

for all large n. By our assumption the time spent during service wnl is bounded. Thus, snl is also

bounded since snl ≤ µmaxw
n
l . So there exists M0 > 0 such that wnl , s

n
l ≤M0 for all l and n.

Let 0 = a0 <a1 < . . . < aJ =M0 and 0 = b0 < b1 < . . . < bK =M0 be two partitions of the interval

[0,M0]. Among all the (i−1)Mn
i,i−1(t0, t) randomly selected customers from level i to level i−1 on

the time interval (t0, t], let Mn,jk
i,i−1(t0, t) denote the number of customers whose total amount of ser-

vice and time spent in service satisfy (snl ,w
n
l )∈ (aj, aj+1]× (bk, bk+1]. We have, (i−1)Mn

i,i−1(t0, t) =∑J

j=1

∑K

k=1M
n,jk
i,i−1(t0, t). And the limit of the fluid scaled process of Mn,jk

i,i−1(t0, t) also exists and let

M̄ jk
i,i−1(t0, t) denote its limit. Also

(i− 1)M̄i,i−1(t0, t) =
J−1∑
j=0

K−1∑
k=0

M̄ jk
i,i−1(t0, t). (EC.60)

We can also see from the above discussion that the right-hand side of (EC.59) satisfies

1

n

(i−1)Mn
i,i−1(t0,t)∑
l=1

(
1− G

c(snl +µi(t− τnl ))

Gc(snl )

F c(wnl + t− τnl )

F c(wnl )

)

=
1

n

J−1∑
j=0

K−1∑
k=0

M
n,jk
i,i−1(t0,t)∑
l=1

(
1− G

c(snl +µi(t− τnl ))

Gc(snl )

F c(wnl + t− τnl )

F c(wnl )

)
1{(sn

l
,wn
l

)∈(aj ,aj+1]×(bk,bk+1]}

≤ 1

n

J−1∑
j=0

K−1∑
k=0

M
n,jk
i,i−1(t0,t)∑
l=1

(
1− G

c(aj+1 +µi(t− τnl ))

Gc(aj)

F c(bk+1 + t− τnl )

F c(bk)

)
. (EC.61)

Again by the same argument we used to prove (EC.35), we have

lim
n→∞

1

n

M
n,jk
i,i−1(t0,t)∑
l=1

(
1−

Gc(aj+1 +µi(t− τni,j))F c(bk+1 + t− τni,j)
Gc(aj)F c(bk)

)
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=

∫ t

t0

(
1− G

c(aj+1 +µi(t− s))F c(bk+1 + t− s)
Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s).

Combing the above limit with (EC.59) and (EC.61) yields∫ t

t0

1

n
Φi−1 (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i−1(s)

≤
J−1∑
j=0

K−1∑
k=0

∫ t

t0

(
1− G

c(aj+1 +µi(t− s))F c(bk+1 + t− s)
Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s) + 2ε

(EC.62)

for all large n.

Now we consider the second term on the right-hand side of (EC.57). Using the same partitions

{aj} and {bk}, we use Mn,jk
i,i+1(t0, t) to denote the number of customers with (snl ,w

n
l ) ∈ (aj, aj+1]×

(bk, bk+1]. Then iMn
i,i+1(t0, t) =

∑J−1

j=0

∑K−1

k=0 M
n,jk
i,i+1(t0, t). Also it’s limit M̄ jk

i,i+1(t0, t) as n→∞ exists.

Then

iM̄i,i+1(t0, t) =
J−1∑
j=0

K−1∑
k=0

M̄ jk
i,i+1(t0, t). (EC.63)

Using the same argument we used to prove (EC.62), we also have∫ t

t0

1

n
Φi (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i+1(s)

≤
J−1∑
j=0

K−1∑
k=0

∫ t

t0

(
1− G

c(aj+1 +µi(t− s))F c(bk+1 + t− s)
Gc(aj)F c(bk)

)
dM̄ jk

i,i+1(s) + 2ε

(EC.64)

for all large n. Since the ε is arbitrary, we have by (EC.57), (EC.62) and (EC.64) that

Ȳt0(t)≥−
J−1∑
j=0

K−1∑
k=0

∫ t

t0

(
1− G

c(aj+1 +µi(t− s))F c(bk+1 + t− s)
Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s)

−
J−1∑
j=0

K−1∑
k=0

∫ t

t0

(
1− G

c(aj+1 +µi(t− s))F c(bk+1 + t− s)
Gc(aj)F c(bk)

)
dM̄ jk

i,i+1(s).

(EC.65)

Taking derivative at t0 yields

d

dt
Ȳt0(t)

∣∣∣
t=t0

≥−
J−1∑
j=0

K−1∑
k=0

(
1− G

c(aj+1)F c(bk+1)

Gc(aj)F c(bk)

)
˙̄M jk
i,i−1(t0)−

J−1∑
j=0

K−1∑
k=0

(
1− G

c(aj+1)F c(bk+1)

Gc(aj)F c(bk)

)
˙̄M jk
i,i+1(t0).

Also because the partitions {aj} and {bk} are arbitrary, we can assume without loss of generality

that 1− Gc(aj+1)F c(bk+1)

Gc(aj)F
c(bk)

≤ δ for given δ > 0. Then the above inequality implies

d

dt
Ȳt0(t)

∣∣∣
t=t0

≥−δ
J−1∑
j=0

K−1∑
k=0

( ˙̄M jk
i,i−1(t0) + ˙̄M jk

i,i+1(t0)
)

=−δ
(
(i− 1) ˙̄Mi,i−1(t0) + i ˙̄Mi,i+1(t0)

)
, (EC.66)

where the last equality follows from (EC.60) and (EC.63).
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It remains to consider the other direction. Similar to (EC.57), by (EC.54)

Ȳ n
t0

(t)≤
∫ t

t0

1

n
Φi−1

(
Lni−1(s)

)
(A(µi(t− s), (t− s)))dMn

i−1,i(s)

+

∫ t

t0

1

n
Φi
(
Lni+1(s)

)
(A(µi(t− s), (t− s)))dMn

i+1,i(s).

Then we can apply exactly the same argument to obtain

d

dt
Ȳt0(t)

∣∣∣
t=t0

≤ δ
(
(i− 1) ˙̄Mi−1,i(t0) + i ˙̄Mi+1,i(t0)

)
.

Combing the above inequality with (EC.66) immediately yields d
dt
Ȳt0(t)|t=t0 = 0 because δ is arbi-

trary, proving the result. �

Lemma EC.8. Consider the fluid limit in (EC.34). If Z̄i(t) = 0 for all t∈ [t0, t1], for t0 < t1, then

S̄i(t) is absolutely continuous on [t0, t1].

Proof. We need to show that (see 7.17 in Rudin (1987)) for any ε > 0, there exists a δ > 0 such

that for any m and any disjoint collection of segments (α1, β1),. . . ,(αm, βm) in [t0, t1] such that∑
m(βm−αm)< δ, we have

∑
m |S̄i(βm)− S̄i(αm)|< ε.

We use the notation introduced in the proof of Lemma EC.7 throughout. Since Z̄i(t0) = 0, we

have L̄i(t0) = 0 from (18) and (EC.34). Then by (EC.55)

S̄i(t) = S̄i(t0) +

∫ t

t0

[1−Gc(µi(t− s))F c(t− s)]dĀi(s) + Ȳt0(t) for all t∈ [t0, t1], (EC.67)

where Ȳt0(t) is the fluid limit of (EC.54). Due to the reason that G and F are absolutely continuous,

we have

d

dt
[1−Gc(µit)F

c(t)] = µig(µit)F
c(t) +Gc(µit)f(t), (EC.68)

where g and f are the probability density functions of G and F , respectively. Hence by changing

the order of integration, we get∫ t

t0

[1−Gc(µi(t− s))F c(t− s)]dĀi(s) (EC.69)

=

∫ t

t0

∫ x

t0

[µig(µi(x− s))F c(x− s) +Gc(µi(x− s))f(x− s)]dĀi(s)dx.

The above implies that (EC.69) is absolutely continuous.

Since Z̄i(t) = 0 for all t ∈ [t0, t1], we can find that (EC.67) still holds after replacing t0 and t by

αm and βm, respectively. Thus,

S̄i(βm) = S̄i(αm) +

∫ βm

αm

[1−Gc(µi(βm− s))F c(βm− s)]dĀi(s) + Ȳαm(βm).
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The above implies

|S̄i(βm)− S̄i(αm)| ≤
∫ βm

αm

[1−Gc(µi(βm− s))F c(βm− s)]dĀi(s) + |Ȳαm(βm)|. (EC.70)

We first study the first term on the right-hand side of the above inequality. By (EC.69),∫ βm

αm

[1−Gc(µi(βm− s))F c(βm− s)]dĀi(s)

=

∫ βm

αm

∫ x

αm

[µig(µi(x− s))F c(x− s) +Gc(µi(x− s))f(x− s)]dĀi(s)dx

≤
∫ βm

αm

∫ x

t0

[µig(µi(x− s))F c(x− s) +Gc(µi(x− s))f(x− s)]dĀi(s)dx, (EC.71)

where the last inequality holds since t0 ≤ αm. One can find that (EC.71) is just the difference of the

absolutely continuous function (EC.69). So we can see from (EC.70) and (EC.71) that if |Ȳαm(βm)|

can also be bounded by a difference of a certain absolutely continuous function then the absolutely

continuity of S̄i(·) will immediately follow.

We use an argument similar to (EC.71) to analyze the last term in (EC.70). To simplify the

notation, we use X̄n
1,t0

(t) to denote the absolute value of the first term on the right-hand side of

(EC.54), i.e.,

X̄n
1,t0

(t) :=

∫ t

t0

1

n
Φi−1 (Lni (s)) (A(µi(t− s), (t− s)))dMn

i,i−1(s). (EC.72)

Similarly, we use X̄n
2,t0

(t), X̄n
3,t0

(t) and X̄n
4,t0

(t) to denote the absolute values of the last three

terms on the right-hand side of (EC.54). Then by (EC.54), by replacing t0 and t by αm and βm,

respectively,

|Ȳαm(βm)|= lim
n→∞

|Ȳ n
αm

(βm)| ≤ limsup
n→∞

4∑
l=1

X̄n
l,αm

(βm). (EC.73)

The above inequality provides an upper bound to the |Ȳαm(βm)| in (EC.70). So we just need to study

X̄n
l,αm

(βm), l= 1, . . . ,4, one by one. As the arguments are same, we mainly focus on X̄n
1,αm

(βm).

In view of (EC.62), we denote

X̄1,t0(t) =
J−1∑
j=0

K−1∑
k=0

∫ t

t0

(
1− G

c(aj+1 +µi(t− s))F c(bk+1 + t− s)
Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s). (EC.74)

Similar to (EC.68),

d

dt

[
1− G

c(aj+1 +µit)F
c(bk+1 + t)

Gc(aj)F c(bk)

]
=

1

Gc(aj)F c(bk)
[µig(aj+1 +µit)F

c(bk+1 + t) +Gc(aj+1 +µit)f(bk+1 + t)] .
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Then similar to (EC.69), we have

X̄1,t0(t) =
J−1∑
j=0

K−1∑
k=0

∫ t

t0

(
1− G

c(aj+1)F c(bk+1)

Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s) (EC.75)

+
J−1∑
j=0

K−1∑
k=0

∫ t

t0

∫ x

t0

1

Gc(aj)F c(bk)

[
µig(aj+1 +µi(x− s))F c(bk+1 +x− s)

+Gc(aj+1 +µi(x− s))f(bk+1 +x− s)
]
dM̄ jk

i,i−1(s)dx,

where the equality also follows from changing the order of integration. Clearly, the second term on

the right-hand side of the above equation is absolutely continuous. With regards to (EC.72) and

(EC.74), we have proven in (EC.62) that limsupn→∞ X̄
n
1,t0

(t)≤ X̄1,t0(t). Replacing t0 and t by αm

and βm yields

limsup
n→∞

X̄n
1,αm

(βm)≤ X̄1,αm(βm). (EC.76)

Moreover, it can be seen from (EC.75) that

X̄1,αm(βm)≤
J−1∑
j=0

K−1∑
k=0

∫ βm

αm

(
1− G

c(aj+1)F c(bk+1)

Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s) (EC.77)

+
J−1∑
j=0

K−1∑
k=0

∫ βm

αm

∫ x

t0

1

Gc(aj)F c(bk)

[
µig(aj+1 +µi(x− s))F c(bk+1 +x− s)

+Gc(aj+1 +µi(x− s))f(bk+1 +x− s)
]
dM̄ jk

i,i−1(s)dx,

where the inequality follows due to the same reason as (EC.71), i.e., t0 ≤ αm. Same as (EC.71), the

second term on the right-hand side of the above inequality is also the difference of an absolutely

continuous function (the second term on the right-hand side of (EC.75)). Now we consider the first

term on the right-hand side of (EC.77). Since G and F are absolutely continuous, we can choose

{aj} and {bk} such that (see the definition above (EC.60))

1− G
c(aj+1)F c(bk+1)

Gc(aj)F c(bk)
≤ ε

8(i− 1)M̄i−1,i(t0, t1) + 1

for all aj’s and bk’s. Considering the disjoint segments (α1, β1),. . . ,(αm, βm) in [t0, t1] yields

∑
m

J−1∑
j=0

K−1∑
k=0

∫ βm

αm

(
1− G

c(aj+1)F c(bk+1)

Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s)

≤
J−1∑
j=0

K−1∑
k=0

∫ t1

t0

(
1− G

c(aj+1)F c(bk+1)

Gc(aj)F c(bk)

)
dM̄ jk

i,i−1(s)

≤ ε

8(i− 1)M̄i,i−1(t0, t) + 1

J−1∑
j=0

K−1∑
k=0

M̄ jk
i,i−1(t0, t)

<
ε

8
,

(EC.78)
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where the last inequality follows from (EC.60).

In view of (EC.76) and (EC.77), we can obtain similar upper bounds for lim supn→∞ X̄
n
l,αm

(βm),

l = 2,3,4. Three similar inequalities like (EC.78) can also be obtained. By (EC.71), (EC.73),

(EC.77) and (EC.78), we can conclude from (EC.70) that for any ε > 0 there exists a δ > 0 such

that when
∑

m(βm−αm)< δ there will be
∑

m |S̄i(βm)− S̄i(αm)|< ε. This proves the result. �

EC.6. Detailed Results of Simulation Experiments

In this section we provide the details of the results of the simulation experiments in §7 and compare

them with our approximations. The results are presented in Tables EC.2–EC.7 for the experi-

ments in §7.2, where our policy π reduces to the lightest-load-first policy. The results presented

in Tables EC.8–EC.10 correspond to the experiments in §7.3. In this case, we present the both

results under the policy π and the lightest-load-first policy as they are different in experiments

with inefficient levels.

Each table includes the simulation results for a combination of service and patience times that

are presented in Table 2. Each of these tables provides the results for the expected number of

agents at each level in columns EZ1 through EZ6 for levels 1-6, the total abandonment rate under

column Ab. Rate in our simulation experiments. And, we also provide the results for expected

time in system: in the column E[W ] for the expected time in system, in the column E[W |C] for

customers whose service is completed, in the column E[W |A] for customers who abandoned the

system, and in the last column stdev(W ) for the standard deviation of time in system. We present

our approximations for the associated quantities in the rows of “Approx”, and we also present 95%

confidence intervals found using the batch-means technique, whenever applicable.

System EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

11
Sim.

0.885
±0.010

11.039
±0.058

12.368
±0.060

0.691
±0.032

0
±0

0
±0

62.780
±0.173

0.2236
±0.0002

0.2235
±0.0004

0.2240
±0.0005

0.2239
±0.0004

Approx. 0 12.5 12.5 0 0 0 62.5 0.2222 0.2220 0.2229 0.2229

21
Sim.

0.888
±0.009

23.284
±0.164

25.502
±0.152

0.317
±0.034

0
±0

0
±0

125.160
±0.371

0.2228
±0.0002

0.2227
±0.0004

0.2232
±0.0005

0.2230
±0.0004

Approx. 0 25 25 0 0 0 125 0.2222 0.2220 0.2229 0.2229

31
Sim.

0.843
±0.014

48.311
±0.383

50.779
±0.389

0.063
±0.016

0
±0

0
±0

249.871
±0.664

0.2224
±0.0002

0.2223
±0.0004

0.2228
±0.0005

0.2226
±0.0004

Approx. 0 50 50 0 0 0 250 0.2222 0.2220 0.2229 0.2229

Table EC.2 Results for combination I1: Exponential service and patience times
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System EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

11
Sim.

0.333
±0.005

6.320
±0.047

15.462
±0.049

2.862
±0.061

0.018
±0.003

0
±0

70.814
±0.204

0.2523
±0.0001

0.2826
±0.0002

0.1623
±0.0005

0.1347
±0.0001

Approx. 0 4.390 20.610 0 0 0 70.610 0.2511 0.2811 0.1613 0.1340

21
Sim.

0.264
±0.004

11.284
±0.115

35.204
±0.127

3.245
±0.131

0
±0

0
±0

141.267
±0.392

0.2516
±0.0001

0.2819
±0.0002

0.1617
±0.0005

0.1341
±0.0001

Approx. 0 8.780 41.220 0 0 0 141.220 0.2511 0.2811 0.1613 0.1340

31
Sim.

0.215
±0.005

20.217
±0.281

76.432
±0.199

3.135
±0.177

0
±0

0
±0

282.181
±0.732

0.2513
±0.0001

0.2814
±0.0001

0.1614
±0.0005

0.1337
±0.0001

Approx. 0 17.560 82.440 0 0 0 282.440 0.2511 0.2811 0.1613 0.1340

Table EC.3 Results for combination II1: Log-normal service and exponential patience times

System EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

11
Sim.

0.321
±0.006

6.123
±0.064

15.521
±0.069

3.009
±0.058

0.021
±0.003

0
±0

43.010
±0.112

0.2536
±0.0002

0.2363
±0.0003

0.3496
±0.0007

0.2056
±0.0005

Approx. 0 3.962 21.038 0 0 0 42.731 0.2526 0.2352 0.3490 0.2049

21
Sim.

0.251
±0.004

10.795
±0.141

35.435
±0.135

3.516
±0.121

0
±0

0
±0

85.671
±0.222

0.2530
±0.0002

0.2358
±0.0003

0.3491
±0.0006

0.2052
±0.0005

Approx. 0 7.923 42.077 0 0 0 85.461 0.2526 0.2352 0.3490 0.2049

31
Sim.

0.201
±0.006

19.084
±0.317

77.132
±0.248

3.582
±0.189

0
±0

0
±0

171.005
±0.464

0.2527
±0.0002

0.2355
±0.0003

0.3487
±0.0006

0.2048
±0.0005

Approx. 0 15.846 84.154 0 0 0 170.922 0.2526 0.2352 0.3490 0.2049

Table EC.4 Results for combination III1: Log-normal service and patience times

System EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

12
Sim.

2.889
±0.042

12.295
±0.119

7.963
±0.109

0.734
±0.067

0.012
±0.003

0
±0

28.179
±0.113

0.1504
±0.0005

0.1502
±0.0004

0.1536
±0.0015

0.1535
±0.0004

Approx. 0 24.997 0 0 0 0 25.001 0.1333 0.1333 0.1333 0.1334

22
Sim.

4.478
±0.078

31.986
±0.345

13.233
±0.351

0.226
±0.059

0
±0

0
±0

54.523
±0.241

0.1455
±0.0005

0.1454
±0.0005

0.1476
±0.0016

01475
±0.0005

Approx. 0 49.995 0.005 0 0 0 50.003 0.1333 0.1333 0.1333 0.1334

32
Sim.

7.163
±0.173

75.286
±0.577

17.484
±0.690

0.008
±0.006

0
±0

0
±0

105.146
±0.374

0.1403
±0.0004

0.1402
±0.0004

0.1415
±0.0013

0.1413
±0.0004

Approx. 0 99.989 0.011 0 0 0 100.005 0.1333 0.1333 0.1333 0.1334

Table EC.5 Results for combination I2: Exponential service and patience times

System EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

12
Sim.

2.040
±0.038

11.794
±0.106

9.626
±0.051

1.420
±0.105

0.051
±0.011

0
±0

30.203
±0.132

0.1613
±0.0006

0.1666
±0.0006

0.1014
±0.0006

0.0815
±0.0004

Approx. 0 18.911 6.089 0 0 0 28.045 0.1496 0.1544 0.0934 0.0747

22
Sim.

2.752
±0.069

27.981
±0.312

18.521
±0.272

0.701
±0.123

0.002
±0

0
±0

58.502
±0.263

0.1562
±0.0005

0.1612
±0.0005

0.0973
±0.0006

0.0770
±0.0003

Approx. 0 37.822 12.178 0 0 0 56.089 0.1496 0.1544 0.0934 0.0747

32
Sim.

3.381
±0.112

63.618
±0.761

32.829
±0.808

0.147
±0.056

0
±0

0
±0

114.836
±0.470

0.1532
±0.0005

0.1581
±0.0005

0.0950
±0.0004

0.0746
±0.0003

Approx. 0 75.643 24.357 0 0 0 112.178 0.1496 0.1544 0.0934 0.0747

Table EC.6 Results for combination II2: Log-normal service and exponential patience times
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System EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

12
Sim.

1.335
±0.024

9.421
±0.086

11.189
±0.104

2.809
±0.121

0.196
±0.044

0.006
±0.003

7.943
±0.062

0.1761
±0.0006

0.1708
±0.0005

0.4210
±0.0030

0.1673
±0.0009

Approx. 0 12.500 12.500 0 0 0 7.009 0.1667 0.1620 0.4115 0.1588

22
Sim.

1.522
±0.033

21.266
±0.250

24.749
±0.233

2.420
±0.274

0.020
±0.012

0
±0

14.762
±0.110

0.1709
±0.0005

0.1661
±0.0005

0.4120
±0.0028

0.1614
±0.0008

Approx. 0 25.001 24.999 0 0 0 14.018 0.1667 0.1620 0.4115 0.1588

32
Sim.

1.501
±0.066

46.295
±0.652

50.900
±0.557

1.293
±0.237

0
±0

0
±0

28.391
±0.191

0.1681
±0.0005

0.1635
±0.0005

0.4074
±0.0031

0.1582
±0.0007

Approx. 0 50.002 49.998 0 0 0 28.035 0.1667 0.1620 0.4115 0.1588

Table EC.7 Results for combination III2: Log-normal service and patience times

System Policy EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

11
Sim.

lightest-load
0.525
±0.007

7.484
±0.063

14.740
±0.060

2.234
±0.058

0.007
±0.002

0
±0

68.602
±0.205

0.2444
±0.0003

0.2441
±0.0004

0.2452
±0.0004

0.2448
±0.0002

π
1.469
±0.007

16.875
±0.030

1.038
±0.006

1.488
±0.005

4.102
±0.033

0
±0

64.728
±0.177

0.2306
±0.0003

0.2300
±0.0004

0.2325
±0.0003

0.2325
±0.0004

Approx. 0 20.492 0 0 4.508 0 63.525 0.2259 0.2249 0.2290 0.2290

21
Sim.

lightest-load
0.425
±0.008

13.710
±0.184

33.368
±0.161

2.493
±0.103

0
±0

0
±0

137.786
±0.434

0.2446
±0.0005

0.2452
±0.0005

0.2460
±0.0004

0.2459
±0.0005

π
1.733
±0.009

36.396
±0.066

1.455
±0.006

2.273
±0.009

8.127
±.059

0
±0

128.485
±0.377

0.2288
±0.0002

0.2281
±0.0004

0.2312
±0.0005

0.2309
±0.0005

Approx. 0 40.983 0 0 9.017 0 127.050 0.2259 0.2249 0.2290 0.2290

31
Sim.

lightest-load
0.333
±0.009

24.774
±0.440

72.501
±0.365

2.390
±0.155

0
±0

0
±0

276.616
±0.910

0.2464
±0.0004

0.2462
±0.0005

0.2469
±0.0004

0.2467
±0.0005

π
1.921
±0.016

76.233
±0.128

2.067
±0.008

3.447
±0.019

16.322
±0.128

0
±0

255.762
±0.819

0.2271
±0.0002

0.2270
±0.0003

0.2302
±0.0003

0.2300
±0.0003

Approx. 0 81.967 0 0 18.033 0 254.099 0.2259 0.2249 0.2290 0.2290

Table EC.8 Results for combination I1 with inefficient levels: Exponential service and patience times

System Policy EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

11
Sim.

lightest-load
0.133
±0.004

2.982
±0.040

14.753
±0.054

6.991
±0.058

0.139
±0.013

0
±0

78.943
±0.221

0.2811
±0.0001

0.3197
±0.0002

0.1824
±0.0004

0.1529
±0.0001

π
0.886
±0.007

14.558
±0.031

1.111
±0.003

1.808
±0.006

6.623
±0.034

0
±0

73.605
±0.160

0.2622
±0.0002

0.2943
±0.0001

0.1715
±0.0004

0.1452
±0.0001

Approx. 0 17.497 0 0 7.503 0 72.508 0.2578 0.2886 0.1692 0.1442

21
Sim.

lightest-load
0.068
±0.002

3.584
±0.071

33.537
±0.122

12.790
±0.159

0.020
±0.007

0
±0

158.973
±0.418

0.2831
±0.0001

0.3223
±0.0001

0.1836
±0.0003

0.1539
±0.0002

π
0.992
±0.006

31.239
±0.070

1.541
±0.05

2.712
±0.011

13.508
±0.072

0
±0

146.302
±0.393

0.2606
±0.0001

0.2923
±0.0002

0.1706
±0.0003

0.1447
±0.0001

Approx. 0 34.995 0 0 15.005 0 145.016 0.2578 0.2886 0.1692 0.1442

31
Sim.

lightest-load
0.032
±0.001

3.794
±0.124

72.591
±0.302

23.583
±0.342

0
±0

0
±0

319.506
±0.863

0.2844
±0.0001

0.3241
±0.0002

0.1845
±0.0004

0.1546
±0.0001

π
1.067
±0.009

65.178
±0.145

2.160
±0.012

4.024
±0.210

27.566
±0.137

0
±0

291.505
±0.778

0.2596
±0.0001

0.2909
±0.0002

0.1701
±0.1697

0.1443
±0.0001

Approx. 0 69.990 0 0 30.010 0 290.031 0.2578 0.2886 0.1692 0.1442

Table EC.9 Results for combination II1 with inefficient levels: Log-normal service and exponential patience

times

Overloaded systems: Next we provide the results of simulation experiments for overloaded

systems. Our goal is to show that the distribution of service time also has significant impact on

the steady-state behavior of the queue length of CSC systems. We assume that the patience time
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System Policy EZ1 EZ2 EZ3 EZ4 EZ5 EZ6 Ab. Rate E[W ] E[W |S] E[W |A] stdev(W )

11
Sim.

lightest-load
0.140
±0.004

3.060
±0.051

14.850
±0.057

6.819
±0.072

0.128
±0.011

0
±0

50.625
±0.122

0.2801
±0.0002

0.2607
±0.0003

0.3686
±0.0006

0.2236
±0.0005

π
0.867
±0.006

14.521
±0.038

1.126
±0.003

1.805
±0.006

6.666
±0.038

0
±0

45.789
±0.115

0.2627
±0.0002

0.2441
±0.0003

0.3583
±0.0006

0.2136
±0.0005

Approx. 0 17.404 0 0 7.596 0 44.711 0.2588 0.2400 0.3577 0.2123

21
Sim.

lightest-load
0.074
±0.002

3.758
±0.080

33.821
±0.157

12.330
±0.191

0.017
±0.005

0
±0

102.258
±0.238

0.2819
±0.0003

0.2624
±0.0003

0.3696
±0.0003

0.2246
±0.0005

π
0.969
±0.009

31.126
±0.075

1.559
±0.007

2.703
±0.010

13.633
±0.075

0
±0

90.736
±0.265

0.2613
±0.0002

0.2427
±0.0003

0.3579
±0.0007

0.2130
±0.0001

Approx. 0 34.808 0 0 15.192 0 89.423 0.2588 0.2400 0.3577 0.2123

31
Sim.

lightest-load
0.036
±0.002

4.058
±0.157

73.426
±0.320

22.479
±0.385

0
±0

0
±0

205.994
±0.496

0.2832
±0.0002

0.2636
±0.0003

0.3705
±0.0006

0.2254
±0.0006

π
1.040
±0.010

64.920
±0.175

2.172
±0.018

4.008
±0.007

27.855
±0.176

0
±0

180.476
±0.579

0.2604
±0.0003

0.2418
±0.0002

0.3575
±0.0007

0.2126
±0.0006

Approx. 0 69.616 0 0 30.384 0 178.845 0.2588 0.2400 0.3577 0.2123

Table EC.10 Results for combination III1 with inefficient levels: Log-normal service and patience times

distributions for waiting and during service are both log-normal with mean and variance equal to

1. We compare the simulation results with two service time distributions expo(1) and ln(1,1). And

we use the service rate µ = {4,3.8,3.3,3,2.75,2.5} same as the first experiment set in §7.1. The

parameters of each experiment along with the simulation results (with 95% confidence intervals in

parentheses) are presented in Table EC.11. In these experiments we consider two different pairs of

values of λ and N such that the systems are overloaded. Our approximations for the probability

of abandonment (see Table EC.11(a)) and the queue length (see Table EC.11(b)) are clearly very

accurate. We note that the difference of the queue length for systems with expo(1) and ln(1,1)

service time distributions is around 20 when (λ,N) = (1100,50). This shows the impact of service

time distributions on system performance. The impact of patience time distributions for waiting

and during service can be verified in a similar way. This consists with the approximations in §6.

Service Time λ N PAb
sim PAb

approx Rel. Error (%)

expo(1) 550 25 0.3175(±0.0011) 0.3181 0.19
ln(1,1) 550 25 0.3243(±0.0012) 0.3250 0.22

expo(1) 1100 50 0.3175(±0.0012) 0.3181 0.19
ln(1,1) 1100 50 0.3242(±0.0012) 0.3250 0.25

(a) Relative error for PAb (in %)

Service Time λ N Qsim Qapprox Rel. Error (%)

expo(1) 550 25 140.9464(±5.8438) 139.8579 0.77
ln(1,1) 550 25 151.5935(±4.5686) 149.6885 1.26

expo(1) 1100 50 283.7241(±11.0558) 279.7157 1.41
ln(1,1) 1100 50 303.7658(±9.0692) 299.3770 1.44

(b) Relative error for Q (in %)

Table EC.11 Comparison of simulation results and approximations for overloaded systems
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