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Technical Proofs

EC.1. Proofs in the Fluid Analysis

Proof of Theorem 1 The function Ψ in ODE (18) is continuous with respect to t, but not locally

Lipschitz continuous with respect to (z, q). This is also reflected in the numerical solution (see

Figure 3) where there are “sharp” turning points. So we cannot directly apply classical ODE

theorem (e.g. Theorem VI in § 10 of Walter (1998)) which requires the function Ψ to be locally

Lipschitz continuous with respect to (z, q). The idea is to divide the space S into several regions,

and prove the existence and uniqueness in each region. Once the solution enters another region at

time τ , we “restart” the ODE assuming that (z(τ), q(τ)) is the initial condition.

Note that in the space S+ the ODE is relatively easy to study, since only q evolves with time

t according to (24). Suppose (z(0), q(0))∈ S+, then the solution to the ODE is z(t) = (0, . . . ,0,N)

and q(t) = q(0) +
∫ t

0
λ(s)ds− γKNt for t ∈ [0, τq] where τq is the point at which q(·) hits 0 for the

first time.

Consider next the ODE in the space S0, which can be divided into S0 =
⋃K

k=0 S0,k, where

S0,k = {(z, q)∈ S0 : I(z) = k} . (EC.1)

For each k= 0,1, . . . ,K, if (z, q)∈ S0,k, then

fi(z,λ) =


0, i < k− 1
γkzk/λ∧ 1, i= k− 1
(1− γkzk/λ)+, i= k
0, i > k.

(EC.2)

It is clear that f(z,λ) is locally Lipschitz continuous in z on S0,k for each k = 0, . . . ,K − 1. First,

assume that the initial point (z(0), q(0)) ∈ S0,0. This implies that z0(0)> 0, so there exists δ > 0

such that z0(t)> 0 for all t∈ [0, δ). Plugging (EC.2) into (19)–(24) yields that for all t∈ [0, δ)

z′0(t) =−λ(t) + γ1z1(t),

z′1(t) = λ(t)− γ1z1(t) + γ2z2(t),

z′k(t) =−γkzk(t) + γk+1zk+1(t), 1<k <K,

z′K(t) =−γKzK(t),

q′(t) = 0.

These ODEs can be written in the form (z′(t), q′(t)) = Ψ0(t, z(t), q(t)), then Ψ0 is locally Lipschitz

continuous in (z, q) on S0,0. According to Theorem VI in § 10 of Walter (1998), there exists a unique

solution in S0,0. Moreover, the solution can be extended to [0, τ0] where τ0 = inf{t > 0 : z0(t) = 0}.
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Next, assume in general that the initial point (z(0), q(0)) ∈ S0,k for 0 < k < K. According to

(EC.2), there are two cases depending on the relation between γkzk(·) and λ(·). If there exits δ > 0

such that γkzk(t)≤ λ(t) for all t∈ [0, δ), then plugging (EC.2) into the set of ODEs (19)–(24) yields

that for all t∈ [0, δ)

z′i(t) = 0, 0≤ i < k,

z′k(t) =−λ(t) + γkzk(t) + γk+1zk+1(t),

z′k+1(t) = λ(t)− γkzk(t)− γk+1zk+1(t) + γk+2zk+2(t),

z′i(t) =−γizi(t) + γi+1zi+1(t), k+ 1< i<K,

z′K(t) =−γKzK(t),

q′(t) = 0,

which we write as (z′(t), q′(t)) = Ψk,≤(t, z(t), q(t)). Again, the function Ψk,≤ is locally Lipschitz in

(z, q) on S0,k, and the existence and uniqueness of the solution to the ODE follow from Theorem VI

in § 10 of Walter (1998). Moreover, the solution can be extended to the time τ1 = inf{t > 0 : zk(t) =

0 or γkzk(t)>λ(t)}. If there does not exist such positive δ, then for any ε > 0, there exists tε ∈ (0, ε)

such that γkzk(tε)>λ(tε) (so the inequality holds on a small neighbourhood around tε). We show

in this case, any solution to the ODE transits from S0,k to S0,k−1 immediately after time 0. If not,

there exists a small δ such that on I(z(t)) = k for all t∈ [0, δ]. Then for any small ε∈ (0, δ),

zk−1(ε) =

∫ ε

0

−(λ(s)∧ γkzk(s)) + γkzk(s)ds > 0,

which contradicts to that I(z(ε)) = k. So in this case, we study the ODE on the region S0,k∪S0,k−1.

Plugging (EC.2) into the set of ODEs (19)–(24) yields that for all t∈ [0, δ)

z′i(t) = 0, 0≤ i < k− 1,

z′k−1(t) =−λ(t) + γk−1zk−1(t) + γkzk(t),

z′k(t) = λ(t)− γk−1zk−1(t)− γkzk(t) + γk+1zk+1(t),

z′i(t) =−γizi(t) + γi+1zi+1(t), k+ 1≤ i <K,

z′K(t) =−γKzK(t),

q′(t) = 0,

which we write as (z′(t), q′(t)) = Ψk,>(t, z(t), q(t)). Note that Ψk,> is still locally Lipschitz continu-

ous on S0,k ∪S0,k−1. The existence and uniqueness of the solution follow again from Theorem VI in

§ 10 of Walter (1998). Moreover, the solution can be extended to the time τ2 = inf{t > 0 : zk−1(t) =

0 or γk−1zk−1(t)>λ(t)}.
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Finally, we discuss the case where the initial point is in S0,K . Note that S0,K is a single point

(0, . . . ,N,0), at which the evolution of the ODE depends on whether the relation between λ(·) and

γKzK(·). If there exists δ > 0 such that λ(t)≥ γKzK(t) = γKN for all t∈ [0, δ), then by (EC.2) the

set of ODEs becomes for all t∈ [0, δ)

z′i(t) = 0, 0≤ j ≤K,

q′(t) = λ(t)− γKzK(t).

In this case, the solution to the ODE will stay in S0,K ∪ S+ till τ3 = inf{t > 0 : q(t) = 0 and λ(t)<

γKN}. If there does not exist such a positive δ, following the same argument in the previous case,

any solution to the ODE transit from S0,K to S0,K−1 immediately after 0. So we study the ODE

on the region S0,K−1 ∪S0,K . Plugging (EC.2) into the set of ODEs yields that for all t∈ [0, δ)

z′i(t) = 0, 0≤ j ≤K − 2,

z′K−1(t) =−λ(t)− γK−1zK−1(t) + γKzK(t), (EC.3)

z′K(t) = λ(t) + γK−1zK−1(t)− γKzK(t), (EC.4)

q′(t) = 0.

Denote the above ODE by (z′(t), q′(t)) = ΨK,>(t, z(t), q(t)). It is clear that ΨK,> is locally Lipschitz

continuous on S0,K−1 ∪ S0,K . Similar to the previous analysis, the existence and uniqueness of the

solution to the ODE again follow from Theorem VI in § 10 of Walter (1998). Moreover, the solution

can be extended to time τ4 = inf{t > 0 : zK−1(t) = 0 or γK−1zK−1(t)>λ(t)}.
Proof of Proposition 1 If the initial state (z(0), q(0))∈ S+, then by (24) and (55),

q′(t) = λ− γKN < 0.

Thus, q will decrease to zero and the solution to the ODE will enter into S0. So we can assume

without loss of generality that the initial state (z(0), q(0))∈ S0. Suppose at time s≥ 0, (z(s), q(s))∈
S0,i, which is defined in (EC.1). In other words, i = I(z(s)). The idea is to show that (z(·), q(·))
will eventually enter S0,k′ , and then construct a Lyapunov function to show its convergence to the

invariant point (z̃(N),0). To study the evolution of the solution (z, q) from time s onwards, we

divide the discussion into two scenarios.

The first scenario is where i < k′. The objective for this scenario is to show that the solution to

the ODE will go from S0,i to S0,i+1 and will never come back again. So the solution eventually enters

S0,k′ and will never come back to any S0,i, i < k′. If i= 0, i.e., the initial point (z(s), q(s)) ∈ S0,0,

then according to (19),

z′0(t) =−λ+ γ1z1(t)≤−λ+ γ1N
(a)

< 0,
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for t∈ [s, s0], where s0 is the first time after s when z0 hits 0. In the above, (a) is due to (54) and

(56). This means that z0 will decrease to 0 making the solution to the ODE enter into S0,1, i.e., the

smallest index i changes from 0 to 1 at time s0. If 0< i< k′, i.e., (z(s), q(s))∈ S0,i, then according

to (19)–(21),

z′j(t) = 0, 0≤ j < i− 1,

z′i−1(t) = 0− γizi(t)
λ

λ− γi−1zi−1(t) + γizi(t)

=−γi−1zi−1(t) = 0,

z′i(t) =
γizi(t)

λ
λ−

(
1− γizi(t)

λ

)
λ− γizi(t) + γi+1zi+1(t)

=−λ+ γizi(t) + γi+1zi+1(t)
(b)

< −λ+ γi+1N
(c)

< 0,

for t ∈ [s, si], where si is the first time after s when zi hits 0. In the above, (b) follows from (54)

and (c) follows from (56). So zi will decrease to 0 and making the solution to the ODE enter S0,i+1.

Continuing the argument, the solution to the ODE enters into S0,k′ after a finite time.

For the rest of this proof, we devote to the second scenario where i≥ k′. The dynamics of the

ODE are much more complicated in this situation. We also need to take the control threshold K

into account. To better understand the evolution of the ODE in this scenario, let’s start from the

easy case where K = k′+ 1. Note that by (56), we always have

γK−1zK−1(t)≤ λ< γKN. (EC.5)

If i=K (which equals k′+ 1), i.e., (z(s), q(s))∈ S0,K , then (19)–(20) yield

z′j(t) = 0, j <K − 2, (EC.6)

z′K−1(t) =−(λ∧ γKN) + γKN. (EC.7)

By (EC.5), z′K−1(t) = γKN − λ > 0. This implies that the solution to the ODE will immediately

enter S0,K−1. So without loss of generality, we can assume that i=K−1, i.e., (z(s), q(s))∈ S0,K−1.

According to (19)–(22),

z′j(t) = 0, j <K − 2, (EC.8)

z′K−2(t) =−(λ∧ γK−1zK−1(t)) + γK−1zK−1(t), (EC.9)

z′K−1(t) = λ∧ γK−1zK−1(t)− (λ− γK−1zK−1(t))+− γK−1zK−1(t) + γKzK(t), (EC.10)

z′K(t) = (λ− γKzK−1(t))+− γKzK(t), (EC.11)
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for all t∈ [s,∞). This is valid for all t≥ s is because z′K−2(t) = 0 due to (EC.5), implying that the

solution to the ODE will never enter S0,K−2. The inequality (EC.5) also implies that

z′K−2(t) = 0,

z′K−1(t) =−λ+ γK−1zK−1(t) + γKzK(t),

z′K(t) = λ− γK−1zK−1(t)− γKzK(t).

For this situation, we define the Lyapunov function

L(t) =
1

2

K∑
j=K−1

(zj(t)− z̃j)2.

Note that zK−1(t) + zK(t) =N . Plugging (57) into the above yields

d

dt
L(t) = [−λ+ γK−1zK−1(t) + γKzK(t)]

{
[zK−1(t)− z̃K−1]− [zK(t)− z̃K ]

}
= [−λ+ γK−1N + (γK − γK−1)zK(t)]

{
(N − 2zK(t)) +

2λ− γKN − γK−1N

γK − γK−1

}
=

−2

γK − γK−1

[−λ+ γK−1N + (γK − γK−1)zK(t)]2 ≤ 0.

The above derivative equals 0 only when z(t) = z̃. It is clear that L(t)≥ 0 with equality holds only

when z(t) = z̃. Note that the ODE in this proof is autonomous since λ(s)≡ λ. We can view z̃(·)≡ z̃
as the “zero” solution to the ODE, by Theorem II in § 30 of Walter (1998), z(t)→ z̃ as t→ 0.

Similar application of Lyapunov functions is also used by Perry and Whitt (2011c) to study the

global asymptotic stability of the solution to the ODE for a different service model. For the rest of

this proof, we will use the same argument repeatedly. For simplicity, we omit repeating the above

logic, and only focus on constructing a Lyapunov function L(t) such that L(t)≥ 0 with equality

holds only when z(t) = z̃ and the derivative is strictly negative when L(t)> 0. Consider now the

general and also more difficult case where K > k′ + 1. In this case, the smallest index i has the

freedom to range between k′ and K, which are more than two levels apart. Unlike the first scenario,

the smallest index i may not be monotonic. It is possible that i goes up and down, calling for a

different approach. Note that by (56), the following always holds

γk′zk′(t)≤ λ< γk′+1N. (EC.12)

If i=K, i.e., (z(s), q(s))∈ S0,K , then the ODE takes the same form as (EC.6) and (EC.7). It is clear

that (EC.12) implies z′K−1(t)> 0. Thus, the solution to the ODE will immediately enter S0,K−1. If

i=K − 1, i.e., (z(s), q(s)) ∈ S0,K−1, then the ODE takes the same form as (EC.8)–(EC.11). Then

(EC.12) implies that

z′K−2(t) = 0,

z′K−1(t) =−λ+ γK−1zK−1(t) + γKzK(t)≥−λ+ γK−1N > 0,

z′K(t) = λ− γK−1zK−1(t)− γKzK(t)< 0.
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So on S0,K−1, zK−1 increases and zK decreases until some point s1 where γK−1zK−1(s1) > λ. At

that time, by (EC.9), we have z′K−2(s1)> 0. So the solution to the ODE will transit from S0,K−1

to S0,K−2. Now, assume that k′ ≤ i≤K − 2. On S0,i, according to (19)–(24),

z′j(t) = 0, j < i− 1,

z′i−1(t) =−(λ∧ γizi(t)) + γizi(t),

z′i(t) = λ∧ γizi(t)− (λ− γizi(t))+− γizi(t) + γi+1zi+1(t), (EC.13)

z′i+1(t) = (λ− γizi(t))+− γi+1zi+1(t) + γi+2zi+2(t), (EC.14)

z′j(t) =−γjzj(t) + γj+1zk+1(t), i+ 1< j <K, (EC.15)

z′K(t) =−γKzK(t). (EC.16)

Define the Lyapunov function

LK−1(t) = (zK−1(t) + zK(t)) + zK(t).

We then have

d

dt
LK−1(t) =−γK−1zK−1(t)− γKzK(t)≤ 0,

and d
dt
LK−1(t) = 0 if and only if (zK−1(t), zK(t)) = (0,0). So for any

0< δ≤ γk′+1N −λ
1 + γk′+1

∑K

l=1 γ
−1
l

,

there exists a time sK−1 such that zK(t) < δ/γK and zK−1(t) < δ/γK−1 for all t ≥ sK−1. Now,

we apply an induction argument for j = K − 2, . . . , k′ + 2. Suppose there exists sj+1 such that

zj+1(t)< δ/γj+1 for all t≥ sj+1. We can then show that there exists sj > sj+1 such that zj(t)< δ/γj

for all t≥ sj. Construct the Lyapunov function

Lj(t) =
1

2

( K∑
l=j

zl(t)
)2

+
K∑

l=j+1

zl(t) + . . .+
K∑
l=K

zl(t).

Then

d

dt
Lj(t) =

( K∑
l=j

zl(t)
)( K∑

l=j

z′l(t)
)

+
K∑

l=j+1

z′l(t) + . . .+
K∑
l=K

z′l(t).

To obtain the desired conclusion, we further analyze the derivative according to the following three

subcases, depending on the relation between level j and smallest index i. It is possible that the

value of i may change under each condition, but this change will not cause any trouble when we
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study the evolution of zj. Subcase (1): If j > i+ 1, then the evolution of zl, l= j, . . . ,K−2, follows

(EC.15), thus

d

dt
Lj(t) =−

( K∑
l=j

zl(t)
)
γjzj(t)− γj+1zj+1(t)− . . .− γKzK(t)≤ 0.

The derivative equals 0 only when zl(t) = 0 for all l= j, . . . ,K. Subcase (2): If j = i+ 1, then the

evolution of zl, l= j+ 1, . . . ,K − 1, follows (EC.15), but that of zj follows (EC.14). Thus

z′j(t) = (λ− γj−1zj−1(t))+− γjzj(t) + γj+1zj+1(t),

=

{
−γjzj(t) + γj+1zj+1(t) if λ< γj−1zj−1(t),
λ− γj−1zj−1(t)− γjzj(t) + γj+1zj+1(t) if λ≥ γj−1zj−1(t).

When λ< γj−1zj−1(t), the analysis reduces to Subcase (1). When λ≥ γj−1zj−1(t),

d

dt
Lj(t) =

( K∑
l=j

zl(t)
)

[λ− γj−1zj−1(t)− γjzj(t)]− γj+1zj+1(t)− . . .− γKzK(t).

Since γk′ ≤ γj−1 <γj and the smallest non-zero level i= j− 1, then

λ− γj−1zj−1(t)− γjzj(t)

≤ λ− γj−1(zj−1(t) + zj(t))

≤ λ− γk′(N −
K∑

l=j+1

zl(t)).

By the induction assumption that zl(t)≤ δ/γl, l= j+ 1, . . . ,K,

λ− γk′(N −
K∑

l=j+1

zl(t))

≤ λ− γk′(N − δ
K∑

l=j+1

γ−1
l )< 0,

where the last inequality is due to the choice of δ. This implies that d
dt
Lj(t)≤ 0 with the equality

holding only when zl(t) = 0 for all l = j, . . . ,K. Subcase (3): If j = i, then according to (EC.13)–

(EC.16)

d

dt
Lj(t) =

(K−1∑
l=j

zl(t)
)

[λ∧ γjzj(t)− γjzj(t)]

+ (λ− γjzj(t))+− γj+1zj+1(t)

− γj+2zj+2(t)− . . .− γKzK(t).

(EC.17)

Since the smallest non-zero level i= j and zl(t)< δ/γl for l > j by the induction, we have

zj(t)≥N −
K∑

l=j+1

zl(t)≥N − δ
K∑

l=j+1

γ−1
l .
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By the fact that γk′ < γk′+1 < γj and the choice of δ, we have λ< γjzj(t). Plugging this inequality

into (EC.17) reveals that d
dt
Lj(t) ≤ 0 with the equality holding only when zl(t) = 0 for all l =

j, . . . ,K. This property of the Lyapunov function Lj implies that there exists an sj such that

zj(t)< δ/γj for all t > sj. This completes the induction argument.

Note that the induction only goes down to j = k′ + 2. What we have now is that zl(t)< δ/γl,

l =K,K − 1, . . . , k′ + 2, for all t≥ sk′+2. This implies that (z(t), q(t)) ∈ S0,i where either i= k′ or

i= k′+ 1. If i= k′+ 1, then by (EC.12) the solution to the ODE immediately makes the transition

from S0,k′+1 to S0,k′ . Then, we only need to focus on the sub-region S0,k′ . We now construct a final

Lyapunov function

Lk′(t) =
1

2

(
zk′+1(t)− z̃k′+1

)2
+

K∑
l=k′+2

zl(t) +
K∑

l=k′+3

zl(t) + . . .+
K∑
l=K

zl(t).

It is clear that Lk′(t)≥ 0 and that the derivative of the Lyapunov function is

d

dt
Lk′(t) =

(
zk′+1(t)− z̃k′+1

)
z′k′+1(t)− γk′+2zk′+2(t)− γk′+3zk′+3(t)− . . .− γKzK(t). (EC.18)

According to (EC.12) and (EC.13)–(EC.16),

z′k′+1(t) = λ− γk′zk′(t)− γk′+1zk′+1(t) + γk′+2zk′+2(t).

Applying the definition of z̃ in (57) and some algebra yields

z′k′+1(t) =−γk′ (zk′(t)− z̃k′)− γk′+1 (zk′+1(t)− z̃k′+1) + γk′+2zk′+2(t)

= (γk′ − γk′+1) (zk′+1(t)− z̃k′+1) + γk′
K∑

l=k′+2

zl(t) + γk′+2zk′+2(t)

= (γk′ − γk′+1) (zk′+1(t)− z̃k′+1) + γk′
K∑

l=k′+3

zl(t) + (γk′ + γk′+2)zk′+2(t). (EC.19)

When zk′+1(t)< z̃k′+1, it is clear by (EC.19) that z′k′+1(t)> 0. So d
dt
Lk′(t)< 0. When zk′+1(t)> z̃k′+1,

recall that

zl(t)≤ δ/γl for all l≥ k′+ 2. (EC.20)

So δ can be chosen small enough such that

κ :=
δ+ γk′

∑K

l=k′+2 δ/γl

γk′+1− γk′
≤ γk′+2

γk′ + γk′+2

.

If zk′+1(t)− z̃k′+1 > κ, then according to (EC.19) and (EC.20), z′k′+1(t)< 0. Thus d
dt
Lk′(t)< 0. If

0< zk′+1(t)− z̃k′+1 ≤ κ, then plugging (EC.19) into (EC.18) yields

d

dt
Lk′(t) =−(γk′+1− γk′)

(
zk′+1(t)− z̃k′+1

)2

−
[
γk′+2− (γk′ + γk′+2)(zk′+1(t)− z̃k′+1)

]
zk′+2(t)

−
K∑

l=k′+3

[
γl− γk′(zk′+1(t)− z̃k′+1)

]
zl(t).
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The choice of κ implies that

γk′+2− (γk′ + γk′+2)(zk′+1(t)− z̃k′+1)≥ 0,

γl− γk′(zk′+1(t)− z̃k′+1)≥ 0.

Thus d
dt
Lk′(t)< 0. Moreover, d

dt
Lk′(t) = 0 only when zk′+1(t) = z̃k′+1 and zl(t) = 0 for all l≥ k′+ 2.

These properties of the Lyapunov function imply that z(t)→ z̃ as t→∞.

EC.2. Proofs in the Stochastic Analysis

Proof of Corollary 2 By (10), we need only to show convergence for the expectation of the

holding cost,

E
[

1

T

∫ T

0

h
(
Z̄n(s), Q̄n(s)

)
ds

]
→ 1

T

∫ T

0

h(z(s), q(s))ds as n→∞. (EC.21)

By Theorem 2 and the continuous mapping theorem,

1

T

∫ T

0

h
(
Z̄n(s), Q̄n(s)

)
ds⇒ 1

T

∫ T

0

h(z(s), q(s))ds.

Note that Z̄n(s)≤ N̄n and Q̄n(s)≤ Q̄n(0) + Λ̄n(s) for any s≥ 0. By monotonicity of h and (28),

1

T

∫ T

0

h
(
Z̄n(s), Q̄n(s)

)
ds≤ h

(
N̄ne, Q̄n(0) + Λ̄n(T )

)
≤ h

(
2Ne, Q̄n(0) + Λ̄n(T )

)
for all large enough n. Pick a positive ε < 1, for the constant C specified in Assumption 2,

E
[
h1+ε

(
2Ne, Q̄n(0) + Λ̄n(T )

)]
≤E

[
h1+ε

(
2Ne, Q̄n(0) + Λ̄n(T )

)
|Q̄n(0) + Λ̄n(T )≤C

]
P(Q̄n(0) + Λ̄n(t)≤C)

+E
[
h1+ε

(
2Ne, Q̄n(0) + Λ̄n(T )

)
|Q̄n(0) + Λ̄n(t)>C

]
P(Q̄n(0) + Λ̄n(t)>C)

≤ h1+ε(2Ne,C) +E[A1+ε exp(α(1 + ε)/2Q̄n(0)) exp(α(1 + ε)/2Λ̄n(T ))]

≤ h1+ε(2Ne,C) +E[A1+ε exp(αQ̄n(0))] exp

((
exp

(α
n

)
− 1
)
n

∫ T

0

λ̄n(s)ds

)
.

By Assumption 1, exp
((

exp
(
α
n

)
− 1
)
n
∫ T

0
λ̄n(s)ds

)
< ∞. This combined with (29) yields that

1
T

∫ T
0
h
(
Z̄n(s), Q̄n(s)

)
is uniformly integrable. According to Theorem 5.5.2 in Durrett (2010), we

have (EC.21).

Proof of Lemma 1 It suffices to prove the relative compactness of {(Z̄n, Q̄n)} and {νn} sep-

arately. We have already shown the compactness of the space M because of the compactness of

[0, T ]× Z̄K+1. So by Prohorov’s theorem (cf. Theorem 11.6.1 in Whitt (2002)), {νn} is relatively

compact in M. It remains to verify that the sequence {(Z̄n, Q̄n)}n∈N is relatively compact.
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By the assumption of initial condition (25), for any ε > 0 there exists a C > 0 and n0 > 0 such

that

P
(
|Q̄n(0)|>C

)
< ε, for all n>n0. (EC.22)

Note that Z̄nk (·)≤Nn/n≤ 2N for sufficiently large n. For any δ > 0, define the modulus of conti-

nuity wT (y(·), δ) for a function x on [0, T ] as

wT (x(·), δ) = sup
|t−s|≤δ, s,t∈[0,T ]

|x(t)− y(s)|.

Now, we study the modulus of continuity of Q̄n and Z̄nk , k= 0, . . . ,K. According to (38), we have

|Q̄n(t)− Q̄n(s)| ≤ |M̄n
a (t)− M̄n

a (s)|+ |M̄n
K(t)− M̄n

K(s)|

+

∫ t

s

λ̄n(τ)dτ + γkN̄
n|t− s|.

Note that the last two terms are deterministic, so for any δ < ε/(3 supn(supτ∈[0,T ] λ̄
n(τ) +

N̄nmaxk γk)),

Pn
(

sup
|t−s|≤δ, s,t∈[0,T ]

|Q̄n(t)− Q̄n(s)|> ε
)

≤ Pn
(

sup
|t−s|≤δ, s,t∈[0,T ]

|M̄n
a (t)− M̄n

a (s)|> ε/3
)

+Pn
(

sup
|t−s|≤δ, s,t∈[0,T ]

|M̄n
k (t)− M̄n

k (s)|> ε/3
)

Note that both M̄n
a and M̄n

k are square-integrable martingales. Thus, Doob’s inequality (cf. Propo-

sition 2.2.16 in Ethier and Kurtz (1986)) implies that M̄n
a ⇒ 0 and M̄n

k ⇒ 0 as n→∞. So

Pn
(
wT (Q̄n(·), δ)> ε

)
< ε, for all large n. (EC.23)

A similar argument based on (35)–(37) can show that the same inequality as the above holds for

Z̄nk , for all k= 0, . . . ,K. This implies that

Pn
(
wT ((Z̄n, Q̄n)(·), δ)> ε

)
< ε, for all large n. (EC.24)

Inequalities (EC.22) and (EC.24) have verified that conditions (i) and (ii) of Theorem 3.7.2 in

Ethier and Kurtz (1986) hold for the sequence {(Z̄n, Q̄n)}n∈N. Thus the relative compactness has

been proved.

Proof of Lemma 3 We now restrict our attention to a convergent subsequence that converges

to the limit ((z, q), ν). With a little abuse of the notation, we still use the superscript n to index the

convergent subsequence. It is convenient to assume, using Skorokhod’s representation theorem (cf.

Theorem 3.1.8 in Ethier and Kurtz (1986)), that the stochastic process for all n as well as the limit

are defined on the same probability space on which the convergence ((Z̄n, Q̄n), νn)→ ((z, q), ν) is

almost surely.
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According to the stochastic dynamic equations (5)–(8), for any bounded functions g : Z̄K+1
+ →R,

g(Zn(t))− g(Zn(0))

=
K−1∑
j=0

∫ t

0

[g (Zn(s−)− ej + ej+1)− g(Zn(s−))]1{Zn(s−)∈Aj}dΛn(s)

+
K∑
j=1

∫ t

0

[g (Zn(s−)− ej + ej−1)− g(Zn(s−))]1{Qn(s−)=0}dD
n
j (s).

Since M̄n
a and M̄n

k defined in (33) and (34) are Martingales, it follows that

M̄n
g (t) =

1

n
[g(Zn(t))− g(Zn(0))]

−
K−1∑
j=0

∫ t

0

[g(Zn(s−)− ej + ej+1)− g(Zn(s−))]1{Zn(s−)∈Aj}λ̄
n(s)ds

−
K∑
j=1

∫ t

0

[g (Zn(s−)− ej + ej−1)− g(Zn(s−))]1{Q̄n(s−)=0}γjZ̄
n
j (s)ds

is a Martingale for all bounded function g : Z̄K+1
+ → R. Since g is bounded, E[(M̄n

g (t))2]→ 0 as

n→∞. It follows from Doob’s inequality (cf. Proposition 2.2.16 in Ethier and Kurtz (1986))

that M̄n
g ⇒ 0 as n→∞. Suppose I(z(t)) = k for some k = 0,1, . . . ,K. The continuity of the limit

(z, q) and the convergence imply that there exists a small interval [t, t+ δ] where Z̄nk (·)> 0 for all

sufficiently large n. The boundedness of the function g implies that 1
n

[g(Zn(t+ δ))− g(Zn(t))]→ 0

as n→∞. Thus, the rest of the terms in M̄n
g (t+ δ)− M̄n

g (t) will converge, as n→∞, to

k∧(K−1)∑
j=0

∫
[t,t+δ]×Z̄K+1

+

[g(y− ej + ej+1)− g(y)]1{y∈Aj}λ(s)ν(ds× dy)

+
K∑
j=k

∫
[t,t+δ]×Z̄K+1

+

[g (y− ej + ej−1)− g(y)]1{q(s)=0}γjzj(s)ν(ds× dy)

which should be 0. Letting δ→ 0 gives (51).
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