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In addition to traditional call centers, many companies have started building a new kind of customer contact center, in which
agents communicate with customers via instant messaging (IM) over the Internet rather than phone calls. A distinctive
feature of the service centers based on IM is that one agent can serve multiple customers in parallel. We choose to
model such a center as a server pool consisting of many limited processor-sharing servers. We characterize the underlying
stochastic processes by establishing a fluid approximation in the many-server heavy-traffic regime. The limiting behavior of
the stochastic processes is shown to involve a stochastic averaging principle, and the fluid approximation provides insights
into the optimal staffing and control for such service centers.

Subject classifications : many-server queues; limited processor sharing; fluid models; staffing and control.
Area of review : Stochastic Models.
History : Received March 2012; revision received September 2012; accepted December 2012.

1. Introduction
Communicating with customers has become an indispens-
able part of modern business. Call centers have tradition-
ally played an important role in communication. With the
development of technology, instant messaging (IM) over
the Internet has become a favored way of communicating
in many situations. More and more companies are build-
ing IM-based customer contact centers to supplement their
traditional call centers. For example, some online stores
offer real-time chat so that customers can ask sales rep-
resentatives for more information about the listed prod-
ucts. On Dell’s online store website there is a link lead-
ing to “24/7 live sales help.” The option “Chat with us” is
listed first, together with other options such as “Call us.”
Some companies such as Hewlett-Packard (HP) even per-
form remote diagnostics and troubleshooting as part of after-
sale service via IM. Communicating via IM has the advan-
tage of efficient information exchange (imagine a sales rep-
resentative sending a link to the webpage of their products
rather than simply describing the products over the phone),
but it is not as convenient as a phone call because it is diffi-
cult for customers to access the service on the go. In general,
an IM conversation may take a longer time than a phone
conversation service since the former requires both the user
and the agent to read and type to communicate; see Shae
et al. (2007). Nevertheless, IM serves as a good alternative
channel for communicating with customers. In some indus-
tries, such as the online retail industry, this new mode of
communication is rapidly gaining popularity. This motivates
the study of models for IM-based customer contact centers
to better manage such services.

IM-based service centers have some unique features not
shared by call centers. An agent (sales representative, tech-
nician) at a traditional call center can talk to only one cus-
tomer at a time, but an agent who is providing service via
IM can chat with multiple customers simultaneously. Dur-
ing an IM conversation, customers can be processed in a
round-robin fashion—an agent responds to one request and
then immediately shifts to another outstanding one from
the customers he is serving. Such a system is best modeled
using the processor-sharing protocol, where an agent can
distribute his attention simultaneously to all customers in
service. This modeling method first appeared in computer
science, as described in Ritchie and Thompson (1974) and
Kleinrock (1976). In many computer systems, a central pro-
cessing unit handles all active jobs in parallel (a technique
known as parallel processing). It should be pointed out that
the protocol is an approximation of the actual situation,
but the macroscopic model promises to reveal how the sys-
tem performs in response to changes in the key parameters,
which can be identified from historical data.

For this study, we obtained data from a company that
is operating a large IM-based service center. The data
were recorded using a standard timestamp approach that
keeps track of when a customer contacted the center and
when a customer service case was opened and closed, etc.
From this data set, it emerged that it was hard to iden-
tify the required service time of a customer. However, the
processor-sharing protocol enables the calculation of the
rate �k at which an agent can complete cases when there
are k customers being served simultaneously. Figure 1 illus-
trates how the service rate �k varies with k. In the data,
there are agents serving more than 5 (up to 13) customers
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simultaneously. However, we have decided to filter them
out, because such “chats” contribute less than 0.1% of the
total records, providing too few records to obtain a reliable
estimate. One reason an agent is allowed to serve multi-
ple customers is that customers need time to process the
information the agent sends to them and to type out their
next requests. During this time, the agent would be idling if
he is not handling any other customers. Arranging for one
agent to serve multiple customers helps reduce such idling,
thus making better use of the agents’ time. That is why �k

exhibits an increasing trend when k is small. However, as
the number of parallel jobs increases, an agent may become
less efficient because of his limited capacity and cognitive
issues caused by switching among too many different cus-
tomers. The pattern of �k for large ks is thus uncertain.
For this reason, some IM-based service centers enforce a
limit on the number of customers an agent is allowed to
serve at a time. Thus, our model uses the limited processor-
sharing (LPS) protocol for each agent. If all agents have
reached the limit, an arriving customer will have to wait to
be served. With this background, we develop and evaluate
a macroscopic model for an IM-based service center. The
model is basically a many-server queue with each server
operating under the LPS protocol with state-dependent ser-
vice rate. We assume that all customers are homogeneous
in terms of their requirements, and all servers in the server
pool are homogeneous in the sense that they operate at the
same state-dependent service rates (see Figure 1).

The remainder of this paper is organized as follows.
Section 2 provides a mathematical description of our IM
contact center model and presents the concept of asymp-
totic optimality in the proposed heavy-traffic asymptotic
regime. Section 3 introduces a fluid model and uses it to
approximate the stochastic model. Based on the approxima-
tion, §4 proposes optimal staffing and control policies for
IM contact centers. In §5, extensive numerical experiments
illustrating both the approximation and the optimality are
reported. Section 6 concludes with some remarks and direc-
tions for future research. Finally, technical proofs are col-
lected in two appendices, which are part of the electronic
companion for the paper (available as supplemental mate-
rial at http://dx.doi.org/10.1287/opre.1120.1151; proofs in

Figure 1. Varying service rate.
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the fluid analysis are in §EC1, and proofs in the stochastic
analysis are in §EC2).

1.1. Service Quality, Staffing, and Control

In measuring the service qualities in traditional call centers,
we often focus on quantities related to the waiting time,
such as the expected waiting time or the probability that the
waiting time exceeds a certain threshold. This makes sense
because once a customer manages to get hold of an agent
on the phone, he will exclusively have the service of the
agent. Thus, the length of the actual service time (i.e., the
duration of the phone call) depends only on the nature of
the particular customer’s request. However, with Web-chat
services the customer is likely to share an agent with other
customers. An agent will normally become less responsive
the more customers he has to handle simultaneously. The
service time (the period from the start of conversation to
when the case is closed) of a customer with a particular
service request varies with the number of other customers
the agent is also serving in parallel. This is similar to the
situation in computer systems where the time it takes for
a computer processor to complete a task such as opening
the Web browser varies with the number of other tasks the
processor is also asked to perform in parallel.

In order to capture this distinctive feature of customer
experience in an IM-based service center, we choose a
holding-cost function on the system status as the indica-
tor for service quality. We call the agents who are serving
k customers “level k agents.” The status of the system is
defined as the number of customers waiting in queue, and
the number of agents in each level (a rigorous description
will be given in the modeling part). The rationale behind
using a holding cost is Little’s law, which relates customer’s
sojourn (waiting and actual service) time to the total num-
ber of customers in the system. This type of holding-cost
function is not new in the literature. For instance, George
and Harrison (2001) defined the holding cost as a func-
tion of the number of jobs in the system and used it to
describe the congestion in a single-server queueing system.
In this study, we allow the holding-cost function to be more
general than a linear function of the total number of cus-
tomers in the system. As will be shown in the mathematical
model, the cost is allowed to be a general function of the
queue length and the number of customers being served by
level k agents for each k. This is to reflect different respon-
siveness that customers may sense while being served by
agents of different levels.

Simply increasing staffing will of course reduce the
sojourn time of a customer. However, staffing costs are a
major part of the operating expenses of such service cen-
ters. On the other hand, reducing staffing may lead to poor
service quality and the loss of goodwill, or even a direct
loss of revenue. For example, customers may be so annoyed
by the slow response caused by inadequate staffing that
they end up not buying anything from the online retailer.
In this paper, the framework allows the arrival process to
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be both stationary and time varying. However, for the time-
varying arrivals, we still use a stationary staffing policy.
This is applicable to cases where staffing cannot be changed
frequently or cannot be arranged to achieve a desired time-
varying staffing. In a more general sense, optimal time-
varying staffing as proposed by Feldman et al. (2008) is an
interesting future direction.

In addition to staffing decisions, control decisions are
also important in operating such a system. There are basi-
cally two types of controls: admission control and routing
control. In this study, we do not reject customers. Admis-
sion control determines whether to admit a customer into
service immediately upon arrival. This control is imple-
mented by setting a control threshold K, which is the
maximum number of customers an agent can serve simul-
taneously. If all agents are serving K customers each, then
an arriving customer will have to wait in queue. Other-
wise, the arrival is admitted into service. Routing con-
trol, on the other hand, is a lot more complicated because
there are many ways of assigning arriving customers to
agents. A routing control policy must be specified in order
to operate the system. The design of optimal routing con-
trol policy alone is a very interesting research direction
(see Tezcan 2011 for study of the optimal routing policy
in steady state). In this study, we adopt the simplest and
possibly the most widely used routing policy. Each new
arrival is assigned to one of the agents with the “lightest
load” at that time. An agent is said to have the lightest load
if he is handling the least number of customers compared
to all other agents. If more than one agent has the lightest
load, one is chosen randomly to serve the arriving cus-
tomer. We show in this paper that even this simple policy
gives rise to some complicated issues in studying the sys-
tem in transient. A larger control threshold K would help
reduce customers’ waiting time before being served, but it
is doubtful whether this strategy is optimal. This study sets
out to model the underlying stochastic processes in order
to generate some insights into the joint staffing and admis-
sion control decisions involved in managing such service
centers efficiently.

1.2. An Asymptotic Framework

Balancing staffing costs and service quality will be for-
mulated in this study as a discrete optimization problem
(see (12)). To solve this problem in a stochastic environ-
ment, we translate it into a continuous and deterministic
problem by examining the system in a meaningful limit-
ing regime.

Like call centers, IM-based service centers also employ
a large number of agents to handle heavy demand. This
motivates the study of models in the many-server heavy-
traffic regime proposed in the call center study, which will
be formulated in detail in §2.1. The basic idea is to put
the stochastic system in a regime where the demand (the
arrival rate) increases and the service capacity (the number

of servers) also grows to balance out the demand. The ser-
vice rate of each individual server remains the same. This
heavy-traffic formulation is useful in applications involv-
ing humans such as operations in call centers and patient-
flow management in a hospital, because the management
can only increase the number of servers rather than mak-
ing each individual server work faster to accommodate
large demand.

The limit obtained in the heavy-traffic regime serves
as an approximation to the original stochastic process.
The optimal solution for the continuous and determinis-
tic optimization problem provides an approximately opti-
mal solution for the original problem in the asymptotic
sense. Roughly speaking, the difference between the opti-
mal value for the original problem and that for the lim-
iting problem vanishes as the size of the original system
approaches infinity.

1.3. Literature Review

To the best of our knowledge, this is the first study to
approach the problem in this manner. Tezcan (2011) has
completed a parallel study using the same model, but
with a different focus. Whereas our study emphasizes both
the transient behavior and the steady-state behavior of
the stochastic system under a fixed routing policy, Tezcan
(2011) studied an optimal routing policy in the steady state.
In fact, they showed that under certain assumptions, the
optimal routing policy coincides with the one chosen here.

There is a vast literature on call centers, providing the
foundation and inspiration for the research reported here.
The survey paper of Gans et al. (2003) provided a tuto-
rial on how call centers function and a survey of academic
research devoted to the management of their operations.
The basic idea in their study is to model a voice call
center as a multiserver queue and model each agent as a
server serving only one customer at a time. The optimiza-
tion problem formulated in this study is, however, based on
the framework proposed in Borst et al. (2004). It is worth
pointing out that Whitt (2006) showed that fluid models
can be quite useful in approximating the performance mea-
sures of multi-server queues. In a study of an extension of
the multiserver queue, where there are multiple customer
classes and a single-server pool, Atar et al. (2010, 2011)
showed that fluid approximations can be useful in design-
ing optimal control policies for the operations. The work of
Mandelbaum et al. (1998) and Puhalskii (2008) provided
a nice theoretical framework for the study of many-server
queues (see Mandelbaum et al. 1998 for a general network
of many-server queues) with exponentially distributed ser-
vice times. Their works helped build the foundation for
some of the methodologies in this study.

The methodology in this study involves averaging prin-
ciples. Only a handful of studies in the queueing litera-
ture involve averaging principles (see Whitt 2002 for a
review). Some notable works include Coffman et al. (1995),
which studied the diffusion limit of a two-queue polling
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model with asymptotically negligible switchover times and
Coffman et al. (1998), which studied the same subject
but with nonnegligible switchover times. Recently, Perry
and Whitt, Perry and Whitt, Perry and Whitt, Perry and
Whitt (2011a, b, c; 2012) studied an extension of such a
principle, which they named a “stochastic averaging princi-
ple” in Perry and Whitt (2011c), to obtain both the fluid and
diffusion limits for an overloaded X-model of multiserver
queues proposed in Perry and Whitt (2009). Their approx-
imations also led to useful insights about the asymptotic
optimal control of the system. Some of their methodolo-
gies were based on the one developed by Hunt and Kurtz
(1994), who exploited martingales and random measures.
The work of Hunt and Kurtz (1994) considered large loss
networks with a large family of control policies, building on
a fundamental theory of Kurtz (1992). Although based on
different models, Hunt and Kurtz (1994), Perry and Whitt
(2012) have inspired some of the methods adopted in this
study to deal with a very similar stochastic averaging prin-
ciple involved in this model.

The LPS protocol is a key feature of the study. Zhang and
Zwart (2008) and Zhang et al. (2009, 2011) studied exten-
sively models with a single LPS server. In their studies,
both fluid and diffusion limits were established to approx-
imate the transient behavior of the underlying stochastic
processes. They have also studied the steady-state limits of
the system and validated the interchange of heavy-traffic
and steady-state limits. This justifies the use of the steady-
state of the diffusion limit, which is tractable, to approxi-
mate the steady state of the original system. Closed-form
formulae were provided in Zhang and Zwart (2008) to
reveal how the performance measures depend on the system
parameters. Recently, Gupta and Zhang (2011) also stud-
ied a single LPS server with a state-dependent service rate.
Their model is closely related to the model studied here,
where the service rate of each LPS server also depends on
the state (the number of customers in service).

2. Model Formulation and Asymptotic
Framework

2.1. The Stochastic Model

Consider a sequence of stochastic systems indexed by n.
In the nth system, there are N n agents, which are mod-
eled as a server pool with N n homogeneous LPS servers.
Each agent can process multiple customers simultaneously.
Let K be the maximum number of customers each agent
can handle at any time, which is called control thresh-
old throughout this paper. The state of the server pool
can then be described using a 4K + 15-dimensional vector
Zn4t5 = 4Zn

0 4t51Z
n
1 4t51 0 0 0 1Z

n
K4t55 ∈ �K+1. For each k ∈

80111 0 0 0 1K9, Zn
k4t5 denotes the number of agents who are

serving k customers at time t. We call them “level k agents.”
Note that Zn

0 4t5 is the number of idling agents, and we have
K
∑

k=0

Zn
k4t5=N n1 t ¾ 00 (1)

When all agents are each serving K customers, i.e.,
Zn
K4t5 = N n, an arriving customer must wait in a buffer.

We assume that waiting customers are served based on the
first-come-first-served principle. Let Qn4t5 denote the num-
ber of customers who are waiting for service at time t.
In what follows, we assume that no customer waits in
queue if there is an agent who is serving fewer than K
customers, i.e.,

Qn4t54N n
−Zn

K4t55= 01 t ¾ 00 (2)

Customers arrive to the nth system according to a gen-
eral nonhomogeneous Poisson process ån4t5 with intensity
function �n4t5. As mentioned above, if all agents are serv-
ing K customers, then an arrival has to wait. Otherwise,
the arriving customer is assigned to one of the agents who
has the “lightest load” at the time. If there are multiple
agents with the same “lightest load,” one is chosen ran-
domly to serve the arrival. Mathematically, we introduce
the index process

in
∗
4t5= min

{

0 ¶ k¶K2 Zn
k4t5 > 0

}

(3)

to identify the lightest load at time t. The process in
∗
4t5

serves as the indicator of how arrivals should be assigned to
agents. For example, if in

∗
4t−5= 0, then an arrival at time t

is assigned to an idling agent, yielding Zn
0 4t5=Zn

0 4t−5− 1
and Zn

1 4t5 = Zn
1 4t−5 + 1. If in

∗
4t−5 = K, then an arrival at

time t joins the queue, incrementing the queue size by 1.
The data we have collected indicates that any realistic

model must allow an agent’s service speed to vary depend-
ing on how many customers he is serving simultaneously.
Let �k denote the service rate of a level k agent. In this
paper, we assume that the service times are exponentially
distributed. Let Sn

k 4t51 k = 11 0 0 0 1K be independent Poisson
processes with rate 1. Then the total number of customers
who have been served by level k agents by time t is

Dn
k4t5= Sn

k

(

�k

∫ t

0
Zn

k4s5ds

)

0 (4)

With the arrival, assignment, and service processes
thus defined, the following stochastic dynamic equations
describe the evolution of the nth system.

Zn
0 4t5=Zn

0 405−

∫ t

0
18in∗ 4s−5=09 då

n4s5+Dn
14t51 (5)

Zn
k4t5=Zn

k405+

∫ t

0
18in∗ 4s−5=k−19 då

n4s5

−

∫ t

0
18in∗ 4s−5=k9 då

n4s5−Dn
k4t5

+

∫ t

0
18Qn4s−5=09 dD

n
k+14s51 0 < k<K1 (6)

Zn
K4t5=Zn

K405+

∫ t

0
18in∗ 4s−5=K−19 då

n4s5

−

∫ t

0
18Qn4s−5=09 dD

n
K4s51 (7)

Qn4t5=Qn405+

∫ t

0
18in∗ 4s−5=K9 då

n4s5

−

∫ t

0
18Qn4s−5>09 dD

n
K4s50 (8)



Luo and Zhang: Staffing and Control of IM Contact Centers
332 Operations Research 61(2), pp. 328–343, © 2013 INFORMS

Note that the indicator function 18Qn4s−5=09 in (6) is only
effective when k =K − 1. When we study the evolution of
Zn

K−14 · 5 at time epoch s, the level K may happen to be
Zn

K4s−5=N n. Suppose there is a service completion from
level K agents at time s, the status of the system immedi-
ately after the service completion depends on whether there
are customers in the queue. If the queue is not empty, then
a customer in queue is immediately served upon a service
completion. So Zn

K−14s5 stays at 0 and Zn
K4s5 stays at N n.

Only when there are no customers waiting in the queue,
does Zn

K−14s5 increase by 1 and Zn
K4s5 decrease by 1.

2.2. The Heavy-Traffic Regime and Fluid Scaling

For the sequence of systems indexed by n, let the arrival
rate and the number of agents grow in proportion to n
as n increases to infinity, while keeping the service rate
8�k1 k = 0111 0 0 0 1K9 fixed. Therefore, we assume the fol-
lowing heavy-traffic assumption throughout this paper.

Assumption 1 (Heavy Traffic). The arrival rate and the
number of agents of the nth system satisfy the condition
that �̄n4 · 5 is bounded and

�̄n4t5=
�n4t5

n
→ �4t51 (9)

N̄ n
=

N n

n
→N1 (10)

as n→ �, for some function �4t5 and N > 0.

The fluid scaling for the processes ån, Qn, and Zn can
be defined as

å̄n4t5=
ån4t5

n
1 Q̄n4t5=

Qn4t5

n
1

Z̄n
k4t5=

Zn
k4t5

n
1 k = 01 0 0 0 1K0 (11)

The relevant heavy-traffic regime is essentially the many-
server heavy-traffic regime studied in the call center litera-
ture, but there are quite interesting limiting dynamics that
are different from the call center models. In the heavy-
traffic regime the size of the system grows in proportion
to n, and the fluid scaling (11) divides all the quantities
by n, making the processes “smooth” at the limit. How-
ever, the stochastic dynamics Equations (5)–(8) heavily rely
on the index process in

∗
4t5. Note that in

∗
4t5 does not scale

like Zn4t5. It jumps on the fixed discrete grid 80111 0 0 0 1K9
for all n. Therefore, unlike traditional stochastic processes
that are smoothed out in the heavy-traffic limit, in

∗
4t5 is

a jump process that instead oscillates infinitely often in
heavy traffic. In fact, the index process fluctuates more and
more frequently as n increases. Figure 2 depicts one sim-
ulated sample path to show the evolution of the index pro-
cess in comparison with the process Zn4t5 when �n = 400,
N n = 200, and K = 6. In fact, the process in

∗
4t5 fluctu-

ates so frequently that only lines consisting of dense dots

are apparent at this level of resolution. The oscillation of
in
∗
4t5 brings complexity in applying traditional fluid approx-

imations to the stochastic system, and motivates seeking
another approach involving the stochastic averaging princi-
ple to understand the dynamics of the system.

2.3. A Cost Function and Asymptotic Optimality

The system manager for such a service center confronts a
joint problem of staffing and control. The manager needs to
balance his choice of staffing level N n and control thresh-
old K, because an agent works at varying speeds depending
on the number of customers he is handling. Consider a gen-
eral holding-cost function of the system status. Let h4z1 q5
denote the cost per unit of time the system is in state 4z1 q5.
Let c denote the cost of employing an agent per unit of
time. For staffing level N n and control level k, consider the
normalized average cost over the time horizon 601 T 7:

C̄n
T 4N̄

n1K5= cN̄ n
+

1
T
Ɛ

[

∫ T

0
h4Z̄n4s51 Q̄n4s55ds

]

0 (12)

The rationale of considering this type of cost function
is to take the service quality into consideration. Tradi-
tionally, only holding cost for the queue is considered in
many models arising from call center applications, such
as Atar et al. (2010) and Bassamboo et al. (2006). In a
call center, the service quality depends only on the queue
or waiting time in the queue, because a customer’s ser-
vice time depends entirely on the nature of his requirement.
However, for IM-based service centers, the actual service
time of a customer is significantly affected by the num-
ber of other customers sharing the agent during the ser-
vice period. A longer actual service time means a customer
senses worse responsiveness during his service. As pointed
in Shae et al. (2007), both time in queue and total service
duration are important measures for the quality of IM ser-
vices. Intuitively, customers being served by a level 2 agent
should feel better “responsiveness” than being served by
a level 5 agent. This intuition is behind the idea of using
a general function h, which can assign different “waiting
costs” to customers in different stages. For example, we
can set the function to be h4z1 q5 = w0q +

∑K
k=1 kwkzk,

where w01 0 0 0 1wK are weights. The condition on the cost
function is stated in Assumption 2. Suppose we special-
ize the cost function to be h4z1 q5 = �−14q +

∑K
k=1 kzk5;

then, Little’s law gives an intuitive explanation in the sta-
tionary case. The holding cost is then essentially counted
into the customers’ average sojourn time, which is the met-
ric used by Tezcan (2011). Putting the holding cost and
the staffing cost together is in the same spirit as the cost
function in Bassamboo et al. (2006). The objective is to
optimize the trade-off between personnel cost and the hold-
ing cost. To arrive at a the general formulation for the cost
function and also provide a solution to asymptotically opti-
mize the total average cost, define (as in Bassamboo et al.
2006) the asymptotic optimality in both finite-horizon and
infinite-horizon cases.
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Figure 2. One sample path of the stochastic process Zn�t� and the index process in
∗
�t� for system n with �n = 400,

Nn = 200, K = 6, and � = �1�1�6�1�8�2�2�2�3�2�4�.
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Definition 1. A sequence of staffing level �N̄ n
∗
� and a

control threshold K∗ are said to be asymptotically optimal
for the finite horizon �0� T � if for any other sequence of
staffing levels �N n� and control threshold K,

lim sup
n→�

C̄n
T �N̄

n
∗
�K∗�� lim inf

n→�
C̄n

T �N̄
n�K�� (13)

A sequence of staffing level �N̄ n
∗
� and a control thresh-

old K∗ are said to be asymptotically optimal for the infinite
horizon �0��� if for any other sequence of staffing levels
�N n� and control threshold K,

lim sup
T→�

lim sup
n→�

C̄n
T �N̄

n
∗
�K∗�

� lim inf
T→�

lim inf
n→�

C̄n
T �N̄

n�K�� (14)

We now propose a fluid model to approximate the perfor-
mance of the stochastic system in the heavy-traffic regime,
and then connect the asymptotic optimization problem to
the fluid model.

3. Fluid Approximations in the
Heavy-Traffic Regime

Such a complicated system is not amenable to exact analy-
sis, so approximations to the original stochastic system are
essential. The idea of approximating the complicated under-
lying stochastic processes is to use a fluid model, which
is analogous to the original stochastic model with all the
randomness removed by replacing the stochastic processes
with their rate functions. However, due to the involvement
of the index process, the reduction for such models is quite

difficult. In this section, we first consider a fluid model,
which can be formulated using a set of ordinary differen-
tial equations (ODEs). After justifying its validity, we will
show that the solution to the ODEs approximates the fluid
scaled stochastic processes in the heavy-traffic regime.

3.1. A Fluid Model

Let

I�z�= min�0 � k�K
 zk > 0� (15)

denote the smallest index of z’s nonzero component. In fact,
the stochastic index process defined in (3) can be written
as in

∗
�t� = I�Z̄n�t��. The simulation presented in Figure 2

shows that the stochastic process for all levels seems to be
“smoothed out,” despite the fact that the index process can-
not be. An appropriate fluid model must characterize how
customer arrivals are allocated to the server pool, which is
based on the index process. For this purpose, we introduce
the mapping f 
 �0�N �K+1 ×�+ → �0�1�K+1,

f �z���=
(

f0�z���� f1�z���� � � � � fK�z���
)

�

where each component fk�z��� is formally defined as

fk�z���=































�k+1zk+1

�
∧ 1� k= I�z�− 1�

(

1−
�kzk
�

)+

� k= I�z��

0� otherwise.

(16)

Intuitively, fk�z��� indicates the fraction of the arrival
stream that is injected into level k, whereas the current state
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of the “fluid” server pool is z and the arrival rate is �.
We will show the connection to the stochastic model in
§3.2 when we analyze the underlying stochastic processes.

It is clear that the fluid model lives in the space

�=

{

4z01 0 0 0 1 zK1 q5 ∈�K+2
+

2
K
∑

k=0

zk =N and

q4N − zK5= 0
}

0 (17)

An ODE of the form

4z′4t51 q′4t55=ë4t1 z4t51 q4t55 (18)

can then be used to define the fluid model. For clearer pre-
sentation, divide space � into two subspaces �=�+ ∪�0,
where

�+ = 84z1 q5 ∈�2 q > 091 �0 = 84z1 q5 ∈�2 q = 090

In space �0, ODE (18) takes the form

z′

04t5= −f04z4t51�4t55�4t5+�1z14t51 (19)

z′

k4t5= fk−14z4t51�4t55�4t5− fk4z4t51�4t55�4t5

−�kzk4t5+�k+1zk+14t51 0 < k<K1 (20)

z′

K4t5= fK−14z4t51�4t55�4t5−�KzK4t51 (21)

q′4t5= fK4z4t51�4t55�4t51 (22)

and in the space �+, the ODE (18) takes the form

z′

k405= 01 0 ¶ k¶K1 (23)

q′4t5= �4t5−�KN0 (24)

The transitions between �0 and �+ occurs at the critical
point 4z1 q5 = 401 0 0 0 101N 105, where all the agents reach
the threshold K. Whether the solution to the ODE will stay
in �0 or transit to �+ depends on whether or not �4t5 ¶
�KN . Despite the complicated form of (19)–(24), the fol-
lowing theorem shows that ODE (18) is well defined.

Theorem 1 (Existence and Uniqueness). Assume that
�4t5 is a continuous function of t. There exists a unique
solution to the ODE (18) specified by (19)–(24), with the
initial condition 4z4051 q4055 ∈�.

The proof of this theorem is available in the e-com-
panion, §EC1. This result justifies the existence and unique-
ness of the solution to the fluid model, thus providing a
foundation for the rest of the study in this paper. To make
the result more applicable, it would be helpful to extend
it to a case with a more general arrival process. Suppose
the arrival rate �4t5 is a piecewise-continuous function. Let
0 < t1 < t2 < · · · be the jump points of �4t5. Solving ODE
(18) in the time interval 601 t17 gives a unique solution.
Considering t1 as the initial time point, the ODE can be
then studied in the next time interval 6t11 t27. Iteratively, we
can thus show the existence and uniqueness of the solution
to the ODE over the entire time horizon.

Corollary 1. Assume that �4t5 is a piecewise-continuous
function of t. There then exists a unique solution to
ODE (18) with initial condition 4z4051 q4055 ∈�.

3.2. Stochastic Analysis

It is now necessary to show that the well-defined fluid
model serves as an approximation for the fluid-scaled
stochastic processes in the heavy-traffic regime. Let
�4601 T 71�K+25 be the space of all �K+2-valued functions
on 601 T 7, which are right continuous with left limits.

Theorem 2 (FWLLN). Under Assumption 1, if the initial
states converge in distribution to some constants, i.e.,

4Zn405/n1Qn405/n5 =⇒ 4z4051q40551 as n→�1 (25)

for some 4z4051 q4055 ∈ �, then the fluid-scaled process
4Z̄n1 Q̄n5 converges in distribution to the fluid model solu-
tion 4z1 q5 in Theorem 1, i.e., in the space �4601 T 71�K+25
equipped with uniform topology,

4Z̄n4t51 Q̄n4t55 =⇒ 4z4t51 q4t551 as n→ �1 (26)

where 4z1 q5 is the solution to the ODE (18) with initial
condition 4z4051 q4055.

For the solution 4z1 q5, define the associated fluid cost as

CT 4N 1K5= cN +
1
T

∫ T

0
h4z4s51 q4s55ds0 (27)

Based on Theorem 2, it can be shown that the expected cost
will converge to the fluid cost. We require some additional
assumption on the holding-cost function.

Assumption 2. The holding-cost function h is a nonde-
creasing continuous function with respect to each compo-
nent. In addition, we assume there exist an �, A, and C
such that

h42Ne1q5¶A exp4�q/25 for all q >C1 (28)

where e is the 4K + 15-dimensional vector with each com-
ponent being 1. In other words, we assume that the “tail”
of the holding cost in queue does not grow faster than all
exponential functions.

Corollary 2. Under the same condition as Theorem 2, if
the holding-cost function h satisfies Assumption 2 and

sup
n

Ɛ6exp4�Q̄n40557 <�1 (29)

then

C̄n
T 4N̄

n1K5→CT 4N 1K51 as n→ �0 (30)

The proof of this result is available in the e-com-
panion, §EC2.

Remark 1. Assumption 2 is in fact quite general. All poly-
nomial functions clearly satisfy it. The condition (29) is
required mainly for technical reason. Alternatively, we may
assume that initially no customers wait in queue, which is
a reasonable assumption in this application.
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The rest of this section will be devoted to establish-
ing Theorem 2. The essential connection between the fluid
and the stochastic models lies in the index process in

∗
and

the function f defined in (16). Consider a small interval
6t1 t + �7. The number of arrivals in that interval who are
assigned to a level k agent is

∫ t+�

t
18in∗ 4s−5=k9 då̄

n4s5, and
the amount of fluid injected into zk is fk4z4t51�4t55�4t5�.
Informally, the basic principle behind the convergence
result in Theorem 2 is that

lim
�→0

lim
n→�

1
�

∫ t+�

t
18in∗ 4s−5=k9då̄

n4s5=fk4z4t51�4t55�4t50 (31)

The interplay here between the in
∗
4t5 and Z̄n4t5 in this

model is quite interesting. The process Z̄n4t5 evolves
slowly and determines the transition rates for in

∗
4t5, whereas

the process in
∗
4t5 evolves quickly and its “steady state”

determines the evolution of Z̄n4t5. To see this intuitively,
replace å̄n4t5 by �t in the above, yielding

1
�

∫ t+�

t
18in∗ 4s−5=k9�ds=

1
n�

∫ n�

0
18in∗ 4t+4s−5/n5=k9�

(

t+
s−

n

)

ds0

When n becomes large, what determines that the above
integral is actually the “steady state” of the process
in
∗
4t + ·

n
5. The above is just an informal illustration of the

stochastic averaging principle involved in the model. The
coexistence of two different time scales requires an untra-
ditional method to analyze the stochastic model in the
limiting regime. One idea is to use the stochastic aver-
aging principle to prove the convergence (31). However,
because in

∗
4t5 depends on a multidimensional Markov pro-

cess 4Z̄n4t51 Q̄n4t55, a direct analysis using the stochastic
averaging principle may be complicated. Instead, we pro-
pose to use an approach involving random measures and
martingale representation. The approach was initiated by
Hunt and Kurtz (1994), and has been adopted by Perry and
Whitt (2012).

We now provide the proof for Theorem 2. Define the
random measure �n by

�n4601 t7×A5=

∫ t

0
18Zn4s−5∈A9 ds1 (32)

for any t > 0 and subset A⊂ �̄K
+

, where �̄+ =�+ ∪ 8+�9.
This is a common approach to compactify the space. The
interested reader may refer to Kurtz (1992) and Perry and
Whitt (2012) for detailed discussions. Consider the space

 of all measures � on the product space 601�5 × �̄K

+

satisfying �4601 t7 × �̄K
+
5 = t for all t > 0. Endowing 


with the Prohorov metric as in (1.1) of Kurtz (1992),
then 
 inherits the compactness because �̄K

+
is compact.

This will provide convenience for the proofs later on.
Let Ak = 8z ∈ �̄K 2 zk > 0 and zj = 01 j < k9. The indicator
function of the index process can then be written as

18in∗ 4t−5=k9 = 18Zn4t−5∈Ak9
0

Define martingales related to the arrival and service
processes

M̄n
a 4t5= å̄n4t5−

∫ t

0
�̄n4s5ds1 (33)

M̄n
k 4t5=

1
n

(

Sn
k

(

�k

∫ t

0
Zn

k4s5ds

)

−�k

∫ t

0
Zn
k4s5ds

)

1

k = 11 0 0 0 1K0 (34)

Using the random measure �n and the above-introduced
martingales, the fluid-scaled stochastic dynamic Equa-
tions (5)–(8) can be written as

Z̄n
0 4t5= Z̄n

0 405−

∫ t

0
18Zn4s−5∈A09

dM̄n
a 4s5+ M̄n

1 4t5

−

∫

601 t7×A0

�̄n4s5�n 4ds×dy5+�1

∫ t

0
Z̄n

1 4s5ds1 (35)

Z̄n
k4t5= Z̄n

k405+

∫ t

0
18Zn4s−5∈Ak−19

dM̄n
a 4s5

−

∫ t

0
18Zn4s−5∈Ak9

dM̄n
a 4s5

− M̄n
k 4t5+

∫ t

0
18Q̄n4s−5=09 dM̄

n
k+14s5

+

∫

601 t7×Ak−1

�̄n4s5�n 4ds ×dy5

−

∫

601 t7×Ak

�̄n4s5�n 4ds ×dy5

−�k

∫ t

0
Z̄n

k4s5ds +�k+1

∫ t

0
18Q̄n4s−5=09Z̄

n
k+14s5ds1

0 < k<K1 (36)

Z̄n
K4t5= Z̄n

K405+

∫ t

0
18Zn4s−5∈AK−19

dM̄n
a 4s5

−

∫ t

0
18Q̄n4s−5=09 dM̄

n
K4s5

+

∫

601 t7×AK−1

�̄n4s5�n 4ds ×dy5

−�K

∫ t

0
18Q̄n4s−5=09Z̄

n
K4s5ds1 (37)

Q̄n4t5= Q̄n405+

∫ t

0
18Zn4s−5∈AK9

dM̄n
a 4s5

−

∫ t

0
18Q̄n4s−5>09 dM̄

n
K4s5

+

∫

601 t7×AK

�̄n4s5�n 4ds ×dy5

−�K

∫ t

0
18Q̄n4s−5>09Z̄

n
K4s5ds0 (38)

The following lemma establishes that the above stochastic
processes are relatively compact and gives some prelimi-
nary characterization of the limit.

Lemma 1. Under Assumption 1, if (25) holds, then the
sequence 84Z̄n1 Q̄n51 �n9n∈� is relatively compact in the
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space �4601 T 71�K+25×
, and the limit of any convergent
subsequence satisfies

z04t5= z04t5−

∫

601 t7×A0

�4s5� 4dy×ds5

+�1

∫ t

0
z14s5ds1 (39)

zk4t5= zk405+

∫

601 t7×Ak−1

�4s5� 4dy×ds5

−

∫

601 t7×Ak

�4s5� 4dy×ds5

−�k

∫ t

0
zk4s5ds +�k+1

∫ t

0
18q4s5=09zk+14s5ds1

0 < k<K1 (40)

zK4t5= zK405+

∫

601 t7×AK−1

�4s5� 4dy×ds5

−�K

∫ t

0
18q4s5=09zK4s5ds1 (41)

q4t5= q405+

∫

601 t7×AK

�4s5� 4dy×ds5

−�K

∫ t

0
18q4s5>09zK4s5ds0 (42)

The proofs of Lemma 1 and Lemma 3 are available in
the e-companion, §EC2. To further study the limit in the
above lemma, we need to characterize the limiting measure
�. The following lemma is taken from Kurtz (1992), which
states that the measure � has the product form.

Lemma 2 (Kurtz 1992). Let 84z1 q51 �9 be the limit of a
convergent subsequence of the processes 84Z̄n1 Q̄n51 �n9n∈�.
Then for all measurable subsets â of 601 T 7 and A of �̄K+1

+

�4â ×A5=

∫

â
�s4A5ds1 (43)

where �s is a probability measure on �̄K+1
+

for all s ¾ 0.

This is a very useful result. It says that the measure � on
the product space 601 t7× Z̄K

+
can be separated in product

form. In other words,
∫

601 t7×A
�4s5� 4dy×ds5=

∫ t

0
�s4A5�4s5ds0 (44)

To characterize the probability measure �s , we introduce
the Markov process mx4s5 on �̄K+1

+
, where x = 4z1 q1�5

(recall that � is the limit in Assumption 1). In other words,
for each s, mx4s5 is a Markov process whose transition rate
depends on x4s5. For j = 0111 0 0 0 1K, let ej = 401 0 0 0 1 0, 1,
01 0 0 0 105 be a 4K+15-dimensional vector with its 4j+15th
component being 1 and all the rest being 0. We first define

ejmx4s5 = �1 for all j such that zj4s5 > 00

The Markov process mx4s5 evolves with the following tran-
sition rate when 0 ¶ j <K,

mx4s5 →

{

mx4s5 − ej+1 + ej1 at rate �j+1zj+14s51

mx4s5 − ej + ej+11 at rate �4s518mx4s5∈Aj 9
1

(45)

and

mx4s5 →mx4s5 − eK + eK−11 at rate 18q4s5=09�KN0 (46)

Suppose I4z4s55= k for some k = 01 0 0 0 1K; then it is clear
that the states in S< = 8y ∈ Z̄K+1

+
2 yj > 0 for any j < k− 19

are transient for the Markov process, because the rates
�j+1zj+14s5= 0 for all j < k−1. The states in S< cannot be
accessible from the states out of S<, so the Markov process
is reducible. In fact, the probability that the Markov process
returns to any state in S< once having left it is 0. Suppose
max8k2 zk4s5 > 09= k∗ for some k∗ ¾ k; then the states in
S> = 8y ∈ Z̄K+1

+
2 yj > 0 for any j > k∗9 are also transient

because 18mx4s5∈Aj 9
= 0 for any j > k. It is also clear that

limt→� �4ejmx4s54t5 = � � ejmx4s5405 = x5 = 1 for any ini-
tial state x and k ¶ j ¶ k∗. Therefore, the only interesting
component is the kth component, i.e., ek−1mx4s5. Let �< be
the first time the Markov process exits S<; then the compo-
nent ek−1mx4s5 evolves as a birth–death process with birth
rate �kzk4s5 and death rate �4s5. Denote by �� the steady-
state probability of the Markov process mx4s5. We are only
concerned with calculating ��4mx4s5 ∈ Aj5 for 0 ¶ j ¶ K

for the purposes of this discussion. So, essentially we only
need to focus on the evolution of the kth and the 4k+ 15th
components of mx4s5. Because ek−1mx4s5 is a birth–death
process, the stationary distribution of mx4s5 satisfies

��4mx4s5 ∈Aj5= 01 j < k− 11 (47)

��4mx4s5 ∈Ak−15=
�kzk4s5

�4s5
∧ 10 (48)

Because the 4k+ 15th component of mx4s5 is defined to be
infinity, we have

��4mx4s5 ∈Ak5=

(

1 −
�kzk4s5

�4s5

)+

1 (49)

��4mx4s5 ∈Aj5 = 01 j > k+ 10 (50)

The following lemma helps to connect the above-defined
Markov process with the probability �s in Lemma 2.

Lemma 3. If I4z4s55 = k for some 0 ¶ k¶K, then for all
bounded function g2 ZK+1

+
→�,

∫

�̄K+1

{k∧4K−15
∑

j=0

6g4y− ej + ej+15− g4y5718y∈Aj 9
�4s5

+

K
∑

j=k

6g4y− ej + ej−15− g4y5718q4s5=09�jzj4s5

}

·�s 4dy5= 01 (51)

where �s is defined in Lemma 2.
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With the above preparation, we are now ready to present
the proof of the main result.

Proof of Theorem 2. It now remains to show that the limit
44z1 q51 �5 satisfies the ODE (18). According to (39)–(42),
and (44), we need only show that

�s4Ak5= fk4z4s51�4s551 (52)

where fk4z4s51�4s55 is defined as in (16). Suppose that
I4z4s55 = 0, then the Markov process degenerates to
e0mx4s5 = �. Therefore, ��4mx4s5 ∈A05= 1, which is con-
sistent with (16). Suppose I4z4s55 = k for some 1 ¶ k ¶
K − 1, then q4s5 = 0. According to (51) with 18q4s5=09

being just 1, it follows in Ethier and Kurtz (1986, Propo-
sition 4.9.2) that �s is the stationary distribution for the
Markov process mx4s5. Then (52) follows from (47)–(50).
Suppose I4z4s55=K; then there are two cases. The first
is the case where q4s5 = 0. In this case, the situation is
the same as that discussed above. The second case, where
q4s5 > 0, is actually quite easy. According to (45) and (46),
the rate mx4s5 → mx4s5 − ej+1 + ej is 0 for all 0 ¶ j < K.
Therefore, all the states in 8y ∈ Z̄K+1

+
2 yj > 0 for any j <

K9 are transient. It is clear in this case that �s4Ak5= 0 for
all k < K; thus, �s4AK5 = 1. Plugging �s into (39)–(42)
and separating the expressions into the two cases, depend-
ing on whether or not q4s5 > 0, yields the ODEs (19)–(21)
or (23)–(24), respectively.

4. Asymptotic Optimal Staffing and
Control Policies

4.1. An Asymptotically Optimal Policy When the
Planning Horizon Is Finite

Let us first develop a connection between the asymptotic
optimization problem proposed in §2.3 and the fluid model.
Let 4z1 q5 denote the solution to the fluid model charac-
terized by ODE (18). Due to the tractability of the deter-
ministic process 4z1 q5, what can be done in general is to
numerically solve the optimization problem:

minimize CT 4N 1K5

subject to N > 01 K ∈�0
(53)

Under additional assumptions, we will show later that there
are closed-form solutions when we consider the infinite-
horizon 4T → �5 problem. Let 4N∗1K∗5 be an optimal
solution to (53). Because the fluid model serves as a reason-
able approximation for this complicated system, one would
expect that the optimal solution based on the fluid model
might suggest an asymptotically optimal solution for the
stochastic problem.

Theorem 3. If N̄ n
∗

→ N∗ as n → �, then the sequence of
staffing level 8N̄ n

∗
9 and the control threshold K∗ are asymp-

totically optimal.

Proof. Pick any sequence of staffing levels N̄ n and a con-
trol threshold K. For any convergent subsequence 8N̄ nl9,
suppose that N̄ nl → Ns as nl → �. It follows from Corol-
lary 2 and optimization problem (53) that

lim
nl→�

C̄
nl
T 4N̄

nl 1K5=CT 4Ns1K5

¾CT 4N∗1K∗5= lim
n→�

C̄n
T 4N̄

n
∗
1K∗50

Because the above inequality holds for any convergent sub-
sequence of 8N̄ n9 and any control level K, the sequence
8N̄ n

∗
9 and K∗ satisfy the definition of asymptotic optimality

in Definition 1.

Theorem 3 prescribes a numerical approach to asymptot-
ically solve the joint staffing and control problem for man-
aging an IM-based service center. Due to the time-varying
arrival rate and the complexity of the underlying model, the
objective function in (53), which involves the solution to
a set of ODEs, is extremely complicated. Nevertheless, the
solution to the ODEs are tractable in the sense that opti-
mization problem (53) can be solved numerically. The solu-
tion we provide is particularly helpful when the arrival rate
varies and staffing cannot be adjusted as quickly. We illus-
trate through a numerical example in §5.3 that is contrary
to the common sense, it is not always optimal to set the
control threshold to be the level where agents achieve the
greatest efficiency.

4.2. An Asymptotically Optimal Policy
When the Planning Horizon Is Infinite

Consider now the stationary case where the arrival rate
�4 · 5 is constant. In this case, the outcome of interest is
the long-run average cost over an infinite-time horizon, i.e.,
limT→� C̄n

T 4N̄
n1K5. An additional assumption in this case

is the monotonicity of the state-dependent service rate,

0 <�1 <�2 < · · · 0 (54)

Interested readers are referred to Tezcan (2011) for the
supporting logic of this assumption. Mathematically, the
sequence 8�k9 is allowed to increase to infinity or to be
bounded. For stability reasons, we must also require that

N >�/ sup
k

�k0 (55)

As a consequence of (54) and (55), there exist some k′

such that

�k′N ¶ �< �k′+1N0 (56)

Define z̃4N 5 to be the point where

z̃k4N 5=



















































01 k < k′1

�k′+1N −�

�k′+1 −�k′

1 k = k′1

�−�k′N

�k′+1 −�k′

1 k = k′ + 11

01 k > k′ + 10

(57)
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Proposition 1. Assume that �4t5≡ � and (54)–(55) hold.
For any control threshold K > k′, the point 4z̃4N 5105
with z̃4N 5 defined by (57) is an invariant point of the
fluid model. For any fluid model solution 4z1 q5 with
4z4051 q4055 ∈�,

4z4t51 q4t55→ 4z̃4N 51051 as t → �0

The proof of this proposition is available in the e-com-
panion, §EC1. Based on this proposition, it is easy to see
that the fluid cost

lim
T→�

CT 4N 1K5→ cN +h4z̃4N 5105 4

=C4N50 (58)

Let N∗ denote an optimal solution to the problem

minimize C4N5

subject to N > 00
(59)

Theorem 4. If N̄ n
∗

→ N∗ as n → �, then the sequence of
staffing level 8N̄ n

∗
9 and any control threshold K∗ > k′ are

asymptotically optimal for the long-run average cost on
infinite time horizon.

Proof. The proof of this result is similar to the one
for Theorem 3 in invoking Corollary 2 and checking the
requirement of asymptotic optimality in Definition 1. In
addition, the result of Proposition 1 is also needed, due to
the infinite horizon.

For staffing levels N̄ n and control threshold K, let
8N̄ nl9 be a convergent subsequence such that N̄ nl →Ns as
nl → �. By Corollary 2 and optimization problem (59),

lim
T→�

lim
nl→�

C̄
nl
T 4N̄

nl 1K5= lim
T→�

CT 4Ns1K5

=C4Ns5¾C4N∗5

= lim
T→�

CT 4N∗1K∗5

= lim
T→�

lim
n→�

C̄n
T 4N̄

n
∗
1K∗50

Because the above inequality holds for any convergent sub-
sequence of 8N̄ n9 and any control level K, the sequence
8N̄ n

∗
9 and K∗ satisfy the definition of asymptotic optimality

in Definition 1.

The optimization problem (59) in some cases can be
solved explicitly. For example, when the holding cost is
a linear function h4z105 = h

∑K
k=0 kzk where h is a pos-

itive constant. In this case, the objective function (59)
is a piecewise-linear function in N . For each interval,
4�/�k+11�/�k7, C4N5 takes a linear form. Because the
optimal value for a linear programming always occurs at
the boundary, optimization problem (59) becomes

minimize �c
1
�k

+�h
k

�k

subject to k ∈ 81121 0 0 0 1K90

(60)

Then the optimal level where all agents should be is simply
k′ = arg mink4�/�k54c + hk5, and the best staffing level is
N ∗ = �/�k′ . A numerical example will be presented in §5.4.
We just point out here that despite the monotonicity of �i,
the graph of function C4N5 (e.g., Figure 7(a)) may still
zigzag quite irregularly, rather than being convex as the
total cost function does in many ostensibly similar applica-
tions. It is thus quite important to quantitatively calculate
which level is best and choose the appropriate staffing to
reach that level. We also demonstrate a numerical example
in §5.4 where the holding-cost function h is not linear. It is
interesting to see that in this case, the steady state of the
system may be somewhere between two levels rather than
focusing on one level.

5. Numerical Experiments
In this section, we present some of the numerical experi-
ments we have carried out on the IM-based service center
model. The main purpose is to confirm our understanding
of how the stochastic process works, and test the approx-
imations obtained from the asymptotic analysis. We also
illustrate through some examples the importance of using
quantitative insights to guide the design and operation of
such service centers.

5.1. Validity of the Transient Approximation

In order to demonstrate the fluid approximation, we sim-
ulate a system with number of agents N 200 = 200. Each
agent can serve at most K = 4 customers, and the service
rate � = 411106110812025. Because time-varying arrivals
are allowed in the analysis, we set the arrival rate to be
�2004t5= 200�4t5, where �4t5= 2+1 sin4t5. Figure 3 gives
an overview of the system’s evolution with time. The upper
graph depicts an aggregation of 30 simulated sample paths,
and the lower graph draws the trajectory of the fluid model
obtained by solving the ODE (18). Thirty sample paths are
aggregated to reduce the stochastic fluctuation, which the
fluid model cannot capture. To obtain a better idea how
close the fluid approximation is, the fluid model solution
and the aggregate of 30 simulated sample paths are overlaid
in Figure 4. Systems of three different sizes N n = n, n =

5011001200 are simulated. The corresponding arrival rates
are scaled accordingly: �n4t5 = n�4t5, n = 5011001200.
For comparison purposes, the fluid-scaled sample paths,
i.e., n−1Zn4t5 and n−1Qn4t5, are plotted. To save space,
only level 2 and queue are shown in the figure; the com-
parisons for the other levels are similar. The approximation
becomes more accurate for larger systems.

5.2. Validity of the Steady-State Approximation

In this section, we study the approximation for the steady
state of the system using the invariant state of the fluid
model in Proposition 1. Consider an example where K = 6
with the service rate � = 41110611081202120312045. Choose
the system size to be N 200 = 200 with the arrival rate fixed
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Figure 3. Simulated stochastic model and the fluid model.
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to be a constant �n = 390. Figure 5 depicts the aggre-
gate of 30 simulated sample paths over a relatively long
time horizon. It shows that the system “stabilizes” in the
state where about 62�5% of the agents are in level 3 and
the rest in level 4. With this set of parameters, we can
easily calculate by (57) that the invariant point is z̃ =

�0�0�0�5/8�3/8�0�0� and q̃ = 0.
It is worth pointing out that the approximation using

the fluid invariant performs well not only for systems with
exponential service times, but also for systems with general
service times. We simulate the system with three different

Figure 4. Comparisons of the simulated stochastic model and the fluid model for systems of different sizes.
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service-time distributions—exponential(1), Erlang(2, 0.5)
and log-normal (1, 4)—which all have mean 1. The con-
trol threshold is set at K = 6, with service rate � =

�1�1�6�1�8�2�2�2�3�2�4�. The system size is N 200 = 200,
and the arrival rate is �200 = 390. We ran simulation
experiments for 16 independent replications with the three
service-time distributions over a relatively long time hori-
zon �0�104�. Table 1 reports both the estimates and the 95%
confidence intervals. The “Approximation” column is cal-
culated based on the invariant state (57) for the fluid model,
with sojourn time being calculated via Little’s law.
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Figure 5. Simulated long-term behaviors of the stochastic model and the fluid model.
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5.3. Optimal Staffing and Control with
Time-Varying Arrivals on a Finite Horizon

Consider now a staffing and control problem with time-
varying arrivals. Assume that the service rate � = �2�0� 3.0,
2.7, 3�2�. Thus, the most efficient level is level 4, where an
agent achieves maximum service speed. However, it may
not always be optimal to set the control threshold at 4, as
demonstrated in the following numerical study. In fact, one
can use the fluid approximation and Theorem 3 to serve as
a quantitative guide.

We now illustrate the usefulness of the quantitative
insights through a concrete example. Suppose the service
center needs to cater for the time-varying demand depicted
in Figure 6(a). We use a scaled log-normal density function,
��t� = 2�5 + 0�76�0�02t

√
2��−1 exp�−�1/2� log2�0�02t��,

to mimic the unimodal shape of the arrival rate over a plan-
ning horizon of length 100. Assume that the holding-cost
function is h�z� q�= 1× �

∑

k kzk + q� (in other words, the
holding cost is linear and the rate is equal to 1) and the

Table 1. Comparison of fluid approximations with
simulation estimates of steady-state perfor-
mance measures with general service-time
distribution.

Performance Exponential Erlang-2 LN�1�4� Approximation

Level 0 0�0004 0�0003 0�0005 0
±0�0008 ±0�0007 ±0�0010 —

Level 1 0�0088 0�0084 0�0102 0
±0�0032 ±0�0024 ±0�0059 —

Level 2 1�7325 1�7174 1�7553 0
±0�0201 ±0�0154 ±0�0310 —

Level 3 122�2821 122�2991 122�3772 125
±0�3716 ±0�2532 ±0�4488 —

Level 4 75�9753 75�9740 75�8561 75
±0�3837 ±0�2649 ±0�4683 —

Level 5 0�0010 0�0006 0�0007 0
±0�0007 ±0�0003 ±0�0006 —

Level 6 0 0 0 0
Sojourn time 1�7287 1�7287 1�7283 1.7308

±0�0007 ±0�0004 ±0�0011 —

Figure 6. The arrival rate, and the fluid cost associated
with different control thresholds and number
of agents.
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Table 2. Comparison between the expected cost and the
fluid cost.

Staffing and Fluid Expected
control cost cost 95% C.I.

A (Nn = 196�K = 2) 4�112�4 4�129�4 �4�112�6�4�146�1�
B (Nn = 196�K = 4) 4�310�1 4�270�2 �4�252�9�4�287�5�
C (Nn = 183�K = 4) 4�152�1 4�146�6 �4�131�0�4�162�1�

staffing cost is c = 19. We plot the “fluid” cost for differ-
ent control thresholds K = 2�3�4 in Figure 6(b). Clearly,
the cost varies depending on the control threshold. For dif-
ferent Ks, the minimum occurs at different staffing levels.
For K = 4, the minimum occurs at N = 0�915. However,
the minimum for K = 2 occurs at N = 0�98. In this exam-
ple, the optimal solution for problem (53) is �N∗�K∗� =
�0�98�2�, which corresponds to point A on the graph. This
emphasizes the importance of making a joint decision.
Even if a service center chooses the correct staffing level,
but the wrong control threshold (e.g., K = 4), then it will
experience a significantly higher cost at point B. Similarly,
if a corrected threshold is chosen (K = 2 in this example),
a wrong staffing decision would make the cost at some
other points on the red dotted line, which is higher than
the optimal.

To illustrate how the optimal solution based on the fluid
model helps with design and control, we simulate a stochas-
tic system of scale n = 200. In other words, the system
is fed with a nonhomogeneous Poisson process with rate
n��t�. The staffing level corresponding to A and B in Fig-
ure 6 is Nn = 200 × 0�98 = 196 and that for C is Nn =

200×0�915 = 183. Table 2 summarizes the predicted costs
based on the fluid model for different joint decisions A� B,
and C on the graph, and compares them with simulations
of the corresponding stochastic systems. Notice that choos-
ing the correct staffing level but wrong control threshold
(point B) would incur 3�4% more expected cost compared
with the optimal choice (point A), quite consistent with the
4�8% increase predicted by the fluid cost. It is worth point-
ing out that this example also demonstrates that it may not
always be optimal to set the control threshold at the most
efficient level, i.e., where �k achieves its maximum.

5.4. Optimal Staffing and Control with
Constant Arrivals on an Infinite Horizon

To illustrate the model for the case of a linear holding
cost, set the arrival rate �= 1, the staffing cost c = 2, and
the holding-cost function to be h�z� q�= 1× �

∑

k kzk + q�.
Assume the service rate � = �1�1�6�1�9�2�3�2�6�2�8�, and
the control threshold is set at K = 6. The fluid cost
calculated using (58) is plotted in Figure 7(a) indicated by
the dotted line.

To illustrate the case of nonlinear holding cost, set the
arrival rate to be �= 1, the staffing cost rate to be c= 10,
and the holding-cost function to be h�z� q�= �

∑

k kzk + q�2.

Figure 7. Total cost function with linear and quadratic
holding-cost functions.
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The service rate is assumed to be � = �1�1�8�2�1�2�2�
2�5�2�7�, and the control threshold is set at K = 6. Fig-
ure 7(b) plots the corresponding fluid cost.

In both examples, we also plot the expected cost esti-
mated via simulation for systems of different scales n =

50�100�200. Both graphs show that the fluid approxima-
tion is suitable for staffing purposes, because the expected
costs of the stochastic systems dips and peaks with the
corresponding fluid cost. However, at some staffing levels,
the approximation is not close enough to obtain an accu-
rate performance evaluation, which is beyond the aim of
this paper. For a more accurate performance evaluation,
in particular for the turning points (where all agents are
expected to be in the same level), more refined approxima-
tions such as a diffusion approximation are required.

It is also important to point out that the simulated cost
functions exhibit “flat bottom” in both examples. This
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suggests that the choice of staffing level can be quite robust.
A relatively wide range of choices of the staffing level gives
similar costs that are close to the optimum.

6. Conclusions and Future Work
In this paper, we study a new type of service centers where
agents communicate with customers via instant messaging.
A distinctive feature is that each agent can serve multiple
customers simultaneously. This makes modeling and anal-
ysis more challenging than for traditional call centers. This
study has shown that such a service center can be modeled
as a pool of many homogeneous servers, each operating
under the processor-sharing protocol. The number of cus-
tomers an agent can serve at one time is limited, and the
threshold is determined by a control policy. We provide
an asymptotic analysis for the underlying process in the
many-server heavy-traffic regime, which is widely used to
study call centers. We obtain an approximation by using the
stochastic averaging principle in the heavy-traffic analysis.
The approximation helps to characterize the complicated
queueing model using an ODE. Because the solution to the
ODE is tractable, the approximation can then be applied to
solve staffing and control problems. Our numerical experi-
ments confirm that the approximation is reasonably good in
both transient and steady-state studies. We also demonstrate
via a few numerical examples how to use the approximation
to guide the staffing and control of such service centers.

These results suggest quite a few interesting directions
for future study. First, this study considers only a simple
control policy that assigns arrivals to one of the agents
with the lightest load. In fact, Tezcan (2011) has studied
a more complicated control policy that skips some “ineffi-
cient” levels. Certainly, there are many interesting problems
in the routing of arriving customers. Second, abandonment
also happens in such service centers due to the impatient
nature of human beings. Slow response from an agent han-
dling too many customers may make a customer abandon
during service. It would be interesting to allow a customer’s
abandonment rate to depend on the number of other cus-
tomers being served by the same agent. Third, in this
study we have assumed that service times are exponentially
distributed, which facilitated the analysis. Future research
might fruitfully apply the framework of measure-valued
process to study the model with generally distributed ser-
vice times. And finally, this study is limited to the fluid
approximation, which relies on the insights of the func-
tional law of large numbers. The functional central limit
theorem might be applied to obtain a more refined approx-
imation to the underlying stochastic processes.
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Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.1120.1151.
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