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Abstract
We study a multiclass many-server queueing system with renewal arrivals and gener-
ally distributed service and patience times under a nonpreemptive allocation policy.
The status of the system is described by a pair of measure-valued processes to track
the residual service and patience times of customers in each class. We establish fluid
approximations and study the long-term behavior of the fluid model. The equilibrium
state of the fluid model leads to a nonlinear program, which enables us to identify a
lower bound for the long-run expected total holding and abandonment costs and design
an allocation policy to achieve this lower bound. The optimality of the proposed policy
is also demonstrated via numerical experiments.

Keywords Multiclass queue · Customer abandonment · Fluid limits ·
Measure-valued processes

1 Introduction

Multiclass many-server queueing models have been extensively used to model service
systems such as telephone call centers, e.g., Mandelbaum et al. (1998), Mandelbaum
andStolyar (2004). This paper considers such amodelwhere I classes of customers are
served by a pool of many homogeneous servers. Customers of class i arrives according
to a renewal process with rate λi , for i = 1, . . . , I . Each class has its own queue with
infinite capacity to keep customers who cannot be served immediately upon arrival.
Customers within each class are served based on the first-come-first-served (FCFS)
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discipline. Each class-i customer abandons the system once the waiting time exceeds
his patience time, which is modeled using a random variable following a general
distribution Fi . Customers will not abandon once service has started. Service times of
class-i customers follow distribution Gi with mean 1/μi .

In such a multiclass queueing model, deciding which class to serve when a server
becomes available is a stochastic control problem. The objective is to minimize the
long-run average holding cost, ci per unit time for a class-i customer waiting in the
queue, plus penalty cost, γi for each abandoned class-i customer.We study the stochas-
tic control problem in the many-server heavy-traffic regime, where the arrival rate of
each class and the number of servers tend to infinity proportionally. In the Markovian
case both Gi and Fi are exponential distributions with rates μi and θi , respectively.
Atar et al. (2010, 2011) showed that a priority policy, referred to as the cμ/θ rule,
is asymptotically optimal in the many-server heavy-traffic regime. The cμ/θ rule is
a priority policy that assigns priority to classes according to the value ciμi/θi (the
higher the value, the higher the priority). A customer can start service only when there
is no higher priority class customers waiting in the queue. Recently, Atar et al. (2014)
established fluid limits for many-server systems with abandonment under a priority
policy. Their work extended the optimality of the cμ/θ rule to a more general setting
which allows renewal arrivals and general service time distributions. But it remains
an open problem whether the cμ/θ rule is asymptotically optimal when the patience
time distributions are general. If it is not, can we identify an asymptotically optimal
policy?

A challenge caused by the general patience time distributions is that the queue
length and abandonment count do not exhibit a simple linear relationship. In fact, the
above described cμ/θ rule only accounts for the holding cost of queues. To incorporate
abandonment penalty, the cost coefficient ci simply needs to be modified to (ci +θiγi )

thanks to the simple linear relationship (seeAtar et al. 2010 for details). In other words,
the total holding and abandonment costs can be expressed solely as a queue-length
cost. Also when the patience time distributions are general, it is not necessary for them
to have a finite mean. When the means are infinite, i.e., θi ’s are 0, one cannot identify
a priority from the cμ/θ rule. We demonstrate via numerical examples in Sect. 4.2.3
that the cμ/θ rule (when θi ’s are non-zero) may not always be optimal. We propose
a virtual allocation policy and show that it is asymptotically optimal when patience
times have decreasing hazard rates.

Our proposed policy virtually allocates a fraction zi of the servers to class i in the
sense that servers allocated to class i will always try to find a class-i customer to serve.
Only when there are no class-i customers waiting in the queue will they serve other
classes of customers.We characterize the system dynamics under the virtual allocation
policy and establish the fluid limit in the many-server heavy-traffic regime. We then
show that the fluid limit converges to an equilibrium state as time goes to infinity.

The equilibrium state leads to a nonlinear optimization problem whose solution
provides an asymptotic lower bound for achievable cost under any policy. The nonlin-
ear part of the optimization results from the generality of the patience time distribution.
It is not necessary for patience times to have decreasing hazard rates for the heavy-
traffic analysis of the stochastic processes or the convergence of the fluid limit to the
equilibrium. However, it becomes necessary if we want to establish the lower bound

123



Virtual allocation policies for many-server queues with… 401

on achievable performance. One reason is that we restrict our policies in the FCFS
class, which is shown by Bassamboo and Randhawa (2013) to be suboptimal even in
the single-class setting. Another reason is that when the patience time distribution is
general, it is possible for a dynamic policy to do better as our virtual allocation is still
a static policy [e.g., see Kim and Ward (2013) for dynamic policies of a multiclass
system with only a single server].

1.1 Related literature

Our work relates to the growing literature on optimal control of multiclass queue-
ing systems with many servers. Effective control policies have been devised through
asymptotic analysis of the underlying stochastic processes in the heavy-traffic regime
(see Mandelbaum et al. 1998; Whitt 2004). Focusing on diffusion approximations
in the quality-and-efficiency-driven regime proposed by Halfin and Whitt (1981),
Mandelbaum and Stolyar (2004) proved a generalized cμ rule is asymptotically opti-
mal with convex delay costs; Atar et al. (2004) and Atar (2005) studied dynamic
scheduling policies by formulating a Hamilton-Jacobi-Bellman equation based on the
heavy-traffic limits; Dai and Tezcan (2008) developed robust control policies to min-
imize the sum of holding and reneging costs; Gurvich and Whitt (2009) proposed
queue-and-idleness-ratio rules to solve staffing and control problems. Such asymp-
totic analysis has also been popular in studying systems with a single server in the
conventional heavy-traffic regime. van Mieghem (1995) proposed the generalized cμ
and proved its optimality. Harrison and López (1999) explicitly solved a dynamic con-
trol problem in the multiclass multi-server setting. Recently, Kim and Ward (2013)
and Ata and Tongarlak (2013) considered dynamic index policies by solving Bellman
equations based on the heavy-traffic limits.

It turns out that fluid models are useful in studying many-server queues particularly
in the overloaded regime. Bassamboo et al. (2006) proposed joint staffing and control
for a parallel server system with time-varying arrival rates based on fluid approxi-
mations. Perry and Whitt (2011) developed fluid approximations for threshold-based
control policies to respond to unexpected overloads. A fluid model for many-server
queues with generally distributed service and patience times was proposed by Whitt
(2006), where approximation formulae for various performances were constructed
based on the equilibrium state of the fluid model and simulations showed that the
formulae are quite accurate. It has been rigorously proved in Bassamboo and Rand-
hawa (2010) that the gap of fluid approximation remains bounded as the system size
increases to infinity in the heavy-traffic regime.

The fluid model of Whitt (2006) was proved to be the fluid limit by Kang and
Ramanan (2010) and Zhang (2013) using measure-valued processes. Liu and Whitt
(2012a, b) extended the two-parameter fluid model to allow time-varying arrival rate
and staffing. These fluid models have been shown to be uniquely determined by the
same one-dimensional convolution equation in Long and Zhang (2019). Kang and
Ramanan (2010) modeled the status of the system by keeping track of the “age” (the
amount of time a customer has been in queue or in service) following Kaspi and
Ramanan (2011) on many-server queues without abandonment. Recently, Atar et al.
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(2014) developed a nice Skorohod map to extend Kang and Ramanan (2010) to the
multiclass setting under priority policies. Moreover, Atar et al. (2014) showed that the
cμ/θ rule is asymptotically optimal in the case where patience time distributions are
exponential, extending the optimality proved in the Markovian setting by Atar et al.
(2010, 2011) to allow renewal arrivals and general service times. We aim to relax the
assumption on exponential patience times by taking an alternative approach in Zhang
(2013), which modeled the status of the system by tracking each customer’s “residual
life” (the remaining service and patience times). Using this alternative approach, Long
and Zhang (2014) showed that the fluid model converges to the equilibrium state as
time goes to infinity. The present work extends the heavy-traffic fluid analysis to the
multiclass setting under the above mentioned virtual allocation policy.

1.2 Contributions

The main contributions of this paper can be summarized as follows.

• We use measure-valued processes and the corresponding measure-valued fluid
models to analyze a multiclass G/GI/n + GI queuing system by tracking each
customer’s “residual life” (the remaining service and patience times). Note that
Atar et al. (2014) studied the same system under priority policies by tracking
each customer’s “age” (the amount of time a customer has been in queue or in
service). Thus this paper provides an alternative approach to study the multiclass
G/GI/n + GI queue.

• When the multiclass many-server queue is underloaded, i.e.,
∑I

i=1 λi/μi < 1, we
prove in Theorem 2 that any non-idling policy is asymptotically optimal for any
general service and patience time distributions.

• When the multiclass many-server queue is critically loaded or overloaded, i.e.,∑I
i=1 λi/μi ≥ 1, we show in Theorem 3 that the virtual allocation policy is

asymptotically optimal for any general patience time distributions but requiring
the renewal functions of the service time distributions are either convex or concave.
We also demonstrate the effectiveness of our policy through various numerical
experiments in Sect. 4.

• This paper also expends our understanding on the convergence to equilibriumstates
for fluid models of many-server queues with general service and patience time
distributions. Even for the single-class G/GI/n + GI fluid model, this remains
an open problem [see Theorem 2 in Long and Zhang (2014), where an additional
assumption on the initial state of the server pool is needed for critically loaded and
overloaded systems].

• For underloaded systems,weprove the convergence of thefluidmodel ofmulticlass
many-server queues under any fluid non-idling policy for any general service and
patience time distributions in Theorem 4.

• For critically loaded and overloaded systems, we relax the initial condition (3.7) in
our previous work Long and Zhang (2014) to be the more general initial condition
(50).We also prove in Theorem5 the convergence of the fluidmodel under the fluid
virtual allocation policy benefiting from the assumption of convexity or concavity
of the renewal functions of the service time distributions. Our proposed policy
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adapts automatically to the change of the allocation of the server pool due to the
general setting of the initial state of the server pool in this paper. For example, as a
result of the varities of the arrival rates in different time periods, the allocation of
the server pool changes accordingly. Starting from the new allocation of the server
pool, this paper ensures that the fluidmodel can still converge to equilibrium states.
However, this cannot be guaranteed by the result in Long and Zhang (2014).

The rest of this paper is organized as follows.We introduce the control problem and
the asymptotic framework as well as the stochastic and fluid models in Sect. 2, where
we also show that the fluid-scaled stochastic processes converge to the fluid model in
the heavy-traffic regime. In Sect. 3, a nonlinear program associated with equilibrium
states of fluid models is proposed. Its solution is shown to be a lower bound for the
long-run expected holding and abandonment costs for any control policy. Section 4
proposes control policies that can achieve the lower bound. We also demonstrate the
effectiveness of our proposed virtual allocation policy using numerical experiments.
Section5provides analysis of thefluidmodels and shows that thefluidmodels converge
to equilibrium states. We state our conclusions in Sect. 6. “Appendix” contains some
auxiliary lemmas.

We conclude this section by introducing the notation and definitions that will be
used throughout this paper. For a, b ∈ R, write a+ for the positive part of a and a∧b for
the minimum. Denote by R the set of real numbers and R+ = [0,∞). For a sequence
of random elements {Xn}n∈N, taking values in a metric space, we write Xn ⇒ X to
denote the weak convergence of Xn to X . Let M denote the set of all non-negative
finite Borel measures on R. For ν1, ν2 ∈ M, the Prohorov metric is defined to be

d[ν1, ν2] = inf{ε > 0 : ν1(A) ≤ ν2(A
ε) + ε

and ν2(A) ≤ ν1(A
ε) + ε for all closed Borel set A ⊂ R}, (1)

where Aε = {b ∈ R : infa∈A |a−b| < ε}. This is the metric that induces the topology
of weak convergence of finite Borel measure (see Billingsley 1999). Similarly, letM+
denote the set of all non-negative finite Borel measures on (0,∞). To simplify the
notation, let us take the convention that for any Borel set A ⊂ R, ν(A∩ (−∞, 0]) = 0
for any ν ∈ M+. Also, by this convention, M+ is embedded as a subspace of M. We
consider the space D([0,∞),M) (D([0,∞),M+)) of all right-continuous M-valued
(M+-valued) functions with finite left limits defined on the infinite interval [0,∞). Let
D([0,∞),R) be the space of right-continuous functions with left limits, defined on
[0,∞) and taking real values. We equip these spaces with the Skorohod J1-topology
(see Ethier and Kurtz 1986).

2 Model and asymptotic framework

There is a single pool of n homogeneous servers serving I classes of customers (see
Fig. 1). To emphasize its dependence on the number of servers, we append a superscript
n to all the notations and refer to this system as the nth system. For i ∈ I :=
{1, 2, . . . , I }, let Xn

i (t) denote the total number of class-i customers in the nth system
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Fig. 1 The many-server queue with multiple customer classes

including Zn
i (t) customers being served in the server pool and Qn

i (t) customerswaiting
in the queue. Clearly, for all t ≥ 0,

∑

i∈I
Zn
i (t) ≤ n, (2)

Xn
i (t) = Qn

i (t) + Zn
i (t), i ∈ I . (3)

For each class i , there is an exogenous stream of arrivals denoted by En
i (·). Class-i

customers’ service times are i.i.d. random variables following distribution Gi . The
patience times of class-i customers are also i.i.d. random variables following distri-
bution Fi . Note that both Gi ’s and Fi ’s are independent of n. Assume the service
and patience times for all classes are mutually independent. We use An

i (t), L
n
i (t) and

Sni (t) to denote the cumulative number of class-i customers who have entered service,
abandoned queue and completed service by time t , respectively. The above processes
are related through the following balance equations, for all i ∈ I ,

Qn
i (t) = Qn

i (0) + En
i (t) − Ln

i (t) − An
i (t), (4)

Zn
i (t) = Zn

i (0) + An
i (t) − Sni (t). (5)

A control policy decides how each class of customer is scheduled into service, based
only on the observable information about the system status.We require that a customer
can enter service either upon a service completion or upon arrival to prevent routing
a batch of customers waiting in queue to the server pool. This means

∑

i∈I
An
i (s, t) ≤

∑

i∈I
En
i (s, t) +

∑

i∈I
Sni (s, t), 0 ≤ s ≤ t, (6)
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where An
i (s, t) := An

i (t) − An
i (s) is the number of class-i customers who enter

service during (s, t] and En
i (s, t), Sni (s, t) are defined in a similar way. Following the

discussion of Atar et al. (2010), a process

πn = (An
i , L

n
i , S

n
i , Xn

i , Q
n
i , Z

n
i )i∈I (7)

will be referred to as a control policy for the nth system, provided that (2)–(6) hold.
The policy need not satisfy any nonidling constraint. Denote by Πn the collection of
all control policies satisfying (2)–(6) for the nth system. We focus on how to route
different classes of customers assuming FCFS within each class. Readers are referred
to Bassamboo and Randhawa (2016) for a study of non-FCFS policies.

Cost structure For any i ∈ I , a holding cost ci ≥ 0 is incurred per unit time for each
class-i customer waiting in the queue. For each class-i customer who has abandoned
queue, there is a penalty cost γi ≥ 0. So the average cost over the planning horizon
[0, T ] under a control policy πn is

Cn
T (πn) = 1

T
E

⎡

⎣
∑

i∈I

∫ T

0
ci Q

n
i (t)dt +

∑

i∈I
γi L

n
i (T )

⎤

⎦ . (8)

And set

C̄n
T (πn) = 1

n
Cn
T (πn),

which means the cost function is “rescaled” as the parameter n changes. When the
patience time distributions are exponential, there is a simple relationship between
the abandonment count and queue length processes. So the above cost function can
be transformed into a cost function involving only the queue length process [see
Remark 2.1 in Atar et al. (2010)]. Since we allow more general patience time distri-
butions, we have to keep the abandonment process in the objective function, and deal
with the associated difficulty it brings to the analysis.

The main purpose of this paper is to find a sequence of control policies such that it
is asymptotically optimal among all the control policies.

Definition 1 A sequence of control policies {πn∗ : πn∗ ∈ Πn} is asymptotically optimal
if

lim sup
T→∞

lim sup
n→∞

C̄n
T (πn∗ ) ≤ lim inf

T→∞ lim inf
n→∞ C̄n

T (πn) for any πn ∈ Πn .

To analyze the stochastic processes underlying this model with general service
and patience times, focusing only on those introduced above does not suffice. In the
following section, we introduce the measure-valued modeling. Note that the measure-
valued modeling serves only the purpose of analysis. In reality, the control policy still
only depends on the head-count processes introduced above.
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2.1 Measure-valuedmodeling

Following Zhang (2013), we use a pair of measures
(
Rn

i (t),Z n
i (t)

)
, i ∈ I , to

describe the status of all customers in class i at time t . Specifically, Rn
i (t)(C) is the

number of class-i customers in the virtual buffer for class i with remaining patience
time in the Borel set C ⊂ R, andZ n

i (t)(C) is the number of class-i customers in ser-
vice with remaining service time in the Borel set C ⊂ R+. The virtual buffer holds all
arriving customers who have not yet been scheduled for service, regardless of whether
or not their patience times have expired. This means that in addition to customers
waiting in the queue, the virtual buffer also holds some of the customers who have
abandoned the system. So customers in the virtual buffer may have negative remaining
patience time. Using this modeling approach, the number of class-i customers in the
virtual buffer, in the physical buffer and in service can be determined as

Rn
i (t) = Rn

i (t)(R), Qn
i (t) = Rn

i (t)((0,∞)) and Zn
i (t) = Z n

i (t)((0,∞)), (9)

respectively. Initially, there are Rn
i (0) customers in the virtual buffer of class i . Index

them using l = −Rn
i (0) + 1, . . . , 0 according to their arrival time ani,l , which is

a negative number indicating how long the lth class-i customer had been there by
time 0. Similarly, index the Zn

i (0) class-i customers initially in service by l =
−Rn

i (0)−Zn
i (0)+1, . . . ,−Rn

i (0). Index arriving customers by l = 1, 2, 3, . . . , En
i (t),

according to the order of arrival within class i , with ani,l being the lth arrival time. Let
uni,l and vni,l be the patience and service times (remaining service times for l ≤ −Rn

i (0))
of the lth customer in class i , respectively. Define

Bn
i (t) = En

i (t) − Rn
i (t). (10)

It is clear that the index of the first (earliest arrived) class-i customer in the virtual
buffer at time t is Bn

i (t) + 1. Actually, this is because that at time t the index of the
last class-i customer in the virtual buffer is En

i (t) and the number of class-i customers
in the virtual buffer is Rn

i (t). Moreover, Bn
i (t) − Bn

i (s) can be viewed as the number
of customers who would have started service during time interval (s, t] had they been
infinitely patient. However, only some of them actually obtained service since others
have abandoned by the time they were scheduled to be served. Let τ ni,l denote the
time when the lth customer of class i can start service. Note that only if τ ni,l − ani,l
is less than the patience time uni,l , the lth customer will eventually be served. Let δx
denote the Dirac point measure for any x in R or R × R. For any Borel set C ⊂ R,
let C + x = {y + x : y ∈ C}. Denote Cx = (x,∞) for any x ∈ R. Using the
notations introduced above, we present measure-valued stochastic dynamic equations
for class-i customers in the virtual buffer and in service.

Rn
i (t)(C) =

En
i (t)∑

l=Bn
i (t)+1

δuni,l
(C + t − ani,l), C ⊂ R, (11)
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Z n
i (t)(C) =

−Rn
i (0)∑

l=−Rn
i (0)−Zn

i (0)+1

δvni,l
(C + t)

+
Bn
i (t)∑

l=−Rn
i (0)+1

δ(uni,l ,v
n
i,l )

(Cτ ni,l−ani,l
) × (C + t − τ ni,l), C ⊂ R+. (12)

Note that the cumulative number of class-i customers who have entered service by
time t can be written as

An
i (t) =

Bn
i (t)∑

l=−Rn
i (0)+1

δuni,l
(Cτ ni,l−ani,l

), (13)

which only counts those customers with index up to Bn
i (t), while the virtual buffer

includes customers from Bn
i (t) + 1 to En

i (t). Furthermore, the expressions of Ln
i (t)

and Sni (t) can be recovered from the balance Eqs. (4), (5) and (13).

2.2 Fluidmodel

We now introduce a fluid model for the system, which consists of a set of equations
analogous to that of the stochastic model. For each class i ∈ I , consider the fluid
content entering the buffer at a constant rate λi , i.e., Ēi (t) = λi t . For any t ≥ 0,
let R̄i (t)(Cx ) denote the amount of fluid content in the virtual buffer of class i with
remaining patience time larger than x ∈ R, and let Z̄i (t)(Cx ) denote the amount of
class-i fluid content in the server pool with remaining service time larger than x ∈ R+.
Similar to the stochastic model, the total amounts of class-i fluid content in the virtual
buffer, in the queue and in service are

R̄i (t) = R̄i (R), Q̄i (t) = R̄i (t)(C0) and Z̄i (t) = Z̄i (t)(C0). (14)

Let X̄i (t) denote the total amount of class-i fluid content in the system. Then for any
t ≥ 0,

∑

i∈I
Z̄i (t) ≤ 1, (15)

X̄i (t) = Q̄i (t) + Z̄i (t), i ∈ I . (16)

Similar to the stochastic model, we introduce

B̄i (t) = λi t − R̄i (t). (17)

We can think of d B̄i (s) as the rate at which the fluid content in the virtual buffer
is scheduled to receive service. Again, not all of it is actually served. In fact, for an
infinitesimal amount of fluid ready to start service at time s, it has been waiting for
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a period of R̄i (s)
λi

. So only a fraction Fc
i

(
R̄i (s)
λi

)
actually makes it to the server pool.

Thus the fluid process of how class-i customers enter the server pool is

Āi (t) =
∫ t

0
Fc
i

(
R̄i (s)

λi

)

d B̄i (s). (18)

Replacing the Dirac point measure and summation in the stochastic equations (11) and
(12) by the corresponding distribution function and integration, we have the following
fluid dynamic equations for the virtual buffer and server pool,

R̄i (t)(Cx ) = λi

∫ t

t− R̄i (t)
λi

Fc
i (x + t − s)ds, x ∈ R, (19)

Z̄i (t)(Cx ) = Z̄i (0)(Cx+t ) +
∫ t

0
Fc
i

(
R̄i (s)

λi

)

Gc
i (x + t − s)d B̄i (s), x ∈ R+,

(20)

where Z̄i (0)(Cx+t ) is the amount of class-i fluid initially in service with remaining
service time larger than x + t at time 0. Denote by L̄i (t) and S̄i (t) the amounts of
class-i fluid content that have abandoned queue and completed service by time t ,
respectively. We have the following balance equations for any i ∈ I :

Q̄i (t) = Q̄i (0) + λi t − L̄i (t) − Āi (t), (21)

Z̄i (t) = Z̄i (0) + Āi (t) − S̄i (t). (22)

Corresponding to (6), we have

∑

i∈I
Āi (s, t) ≤

∑

i∈I
Ēi (s, t) +

∑

i∈I
S̄i (s, t), 0 ≤ s ≤ t, (23)

where Āi (s, t) := Āi (t) − Āi (s) and Ēi (s, t), S̄i (s, t) are similarly defined.
Like the stochastic control policies introduced in (7), any fluid process

π̄ = ( Āi , L̄i , S̄i , X̄i , Q̄i , Z̄i )i∈I

will be referred to as a policy for the fluid model. Also, denote by Π̄ the collection
of all policies for the fluid model. For each π̄ ∈ Π̄ , we introduce the associated fluid
cost

C̄T (π̄) = 1

T

∑

i∈I

[∫ T

0
ci Q̄i (s)ds + γi L̄ i (T )

]

. (24)
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2.3 Fluid limits

We aim to asymptotically solve the control problem by considering a sequence of
such systems in the many-server heavy-traffic regime, where the size of the system
increases to infinity while an individual customer’s service and patience time distri-
butions remain fixed. Therefore, we make the following assumptions throughout this
paper.

Assumption 1 (On service and patience time distributions) For each class i ∈ I , the
service time distributionGi has a directly integrable density gi and a finite mean 1/μi ;
and the patience time distribution Fi is absolutely continuous and strictly increasing.

The study of asymptotic optimal control policy relies on the analysis of the fluid-
scaled process defined as for all i ∈ I

R̄n
i (t) = 1

n
Rn

i (t), Z̄ n
i (t) = 1

n
Z n

i (t),

for all t ≥ 0. The fluid-scaled process of the external arrival process is defined in the
same way, i.e.,

Ēn
i (t) = 1

n
En
i (t),

for all t ≥ 0.The same scaling also applies to all the other processes Rn
i , Bn

i , An
i , L

n
i , S

n
i ,

Xn
i , Q

n
i and Zn

i . The following assumption on the initial state and external arrival pro-
cess is required throughout the paper.

Assumption 2 (On initial state and arrival process) The fluid-scaled initial condition
satisfies that for all i ∈ I , as n → ∞,

(R̄n
i (0), Z̄ n

i (0)) ⇒ (R̄i (0), Z̄i (0)), (25)

E(Q̄n
i (0)) → Q̄i (0), (26)

where ⇒ denotes weak convergence in Skorohod-J1 topology and the pair of the
limiting initial measures (R̄i (0), Z̄i (0)) has no atoms. The external arrival process
satisfies that for all i ∈ I , as n → ∞,

E(Ēn
i (t)) → λi t, (27)

for all t ≥ 0.

The following theorem shows that fluid models can be used to approximate the
stochastic ones without specifying a specific family of policies. It also links the costs
of stochastic and fluid models.
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Theorem 1 Given Assumptions 1 and 2, for any sequence of policies {πn : πn ∈ Πn},
there exists a subsequence {πnk : πnk ∈ Πnk } along which we have for all i ∈ I as
k → ∞,

(R̄nk
i , Z̄ nk

i , R̄nk
i , B̄nk

i , Ānk
i , S̄nki , L̄nk

i , Q̄nk
i , Z̄ nk

i )

⇒ (R̄i , Z̄i , R̄i , B̄i , Āi , S̄i , L̄i , Q̄i , Z̄i ), (28)

C̄nk
T (πnk ) → C̄T (π̄), (29)

for some fluid policy π̄ and its associated fluid model satisfying (14)–(23).

Proof For all i ∈ I ,we establish the tightness of R̄n
i , Z̄ n

i , R̄n
i , B̄

n
i , Ān

i , S̄
n
i , L̄n

i , Q̄
n
i , Z̄

n
i

in Lemmas B.4 and B.5 . Then according to an extended version of the Skorohod
representation theorem [see Lemma C.1 of Zhang (2013)], we have that along any
convergent subsequence, almost surely, as k → ∞

(R̄nk
i , Z̄ nk

i , R̄nk
i , B̄nk

i , Ānk
i , S̄nki , L̄nk

i , Q̄nk
i , Z̄ nk

i )

→ (R̄i , Z̄i , R̄i , B̄i , Āi , S̄i , L̄i , Q̄i , Z̄i ), i ∈ I ,

for some R̄i ∈ D([0,∞),M), Z̄i ∈ D([0,∞),M+), R̄i , B̄i , Āi , S̄i , L̄i , Q̄i , Z̄i ∈
D([0,∞),R). It remains to verify that the above limit satisfies (14)–(23). The fluid
dynamic equations (14)–(17) and (21)–(23) can be verified by passing the correspond-
ing stochastic equations to the heavy-traffic limit. On the other hand, (19) and (20)
follow from exactly the same argument as Lemma 5.5 in Zhang (2013). Along with the
convergent subsequence and lettingC = Cx in (12), the fluid-scaled process of the last
term in (12) also converges to the last term in (20). The convergence is independent of
the choice of the service time distribution Gi . Thus, (18) follows by choosing proper
Gi , e.g., Gi (·) ≡ 0. Till now we have proven (28).

Now we start to prove (29). For any fixed T > 0, it suffices to prove that the two
convergent subsequences {Q̄nk

i } and {L̄nk
i } satisfy

E

(∫ T

0
Q̄nk

i (s)ds

)

→
∫ T

0
Q̄i (s)ds and E(L̄nk

i (T )) → L̄i (T ) as k → ∞.

(30)

It is straightforward to see that the weak convergence of the queue length processes
also implies

∫ T
0 Q̄nk (s)ds ⇒ ∫ T

0 Q̄i (s)ds as k → ∞. From the balance equation (4)
we see that

∫ T

0
Q̄n

i (s)ds ≤
∫ T

0
[Q̄n

i (0) + Ēn
i (s)]ds,

L̄n
i (T ) ≤ Q̄n

i (0) + Ēn
i (T ).
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According to (26) and (27), the right hand sides of the above inequalities are uniformly
integrable. Therefore

∫ T
0 Q̄nk (s)ds and L̄nk (T ) are also uniformly integrable. This

together with the fact that the fluid limit is deterministic yields (30). This proves (29).
�

3 A lower bound on performance

We first establish an asymptotic lower bound in Proposition 1. To present the lower
bound, we need to introduce two new functions and an optimization problem. For each
i ∈ I , let

Fi,d(x) =
∫ x

0
Fc
i (y)dy, (31)

Hi (x) =
{
Fc
i

(
F−1
i,d

(
x
λi

))
if 0 ≤ x < λi NFi ,

0 if x ≥ λi NFi ,
(32)

where NFi is the mean patience time, i.e., NFi = ∫ ∞
0 Fc

i (y)dy, which can be either
finite or infinite.

Consider the following optimization problem:

minimize
∑

i∈I
[ciqi + γi (λi − ziμi )]

subject to λi Hi (qi ) = ziμi ,
∑

i∈I
zi ≤ 1,

zi , qi ≥ 0.

(33)

Intuitively zi ’s can be understood as the amount of service resource that is assigned
to class-i customers in the long run. And qi ’s are the corresponding queue lengths.
First, note that zi ≤ λi/μi for all i since Hi ’s are continuous and decreasing. This
will be useful in proving Lemma 1 and Theorem 5. Second, because Hi (0) = 1, the
first constraint implies λi = ziμi if qi = 0, i.e., no abandonment. If qi > 0 then
the first constraint implies that λi ≥ ziμi since Hi is continuous and decreasing. So
λi − ziμi ≥ 0 is interpreted as the abandonment rate of class-i customers. Thus, the
objective is tominimize the unit time queue length and abandonment costs by choosing
appropriate qi ’s and zi ’s. Actually, qi and zi are mutually determined through the first
constraint. The second constraint states that zi ’s must be chosen so that the amount
of customers in service doesn’t exceed the fluid-scaled service capacity 1 (see (15)).
Denote by (q∗, z∗) an optimal solution to this optimization problem, and let V ∗ denote
the minimal value. Here, q∗ = (q∗

1 , q∗
2 , . . . , q∗

I ) and z
∗ = (z∗1, z∗2, . . . , z∗I ). In the case

where patience times are exponentially distributed, i.e., Fi (x) = 1 − exp(−θi x),
we have Hi (x) = 1 − θi

λi
x . Then the first constraint in (33) becomes λi = qiθi +

ziμi . So the optimization problem is equivalent to the one in Atar et al. (2010) (see
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(15) and Remark 2.1 there). We show that V ∗ serves as an asymptotic lower bound
of all achievable costs in Proposition 1 below. Since Fi is absolutely continuous, it
has a density function fi . Let the hazard rate function associated with patience time
distribution Fi be hi (x) = fi (x)

Fc
i (x) . We need to make the following assumption on the

hazard rate function.

Assumption 3 The hazard rate functions hi ’s of the patience time distributions are
non-increasing.

This assumption implies that Hi is convex. To see this, take the derivative of (32)

d

dx
Hi (x) = −

fi
(
F−1
i,d

(
x
λi

))

λi Fc
i

(
F−1
i,d

(
x
λi

)) = − 1

λi
hi

(

F−1
i,d

(
x

λi

))

, (34)

where the first equality is due to the fact that d
dx F

−1
i,d (x) = 1

Fc
i (F−1

i,d (x))
, which follows

from (31). Since F−1
i,d is non-decreasing, so is the derivative of Hi by Assumption 3.

The convexity of Hi is required in the proof of Proposition 1.
The reasonwe need the convexity of Hi is that wewant to show V ∗ is the asymptotic

optimal value among all possible policies. If we restrict the policies to those that
stabilize the system, i.e., those policies such that the long-term behavior of the system
becomes a feasible solution of (33), then the assumption is not needed. In Sect. 5,
we will show the long-term behavior the fluid models of the multiclass many-server
queueing systems under the policies proposed in Sect. 4.

There is an interesting connection with Bassamboo and Randhawa (2016), who
show that even in a single-class model, the FCFS discipline may not be optimal when
Assumption 3 fails. Analysis of non-FCFS policies is beyond the scope of this paper.
Interested readers may refer to Bassamboo and Randhawa (2016) for how to construct
possibly dynamic policies for more general hazard rate functions.

Proposition 1 Given Assumptions 1, 2 and 3, V ∗ is an asymptotic lower bound for
any sequence of policies {πn : πn ∈ Πn}, i.e.,

V ∗ ≤ lim inf
T→∞ lim inf

n→∞ C̄n
T (πn).

Proof To prove this result, it suffices to show that for any ε > 0, there exists T0 > 0
such that lim inf

n→∞ C̄n
T (πn) ≥ V ∗ − ε for all T > T0. It follows from Theorem 1 that

there exists a π̄ ∈ Π̄ such that lim inf
n→∞ C̄n

T (πn) = C̄T (π̄). So it remains to show that

C̄T (π̄) ≥ V ∗ − ε for any π̄ ∈ Π̄ (35)

through the analysis of the fluid model. For any policy π̄ ∈ Π̄ , let

q̄i = 1

T

∫ T

0
Q̄i (s)ds, z̄i = 1

T

∫ T

0
Z̄i (s)ds.
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By (21) and (22), for every i ∈ I , we have 1
T (X̄i (T ) − X̄i (0)) = λi − 1

T L̄i (T ) −
1
T S̄i (T ). Let

κi = 1

T
(X̄i (T ) − X̄i (0)) + 1

T
S̄i (T ) − z̄iμi = λi − z̄iμi − 1

T
L̄i (T ). (36)

By Lemma A.2, there exists a T1 > 0 such that for all T ≥ T1,

|κi | ≤ ε

2I
. (37)

By (55) and the mean value theorem, there exists a q̄ ′
i ≥ 0 such that

λi − 1

T
L̄i (T ) = λi

1

T

∫ T

0
Hi (Q̄i (s))ds = λi Hi (q̄

′
i ).

It then follows from the last equation of (36) that λi Hi (q̄ ′
i ) = z̄iμi + κi . So the pair

(q̄ ′
i , z̄i ) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

λi Hi (q̄ ′
i ) = z̄iμi + κi ,

∑

i∈I
z̄i ≤ 1,

z̄i , q̄ ′
i ≥ 0,

where κi satisfies (37). As a result of Lemma A.1 and the above constraints, there
exists a T2 such that for all T ≥ T2, we have

∑

i∈I
ci q̄

′
i + γi (λi − z̄iμi ) ≥ V ∗ − ε

2
. (38)

Since Hi (·) is convex under Assumption 3, we can apply Jensen’s inequality

Hi (q̄
′
i ) = 1

T

∫ T

0
Hi (Q̄i (s))ds ≥ Hi

(
1

T

∫ T

0
Q̄i (s)ds

)

= Hi (q̄i ).

Note that Hi (·) is decreasing, so the above inequality implies q̄i ≥ q̄ ′
i . This, together

with (36), (38) and the definition of C̄T (π̄) in (24), yields

C̄T (π̄) =
∑

i∈I
[ci q̄i + γi (λi − z̄iμi − κi )] ≥ V ∗ − ε

for all large T . This proves (35), thus the result follows. �
The connection established above between the optimal solution of the optimization

problem (33) and asymptotic performance provides clues for constructing an optimal
policy. In what follows, we construct policies to make the system evolve to a state
close to the optimal solution (q∗, z∗) and prove their asymptotic optimality.
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4 Control policies

Acontrol policy plays a key role in determining the dynamics of themodel. In fact, even
with the measure-valued description presented above, the dynamics of the queueing
system is still not fully decided without a policy. We now present our main results in
this paper to show how policies affect the asymptotic performance.

4.1 Non-idling policies

We present a result asserting the supplementary of all non-idling policies when the
system is asymptotically underloaded

∑
i∈I λi/μi < 1. Let Πn

N ⊂ Πn denote the
subset of policies such that the following non-idling constraint is satisfied at any time
t ≥ 0,

∑

i∈I
Qn

i (t)

⎛

⎝n −
∑

i∈I
Zn
i (t)

⎞

⎠ = 0. (39)

The non-idling constraint forbids the coexistence of queues (from any class) and
idle servers. The following result shows that for underloaded systems the optimal
performance can be achieved using any non-idling policy.

Theorem 2 Given Assumptions 1, 2 and
∑

i∈I λi/μi < 1, for any sequence of non-
idling policies {πn : πn ∈ Πn

N }, there will be

lim inf
T→∞ lim inf

n→∞ C̄n
T (πn) = lim sup

T→∞
lim sup
n→∞

C̄n
T (πn) = 0.

Proof It follows from Theorem 1 that for any sequence of non-idling policies {πn :
πn ∈ Πn

N } we can always choose a convergent subsequence as the supremum. There-
fore, there is a fluid policy π̄ ∈ Π̄ such that lim sup

n→∞
C̄n
T (πn) = C̄T (π̄). The non-idling

constraints (39) and (59) imply that the fluid limit π̄ is a non-idling control policy.
Thus, the theorem immediately follows from the results in Theorem 4 in Sect. 5.1. �

4.2 The virtual allocation policy

The more interesting case is where the system is critically loaded or overloaded, i.e.,∑
i∈I λi/μi ≥ 1. For the nth system, let zn = (zn1, . . . , z

n
I ) denote an allocation of

the n servers to I service groups. The number of servers allocated to group i is a
non-negative integer zni and

∑
i∈I zni = n. We assume that as n → ∞,

zni
n

→ zi for all i ∈ I , (40)

where zi ’s can be any non-negative numbers as long as
∑

i∈I zi = 1. Recall that
the system is (asymptotically) underloaded if

∑
i∈I λi/μi < 1, critically loaded if
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∑
i∈I λi/μi = 1, or overloaded if

∑
i∈I λi/μi > 1. By a slight abuse of terminol-

ogy, queue i (together with group i) is referred to be (asymptotically) underloaded if
λi/μi < zi , critically loaded if λi/μi = zi , or overloaded if λi/μi > zi .

To describe the control policy in detail, let An
i j (t) and Sni j (t) denote the cumulative

number of class-i customers who have been routed to a group- j server and those
who have completed service from a group- j server during the time interval (0, t],
respectively. Also, let Zn

i j (t) represent the number of class-i customers being served
by group- j servers at time t . Clearly, we have

Zn
i (t) =

∑

j∈I
Zn
i j (t), An

i (t) =
∑

j∈I
An
i j (t) and Sni (t) =

∑

j∈I
Sni j (t), (41)

and the balance equation for these head-count processes is

Zn
i j (t) = Zn

i j (0) + An
i j (t) − Sni j (t) (42)

for all i, j ∈ I . We index class-i customers who are routed to group- j servers
after time 0 by l = 1, 2, . . . , An

i j (t), and index the Zn
i j (0) class-i customers initially

being served by group- j servers using l = −Zn
i j (0) + 1, . . . , 0. Then, let vni j,l be the

(remaining) service time of the lth class-i customer routed to group- j servers for all
indices l and τ ni j,l be the time when the lth customer starts service for l ≥ 1. Using
these notations, the relations between Zn

i j (t) and An
i j (t) can be written as

Zn
i j (t) = Z n

i j (0)(Ct ) +
An
i j (t)∑

l=1

δvni j,l
(Ct−τ ni j,l

), (43)

whereZ n
i j (0)(Ct ) = ∑0

l=−Zn
i j (0)+1 δvni j,l

(Ct ). AndZ n
i (0) = ∑

j∈I Z n
i j (0). For con-

venience, we introduce

Zn
·,i (t) =

∑

j∈I
Zn
ji (t), An

·,i (t) =
∑

j∈I
An
ji (t) and Sn·,i (t) =

∑

j∈I
Snji (t), (44)

which represents the number of busy servers in group-i at time t , the number of
customers who have been routed to group-i servers by time t , and the number of
customers who have completed service from group-i servers by time t , respectively.

We now study the routing process An
ii (t), i ∈ I . Class-i customers are routed to

group-i servers in two cases: i) upon arrival of a class-i customer if there is an idle
group-i server; ii) upon service completion of any group-i server if there is a class-i
customer waiting in the queue. Hence,

An
ii (t) =

∫ t

0
1{Zn·,i (s−)<zni }dE

n
i (s) +

∫ t

0
1{Qn

i (s−)>0}dSn·,i (s). (45)

It remains to consider the process An
i j (t), i �= j . We should point out that the allo-

cation of the server pool in (40) allows queue i to be underloaded, critically loaded,
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or overloaded even if the whole system is overloaded. The process An
i j (t), i �= j , is

devised to satisfy the following two rules (see Sect. 4.2.1 for more intuitive explana-
tions).

• If queue i is underloaded or critically loaded, i.e.,λi/μi ≤ zi , thenwe allow group-
i servers to serve other types of customers but don’t allow class-i customers to be
served by other types of servers.

• If queue i is overloaded, i.e., λi/μi > zi , then we don’t allow group-i servers to
serve other types of customers but allow class-i customers to be served by other
types of servers.

Mathematically, let I1 = {i ∈ I : λi/μi > zi } and I2 = {i ∈ I : λi/μi ≤ zi }.
Then following the same idea as in (16) of Atar et al. (2014), we can see from the
above two rules that the process An

i j , i �= j , should satisfy

An
i j (t) =

{∫ t
0 1{Zn·,i (s)=zni , Qn

j (s)=0}d An
i j (s), when i ∈ I1 and j ∈ I2,

0, otherwise.
(46)

This relation imposes a necessary condition for a class-i customer, i ∈ S1, to be sent
to service group j , j ∈ S2, at time s. Namely, that at time s all servers in group i are
busy and no class- j customers are present in the queue.

In stead of (39), the non-idling constraint changes to be at any time t ≥ 0

Qn
i (t)(z

n
i − Zn

·,i (t)) = 0 for all i ∈ I (47)

and

Qn
i (t)(z

n
j − Zn

·, j (t)) = 0 for all i ∈ I1, j ∈ I2. (48)

Actually, the above two constraints correspond to (45) and (46). And now we do not
have the global non-idling constraint (39). Let Πn

vir ⊂ Πn be the subset of policies
such that (40)–(48) are also satisfied. Denote by πn

vir (z
n) ∈ Πn

vir the virtual allocation
policy with an allocation vector of the server pool being zn . As a special case of the
policy πn in (7), the virtual allocation policy πn

vir (z
n) can be expressed as

πn
vir (z

n) = (An
i j , L

n
i , S

n
i j , X

n
i , Q

n
i , Z

n
i j )i, j∈I . (49)

4.2.1 Intuitive explanation for our policy

In this subsection, we use numerical results to demonstrate that allowing proper cross
sharing may have a significant impact on the performance of multi-class many-server
queueing systems.

We consider an overloaded two-class many-server queue by setting I = 2 and
n = 100. Obviously, there is at least an overloaded subqueue. To this end, we let
μn = (1, 2) and zn = (20, 80). We fix λn1 = 120 such that queue 1 is always
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Table 1 Arrival rate and traffic
intensity of queue 2

System λn2 Queue 2

I 120 Underloaded

II 160 Critically loaded

III 200 Overloaded

(a) (b)

Fig. 2 The candidate routing networks of a two-class many-server queue under the virtual allocation policy

overloaded.We consider three systems with different values of λn2 presented in Table 1
such that queue 2 has all possible traffic intensities.

Customers’ patience time distributions are assumed to be Fi (x) = 1 − 1
x+1 for

i = 1, 2. We set the holding costs to be c = (2, 3) and the reneging penalties to
be γ = (0, 0). Assume that both inter-arrival and service times follow Erlang E2
distributions.

Since queue 1 is fixed to be overloaded in our setting, the two-class many-server
queue under the virtual allocation policy may reduce to an N -model [routing network
(a)] shown in Fig. 2a or a model with two parallel queues [routing network (b)] shown
in Fig. 2b depending on the traffic intensity of queue 2. In details, for Systems I and
II, the virtual allocation policy corresponds to routing network (a). And it corresponds
to routing network (b) for System III. For each value of λn2, we simulate the system
under the two routing networks and we run each simulation long enough by setting
T = 100. Therefore, we consider 6 systems in total. In Table 2, we present the
simulation approximations for E[Qn

i ]’s, E[Zn
i ]’s and the total long-run average cost

Cn
T defined in (8) along with their 95% confidence intervals for five independent

runs. In the last column titled “Improvement”, we display the improvements in the
total long-run average cost if the routing network (a) is used instead of the routing
network (b).

It is worth noting that the routing networks have a significant effect on the perfor-
mance of the systems. To illustrate this, we note that the total long-run average cost
can be reduced by 38.29% when queue 2 is underloaded and 9.44% when queue 2 is
critically loaded. Though we only allocate 20 servers to group 1, we observe that in
Systems I and II there are on average 42.156 and 25.909 servers in serving class-1
customers, respectively. This implies that part of servers in group 2 also help to serve
class-1 customers due to the effect of cross sharing in the routing network (a). This
motivates us to define the first entry of (46). On the other hand, when queue 2 is
overloaded, we can observe that the performance of the model (i.e., the values of Cn

T ,
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E[Qn
i ]’s and E[Zn

i ]’s) with routing network (a) is very close to that of the model with
routing network (b). This means the effect of cross sharing is indistinctive in this case.
Thus, it suggests the second entry of (46).

4.2.2 Optimality of the virtual allocation policy

Since we are modeling the server pool at the group level, similar to Assumption 2,
the following condition on the initial status of each group is assumed. Note that we
require the fluid measure-valued initial state to be controlled by (50) in addition to
that the initial measure converges.

Assumption 4 The fluid-scaled initial condition satisfies Z̄ n
i j (0) ⇒ Z̄i j (0) as n →

∞, for all i, j ∈ I , where the limit satisfies

Z̄i j (0)
′((0, t]) := d

dt
Z̄i j (0)((0, t]) → 0 as t → ∞. (50)

To prove the convergence of the system in critically and overloaded cases, we need
the following key assumption on the service time distributions. Denote the renewal
function of the service time distribution Gi by

MGi (t) =
∞∑

n=1

Gn∗
i (t), (51)

where Gn∗
i (t) is the n-fold convolution of Gi (t) with itself.

Assumption 5 For each i ∈ I , the renewal function MGi (t) of the service time
distribution Gi is either convex or concave.

The additional assumption certainly createsmore restriction but can still be satisfied
by a wide range of distributions. It is clear that the exponential distribution is included.
Brown (1980) proved that the renewal function is concave if the hazard rate of the
distribution is decreasing. According to Problem 16 on page 231 in Karlin and Taylor
(1975), the renewal function for the Erlang E2 distribution is convex. The necessary
and sufficient conditions for convexity/concavity of renewal functions are given in
Shaked and Zhu (1992).

Theorem 3 Given Assumptions 1, 2, 4, 5 and
∑

i∈I λi/μi ≥ 1, if a sequence of
allocations zn satisfies zn/n → z∗ as n → ∞, then for the sequence of virtual
allocation policies {πn

vir (z
n)}, there will be

lim inf
T→∞ lim inf

n→∞ C̄n
T (πn

vir (z
n)) = lim sup

T→∞
lim sup
n→∞

C̄n
T (πn

vir (z
n)) = V ∗.

Note that z∗ is one of the components of an optimal solution (q∗, z∗) to the optimization
problem (33).
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Proof By Theorem 1, for the sequence of virtual allocation policies {πn
vir (z

n)} we
can always choose a convergent subsequence as the supremum. Thus, there is a fluid
policy π̄ ∈ Π̄ such that lim supn→∞ C̄n

T (πn
vir (z

n)) = C̄T (π̄). Due to the fact that
zn/n → z∗ as n → ∞, Proposition 2 in Sect. 5.2 reveals that the limit π̄ is a fluid
virtual allocation policy with the allocation z∗. Therefore, the definition of C̄T (π̄) in
(24) and the convergence of the fluid model in Theorem 5 in Sect. 5.2 imply

lim sup
T→∞

lim sup
n→∞

C̄n
T (πn

vir (z
n)) = lim

T→∞ C̄T (π̄) = V ∗.

By the same reason, we also have lim inf
T→∞ lim inf

n→∞ C̄n
T (πn

vir (z
n)) = V ∗. Thus, the theo-

rem follows. �

It’s worth pointing out that the optimization problem (33) can have multiple solu-
tions. Theorem 3 guarantees that, for any optimal solution to (33), one can find a virtual
allocation policy that attains the optimal value V ∗ asymptotically. If Assumption 3
also holds, then combining Proposition 1 and Theorem 3 yields that

lim sup
T→∞

lim sup
n→∞

C̄n
T (πn

vir (z
n)) ≤ lim inf

T→∞ lim inf
n→∞ C̄n

T (πn)

for all πn ∈ Πn . By Definition 1, this implies that the virtual allocation policy is
asymptotically optimal among all the policies Πn .

4.2.3 Comparison to priority policies

In this subsection, we demonstrate the effectiveness of the proposed virtual allocation
policy, which can be used to reduce the system cost as opposed to some baseline
policies, e.g., the cμ/θ rule and any priority control.
The cμ/θ rule may be suboptimal We first demonstrate an example where the cμ/θ

rule assigns thewrong priority, thus becoming suboptimal. Consider a two-classmany-
server queue model with uniform patience time distributionsU [0, 2/θi ], i = 1, 2. The
expectations of patience times are 1/θi , i = 1, 2. Suppose that both inter-arrival and
service times follow Erlang E2 distributions. The arrival rate λ, service rate μ and
cost c are specified in Table 3. The reneging penalties are assumed to be zero for
easy comparison with the cμ/θ rule. It is easy to see that class-2 customers should
be served with priority according to the cμ/θ rule since c2μ2/θ2 > c1μ1/θ1. Using
the virtual allocation policy with parameter (z1, z2), and by Theorem 5, which states

that qi = λi
∫ ωi
0 Fc

i (x)dx = λi
θi

− z2i μ
2
i

θiλi
, i = 1, 2, we can obtain the equilibrium state.
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Therefore, the optimization problem (33) becomes

minimize
2∑

i=1

[ciqi + γi (λi − ziμi )]

subject to qi = λi

θi
− z2i μ

2
i

θiλi
,

2∑

i=1

zi ≤ 1,

zi , qi ≥ 0.

With the parameters given in Table 3, the above optimization problem can bemanually
solved and the optimal solution is z∗ = (1, 0). Translating this optimal solution to
the policy for a specific system implies that we should allocate all servers to group 1.
We simulate a system with n = 100 and present the results in Table 3. All simulation
experiments together with the 95% confidence intervals are based on five independent
runs of length T = 100. As we can see from this table, the fluid approximation is
quite accurate and allocating all servers to serve class 1 (based on the virtual allocation
policy) yields a lower cost.
Any priority control may be suboptimal We show that under some circumstances any
priority control may not be optimal. As an easy example, we choose patience time
distributions with infinite expectations. However, this is not a necessity. Intuitively,
priority policies may leave some classes of customers completely unserved, causing
the queues of those classes of customers to decrease only due to abandonment. When
the patience time distributions exhibits heavy tails, the queues will be extremely long.
To illustrate this, let the patience time distribution be Fi (x) = 1− 1

x+1 for i = 1, 2. As
in the previous example, the inter-arrival and service times follow the E2 distribution.
All parameters are specified in Table 4. Again, following from Theorem 5, we can
obtain the equilibrium state under the virtual allocation policy with parameter (z1, z2),

qi = λi log

(
λi

ziμi

)

, i = 1, 2. (52)

We simply need to replace the first constraint in (33) by the above equality and solve
the optimization problem.With the parameters given in Table 4, the optimal solution is
z∗ = (0.21, 0.79) (calculated numerically using Mathemetica). Thus, by Theorem 3,
we use the virtual control policy πn

vir ((21, 79)) for the system with n = 100. As
demonstrated in Table 4, the fluid approximation for the system under the virtual
allocation policy exceedingly accurate. Moreover, both priority control policies yield
a much larger cost than the virtual allocation policy πn

vir ((21, 79)). In fact, priority
policies even fail to stabilize the system, since the fluid equilibrium queue length
qi → ∞ as zi → 0 according to (52). We can see the instability of priority policies
in Fig. 3 as their resulting cost rates exhibit an increasing trend after simulating it for
a long time, while the virtual allocation policy is able to stabilize the cost rate at the
state predicted by the fluid model.
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Fig. 3 Cost per unit time under the virtual allocation policy and two priority control policies

5 Convergence to equilibrium states of the fluidmodels

The idea behind proving the asymptotic optimality results (Theorems 2 and 3) is to
analyze the long-term behavior of the corresponding fluid model (proposed in § 2.2).
Our analysis of the fluid model is divided into two cases. For underloaded systems,
we analyze it under any non-idling policy (see Theorem 4). For critically loaded and
overloaded cases, we analyze it under the virtual allocation policy (see Theorem 5),
where Assumption 5 is needed.

We first provide some preliminary analysis for each class i ∈ I in the fluid model.
Taking x = 0 in (19), we obtain a relationship between the queue length and the size
of virtual buffer,

Q̄i (t) = λi

∫ t

t− R̄i (t)
λi

Fc
i (t − s)ds = λi

∫ R̄i (t)
λi

0
Fc
i (s)ds. (53)

Plugging (17) to (18) and then applying the definition of Hi (32) and the above equa-
tion, we obtain

Āi (t) = λi

∫ t

0
Hi (Q̄i (s))ds − Q̄i (t) + Q̄i (0). (54)

Using the balance equation (21), the above equation yields the following relation
between the abandonment process L̄i and the queue length Q̄i :

L̄i (t) = λi t − λi

∫ t

0
Hi (Q̄i (s))ds. (55)

On the other hand, using (18), the fluid dynamic equation (20) can be written as

Z̄i (t)(Cx ) = Z̄i (0)(Cx+t ) +
∫ t

0
Gc

i (x + t − s)d Āi (s). (56)

123



Virtual allocation policies for many-server queues with… 425

Let x = 0 in the above equation. Then

Z̄i (t) = Z̄i (0)(Ct ) +
∫ t

0
Gc

i (t − s)d Āi (s)

= Z̄i (0)(Ct ) + Āi (t) −
∫ t

0
Āi (t − s)dGi (s).

We now have a renewal equation, whose solution is

Āi (t) = (
Z̄i (t) − Z̄i (0)(Ct )

) + (
Z̄i (t) − Z̄i (0)(Ct )

) ∗ MGi (t). (57)

It is interesting to see that the process Āi (t) connects to both Q̄i (t) and Z̄i (t) through
(54) and (57), respectively. Moreover, if we convolve both sides of (54) and (57) with
Gc

i (t), then

Z̄i (t) − Z̄i (0)(Ct )

= λi

∫ t

0
Hi (Q̄i (s))ds ∗ Gc

i (t) − Q̄i (t) +
∫ t

0
Q̄i (t − s)dGi (s) + Q̄i (0)G

c
i (t).

Performing integration by parts on the above equation, we obtain the following key
equation

X̄i (t) = Z̄i (0)(Ct ) + Q̄i (0)G
c
i (t) + λi

μi

∫ t

0
Hi (Q̄i (t − s))dGi,e(s)

+
∫ t

0
Q̄i (t − s)dGi (s), (58)

where Gi,e(·) is the associated equilibrium distribution of Gi (·) and is defined by
Gi,e(x) = μi

∫ x
0 Gc

i (y)dy for all x ≥ 0. The key equation (58) will play an important
role in proving the convergence of the fluid model.

5.1 Fluidmodels under fluid non-idling policies

In view of the non-idling constraint (39), we have the following non-idling constraint
for the fluid model,

∑

i∈I
Q̄i (t)

(
1 −

∑

i∈I
Z̄i (t)

) = 0. (59)

The following theorem ensures that all queues vanish in the long run as long as we use
non-idling policies when the system is underloaded. Let Π̄N ⊂ Π̄ be the collection
of fluid non-idling control policies given that the above equality holds.
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Theorem 4 Given Assumptions 1, 2 and
∑

i∈I λi/μi < 1, for any fluid non-idling
policy π̄ ∈ Π̄N the fluid model satisfies

lim
t→∞ Z̄i (t) = λi

μi
and lim

t→∞ Q̄i (t) = 0 for all i ∈ I . (60)

Consequently,

lim
T→∞ C̄T (π̄) = 0. (61)

Proof Let

K̄ (t) = −
∑

i∈I
Z̄i (t) +

∑

i∈I

[

Z̄i (0)(Ct ) + Q̄i (0)G
c
i (t) + λi

μi

∫ t

0
Hi (Q̄i (t − s))dGi,e(s)

]

. (62)

Then the key equation (58) can be written as

∑

i∈I
Q̄i (t) = K̄ (t) +

∑

i∈I

∫ t

0
Q̄i (t − s)dGi (s). (63)

If
∑

i∈I Q̄i (t) = 0, then by (63), K̄ (t) = 0 − ∑
i∈I

∫ t
0 Q̄i (t − s)dGi (s) ≤ 0. If

∑
i∈I Q̄i (t) > 0, then

∑
i∈I Z̄i (t) = 1 due to the non-idling constraint (59). Since∑

i∈I λi/μi < 1 and Hi (·) ≤ 1, we can pick δ = (1 − ∑
i∈I λi/μi )/2, which is

positive, such that

∑

i∈I

[
λi

μi

∫ t

0
Hi (Q̄i (t − s))dGi,e(s)

]

≤ 1 − 2δ.

For this given δ > 0, there exists a T1 such that for all t > T1,
∑

i∈I [Z̄i (0)(Ct ) +
Q̄i (0)Gc

i (t)] ≤ δ. Applying the above estimates to (62), we have K̄ (t) ≤ −1 + δ +
1 − 2δ = −δ for all t satisfying t > T1 and

∑
i∈I Q̄i (t) > 0.

Denote by S = {t ≥ 0 : ∑
i∈I Q̄i (t) > 0} the collection of time epochs when

the total fluid queue length is larger than 0. Following the discussion of the above
two cases, we have that K̄ (t) ≤ 0 for any t ∈ [T1,+∞) and K̄ (t) ≤ −δ for any
t ∈ S ∩ [T1,+∞). We show that m(S ) < ∞, where m is the Lebesgue measure of
real numbers. Suppose the contradictory, i.e., m(S ) = ∞. Note that

∫ ∞

0
e−yt K̄ (t)dt =

∫ T1

0
e−yt K̄ (t)dt +

∫ ∞

T1
e−yt K̄ (t)dt

≤
∫ T1

0
|K̄ (t)|dt −

∫

S ∩[T1,+∞)

e−ytδdt . (64)
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Since we assume m(S ) = ∞, there exists a T2 > T1 such that
∫
S ∩[T1,T2] δdt =

2 + 2
∫ T1
0 |K̄ (t)|dt . Choosing y0 = ln 2

T2
> 0 yields

∫

S ∩[T1,+∞)

e−y0tδdt ≥ e−y0T2

∫

S ∩[T1,T2]
δdt = 1 +

∫ T1

0
|K̄ (t)|dt .

So we have
∫ ∞
0 e−y0t K̄ (t)dt ≤ −1 due to (64). On the other hand, (63) implies that

for all y > 0,
∫ ∞
0

e−yt
∑

i∈I
Q̄i (t)dt =

∫ ∞
0

e−yt K̄ (t)dt +
∑

i∈I

[∫ ∞
0

e−yt Q̄i (t)dt ·
∫ ∞
0

e−yt dGi (t)

]

.

Due to the fact that
∫ ∞
0 e−yt dGi (t) ≤ 1, we must have

∫ ∞
0 e−yt K̄ (t)dt ≥ 0 for

all y > 0, which is a contradiction. Hence, we have shown by contradiction that
m(S ) < ∞.

Since m(S ) < ∞, for any ε ∈ (0, 1) there exists a τ ≥ 1 such that m(S ∩ [τ −
1,∞)) < ε. So for any t ≥ τ , there exists a ξ ∈ [t − ε, t] such that ∑i∈I Q̄i (ξ) = 0.
The balance equation (21) implies

Q̄i (t) ≤ Q̄i (ξ) + λiε = λiε for all t ≥ τ. (65)

Due to the arbitrariness of ε, the above inequality yields limt→∞ Q̄i (t) = 0 for
all i ∈ I . Now by (16) and (58), Q̄i (t) vanishing to 0 implies the convergence of
Z̄i (t) stated in (60). In view of (32) and (55), we have lim

T→∞ L̄i (T )/T = 0. Thus, (61)

immediately follows from (24) and (60). �

5.2 Fluidmodels under the fluid virtual allocation policy

We now study the critically loaded and overloaded systems, which is more interesting
since server pool keeps busy and control policies make a difference. In view of the
virtual allocation policy in Sect. 4.2, we now propose the corresponding fluid version.
By (40), z = (z1, z2, . . . , zI ) is actually an allocation of the server pool of the fluid
model satisfying

∑
i∈I zi = 1. Similar to Sect. 4.2, for any i, j ∈ I , denote by

Āi j (t) the cumulative amount of class-i fluid having been routed to group j ; and by
S̄i j (t) the cumulative amount of class-i fluid having completed service from group j
by time t . At time t the amount of class-i fluid being served in group j is denoted by
Z̄i j (t). We have the following fluid version balance equations for the above quantities:

Z̄i (t) =
∑

j∈I
Z̄i j (t), Āi (t) =

∑

j∈I
Āi j (t), S̄i (t) =

∑

j∈I
S̄i j (t), (66)

Z̄i j (t) = Z̄i j (0) + Āi j (t) − S̄i j (t). (67)
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Let the amount of fluid in service group i at time t , the amount of fluid that have
been routed to group i and the amount of fluid that has completed service from group i
by time t be

Z̄ ·,i (t) =
∑

j∈I
Z̄ j i (t), Ā·,i (t) =

∑

j∈I
Ā ji (t) and S̄·,i (t) =

∑

j∈I
S̄ j i (t), (68)

respectively. Note that Z̄ ·,i (t) ≤ zi due to the allocation of the server pool. Since we
have expanded the space to look at the detailed status at the group level, we need the
following additional equation to describe the fluid model,

Z̄i j (t) = Z̄i j (0)(Ct ) +
∫ t

0
Gc

i (t − s)d Āi j (s), (69)

where Z̄i j (0)(Ct ) is the amount of initial class-i fluid served in group j with remaining
service time larger than t .

Following the main idea of the virtual allocation policies, which is to match group-i
servers with class-i customers asmuch as possible, we have the following fluid version
of (45) and (46),

Āii (t) =
∫ t

0
1{Z̄·,i (s)<zi }λi ds +

∫ t

0
1{Q̄i (s)>0}d S̄·,i (s)

+
∫ t

0
1{Z̄·,i (s)=zi , Q̄i (s)=0}

(
λi ∧ S̄′·,i (s)

)
ds

(70)

for any i ∈ I and

Āi j (t) =
{∫ t

0 1{Z̄·,i (s)=zi , Q̄ j (s)=0}d Āi j (s), when i ∈ I1 and j ∈ I2,

0, otherwise.
(71)

Note that (70) holds almost everywhere because S̄·,i (·) is absolutely continuous as
proved in Proposition 2, and hence, differentiable almost everywhere.

The fluid version of (47) and (48) becomes

Q̄i (t)(zi − Z̄ ·,i (t)) = 0 for all i ∈ I (72)

and

Q̄i (t)(z j − Z̄ ·, j (t)) = 0 for all i ∈ I1, j ∈ I2. (73)

Let Π̄vir ⊂ Π̄ be the collection of fluid virtual allocation policies given that (66)–(73)
also hold. We call π̄vir (z) ∈ Π̄vir the fluid virtual allocation policy associated with
allocation z. Corresponding to (49), the fluid virtual allocation policy can be expressed
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as

π̄vir (z) = ( Āi j , L̄i , S̄i j , X̄i , Q̄i , Z̄i j )i, j∈I . (74)

Example 1 To illustrate the application of the fluid virtual allocation policy, consider
a system with two types of customers, i.e. I = 2, and satisfying the routing network
Fig 2a. Then by the first entry of (71), one can find that

Ā12(t) =
∫ t

0
1{Z̄·,1(s)=z1, Q̄2(s)=0}d Ā12(s).

This example clarifies the fact that the “crossings” (defined by (71)) in the fluid model
do not vanish for finite time t .

Proposition 2 Given Assumptions 1, 2 and 4, if a sequence of allocations {zn} satisfy
zn/n → z as n → ∞, then under the sequence of virtual allocation policies {πn

vir (z
n)}

there exists a subsequence {πnk
vir (z

nk )} such that

( Ānk
i j , Z̄

nk
i j , S̄nki j , Ānk·,i , Z̄

nk·,i , S̄
nk·,i ) ⇒ ( Āi j , Z̄i j , S̄i j , Ā·,i , Z̄ ·,i , S̄·,i ),

i, j ∈ I as k → ∞,

where Āi j , Z̄i j , S̄i j , Ā·,i , Z̄ ·,i and S̄·,i satisfying (66)–(73) are absolutely continuous.

Proof It follows from Lemma B.6 that { Ān
i j (·)}, {Z̄ n

i j (·)} and {S̄ni j (·)}, i, j ∈ I , are
tight. According to an extended version of the Skorohod representation theorem [see
Lemma C.1 of Zhang (2013)], we have that along any convergent subsequence, almost
surely,

( Ānk
i j , Z̄

nk
i j , S̄nki j , Ānk·,i , Z̄

nk·,i , S̄
nk·,i ) → ( Āi j , Z̄i j , S̄i j , Ā·,i , Z̄ ·,i , S̄·,i ),

i, j ∈ I , as k → ∞, (75)

for some Āi j , Z̄i j , S̄i j , Ā·,i , Z̄ ·,i and S̄·,i ∈ D([0,∞),R). It remains to verify that
the above limit satisfies (66)–(73). In the following proof, we still use n to index the
convergent subsequence for notational simplicity.

First, it is easy to see from the fluid-scaled version of (41), (42) and (44) that
Āi j , Z̄i j , S̄i j , Ā·,i , Z̄ ·,i and S̄·,i satisfy (66), (67) and (68). It follows from (47) and
(48) that the limit also satisfies fluid equations (72) and (73).

Let I ni (t) = zni − Zn
·,i (t), which is nonnegative and can be interpreted as the idle

servers in group i at time t . Then the first entry of (46) is equivalent to
∫ t
0 (I ni (s) +

Qn
j (s))d A

n
i j (s) = 0. This together with Lemma 2.4 in Dai andWilliams (1996) yields

∫ t
0 ( Īi (s)+Q̄ j (s))d Āi j (s) = 0,where Īi (s) := zi− Z̄ ·,i (s). Owing to the nonnegativity
of Īi and Q̄ j , it immediately follows that the first entry of (71) holds. This proves (71).
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Next, we verify that the limit satisfies (69) and (70). We start to verify (69) and
consider the difference

|Z̄i j (t) − Z̄i j (0)(Ct ) −
∫ t

0
Gc

i (t − s)d Āi j (t)|
≤ |Z̄i j (t) − Z̄ n

i j (t)| + |Z̄i j (0)(Ct ) − Z̄ n
i j (0)(Ct )|

+ |Z̄ n
i j (t) − Z̄ n

i j (0)(Ct ) −
∫ t

0
Gc

i (t − s)d Āi j (t)|.
(76)

Let {tk}Kk=1 be a partition of the interval [0, t] such that 0 = t0 < t1 < · · · < tK = t
and maxk(tk+1 − tk) < δ for some δ > 0. On the inverval [tk, tk+1], for any ε > 0,

1

n

An
i j (tk+1)∑

l=An
i j (tk )+1

δvni j,l
(Ct−τ ni j,l

) ≤ 1

n

An
i j (tk+1)∑

l=An
i j (tk )+1

δvni j,l
(Ct−tk+1)

≤ Āi j (tk, tk+1)G
c
i (t − tk+1) + ε,

for all large n, where the first inequality is due to τ ni j,l ≤ tk+1, and the second inequal-

ity is due to the component of Ān
i j in (75) and the Glivenko-Cantelli theorem [cf.

Theorem 2.47 in Durrett (2010)]. Similarly, we have for all large n,

1

n

An
i j (tk+1)∑

l=An
i j (tk )+1

δvni j,l
(Ct−τ ni j,l

) ≥ Āi j (tk, tk+1)G
c
i (t − tk) − ε.

Note that
∑K−1

k=0 Gc
i (t − tk+1) Āi j (tk, tk+1) and

∑K−1
k=0 Gc

i (t − tk) Āi j (tk, tk+1) serve
as the upper and lower Reimann-Stieltjes sums of the integral

∫ t
0 G

c
i (t − s)d Āi j (s),

and converge to the integration as the partition size δ → 0. Due to the above analysis,
we have

∣
∣
∣
1

n

An
i j (t)∑

l=1

δvni j,l
(Ct−τ ni j,l

) −
∫ t

0
Gc

i (t − s)d Āi j (t)
∣
∣
∣ → 0 as n → ∞.

Combining this with (43), the component of Z̄ n
i j in (75) and the initial condition in

Assumption 4, we can conclude that the left side of (76) vanishes as n → ∞. Since
the left hand side of (76) is independent of n, it must be equal to 0 implying (69).

Now we use (69) to prove the absolute continuity of the fluid limits. We can derive
from (67) and (69) that

S̄i j (t) = Z̄i j (0)((0, t]) +
∫ t

0
Gi (t − s)d Āi j (s)

= Z̄i j (0)((0, t]) +
∫ t

0

∫ x

0
gi (x − s)d Āi j (s)dx, (77)
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where the second equality follows fromchanging the order of integration. This together
with Assumption 4 implies that S̄i j (t) is absolutely continuous. By (68), S̄·,i (t) is also
absolutely continuous. The absolute continuity of Āi j (t) and Ā·,i (t) follows from (23).
Thus, Z̄i j (t) and Z̄ ·,i (t) are also absolutely continuous by (67) and (68).

It remains to prove (70). To this end, we consider the corresponding fluid-scaled
stochastic processes on a small interval [t, t+δ] in the following three cases. Note that
Z̄ ·,i (t) and Q̄i (t) are continuous following from Theorem 15.5 in Billingsley (1968)
and Lemma B.4.
Case 1 Z̄ ·,i (t) < zi , then we have Zn

·,i (s) < zni , s ∈ [t, t + δ], for all large n. Thus
(45) implies Ān

ii (t, t + δ) = Ēn
i (t, t + δ). Therefore (75) yields Ā′

i i (t) = λi .
Case 2 Q̄i (t) > 0, then we have Qn

i (s) > 0, s ∈ [t, t + δ], for all large n. It
again follows from (45) that Ān

ii (t, t + δ) = S̄n·,i (t, t + δ). Again, by (75), we have

Ā′
i i (t) = S̄′·,i (t).

Case 3 Z̄ ·,i (t) = zi and Q̄i (t) = 0. We follow a similar argument in Theorem 3.2 of
Atar et al. (2014) to analyze this case. By Theorem A.6.3 in Dupuis and Ellis (1997),
Z̄ ′·,i (t) = 0 almost everywhere (a.e.) on A1 := {t : Z̄ ·,i (t) = zi } and Q̄′

i (t) = 0 a.e.

on A2 := {t : Q̄i (t) = 0}. From (67) and (68) we have Z̄ ′·,i (t) = Ā′·,i (t)− S̄′·,i (t), and
by (21) one can see that Q̄′

i (t) = λi − Ā′
i (t) − L̄ ′

i (t). Note that by (55), L̄ ′
i (t) = 0

a.e. on A2. In view of (71), if
∑

j �=i, j∈I Āi j (t) = 0, then by (66) Ā′
i i (t) = Ā′

i (t).

Thus a.e. on A1 ∩ A2, we have Ā′
i i (t) = Ā′

i (t) = λi and Ā′·,i (t) = S̄′·,i (t), where
Ā′
i i (t) ≤ S̄′·,i (t). Hence a.e. on A1 ∩ A2, Ā′

i i (t) = λi ∧ S̄′·,i (t). Again by (71), if
∑

j �=i, j∈I Ā ji (t) = 0, then by (68) Ā′
i i (t) = Ā′·,i (t). Thus a.e. on A1 ∩ A2, we have

Ā′
i (t) = λi and Ā′

i i (t) = Ā′·,i (t) = S̄′·,i (t), where Ā′
i i (t) ≤ Ā′

i (t). Hence a.e. on

A1 ∩ A2, Ā′
i i (t) = λi ∧ S̄′·,i (t). Combining the above three cases and the absolutely

continuity, we can conclude that the limit satisfies (70). Till now we proved the result.
�

Lemma 1 Given Assumptions 1, 2, 4, 5 and
∑

i∈I λi/μi ≥ 1, if the allocation of the
server pool satisfies zi ≤ λi/μi for all i ∈ I , then under the fluid virtual allocation
policy π̄vir (z) we have for all i ∈ I ,

lim
t→∞ Z̄ii (t) = zi . (78)

Proof Performing integration by parts in (69), we have the following renewal equation

Āi j (t) = Z̄i j (t) − Z̄i j (0)(Ct ) +
∫ t

0
Āi j (t − s)dGi (s), (79)

of which the solution is

Āi j (t) = (Z̄i j (t) − Z̄i j (0)(Ct )) + (Z̄i j (t) − Z̄i j (0)(Ct )) ∗ MGi (t), (80)

where MGi (t) is defined in (51). Combining the above with (67) yields

S̄i j (t) = Z̄i j (0)((0, t]) + (Z̄i j (t) − Z̄i j (0)(Ct )) ∗ MGi (t). (81)
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Denote the second term on the right-hand side of the above equation by Ȳi j (t), i.e.,

Ȳi j (t) = (Z̄i j (t) − Z̄i j (0)(Ct )) ∗ MGi (t),

=
∫ t

0
M ′

Gi
(t − s)(Z̄i j (s) − Z̄i j (0)(Cs))ds. (82)

The process Ȳi j (t) can be interpreted as the amount of newly arrived class-i fluid
completing service from group j by time t . By (80) and (82),

Z̄i j (t) − Z̄i j (0)(Ct ) = Āi j (t) − Ȳi j (t). (83)

Since MGi (t) is either convex or concave, we may take derivative of the equation
(82) to obtain

Ȳ ′
i j (t) = M ′

Gi
(0)(Z̄i j (t) − Z̄i j (0)(Ct )) +

∫ t

0
Z̄i j (t − s) − Z̄i j (0)(Ct−s)dM

′
Gi

(s),

(84)

for all i, j ∈ I . Combining (70) and (83) yields

(Z̄ii (t) − Z̄i i (0)(Ct ))
′ =

⎧
⎪⎨

⎪⎩

λi − Ȳ ′
i i (t), Z̄ ·,i (t) < zi ,

S̄′·,i (t) − Ȳ ′
i i (t), Q̄i (t) > 0,

λi ∧ S̄′·,i (t) − Ȳ ′
i i (t), Z̄ ·,i (t) = zi and Q̄i (t) = 0.

(85)

The following two claims will be used multiple times in this proof. �
Claim 1 Let a be a constant. If an absolutely continuous function f : [0,∞) → R

satisfies 1) f (0) ≥ a, and 2) f ′(t) ≥ 0 for all t such that f (t) < a, then f (t) ≥ a for
all t ≥ 0.

Proof Assume to the contrary that there exists a T > 0 such that f (T ) < a. Let
τ = sup{t < T : f (t) ≥ a} be the last time that f is larger than or equal to a before
T . Then f (τ ) = a and f (t) < a for all t ∈ (τ, T ]. This implies f ′(t) ≥ 0 for all
t ∈ (τ, T ]. Therefore f (T ) = f (τ ) + ∫ T

τ
f ′(t)dt ≥ a, which is a contradiction.

Hence, f (t) ≥ a for all t ≥ 0. �
Claim 2 If Ȳ ′

i i (t) ≤ λi then (Z̄ii (t) − Z̄i i (0)(Ct ))
′ ≥ 0. Moreover, if there exists a

T ≥ 0 such that Ȳ ′
i i (t) ≤ λi for all t ≥ T , then the fluid model satisfies

lim
t→∞ Z̄ii (t) = zi .

Proof Note that for the second entry in (85), we always have S̄′·,i (t) − Ȳ ′
i i (t) ≥ 0 by

(81) and (82). The condition Ȳ ′
i i (t) ≤ λi guarantees that the first and third entries

are also non-negative. This proves the first part of this claim. And consequently, if
Ȳ ′
i i (t) ≤ λi for all t ≥ T , we have (Z̄ii (t) − Z̄i i (0)(Ct ))

′ ≥ 0 for all t ≥ T . Since
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Z̄ii (t) − Z̄i i (0)(Ct ) is bounded by zi , by the monotone convergence theorem, there
exists a ζ ∈ [0, zi ] such that Z̄ii (t) − Z̄i i (0)(Ct ) converges to ζ as t → ∞. Since
Gi has a directly integrable density gi and a finite expectation 1/μi as assumed in
Assumption 1, we can conclude from Theorem 2 in Section XI.3 of Feller (1971)
Page 367 that μi = lim

t→∞ M ′
Gi

(t). It then follows from (84) that

lim
t→∞ Ȳ ′

i i (t) = ζμi . (86)

We will prove by contradiction that ζ = zi , which proves this claim. Assume to the
contrary, then ζμi < ziμi ≤ λi . LetK = {t ≥ 0 : Ā′

i i (t) = λi }. It follows from (70)
that

Ā′
j i (t) = 0, j �= i for all t /∈ K . (87)

On the other hand, (83) and (86) imply that (Z̄ii (t) − Z̄i i (0)(Ct ))
′ > (λi − ζμi )/2

for all large t ∈ K . So the Lebesgue measure of the setK must satisfy m(K ) < ∞
as otherwise Z̄ii (t) − Z̄i i (0)(Ct ) will go to infinity. Consequently, for any ε > 0
there exists a τ such that m(K ∩ [τ,+∞)) < ε. So for any t > τ + ε, there exists
a ξ ∈ [t − ε, t] such that Ā′

i i (ξ) �= λi . So by (70), we must have Z̄ ·,i (ξ) = zi . Since
Z̄ii (t) converges to ζ , by (68), we have

lim sup
t→∞

∑

j �=i, j∈I
Z̄ j i (t) = zi − ζ. (88)

Let Kτ+t := {s : τ + t − s ∈ K ∩ [τ,∞)}, then m(Kτ+t ) ≤ m(K ∩ [τ,∞)) < ε.

Introduce the time-shifted quantities Z̄ j i,τ (t) := Z̄ j i (t+τ), Ā ji,τ (t) := Ā ji (t+τ)−
Ā ji (τ ). Then by (69) we have

Z̄ j i,τ (t) = Z̄ j i (0)(Cτ+t ) +
∫ τ

0
Gc

j (τ + t − s)d Ā ji (s) +
∫ t

0
Gc

j (t − s)d Ā ji,τ (s),

(89)

where j �= i . Note that the first two terms on the right-hand side of (89) vanishes as
t goes to infinity. When j �= i , the last term on the right-hand side of (89) can be
written as 1

μ j

∫
Kτ+t

Ā′
j i,τ (t − s)dG j,e(s) due to (87) and the definition of Kτ+t . It

can be easily seen from (77) and (84) that S̄′·,i is bounded, and so is Ā′
j i,τ . Thus, by

Theorem 12.34 in Hewitt and Stromberg (1975) we can choose an ε small enough and
a corresponding τ such that the last term on the right-hand side of (89) is less than
zi−ζ
2I . Thus we can see from (89) that lim supt→∞

∑
j �=i, j∈I Z̄ j i (t) ≤ (zi − ζ )/2,

which contradicts (88). So we must have ζ = zi , thus proving the claim. �

With the above preparation, we start to prove (78). Let us consider the case where
MGi (t) is convex. This means M ′

Gi
(t) monotone increases to its limit μi . It follows
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from (84) that for all t ≥ 0,

Ȳ ′
i i (t) ≤ zi M

′
Gi

(0) + zi

∫ t

0
dM ′

Gi
(s) = zi M

′
Gi

(t) ≤ λi .

So we have (78) directly following from Claim 2. We now consider the case where
MGi (t) is concave. The concavity of MGi (t) implies that M ′

Gi
(t) is decreasing. Also

we have M ′
Gi

(0) = gi (0) < ∞ following from Assumption 1. It then follows from
(84) that for all t ≥ 0,

Ȳ ′
i i (t) ≤ M ′

Gi
(0)(Z̄ii (t) − Z̄i i (0)(Ct )). (90)

If λi ≥ zi M ′
Gi

(0), then by equation (90), Ȳ ′
i i (t) ≤ zi M ′

Gi
(0) ≤ λi for all t ≥ 0. Again,

by Claim 2 we have (78). If λi < zi M ′
Gi

(0), then the analysis is more complicated.
We study it in the rest of this proof.

To this end, we first prove by induction that

lim inf
t→∞ (Z̄ii (t) − Z̄i i (0)(Ct )) ≥ λi

M ′
Gi

(0)

N∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

, (91)

for all N ∈ N such that λi
M ′

Gi
(0)

∑N
i=0

(

1 − μi
M ′

Gi
(0)

)i

< zi . To show that it holds for

N = 0, we simply need to show there exists a τ0 > 0 such that

Z̄ii (t) − Z̄i i (0)(Ct ) ≥ λi

M ′
Gi

(0)
(92)

for all t ≥ τ0. Note thatwhenever (92) does not hold for any t ≥ τ0 we have Ȳ ′
i i (t) < λi

by (90), thus (Z̄ii (t) − Z̄i i (0)(Ct ))
′ ≥ 0 by Claim 2. So, according to Claim 1 we

only need to show that (92) holds for t = τ0. Suppose there does not exist such a τ0,
we must have

Z̄ii (t) − Z̄i i (0)(Ct ) <
λi

M ′
Gi

(0)
for all t ≥ 0. (93)

This together with (90) implies Ȳ ′
i i (t) < λi for all t ≥ 0. Then by Claim 2, Z̄ii (t) −

Z̄i i (0)(Ct ) converges to zi , which contradicts (93). So (92) holds, and we have shown
(91) holds for N = 0.

Suppose that (91) happens to be true for a particular value of N , say N = k. Then
we have

lim inf
t→∞ (Z̄ii (t) − Z̄i i (0)(Ct )) ≥ λi

M ′
Gi

(0)

k∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

.
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From this, we need to show that the inequality continues to hold for N = k + 1. Since
M ′

Gi
(t) is decreasing due to the concavity, the above inequality implies

lim sup
t→∞

∫ t

0
Z̄ii (t − s) − Z̄i i (0)(Ct−s)dM

′
Gi

(s)

= − lim inf
t→∞

∫ ∞

0
Z̄ii (t − s) − Z̄i i (0)(Ct−s)d(−M ′

Gi
(s))

≤ −
∫ ∞

0
lim inf
t→∞ [Z̄ii (t − s) − Z̄i i (0)(Ct−s)]d(−M ′

Gi
(s))

≤ − λi

M ′
Gi

(0)

k∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

(M ′
Gi

(0) − μi )

= −λi

k+1∑

i=1

(

1 − μi

M ′
Gi

(0)

)i

,

where the first inequality follows from Fatou’s Lemma and the second inequality uses
the above inequality. Combining this with (84), we can see that for any ε > 0, there
exists a T1 such that for all t > T1

Ȳ ′
i i (t) ≤ M ′

Gi
(0)(Z̄ii (t) − Z̄i i (0)(Ct )) − λi

k+1∑

i=1

(

1 − μi

M ′
Gi

(0)

)i

+ ε. (94)

To prove (91) holds for N = k + 1, it suffices to show that there exists a τ1 ≥ T1 such
that

Z̄ii (t) − Z̄i i (0)(Ct ) ≥ λi

M ′
Gi

(0)

k+1∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

− ε

M ′
Gi

(0)
(95)

for all t ≥ τ1. By Claim 1 we only need to show that (95) holds for t = τ1, since
whenever (95) does not hold for any t ≥ τ1 we have Ȳ ′

i i (t) < λi by (94) and thus
(Z̄ii (t) − Z̄i i (0)(Ct ))

′ ≥ 0 by Claim 2. Suppose there does not exist such a τ1, we
must have

Z̄ii (t) − Z̄i i (0)(Ct ) <
λi

M ′
Gi

(0)

k+1∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

− ε

M ′
Gi

(0)
, (96)

for all t ≥ T1. Substituting the above into (94) yields Ȳ ′
i i (t) < λi for all t ≥ T1. It then

follows from Claim 2 that limt→∞ Z̄ii (t) = zi . This contradicts (96). So (95) holds
and we have shown that (91) holds for N = k + 1. Thus the statement (91) is proved
by induction.
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Now we use (91) to analyze the convergence of (78) when λi < zi M ′
Gi

(0). Since
zi ≤ λi/μi , we have

μi
M ′

Gi
(0) ∈ (0, 1). It is easily seen that

λi

M ′
Gi

(0)

N∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

= λi

μi

(

1 −
(
1 − μi

M ′
Gi

(0)

)N+1
)

. (97)

If λi = ziμi , then by (91) and (97)

lim
t→∞(Z̄ii (t) − Z̄i i (0)(Ct )) = zi .

If λi > ziμi , then equation (97) implies that there must exists an N0 ∈ N such that

λi

M ′
Gi

(0)

N0∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

< zi ≤ λi

M ′
Gi

(0)

N0+1∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

. (98)

It follows from (84), (91) and (98) that for any ε > 0 there exists a T > 0 such that
for all t ≥ T ,

Ȳ ′
i i (t) ≤ M ′

Gi
(0)(Z̄ii (t) − Z̄i i (0)(Ct )) − λi

N0+1∑

i=1

(

1 − μi

M ′
Gi

(0)

)i

+ ε. (99)

We show that there exists a τ ≥ T such that

Z̄ii (t) − Z̄i i (0)(Ct ) ≥ zi − ε

M ′
Gi

(0)
(100)

for all t ≥ T . Note that whenever (100) does not hold for any t ≥ τ , we have
Ȳ ′
i i (t) < λi by (99) and the last inequality in (98). Again, we only need to show that

(100) holds for t = τ , by Claims 1 and 2. Suppose there does not exist such a τ , we
must have

Z̄ii (t) − Z̄i i (0)(Ct ) < zi − ε

M ′
Gi

(0)

≤ λi

M ′
Gi

(0)

N0+1∑

i=0

(

1 − μi

M ′
Gi

(0)

)i

− ε

M ′
Gi

(0)
, (101)

for all t ≥ T , where the last inequality comes from the second inequality in (98).
Plugging the above in (99) yields Ȳ ′

i i (t) < λi for all t ≥ T . Then we have Claim 2,
which contradicts (101). So (100) holds, implying (78). �
Theorem 5 Given Assumptions 1, 2, 4, 5 and

∑
i∈I λi/μi ≥ 1, if the allocation of the

server pool satisfies zi ≤ λi/μi for all i ∈ I , then under the fluid virtual allocation
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policy π̄vir (z) we have

lim
t→∞ Z̄i (t) = zi and lim

t→∞ Q̄i (t) = qi = λi

∫ ωi

0
Fc
i (x)dx for all i ∈ I , (102)

where ωi is the solution to Fi (ωi ) = λi−ziμi
λi

. Consequently,

lim
T→∞ C̄T (π̄vir (z)) =

∑

i∈I

(
ciqi + γi (λi − ziμi )

)
. (103)

Proof As a consequence of Lemma 1, we have

lim
t→∞ Z̄i j (t) = 0, i �= j and lim

t→∞ Z̄i (t) = zi . (104)

Deduce from (81) and (84) that

S̄′
i j (t) = Z̄i j (0)

′((0, t]) + M ′
Gi

(0)(Z̄i j (t) − Z̄i j (0)(Ct ))

+
∫ t

0
Z̄i j (t − s) − Z̄i j (0)(Ct−s)dM

′
Gi

(s)

for all i, j ∈ I . Due to the fact MGi (t) is either convex or concave, combining the
above with (50), (104) and Lemma 1 yields

lim
t→∞ S̄′

i j (t) =
{
ziμi , i = j,

0, i �= j .

From the last terms in (66) and (68), we obtain

lim
t→∞ S̄′

i (t) = lim
t→∞ S̄′·,i (t) = ziμi . (105)

If λi > ziμi , then (67), (70) and (105) imply that Z̄ ·,i (t) = zi for all sufficiently large
t . Applying (105) to the routing process in (70) yields

lim
t→∞ Ā′

i i (t) = ziμi . (106)

Note that (106) also holds for λi = ziμi following directly from (70) and (105). Now
let’s consider the rate Ā′

i j (t) for all i, j ∈ I with i �= j . From (71), if Āi j (t) ≡ 0,

then obviously Ā′
i j (t) = 0. Thus, we suppose Āi j (t) �≡ 0. We deduce from (67) that

Ā′·, j (t) ≤ S̄′·, j (t) whenever Z̄ ·, j (t) = z j . Consequently, Ā′
i j (t) ≤ S̄′·, j (t) − Ā′

j j (t)

due to (68). On the other hand, when Z̄ ·, j (t) < z j we have Q̄i (t) = 0 from (73).
By (54) this implies Ā′

i (t) ≤ λi . Combining this with (66) and (70) yields Ā′
i j (t) ≤
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(λi − S̄′·,i (t))+. So we have

Ā′
i j (t) ≤

{
S̄′·, j (t) − Ā′

j j (t), if Z̄ ·, j (t) = z j ,

(λi − S̄′·,i (t))+, if Z̄ ·, j (t) < z j .

If λi = ziμi , then the above, (105) and (106) imply lim
t→∞ Ā′

i j (t) = 0. If λi > ziμi ,

then due to the fact that λ j ≥ z jμ j and the non-idling constraint (73), similar to the
previous analysis there is not only Z̄ ·,i (t) = zi but also Z̄ ·, j (t) = z j for all large t .
Thus we still have limt→∞ Ā′

i j (t) = 0 from the first entry of the above inequality.
Now we can conclude that

lim
t→∞ Ā′

i j (t) =
{
ziμi , i = j,

0, i �= j .

By (66), this implies lim
t→∞ Ā′

i (t) = ziμi . Next, we prove the convergence of Q̄i (t) in

the following two cases:
Case 1 λi = ziμi . Assumption 1 implies that ωi is the unique solution to Fi (ωi ) =
λi−ziμi

λi
(ωi = 0 in this case). It then follows from the definition of Hi (·) in (32) that

for any ε > 0 there exists a δ > 0 such that λi Hi (Q̄i (t)) ≤ ziμi − δ whenever
Q̄i (t) ≥ ε. Owing to the convergence of Ā′

i (·), there exists a T0 > 0 such that for all
t > T0, Ā′

i (t) ≥ ziμi − δ/2. Let L ′(t) = (Q̄i (t) − 0)2, then by (54) for all t > T0

L ′(t) = 2(Q̄i (t) − 0)(λi Hi (Q̄i (t)) − Ā′
i (t)) ≤ −εδ

whenever Q̄i (t) ≥ ε. So there must be a T1 > 0 such that Q̄i (t) < ε for all t > T1.
Since ε can be arbitrarily close to 0, we have limt→∞ Q̄i (t) = 0.
Case 2 λi > ziμi . Let Q̄i (∞) = λi

∫ ωi
0 Fc

i (x)dx . Then we have λi Hi (Q̄i (∞)) =
ziμi by (32) and the definition of ωi . Similar to the previous case, for any ε > 0, there
exists a δ > 0 such that

λi Hi (Q̄i (t)) ≤ ziμi − δ whenever Q̄i (t) ≥ Q̄i (∞) + ε,

λi Hi (Q̄i (t)) ≥ ziμi + δ whenever Q̄i (t) ≤ Q̄i (∞) − ε.

One can see that there exists a T0 > 0 such that for all t > T0, ziμi − δ/2 ≤ Ā′
i (t) ≤

ziμi + δ/2. Let L (t) = (Q̄i (t) − Q̄i (∞))2, then by (54) for all t > T0

L ′(t) = 2(Q̄i (t) − Q̄i (∞))(λi Hi (Q̄i (t)) − Ā′
i (t)) ≤ −εδ,

whenever |Q̄i (t) − Q̄i (∞)| ≥ ε. So there must be a T1 > 0 such that Q̄i (t) ∈
(Q̄i (∞) − ε, Q̄i (∞) + ε) for all t > T1. Due to the arbitrariness of ε, we have
limt→∞ Q̄i (t) = Q̄i (∞).
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Due to the fact that λi Hi (Q̄i (∞)) = ziμi , we have lim
T→∞ L̄i (T )/T = λi − ziμi

following from (55). This together with (24) and (102) immediately yields (103). This
completes the proof. �

6 Conclusion

We have studied a multiclass many-server queueing system with general service and
patience time distributions. We have identified a control policy based on a nonlinear
program to minimize a combination of holding costs and abandonment penalties.
Moreover, we have proven that any non-idling policy is asymptotically optimal when
the system is underloaded since the queue and abandonment vanish in the heavy-traffic
regime. Our method is based on analyzing the long-term behavior of the fluid model,
which arises as the limit of the stochastic systems in themany-server heavy-traffic limit.

There are some directions for future research. (i) In order for the proposed vir-
tual allocation policy to be asymptotically optimal, the patience times must have a
decreasing hazard rate. Optimal policies for more general patience times have yet to
be identified. Bassamboo and Randhawa (2016) shed light on this issue by consid-
ering a single-class model, and showed that it is quite a complicated problem even
in the single-class setting. (ii) It remains to establish the convergence of the fluid
model for more general service time distributions in which the condition on the con-
vexity/concavity of the renewal functions imposed here are relaxed. (iii) Another
interesting question is how to design an optimal policy for systems with time-varying
or random arrival rates. For the time-varying system, one can derive a certain Bellman
equation and solve it to identify the optimal policy. For system with random arrival
rates, one can study robust and dynamic policies.
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Appendix

A Lemmas for the Proof of Proposition 1

Consider the following optimization problem where the constraint is perturbed by a
small amount κi for each i ∈ I ,

minimize
∑

i∈I
[ciqi + γi (λi − ziμi )]

subject to λi Hi (qi ) = ziμi + κi ,
∑

i∈I
zi ≤ 1, zi , qi ≥ 0.

(107)

We use this problem to perform a sensitivity analysis for the optimization problem
(33). Let κ = (κ1, . . . , κI ) and denote by V ∗

κ the optimal value of (107).
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Lemma A.1 (Sensitivity Analysis) For any ε > 0 there exists a δ > 0 such that
V ∗

κ ≥ V ∗ − ε for all κ satisfying maxi |κi | ≤ δ.

Proof Since the patience time distribution is strictly increasing following Assump-
tion 1, the function Hi (·) defined by (32) is continuous and strictly decreasing on its
support [0, λi NFi ] due to (34). So there exists a continuous inverse function H−1

i (·).
Therefore we can rewrite (33) and (107) as

minimize V (z) =
∑

i∈I
[ci H−1

i (
ziμi

λi
) + γi (λi − ziμi )]

subject to
∑

i∈I
zi ≤ 1, ziμi ≤ λi , zi ≥ 0,

(108)

and

minimize Vκ(z) =
∑

i∈I
[ci H−1

i (
ziμi

λi
+ κi

λi
) + γi (λi − ziμi )]

subject to
∑

i∈I
zi ≤ 1, 0 ≤ ziμi + κi ≤ λi , zi ≥ 0.

(109)

Suppose NFi < ∞ for all i ∈ I . By (32), H−1
i (·) is continuous on [0, 1] (thus

also uniformly continuous) for all i ∈ I . Denote by z∗(κ) the optimal solution to
(109). Then we can find a corresponding z† in the feasible region of (108) such that
max |z∗i (κ) − z†i | ≤ max |κi |/μi . So for any ε > 0 there exists a δ > 0 such that

|Vκ(z∗(κ)) − V (z†)| ≤ ε,

for all κ with max |κi | ≤ δ. Since V (z†) ≥ V ∗, the above inequality immediately
implies

V ∗
κ ≥ V ∗ − ε. (110)

Suppose NFi ′ = ∞ for some i ′ ∈ I . This implies that H−1
i ′ (0) = ∞. Thus,

H−1
i ′ (·) is no longer continuous at the origin. The main idea in dealing with this case

is to shrink the feasible region of (108) and (109) by pushing zi ′ and zi ′μi ′ + κi ′ away
from the lower bound 0 without affecting the optimal value. To this end, we choose
z‡i = min{ λi

2μi
} ∧ 1

I for all i ∈ I . It’s easily seen that z‡ := (z‡1, . . . , z
‡
I ) is a feasible

solution to (108). And there exists a δ′ > 0 such that 0 < z‡i μi + κi < λi , i ∈ I , for
all κ with max |κi | ≤ δ′. So z‡ is also a feasible solution to (109). Thus we can choose
a large enough M > 0 such that V (z∗) ≤ V (z‡) ≤ M and Vκ(z∗(κ)) ≤ Vκ(z‡) ≤ M
for all κ satisfying max |κi | ≤ δ′. According to the fact that H−1

i ′ (·) is decreasing we
can conclude that there exists γ > 0 (depending on M) such that

z∗i ′ ≥ γ and z∗i ′(κ)μi ′ + κi ′ ≥ γ.
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Now let |κi ′ | ≤ min{γ /2, δ′}, the last inequality implies

z∗i ′(κ) ≥ γ

2μi ′
.

Borrowing the idea from the cutting-plane method, we can update the corresponding
constraints for the i ′th class in (108) and (109) with zi ′ ≥ min{γ,

γ
2μi ′

} and zi ′μi ′ +
κi ′ ≥ γ for all κ satisfying max |κi | ≤ δ′ and |κi ′ | ≤ min{γ /2, δ′}. Then H−1

i ′ (·) again
is uniformly continuous on the updated feasible region. So we can apply the same
argument as that for the case of NFi < ∞ for all i ∈ I to prove the result (110) still
holds. �

Lemma A.2 Given Assumptions 1 and 2, for any policy π̄ ∈ Π̄ , the following limits
hold for all i ∈ I

lim
T→∞

∣
∣
∣
∣
1

T
Āi (T ) − μi

1

T

∫ T

0
Z̄i (s)ds

∣
∣
∣
∣ = 0, (111)

lim
T→∞

∣
∣
∣
∣
1

T
S̄i (T ) − μi

1

T

∫ T

0
Z̄i (s)ds

∣
∣
∣
∣ = 0, (112)

lim
T→∞

∣
∣
∣
∣
1

T
L̄i (T ) −

(

λi − μi
1

T

∫ T

0
Z̄i (s)ds

)∣
∣
∣
∣ = 0. (113)

Proof Obviously, for any ε > 0 there exists a T0 > 0 such that

|Z̄i (0)(Ct )| ≤ ε for all t ≥ T0.

Combining the above with the renewal theorem yields

1

t

∫ t−T0

0
Z̄i (0)(Ct−s)dMGi (s) ≤ εμi as t → ∞. (114)

Therefore

lim sup
t→∞

1

t

∫ t

0
Z̄i (0)(Ct−s)dMGi (s)

= lim sup
t→∞

1

t

∫ t−T0

0
Z̄i (0)(Ct−s)dMGi (s) + lim sup

t→∞
1

t

∫ t

t−T0
Z̄i (0)(Ct−s)dMGi (s)

≤ εμi + lim sup
t→∞

1

t

∫ t

t−T0
dMGi (s)

= εμi ,
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where the inequality follows from (114) and the fact Z̄i (0)(Ct ) ≤ 1. Since ε can be
arbitrarily close to 0, we obtain

lim
t→∞

1

t

∫ t

0
Z̄i (0)(Ct−s)dMGi (s) = 0. (115)

SinceGi has a directly integrable density gi and afinite expectation 1/μi as assumed
in Assumption 1, Theorem 2 in Section XI.3 of Feller (1971) Page 367 shows that for
any ε > 0 there exists a T1 > 0 such that

|M ′
Gi

(t) − μi | ≤ ε for all s > T1. (116)

With the help of the above analysis, next we consider Āi (·), the process describing
how fluid of class i enters service. It follows from (57) that

lim sup
t→∞

∣
∣
∣
∣
1

t
Āi (t) − μi

1

t

∫ t

0
Z̄i (s)ds

∣
∣
∣
∣

= lim sup
t→∞

∣
∣
∣
∣
1

t
(Z̄i (t) − Z̄i (0)(Ct )) + 1

t

∫ t

0
Z̄i (t − s)dMGi (s)

−1

t

∫ t

0
Z̄i (0)(Ct−s)dMGi (s) − μi

1

t

∫ t

0
Z̄i (s)ds

∣
∣
∣
∣

(a)= lim sup
t→∞

∣
∣
∣
∣
1

t

∫ t

0
M ′

Gi
(t − s)Z̄i (s)ds − μi

1

t

∫ t

0
Z̄i (s)ds

∣
∣
∣
∣

(b)≤ lim sup
t→∞

[
1

t

∫ t−T1

0
|M ′

Gi
(t − s)−μi |ds+ 1

t

∫ t

t−T1
M ′

Gi
(t − s)ds+ 1

t

∫ t

t−T1
μi ds

]

(c)≤ ε,

where (a) is due to (15) and (115); (b) is due to (15); (c) is due to (116). Since ε can
be arbitrarily small, we obtain (111).

It follows from (17) that R̄i (t) ≤ λi t+ R̄i (0). Then by (53) we have lim
t→∞

1
t Q̄i (t) =

0. Thus, as a consequence of (111), the limits (112) and (113) immediately hold by
Eqs. (21) and (22). �

B Tightness of the fluid-scaled processes

B.1 Tightness under any control policy

The main result here is the tightness proved in Lemmas B.4 and B.5. We will present
their proofs after proving the following auxiliary lemma.
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Lemma B.3 Given Assumptions 1 and 2, for each ε, η > 0 and T > 0 there exists an
n0 such that when n > n0,

P
n{max

i∈I
sup

t∈[0,T ]

∣
∣
∣Q̄n

i (t) − λi

∫ ωn
i (t)

0
Fc
i (s)ds

∣
∣
∣ ≤ ε} ≥ 1 − η, (117)

where ωn
i (t) is the waiting time of the earliest arrived class-i customer in the virtual

buffer at time t.

Proof It immediately follows from Assumption 2 that for each ε, η > 0 there exists
an n0 such that for all n > n0,

P
n(max

i∈I
sup

0≤s<t≤T
|Ēn

i (s, t) − λi (t − s)| ≤ ε

2
) ≥ 1 − η. (118)

Denote the event in (118) by Ωn
E .

Let {tk}Kk=0 be a partition of the interval [τ, t] such that τ = t0 < t1 < · · · < tK = t
and maxk(tk+1 − tk) < δ for some δ > 0. We can break the sum into K parts,

1

n

En
i (t)∑

l=En
i (τ )+1

δuni,l
(Ct−ani,l

) =
K−1∑

k=0

1

n

En
i (tk+1)∑

l=En
i (tk )+1

δuni,l
(Ct−ani,l

).

Note that ai,l ∈ [tk, tk+1] for all l ∈ [En
i (tk)+1, En

i (tk+1)]. So on the eventΩn
E we can

apply the Glivenko-Cantelli theorem (cf. Theorem 2.47 in Durrett (2010), Lemma B.1
in Zhang (2013)) to obtain

1

n

En
i (tk+1)∑

l=En
i (tk)+1

δuni,l
(Ct−ani,l

)

≤ 1

n

En
i (tk+1)∑

l=En
i (tk )+1

δuni,l
(Ct−tk+1)

≤ Ēn
i (tk, tk+1)νFi (Ct−tk+1) + ε

≤ Ēi (tk, tk+1)νFi (Ct−tk+1) + 2ε = λi

∫ tk+1

tk
Fc
i (t − tk+1)ds + 2ε

for all large n, where νFi is the probability measure of the patience time distribution
Fi . Similarly, we can obtain the corresponding inequality of the opposite direction

1

n

En
i (tk+1)∑

l=En
i (tk )+1

δuni,l
(Ct−ani,l

) ≥ λi

∫ tk+1

tk
Fc
i (t − tk)ds − 2ε.
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Note that
∑K−1

k=0 λi
∫ tk+1
tk

Fc
i (t − tk+1)ds and

∑K−1
k=0 λi

∫ tk+1
tk

Fc
i (t − tk)ds serve as

the upper and lower Reimann sums of the integral λi
∫ t
τ
Fc
i (t − s)ds. We can make ε

arbitrarily small by making the partition finer. Thus, we can conclude that for any ε0
there exists an n0 such that for all n > n0 there is

∣
∣
∣
1

n

En
i (t)∑

l=En
i (τ )+1

δuni,l
(Ct−ani,l

) − λi

∫ t

τ

Fc
i (t − s)ds

∣
∣
∣ < ε0. (119)

According to the definition of the virtual buffer we have R̄n
i (t) = Ēn

i (t) − Ēn
i (t −

ωn
i (t)). From (10), this implies

B̄n
i (t) = Ēn

i (t − ωn
i (t)). (120)

Plugging τ = t − ωn
i (t) into (119), and by (11) and (120) the result (117) holds. �

Lemma B.4 Given Assumptions 1 and 2, for any control policyπn ∈ Πn the sequences
of fluid-scaled stochastic processes { Ān

i }, {L̄n
i }, {S̄ni }, {B̄n

i }, {X̄n
i }, {Q̄n

i }, {Z̄ n
i } and {R̄n

i }
for all i ∈ I are tight.

Proof By the convergence of the initial condition (25), for any η > 0, there exists a
compact set K0 ⊂ M such that

lim inf
n→∞ P

n{R̄n
i (0) ∈ K0 and Z̄ n

i (0) ∈ K0 for all i ∈ I } ≥ 1 − η. (121)

Denote the event in the above probability byΩn
0 . On this event, by (9) and the definition

of compact set in the spaceM (see Theorem 15.7.5 in Kallenberg (1986)), there exists
an M0 > 0 such that

R̄n
i (0) ≤ M0, Q̄n

i (0) ≤ M0 and Z̄ n
i (0) ≤ M0.

Clearly, on the event Ωn
0 , we have X̄n

i (0) ≤ 2M0 and |B̄n
i (0)| = R̄n

i (0) ≤ M0

following from (3) and (10). Additionally, we have Ān
i (0) = L̄n

i (0) = S̄ni (0) =
0. Thus, condition (i) in Theorem 15.5 of Billingsley (1968) is satisfied by all the
sequences of stochastic processes.

Now we turn to analyze the oscillation boundedness. We start by considering the
oscillation bound of the sequence of service completion processes {S̄ni }. In view of
(5), (12) and (13), S̄ni can be recovered as

S̄ni (t) = 1

n

−Rn
i (0)∑

l=−Rn
i (0)−Zn

i (0)+1

δvni,l
((0, t]) + 1

n

Bn
i (t)∑

l=−Rn
i (0)+1

δ(uni,l ,v
n
i,l )

(Cτ ni,l−ani,l
)

× ((0, t − τ ni,l ]).
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It can then be seen from the above and (12) that for any 0 ≤ s ≤ t ,

S̄ni (s, t) = Z̄ n
i (s)((0, t − s]) + 1

n

Bn
i (t)∑

l=Bn
i (s)+1

δ(uni,l ,v
n
i,l )

(Cτ ni,l−ani,l
) × ((0, t − τ ni,l ]).

In the above equation l = Bn
i (s)+1, . . . , Bn

i (t), which implies the start service times
τ ni,l ∈ [s, t]. Combining this with (10), for any t ∈ [0, T ] we have

S̄ni (s, t) ≤ Z̄ n
i (s)((0, t − s]) + 1

n

En
i (T )∑

l=−Rn
i (0)+1

δvni,l
((0, t − s]). (122)

Following the same argument in Lemma 5.3 of Zhang (2013), we can see that under
Assumptions 1 and 2, for each ε, η > 0 and T > 0 there exists a κ > 0 (depending
on ε and η) such that

lim inf
n→∞ P

n(max
i∈I

sup
t∈[0,T ]

sup
x∈R+

Z̄ n
i (t)([x, x + κ]) ≤ ε) ≥ 1 − η. (123)

Denote the event in (123) by Ωn
Reg(κ). The first term on the right side of (122) is

always bounded by ε on Ωn
Reg(κ) as long as t − s < κ . Denote the event in (117) by

Ωn
Q and let

Ωn = Ωn
0 ∩ Ωn

E ∩ Ωn
Reg(κ) ∩ Ωn

Q .

From (123), (118), (117) and (121)

lim inf
n→∞ P

n{Ωn} ≥ 1 − η.

In the remainder of the proof, all random objects are evaluated on a fixed sample path
in Ωn . On this event we have

1

n

En
i (T )∑

l=−Rn
i (0)+1

δvni,l
((0, t − s]) ≤ (Ēn

i (T ) + R̄n
i (0))νGi ((0, t − s]) + ε

2

≤ (M0 + 2λi T )νGi ((0, t − s]) + ε

2
, (124)

where the first inequality follows from the Glivenko-Cantelli theorem with νGi being
the probability measure of the service time distribution Gi . Since Gi is absolutely
continuous, we can choose t − s small enough such that νGi ((0, t − s]) ≤ ε

2(M0+2λi T )
.

Then by (122) and (124), we have for all large n,

S̄ni (s, t) ≤ 2ε. (125)
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By the definition of Ωn
E , when t − s ≤ ε

2λ we have for all large n,

Ēn
i (s, t) ≤ ε. (126)

Combing the above two inequalities with (23) yields,

Ān
i (s, t) ≤ 3Iε, (127)

as long as t − s is small enough.
If the lth class-i customer abandons the queue in time interval [s, t], the sum

of his patience time uni,l and arrival time ani,l should be in the interval [s, t], i.e.,
uni,l + ani,l ∈ [s, t]. Therefore,

L̄n
i (s, t) ≤ 1

n

En
i (t)∑

l=−Rn
i (0)+1

δuni,l
([s, t] − ani,l). (128)

Let τ = t0 < t1 < · · · < tK = t be a partition of the interval [τ, t]. Then

1

n

En
i (t)∑

l=En
i (τ )+1

δuni,l
([s, t] − ani,l) =

K−1∑

k=0

1

n

En
i (tk+1)∑

l=En
i (tk)+1

δuni,l
([s, t] − ani,l)

≤
K−1∑

k=0

1

n

En
i (tk+1)∑

l=En
i (tk )+1

δuni,l
([s − tk+1, t − tk]), (129)

where the last inequality arises because on each sub-interval [tk, tk+1] those l’s to be
summed must satisfy tk ≤ ani,l ≤ tk+1. It follows from the Glivenko-Cantelli theorem
that

1

n

En
i (tk+1)∑

l=En
i (tk)+1

δuni,l
([s − tk+1, t − tk])≤(Ēn

i (tk+1) − Ēn
i (tk))νFi ([s − tk+1, t−tk])+ ε

2K
.

(130)

Since Fi is absolutely continuous, we can make t − s small enough and the partition
fine enough such that

νFi ([s − tk+1, t − tk]) ≤ ε

2(M0 + 2λT )
. (131)

It then follows from (129)–(131) that

1

n

En
i (t)∑

l=En
i (τ )+1

δuni,l
([s, t] − ani,l) ≤ ε

2(M0 + 2λT )
[Ēn

i (t) − Ēn
i (τ )] + ε

2
. (132)
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Recall that ωn
i (t) denoted in Lemma B.3 is the waiting time of the earliest arrived

class-i customer in the virtual buffer at time t . Therefore ani,−Rn(0)+1, the arrival time
of the earliest arrived class-i customer in the virtual buffer at the initial time point,
equals to 0 − ωn

i (0). So (17) and (120) yield Bn
i (0) = −Rn

i (0) = En
i (ani,−Rn(0)+1).

Plugging τ = ani,−Rn(0)+1 into (132) and combining (128), we obtain

L̄n
i (s, t) ≤ ε

2(M0 + 2λT )
[Ēn

i (t) + R̄n
i (0)] + ε

2
≤ ε (133)

for all large n. Thus the oscillation bound of L̄n
i (·) is proved.

By balance equation (4)

|Q̄n
i (t) − Q̄n

i (s)| ≤ Ēn
i (s, t) + Ān

i (s, t) + L̄n
i (s, t) ≤ 3(I + 1)ε (134)

for all large n and small enough t − s, where the last inequality is due to (126), (127)
and (133). In view of (120), to prove the oscillation bound of B̄n

i (·) an essential step
is to prove that of ωn

i (·). By Lemma B.3 and (134), when t − s is small enough we
have

|
∫ ωn

i (t)

0
Fc
i (x)dx −

∫ ωn
i (s)

0
Fc
i (x)dx | ≤ | Q̄

n
i (t)

λi
− Q̄n

i (s)

λi
| + 2

ε

λi
≤ 3(I + 2)

ε

λi
(135)

for all large n. Denote SFi = inf{x ≥ 0 : F(x) = 1}. Observe that F−1
i,d (·) is

continuous on [0,∞) and ωn
i (·) < SFi since we can remove any customer whose

waiting time exceeds SFi from the virtual buffer (without affecting the dynamics). So
for any ε2 > 0,

|ωn
i (t) − ωn

i (s)| = |F−1
i,d

(∫ ωn
i (t)

0
Fc
i (x)dx

)

− F−1
i,d

(∫ ωn
i (s)

0
Fc
i (x)dx

)

| ≤ ε2

as long as ε in (135) is small enough. By (120) and the definition ofΩn
E , the oscillation

of B̄n
i (·) becomes

|B̄n
i (s, t)| = |Ēn

i (t − ωn
i (t)) − Ēn

i (s − ωn
i (s))|

≤ λ|t − s − (ωn
i (t) − ωn

i (s))| + ε

≤ λ|t − s| + λε2 + ε,

which can be made smaller than a multiple of ε by choosing |t − s| and ε2 small
enough. Thus the oscillation bound of B̄n

i (·) is proved.
So we can conclude that the cumulative processes Ān

i , L̄
n
i , S̄

n
i and B̄n

i all satisfy
condition (ii) in Theorem 15.5 of Billingsley (1968). Thus, we have the desired tight-
ness. The tightness of the head-count processes X̄n

i , Q̄
n
i , Z̄

n
i and R̄n

i directly follows
from (4), (5) and (10). �
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With the help of the tightness of the head-count processes, we now prove the
following lemma.

Lemma B.5 Given Assumptions 1 and 2, for any control policy πn ∈ Πn the sequence
of fluid-scaled measure-valued stochastic processes {(R̄n

i , Z̄ n
i ), n ∈ N}, i ∈ I , are

tight.

Proof When t − s ≤ ε
2λi

, by the definition ofΩn
E we have Ēn

i (s, t) ≤ ε. For any s < t
and any Borel set C ⊂ R, consider the following two cases:
If En

i (s) > Bn
i (t), then by (11),

R̄n
i (t)(C) − R̄n

i (s)(Cε)

= −1

n

Bn
i (t)∑

l=Bn
i (s)+1

δuni,l
(Cε + s − ani,l) + 1

n

En
i (t)∑

l=En
i (s)+1

δuni,l
(C + t − ani,l)

+ 1

n

En
i (s)∑

l=Bn
i (t)+1

[
δuni,l

(C + t − ani,l) − δuni,l
(Cε + s − ani,l)

]

≤ Ēn
i (s, t).

The first term on the right-hand side of the above equation is clearly non-positive since
Bn
i (t) is non-decreasing. Note that when t − s ≤ ε, C + t − ani,l ⊆ Cε + s − ani,l for

all l ∈ Z, which implies that the third term in the above equation is less than zero.
Therefore the inequality follows.
If En

i (s) ≤ Bn
i (t), then by the definition of R̄n

i (C) in (11) that

R̄n
i (t)(C) − R̄n

i (s)(Cε) ≤ R̄n
i (t)(C) ≤ 1

n

En
i (t)∑

l=En
i (s)+1

δuni,l
(C + t − ani,l) ≤ Ēn

i (s, t).

Therefore, for any case there will always be

R̄n
i (t)(C) − R̄n

i (s)(Cε) ≤ Ēn
i (s, t) ≤ ε, (136)

as long as t − s is small enough.
On the other hand, when t and s are close enough combining (10) and (136) gives

R̄n
i (s)(R \ Cε) − R̄n

i (t)(R \ C) ≤ B̄n
i (s, t) ≤ ε, (137)

where the last inequality is owing to the oscillation bound of B̄n
i shown in the proof

of Lemma B.4. It follows from the fact R \C ⊆ {R \Cε}2ε and C could be any Borel
set in R that the above inequality yields

R̄n
i (s)(C) − R̄n

i (t)(C2ε) ≤ 2ε. (138)
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Combining (136) and (138), we have

d[R̄n
i (t), R̄n

i (s)] ≤ ε, (139)

where d is the Prohorov metric defined in (1).
Give a new index l = An

i (s)+ 1, . . . , An
i (t) to class-i customers who enter service

in time interval (s, t] according to the time τ ni,l at which they start service. It follows
from (12) and (13) that

Z̄ n
i (t)(C) = Z̄ n

i (s)(C + t − s) + 1

n

An
i (t)∑

l=An
i (s)+1

δvni,l
(C + t − τ ni,l).

Then

Z̄ n
i (t)(C) − Z̄ n

i (s)(C + t − s) ≤ Ān
i (s, t) ≤ ε,

as long as t − s is small enough, where the last inequality holds due to the oscillation
bound of Ān

i shown in the proof of Lemma B.4. Note that when t − s ≤ ε,C + t − s ⊆
Cε. Thus, we have

Z̄ n
i (t)(C) − Z̄ n

i (s)(Cε) ≤ Ān
i (s, t) ≤ ε. (140)

Similar to (137), by (5) and the above we have

Z̄ n
i (s)(R+ \ Cε) − Z̄ n

i (t)(R+ \ C) ≤ S̄ni (s, t) ≤ ε,

for t and s close enough. Since the above inequality holds for any Borel set C ⊂ R+,
we can use the same argument as that for (138) to obtain

Z̄ n
i (s)(C) − Z̄ n

i (t)(C2ε) ≤ 2ε. (141)

So (140) and (141) imply that

d[Z̄ n
i (t), Z̄ n

i (s)] ≤ ε. (142)

Theoscillationbound condition inTheorem3.7.2 ofEthier andKurtz (1986) follows
from (139) and (142). The compact containment property can be verified using the
same argument in Lemma 5.1 of Zhang (2013). Thus R̄n

i and Z̄ n
i are tight. �

B.2 Tightness under virtual allocation policies

Lemma B.6 Given Assumptions 1, 2 and 4, for any sequence of virtual allocation
policies {πn(zn)}, the sequences of fluid-scaled stochastic processes { Ān

i j (·)}, {Z̄ n
i j (·)}

and {S̄ni j (·)}, i, j ∈ I , are tight.
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Proof As we can see, condition (i) in Theorem 15.5 of Billingsley (1968) holds due
to the fact that Ān

i j (0) = S̄ni j (0) = 0. Each class-i customer having completed service
from service group j must be counted as one instance of service completions of class-i
customers in the whole server pool. Therefore we have S̄ni j (s, t) ≤ S̄ni (s, t). Similarly,

Ān
i j (s, t) ≤ Ān

i (s, t). Note that S̄ni j (·) and Ān
i j (·) are also nondecreasing. Thus the

oscillation bounds of S̄ni j and Ān
i j are implied by those of S̄ni and Ān

i , which have been

proven in Lemma B.4. So S̄ni j and Ān
i j are tight. Due to the balance equation in (42),

the tightness of {Z̄ n
i j (t)} immediately follows. �
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