Consensus Mechanism Design based on Structured DAGs

Jiheng Zhang

HKUST

Blockchain

WHAT IS GREAT

✓ Secure: Nakamoto consensus

✓ Decentralized: PoW

WHAT NEEDS IMPROVEMENT

TPS

- □ Latency: waiting + confirmation
- **C** Concentration of mining power
- **Transactions** with little fees

Directed Acyclic Graphs (DAG)

5

Block Size in bytes		
id_{prev}	32	
id_{ms}	32	
id _{tip}	32	
nonce	4	
peer	65	
message	~ 500	

Peer chain

Previous block by the same peer

Block Size in bytes		
id_{prev}	32	
id_{ms}	32	
id_{tip}	32	
nonce	4	
peer	65	
message	~ 500	

Peer chain

Previous block by the same peer

Nakamoto chain

Milestone block

Peer chain

Previous block by the same peer

Nakamoto chain

Milestone block

Connectivity

Tip block by another peer

Block Size in bytes		
id _{prev}	32	
id_{ms}	32	
$\mathtt{id}_{\mathtt{tip}}$	32	
nonce	4	
peer	65	
message	~ 500	

Peer chain

Previous block by the same peer

Nakamoto chain

Milestone block

Connectivity

Tip block by another peer

Header **Overhead** = Header + Message

*			
		Block Size	e in bytes
		id_{prev}	32
4		id_{ms}	32
		$\mathtt{id}_{\mathtt{tip}}$	32
		nonce	4
			65
		L	00
		message	~ 500
1 T×	2 Tx's	3 Tx's	4 Tx's
17%	9%	6%	5%

Proof of Work

 $B = (id_{prev}, id_{ms}, id_{tip}, nonce, message)$

 $H(B) = 0 \cdots 0 * * * * * * *$

leading x bits are all 0

 $H(B) = 0 \cdots 0 * * * *$

leading y bits are all 0

Regular Block

regular block reward + Tx fee

Milestone Block

additional bonus*

Proof of Work

 $B = (id_{prev}, id_{ms}, id_{tip}, nonce, message)$

 $H(B) = 0 \cdots 0 * * * * * * *$

leading x bits are all 0

 $H(B) = 0 \cdots 0 * * * *$

leading y bits are all 0

Three pointers have to be specified before knowing the type!

Peer chain

Peer chain

Nakamoto chain

Peer chain

Nakamoto chain

Peer chain

Nakamoto chain

Peer chain

Level Set

Level Set

 $\mathcal{S}(\mathsf{B}_m,\mathsf{B}_m')=\mathcal{C}(\mathsf{B}_m)\setminus\mathcal{C}(\mathsf{B}_m')$

Peers obtain different parts of the big block from different peers continuously over time.

Transaction Assignment

Miners

Transaction Assignment

Miners

Transaction Assignment

Miners

$H(\text{miner's state}, \text{Tx}) < c \times \text{miner's hashing power}$

Transaction Assignment waste Tx (\$1) (\$<u>100</u> Tx (\$100) T× (\$10) Tx (\$2) (\$100 Tx (\$5) Miners Mempool

$H(\text{miner's state}, \text{Tx}) < c \times \text{miner's hashing power}$

verifiable

 q_i consensus

Transaction Assignment waste Tx (\$1) T× (\$100) T× (\$10) Tx (\$2) T× (\$5) Mempool *Q* Miners $\eta \mu$

$H(\text{miner's state}, \text{Tx}) < c \times \text{miner's hashing power}$

verifiable

 q_i consensus

Protocol Receiving a block

Suppose Alice has a local DAG

$$\mathcal{G}_a = \mathcal{C}(\mathbf{B}_m)$$

- 1. Download if height is too small
- 2. Solidify + topological sort
- 3. Add blocks one by one

Protocol RECEIVING A BLOCK

Suppose Alice has a local DAG

$$\mathcal{G}_a = \mathcal{C}(\mathbf{B}_m)$$

- 1. Download if height is too small
- 2. Solidify + topological sort
- 3. Add blocks one by one

Bob's local DAG

Bob's local DAG

Alice's local DAG

Bob's local DAG

Alice's local DAG

Block Size in bytes		
	32	
	32	
	32	
	4	
	~ 500	

1. Find a transaction Alice can process

Block Size	e in bytes
	32
	32
	32
	4
message	~ 500

- 1. Find a transaction Alice can process
- 2. Prepare three pointers

Block Size in bytes		
id_{prev}	32	
id_{ms}	32	
idtip	32	
	4	
message	~ 500	

- 1. Find a transaction Alice can process
- 2. Prepare three pointers
- 3. Solve the cryptographic puzzle

Block Size in bytes		
id _{prev}	32	
id _{ms}	32	
idtip	32	
nonce	4	
message	~ 500	

- 1. Find a transaction Alice can process
- 2. Prepare three pointers
- 3. Solve the cryptographic puzzle
- 4. Broadcast the block

Block Size in bytes		
id _{prev}	32	
id _{ms}	32	
idtip	32	
nonce	4	
message	~ 500	

syntactically valid

- 1. Find a transaction Alice can process
- 2. Prepare three pointers
- 3. Solve the cryptographic puzzle
- 4. Broadcast the block

Block Size in bytes		
id_{prev}	32	
id_{ms}	32	
$\mathtt{id}_{\mathtt{tip}}$	32	
nonce	4	
message	~ 500	

syntactically valid

- What if not pointing to the miner's previous block
- What if not pointing to the most recent milestone
- □ What if not pointing to a recent regular block by others

Post-order DFS

Post-order DFS

- ✓ chronological order of blocks on a peer chain
- ✓ approximate chronological order of all blocks

Order all transactions in a level set Tx_1, Tx_2, Tx_3, \ldots

Post-order DFS

- ✓ chronological order of blocks on a peer chain
- ✓ approximate chronological order of all blocks

Order all transactions in a level set Tx_1, Tx_2, Tx_3, \ldots

Post-order DFS

- ✓ chronological order of blocks on a peer chain
- ✓ approximate chronological order of all blocks

 $\mathcal{L}_{k+1} = \mathcal{L}_{k+1} \cup (\mathtt{Tx}_{k+1}),$ $\mathcal{U}_{k+1} = \mathcal{U}_k \cup \{ \text{outputs from } \mathtt{Tx}_{k+1} \} \setminus \{ \text{inputs from } \mathtt{Tx}_{k+1} \}$

Block Size in bytes		
idprev	32	
id_{ms}	32	
id_{tip}	32	
nonce	4	
peer	65	
message	~ 500	

Block Size in bytes		
id _{prev}	32	
id_{ms}	32	
id_{tip}	32	
nonce	4	
peer	65	
message	~ 500	

- ✓ No peer id/sig to save message space
- ✓ No coinbase to reduce the number of UTXOs

Туре	Status	Transaction	Reward	Bonus
regular +	on peer chain	Valid	r + Tx fee	0
regular +	on peer chain	Invalid	r	0
regular +	forked	Valid	0	0
regular +	forked	Invalid	0	0
milestone	longest MS chain	Valid	r + Tx fee	$\% \times r \times level set$
milestone	longest MS chain	Invalid	r	$\% \times r \times level set$

Туре	Status	Transaction	Reward	Bonus
regular +	on peer chain	Valid	r + Tx fee	0
regular +	on peer chain	Invalid	r	0
regular +	forked	Valid	0	0
regular +	forked	Invalid	0	0
milestone	longest MS chain	Valid	r + Tx fee	$\% \times r \times level set$
milestone	longest MS chain	Invalid	r	% × r × level set

Mot to fork peer chain

Туре	Status	Transaction	Reward	Bonus
regular +	on peer chain	Valid	r + Tx fee	0
regular +	on peer chain	Invalid	r	0
regular +	forked	Valid	0	0
regular +	forked	Invalid	0	0
milestone	longest MS chain	Valid	r + Tx fee	$\% \times r \times level set$
milestone	longest MS chain	Invalid	r	$\% \times r \times level set$

M try luck on another block

Mot to fork peer chain

Туре	Status	Transaction	Reward	Bonus	
regular +	on peer chain	Valid	r + Tx fee	0	try luck on another block
regular +	on peer chain	Invalid	r	0	
regular +	forked	Valid	0	0	Dent to fark poor abain
regular +	forked	Invalid	0	0	
milestone	longest MS chain	Valid	r + Tx fee	$\% \times r \times level set$	
milestone	longest MS chain	Invalid	r	$\% \times r \times level set$	

If the second se

Туре	Status	Transaction	Reward	Bonus	
regular +	on peer chain	Valid	r + Tx fee	0	try luck on another block
regular +	on peer chain	Invalid	r	0	
regular +	forked	Valid	0	0	
regular +	forked	Invalid	0	0	Minot to fork peer chain
milestone	longest MS chain	Valid	r + Tx fee	$\% \times r \times level set$	
milestone	longest MS chain	Invalid	r	$\% \times r \times level set$	

If the second se

Model Analysis

 $H(miner's state, Tx) < c \times miner's hashing power$

 $\mathbb{P}(\text{Tx is not workable for any miner}) \approx e^{-c}$

Model Analysis

Waste

$$\theta(c) = \frac{(1 - e^{-\mu \overline{t}})\mu c\overline{t}}{1 + (1 - e^{-\mu \overline{t}})\mu c\overline{t}}$$

Queueing latency

$$\frac{1}{c} \frac{1}{\rho\mu} \ln \left(\frac{1}{1 - \frac{\rho}{1 - \theta(c)}} \right)$$

Infection delay

$$\frac{2+2\ln(n)}{\mu} + \frac{1}{np\mu}$$

Performance

System parameters

Partition factor c	Block generation speed	MS interval	Avg. # of blocks per level set
0.01	1200 blocks/second	10 seconds	12000

Performance

System parameters

Partition factor c	Block generation speed	MS interval	Avg. # of blocks per level set
0.01	1200 blocks/second	10 seconds	12000

Modeling assumptions

Tx arrival rate	Percentage of malicious hashing power
1000	30%

Performance

System parameters

Partition factor c	Block generation speed	MS interval	Avg. # of blocks per level set
0.01	1200 blocks/second	10 seconds	12000

Tx arrival rate	Percentage of malicious hashing power
1000	30%

Queueing latency	Infection delay	Security latency	Wasted capacity		
188 seconds	23 seconds	810 seconds	1.7%		

Modeling assumptions

Performance

Summary

consensus

reward

algorithm

- ☑ TPS
- In Latency: waiting + confirmation
- Concentration of mining power
- **I** Transactions with little fees

Summary

consensus

reward

algorithm

- ☑ TPS
- ☑ Latency: waiting + confirmation
- Concentration of mining power
- ☑ Transactions with little fees

hm economic model

- □ How to issue new coins: inflation, limited supply, …?
- How to incentivize people to provide
 storage and bandwidth service?

Summary

consensus

reward

algorithm

- TPS
- Latency: waiting + confirmation $\mathbf{\underline{\vee}}$
- Concentration of mining power
- Transactions with little fees

economic model

optimization

- □ How to issue new coins: inflation, limited supply, ...?
- □ How to incentivize people to provide storage and bandwidth service?
- How to adaptively adjust the number of blocks created per unit of time?

Consensus Mechanism Design based on Structured Directed Acyclic Graphs

Jiahao He^* , Guangju Wang^{*}, Guangyuan Zhang^{*}, and Jiheng Zhang[†]

*†DMAC Lab

*[†]Department of Industrial Engineering and Decision Analytics
 [†]Department of Mathematics
 *[†]The Hong Kong University of Science and Technology

January 9, 2019

Abstract

We introduce a structure for the directed acyclic graph (DAG) and a mechanism design based on that structure so that peers can reach consensus at large scale based on proof of work (PoW). We also design a mempool transaction assignment method based on the DAG structure to render negligible the probability that a transaction being processed by more than one miners. The result is a significant scale-up of the capacity without sacrificing security and decentralization.

Key words: consensus; directed acyclic graph; proof of work; transaction assignment.

arXiv:<u>1901.02755</u>

GitHub

coming soon