
Consensus Mechanism Design 
based on Structured DAGs

Jiheng Zhang


HKUST



Blockchain

WHAT IS GREAT

✓ Secure: Nakamoto consensus


✓ Decentralized: PoW
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Proof of Work
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H(𝙱) = 𝟶⋯⋯𝟶 * * * * * * *

leading x bits are all 0
Regular Block regular block reward + Tx fee

H(𝙱) = 𝟶⋯⋯⋯⋯𝟶 * * * *

leading y bits are all 0
Milestone Block additional bonus*
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Three pointers have to be specified before knowing the type!



Structured DAG

A block is syntactically valid if its format satisfies (1) and it matches its identity. This is

similar to the integrity check of a block in Bitcoin. A DAG G is syntactically valid if all of its

blocks are syntactically valid, and it is acyclic and satisfies (5). A block B is syntactically valid

for the sDAG G if G [ {B} is syntactically valid. A peer’s first task is to ensure his local DAG

is syntactically valid. Such a check protects the system from being flooded with invalid blocks.

It will become self-evident that under our protocol, the milestone tree is essentially the tree

occurring in a blockchain with forks. The milestone tree plays an essential role in connecting

all of the peer chains, while the pointers idtip further enhance the connectivity of the DAG

Figure 1 provides an illustration of such a structure.

O

miner 5

miner 4

miner 3

miner 2

miner 1

Figure 1: DAG structure for 5 miners with milestone forks.

We now define the height of milestone blocks in a structured DAG. The height of the genesis

⌘(O) = 0, and for a milestone block B, i.e., H(B) < pd, the height is defined as

⌘(B) = ⌘(Bm) + 1, where H(B) < pd and B.idms = H(Bm). (6)

The genesis and all milestone blocks in G form a tree where the depth of each milestone block

is its height. The leaf set of all milestone blocks is

Tm(G) = {Bm 2 G : H(Bm) < pd and

@ B0m 2 G s.t. H(B0m) < pd and B0m.idms = H(Bm)}.
(7)

For a milestone block Bm in the leaf set with ⌘(Bm) = n, following the pointers idms we can

find a sequence of blocks

Bm,n = Bm, Bm,n�1, Bm,n�2, ...., Bm,1, Bm,0 = O, (8)

such that H(Bm,k) < pd and Bm,k.idms = H(Bm,k�1) for all k = 1, 2, . . . , n. We call such a

sequence the milestone chain for block Bm. So each block in the leaf set of all milestone blocks

represents a milestone chain, whose length is equal to the height of that block. We define the

height of the DAG to be the length of the longest chain(s),

⌘(G) = max{⌘(B) : B 2 Tm(G)}. (9)

Note that multiple longest chains might exist. To choose a longest chain, we just need to choose

a block with the largest height in the leaf set. The nth milestone is defined to be the block on

the longest milestone chain with height n.

8



Structured DAG

A block is syntactically valid if its format satisfies (1) and it matches its identity. This is

similar to the integrity check of a block in Bitcoin. A DAG G is syntactically valid if all of its

blocks are syntactically valid, and it is acyclic and satisfies (5). A block B is syntactically valid

for the sDAG G if G [ {B} is syntactically valid. A peer’s first task is to ensure his local DAG

is syntactically valid. Such a check protects the system from being flooded with invalid blocks.

It will become self-evident that under our protocol, the milestone tree is essentially the tree

occurring in a blockchain with forks. The milestone tree plays an essential role in connecting

all of the peer chains, while the pointers idtip further enhance the connectivity of the DAG

Figure 1 provides an illustration of such a structure.

O

miner 5

miner 4

miner 3

miner 2

miner 1

Figure 1: DAG structure for 5 miners with milestone forks.

We now define the height of milestone blocks in a structured DAG. The height of the genesis

⌘(O) = 0, and for a milestone block B, i.e., H(B) < pd, the height is defined as

⌘(B) = ⌘(Bm) + 1, where H(B) < pd and B.idms = H(Bm). (6)

The genesis and all milestone blocks in G form a tree where the depth of each milestone block

is its height. The leaf set of all milestone blocks is

Tm(G) = {Bm 2 G : H(Bm) < pd and

@ B0m 2 G s.t. H(B0m) < pd and B0m.idms = H(Bm)}.
(7)

For a milestone block Bm in the leaf set with ⌘(Bm) = n, following the pointers idms we can

find a sequence of blocks

Bm,n = Bm, Bm,n�1, Bm,n�2, ...., Bm,1, Bm,0 = O, (8)

such that H(Bm,k) < pd and Bm,k.idms = H(Bm,k�1) for all k = 1, 2, . . . , n. We call such a

sequence the milestone chain for block Bm. So each block in the leaf set of all milestone blocks

represents a milestone chain, whose length is equal to the height of that block. We define the

height of the DAG to be the length of the longest chain(s),

⌘(G) = max{⌘(B) : B 2 Tm(G)}. (9)

Note that multiple longest chains might exist. To choose a longest chain, we just need to choose

a block with the largest height in the leaf set. The nth milestone is defined to be the block on

the longest milestone chain with height n.

8

Peer chain



Structured DAG

A block is syntactically valid if its format satisfies (1) and it matches its identity. This is

similar to the integrity check of a block in Bitcoin. A DAG G is syntactically valid if all of its

blocks are syntactically valid, and it is acyclic and satisfies (5). A block B is syntactically valid

for the sDAG G if G [ {B} is syntactically valid. A peer’s first task is to ensure his local DAG

is syntactically valid. Such a check protects the system from being flooded with invalid blocks.

It will become self-evident that under our protocol, the milestone tree is essentially the tree

occurring in a blockchain with forks. The milestone tree plays an essential role in connecting

all of the peer chains, while the pointers idtip further enhance the connectivity of the DAG

Figure 1 provides an illustration of such a structure.

O

miner 5

miner 4

miner 3

miner 2

miner 1

Figure 1: DAG structure for 5 miners with milestone forks.

We now define the height of milestone blocks in a structured DAG. The height of the genesis

⌘(O) = 0, and for a milestone block B, i.e., H(B) < pd, the height is defined as

⌘(B) = ⌘(Bm) + 1, where H(B) < pd and B.idms = H(Bm). (6)

The genesis and all milestone blocks in G form a tree where the depth of each milestone block

is its height. The leaf set of all milestone blocks is

Tm(G) = {Bm 2 G : H(Bm) < pd and

@ B0m 2 G s.t. H(B0m) < pd and B0m.idms = H(Bm)}.
(7)

For a milestone block Bm in the leaf set with ⌘(Bm) = n, following the pointers idms we can

find a sequence of blocks

Bm,n = Bm, Bm,n�1, Bm,n�2, ...., Bm,1, Bm,0 = O, (8)

such that H(Bm,k) < pd and Bm,k.idms = H(Bm,k�1) for all k = 1, 2, . . . , n. We call such a

sequence the milestone chain for block Bm. So each block in the leaf set of all milestone blocks

represents a milestone chain, whose length is equal to the height of that block. We define the

height of the DAG to be the length of the longest chain(s),

⌘(G) = max{⌘(B) : B 2 Tm(G)}. (9)

Note that multiple longest chains might exist. To choose a longest chain, we just need to choose

a block with the largest height in the leaf set. The nth milestone is defined to be the block on

the longest milestone chain with height n.

8

Peer chain

Miner state



Structured DAG

A block is syntactically valid if its format satisfies (1) and it matches its identity. This is

similar to the integrity check of a block in Bitcoin. A DAG G is syntactically valid if all of its

blocks are syntactically valid, and it is acyclic and satisfies (5). A block B is syntactically valid

for the sDAG G if G [ {B} is syntactically valid. A peer’s first task is to ensure his local DAG

is syntactically valid. Such a check protects the system from being flooded with invalid blocks.

It will become self-evident that under our protocol, the milestone tree is essentially the tree

occurring in a blockchain with forks. The milestone tree plays an essential role in connecting

all of the peer chains, while the pointers idtip further enhance the connectivity of the DAG

Figure 1 provides an illustration of such a structure.

O

miner 5

miner 4

miner 3

miner 2

miner 1

Figure 1: DAG structure for 5 miners with milestone forks.

We now define the height of milestone blocks in a structured DAG. The height of the genesis

⌘(O) = 0, and for a milestone block B, i.e., H(B) < pd, the height is defined as

⌘(B) = ⌘(Bm) + 1, where H(B) < pd and B.idms = H(Bm). (6)

The genesis and all milestone blocks in G form a tree where the depth of each milestone block

is its height. The leaf set of all milestone blocks is

Tm(G) = {Bm 2 G : H(Bm) < pd and

@ B0m 2 G s.t. H(B0m) < pd and B0m.idms = H(Bm)}.
(7)

For a milestone block Bm in the leaf set with ⌘(Bm) = n, following the pointers idms we can

find a sequence of blocks

Bm,n = Bm, Bm,n�1, Bm,n�2, ...., Bm,1, Bm,0 = O, (8)

such that H(Bm,k) < pd and Bm,k.idms = H(Bm,k�1) for all k = 1, 2, . . . , n. We call such a

sequence the milestone chain for block Bm. So each block in the leaf set of all milestone blocks

represents a milestone chain, whose length is equal to the height of that block. We define the

height of the DAG to be the length of the longest chain(s),

⌘(G) = max{⌘(B) : B 2 Tm(G)}. (9)

Note that multiple longest chains might exist. To choose a longest chain, we just need to choose

a block with the largest height in the leaf set. The nth milestone is defined to be the block on

the longest milestone chain with height n.

8

Nakamoto chain Peer chain

Miner state



Structured DAG

A block is syntactically valid if its format satisfies (1) and it matches its identity. This is

similar to the integrity check of a block in Bitcoin. A DAG G is syntactically valid if all of its

blocks are syntactically valid, and it is acyclic and satisfies (5). A block B is syntactically valid

for the sDAG G if G [ {B} is syntactically valid. A peer’s first task is to ensure his local DAG

is syntactically valid. Such a check protects the system from being flooded with invalid blocks.

It will become self-evident that under our protocol, the milestone tree is essentially the tree

occurring in a blockchain with forks. The milestone tree plays an essential role in connecting

all of the peer chains, while the pointers idtip further enhance the connectivity of the DAG

Figure 1 provides an illustration of such a structure.

O

miner 5

miner 4

miner 3

miner 2

miner 1

Figure 1: DAG structure for 5 miners with milestone forks.

We now define the height of milestone blocks in a structured DAG. The height of the genesis

⌘(O) = 0, and for a milestone block B, i.e., H(B) < pd, the height is defined as

⌘(B) = ⌘(Bm) + 1, where H(B) < pd and B.idms = H(Bm). (6)

The genesis and all milestone blocks in G form a tree where the depth of each milestone block

is its height. The leaf set of all milestone blocks is

Tm(G) = {Bm 2 G : H(Bm) < pd and

@ B0m 2 G s.t. H(B0m) < pd and B0m.idms = H(Bm)}.
(7)

For a milestone block Bm in the leaf set with ⌘(Bm) = n, following the pointers idms we can

find a sequence of blocks

Bm,n = Bm, Bm,n�1, Bm,n�2, ...., Bm,1, Bm,0 = O, (8)

such that H(Bm,k) < pd and Bm,k.idms = H(Bm,k�1) for all k = 1, 2, . . . , n. We call such a

sequence the milestone chain for block Bm. So each block in the leaf set of all milestone blocks

represents a milestone chain, whose length is equal to the height of that block. We define the

height of the DAG to be the length of the longest chain(s),

⌘(G) = max{⌘(B) : B 2 Tm(G)}. (9)

Note that multiple longest chains might exist. To choose a longest chain, we just need to choose

a block with the largest height in the leaf set. The nth milestone is defined to be the block on

the longest milestone chain with height n.

8

Nakamoto chain Peer chain

Connectivity Miner state



Structured DAG

A block is syntactically valid if its format satisfies (1) and it matches its identity. This is

similar to the integrity check of a block in Bitcoin. A DAG G is syntactically valid if all of its

blocks are syntactically valid, and it is acyclic and satisfies (5). A block B is syntactically valid

for the sDAG G if G [ {B} is syntactically valid. A peer’s first task is to ensure his local DAG

is syntactically valid. Such a check protects the system from being flooded with invalid blocks.

It will become self-evident that under our protocol, the milestone tree is essentially the tree

occurring in a blockchain with forks. The milestone tree plays an essential role in connecting

all of the peer chains, while the pointers idtip further enhance the connectivity of the DAG

Figure 1 provides an illustration of such a structure.

O

miner 5

miner 4

miner 3

miner 2

miner 1

Figure 1: DAG structure for 5 miners with milestone forks.

We now define the height of milestone blocks in a structured DAG. The height of the genesis

⌘(O) = 0, and for a milestone block B, i.e., H(B) < pd, the height is defined as

⌘(B) = ⌘(Bm) + 1, where H(B) < pd and B.idms = H(Bm). (6)

The genesis and all milestone blocks in G form a tree where the depth of each milestone block

is its height. The leaf set of all milestone blocks is

Tm(G) = {Bm 2 G : H(Bm) < pd and

@ B0m 2 G s.t. H(B0m) < pd and B0m.idms = H(Bm)}.
(7)

For a milestone block Bm in the leaf set with ⌘(Bm) = n, following the pointers idms we can

find a sequence of blocks

Bm,n = Bm, Bm,n�1, Bm,n�2, ...., Bm,1, Bm,0 = O, (8)

such that H(Bm,k) < pd and Bm,k.idms = H(Bm,k�1) for all k = 1, 2, . . . , n. We call such a

sequence the milestone chain for block Bm. So each block in the leaf set of all milestone blocks

represents a milestone chain, whose length is equal to the height of that block. We define the

height of the DAG to be the length of the longest chain(s),

⌘(G) = max{⌘(B) : B 2 Tm(G)}. (9)

Note that multiple longest chains might exist. To choose a longest chain, we just need to choose

a block with the largest height in the leaf set. The nth milestone is defined to be the block on

the longest milestone chain with height n.

8

Nakamoto chain Peer chain

Connectivity Miner state



For any milestone block Bm 2 G, we define the DAG confirmed by the milestone Bm to be

C(Bm) = {B 2 G : there exits a path from B to Bm} [ {Bm}. (10)

If B0m 2 G is the milestone or genesis that immediately preceding Bm, i.e. Bm.idms = H(B0m),

then we define the level set to be

S(Bm, B0m) = C(Bm) \ C(B0m). (11)

With slight extension of notation, we define C(k) = C(Bm,k) to be the DAG confirmed by the

kth milestone and S(k) = C(k) \ C(k � 1) to be the kth level set, with C(0) = {O}. In Figure 2,

level sets S(k), S(k + 1), S(k + 2) and S(k + 3) are shaded in gray. The pending set is defined

to be the set of all blocks that have not yet been confirmed by any milestone on the longest

milestone chain. It is worth pointing out that the blue block is also a milestone block. This

milestone forked from the (k + 1)th milestone due to either network synchronization delay or

attack. The blue and red blocks in Figure 2 form the milestone tree above defined. The blue

block and the current (k + 2)th milestone will compete for confirmations by future milestones

based on Nakamoto consensus. If the blue blocks fails, i.e. all honest peers thinks it is a fork,

it will be treated as a regular block in Section 4 when we building the ledger.

O

miner 5

miner 4

miner 3

miner 2

miner 1

k � 1 k k + 1 k + 2 k + 3

Pending Set

Figure 2: An Illustration of Level Sets and the Pending Set

3 Protocol for Maintaining a Local DAG

The structured DAG is collectively created and maintained in a distributed fashion by all peers

over a peer-to-peer network following a protocol. Peers following this protocol are said to be

honest and peers not following this protocol are said to be malicious. In a decentralized system,

each peer will have his own local DAG, which can be di↵erent from the local DAG of another peer

due to issues like network synchronization delay and malicious attacks. This can be illustrated

by comparing Figure 2 and Figure 3. Suppose the due to network synchronization, an honest

peer has not received the latest milestone created by miner 5. He may then think that the blue

milestone is the (k + 2)th on the longest chain. In this case, his view is depicted in Figure 3.

For a peer a, denote his local DAG by Ga, which is evolving he creates and receives blocks.

All miners start their peer chains from the genesis block O. We now describe the protocol to be

followed by each peer/miner. The objective for all honest peers to agree upon the same DAG

9
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milestone forked from the (k + 1)th milestone due to either network synchronization delay or
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Suppose Alice has a local DAG


1.  Download if height is too small


2.  Solidify + topological sort


3.  Add blocks one by one 

RECEIVING A BLOCK

local DAG is much smaller, he should start downloading the missing level sets. Once a peer’s

local height is close to the heights of his connected peers, e.g., within a threshold specified in our

code implementation, the peer can start to receive broadcasted newly mined blocks. Suppose

peer a receives a block B through broadcast. It is possible that he does not have some blocks

to which B either directly or indirectly points due to synchronization delay. He should start a

process to solidify the block B by asking his peers for the missing blocks from its peers. Once he

has obtained all the missing blocks, peer a needs perform topological sorting (e.g. Section 2.2.3

in [4]) of these blocks, so that blocks can be added sequentially to the peer’s local DAG.

We now describe how to add a block B, all blocks it points to are already in the DAG Ga.

First, check if block B is syntactically valid for Ga = C(Bm). If not, discarded the it immediately;

otherwise update the local DAG Ga by letting

Ga := Ga [ {B}

and relay the block B to connected peers. If block B contains a transaction that is in the

peer’s mempool, the peer removes the transaction from his mempool. Note that we do not

require the peer to verify the transaction in block B at this stage. Taking Bitcoin for example,

the verification requires verifying signatures and checking that all inputs of the transaction

correspond to some unspent outputs in the public ledger according to the current local DAG,

and ensuring no double spending occurs among all transactions. We postpone such verification

to the time when we convert the local DAG to a ledger, primarily because it takes time, in

particular the secure latency (Section 5.3), to reach consensus on the DAG.

The primary concern is whether block B is a forked milestone or not. In other words, we

need to consider what kind of block it is. If block B is regular, do nothing. If block B is a

milestone, we need to compare the height of Ga with ⌘(B). If ⌘(B) > ⌘(Bm), then set

Ga := C(B).

This means a major update of the Ga since the peer needs to switch from the current milestone

chain to the newly discovered longest milestone chain in the local DAG.

3.3 Creating a block

If a miner wants to create a block B, and have it accepted by all other peers as part of their

local DAGs, the actions to be taken are as follows. The first thing the miner needs to do is

to find a transaction that he can process from his mempool as required in by (12), and put

this transaction in a block. We also require the selected transaction to be compatible with the

miner’s ledger, i.e. the input(s) for this transaction should be in the unspent outputs of the

ledger constructed based on the DAG C(Bm), where Bm is the highest milestone in its local

DAG.

Next, the miner must prepare three pointers so that the block will be syntactically valid.

The steps are as follows

1. Pick the highest milestone Bm in his local DAG Ga and set B.idms = H(Bm).
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This means a major update of the Ga since the peer needs to switch from the current milestone
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3.3 Creating a block

If a miner wants to create a block B, and have it accepted by all other peers as part of their

local DAGs, the actions to be taken are as follows. The first thing the miner needs to do is

to find a transaction that he can process from his mempool as required in by (12), and put

this transaction in a block. We also require the selected transaction to be compatible with the

miner’s ledger, i.e. the input(s) for this transaction should be in the unspent outputs of the

ledger constructed based on the DAG C(Bm), where Bm is the highest milestone in its local

DAG.

Next, the miner must prepare three pointers so that the block will be syntactically valid.

The steps are as follows

1. Pick the highest milestone Bm in his local DAG Ga and set B.idms = H(Bm).

12

local DAG is much smaller, he should start downloading the missing level sets. Once a peer’s

local height is close to the heights of his connected peers, e.g., within a threshold specified in our

code implementation, the peer can start to receive broadcasted newly mined blocks. Suppose

peer a receives a block B through broadcast. It is possible that he does not have some blocks

to which B either directly or indirectly points due to synchronization delay. He should start a

process to solidify the block B by asking his peers for the missing blocks from its peers. Once he

has obtained all the missing blocks, peer a needs perform topological sorting (e.g. Section 2.2.3

in [4]) of these blocks, so that blocks can be added sequentially to the peer’s local DAG.

We now describe how to add a block B, all blocks it points to are already in the DAG Ga.

First, check if block B is syntactically valid for Ga = C(Bm). If not, discarded the it immediately;

otherwise update the local DAG Ga by letting

Ga := Ga [ {B}

and relay the block B to connected peers. If block B contains a transaction that is in the

peer’s mempool, the peer removes the transaction from his mempool. Note that we do not

require the peer to verify the transaction in block B at this stage. Taking Bitcoin for example,

the verification requires verifying signatures and checking that all inputs of the transaction

correspond to some unspent outputs in the public ledger according to the current local DAG,

and ensuring no double spending occurs among all transactions. We postpone such verification

to the time when we convert the local DAG to a ledger, primarily because it takes time, in

particular the secure latency (Section 5.3), to reach consensus on the DAG.

The primary concern is whether block B is a forked milestone or not. In other words, we

need to consider what kind of block it is. If block B is regular, do nothing. If block B is a

milestone, we need to compare the height of Ga with ⌘(B). If ⌘(B) > ⌘(Bm), then set

Ga := C(B).

This means a major update of the Ga since the peer needs to switch from the current milestone

chain to the newly discovered longest milestone chain in the local DAG.

3.3 Creating a block

If a miner wants to create a block B, and have it accepted by all other peers as part of their

local DAGs, the actions to be taken are as follows. The first thing the miner needs to do is

to find a transaction that he can process from his mempool as required in by (12), and put

this transaction in a block. We also require the selected transaction to be compatible with the

miner’s ledger, i.e. the input(s) for this transaction should be in the unspent outputs of the

ledger constructed based on the DAG C(Bm), where Bm is the highest milestone in its local

DAG.

Next, the miner must prepare three pointers so that the block will be syntactically valid.

The steps are as follows

1. Pick the highest milestone Bm in his local DAG Ga and set B.idms = H(Bm).

12

No

Yes

Yes

Protocol



For any milestone block Bm 2 G, we define the DAG confirmed by the milestone Bm to be

C(Bm) = {B 2 G : there exits a path from B to Bm} [ {Bm}. (10)

If B0m 2 G is the milestone or genesis that immediately preceding Bm, i.e. Bm.idms = H(B0m),

then we define the level set to be

S(Bm, B0m) = C(Bm) \ C(B0m). (11)

With slight extension of notation, we define C(k) = C(Bm,k) to be the DAG confirmed by the

kth milestone and S(k) = C(k) \ C(k � 1) to be the kth level set, with C(0) = {O}. In Figure 2,

level sets S(k), S(k + 1), S(k + 2) and S(k + 3) are shaded in gray. The pending set is defined

to be the set of all blocks that have not yet been confirmed by any milestone on the longest

milestone chain. It is worth pointing out that the blue block is also a milestone block. This

milestone forked from the (k + 1)th milestone due to either network synchronization delay or

attack. The blue and red blocks in Figure 2 form the milestone tree above defined. The blue

block and the current (k + 2)th milestone will compete for confirmations by future milestones

based on Nakamoto consensus. If the blue blocks fails, i.e. all honest peers thinks it is a fork,

it will be treated as a regular block in Section 4 when we building the ledger.
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Figure 2: An Illustration of Level Sets and the Pending Set

3 Protocol for Maintaining a Local DAG

The structured DAG is collectively created and maintained in a distributed fashion by all peers

over a peer-to-peer network following a protocol. Peers following this protocol are said to be

honest and peers not following this protocol are said to be malicious. In a decentralized system,

each peer will have his own local DAG, which can be di↵erent from the local DAG of another peer

due to issues like network synchronization delay and malicious attacks. This can be illustrated

by comparing Figure 2 and Figure 3. Suppose the due to network synchronization, an honest

peer has not received the latest milestone created by miner 5. He may then think that the blue

milestone is the (k + 2)th on the longest chain. In this case, his view is depicted in Figure 3.

For a peer a, denote his local DAG by Ga, which is evolving he creates and receives blocks.

All miners start their peer chains from the genesis block O. We now describe the protocol to be

followed by each peer/miner. The objective for all honest peers to agree upon the same DAG

9
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(see Section 5.1), and consequently to use the same set of data to construct the public ledger.

We will present our protocol in the setting of a cryptocurrency application for concreteness

and clarity, although the protocol can potentially be generalized to other applications. To this

end, we first discuss the mempool, which is the bu↵er holding all pending transactions to be

processed.

3.1 Mempool Transaction Assignment

When someone wants to initiate a transaction, he will broadcast it to a few connected peers.

This is implemented via an inventory message and getdata approach in Bitcoin for example. If

a peer considers the transaction valid after receiving it, he will also broadcast the transaction

to all of his peers. A peer also need to remove a transaction from his local mempool once he

find out that transaction has already been put in a block, created either by himself or other

peers. In such a way, all peers will locally have a bu↵er of all outstanding transactions waiting

to be processed.

The purpose of expanding the chain structure to a DAG structure is to allow parallelism for

scaling up the capacity. However, with the current mempool design, it is highly possible that the

same transaction, especially when it is associated with a high transaction fee, will be processed

by multiple miners due to network broadcast delay. Consequently, the same transaction may end

up in multiple blocks. Although only one block will be valid according to our local algorithm of

constructing the ledger from the local DAG, much capacity would go to waste. If someone with

malicious intent wants to waste a large portion of the capacity, he/she could quickly broadcast

transactions with attractive fees. Such an attack on one side is much less costly than owning

and using a certain percentage of the hashing power, on the other side is e↵ective in reducing

the capacity.

Therefore, we need to design a mechanism to e↵ectively reduce the chance of collision, i.e.,

one transaction being processed by multiple miners. The basic idea is to dynamically limit the

number of transactions a miner can process at any time by using the hash result .H(H(Bi), Tx)

as a distance between transaction Tx and the miner’s state Bi, the most recent block on miner i’s

peer chain. The peer chain can also give a clear count of the proportion of blocks created by this

miner in any level set, and thus it provides a reference of the miner’s hashing power. Suppose

miner i possesses qi 2 [0, 1] proportion of the total hashing power. We say that transaction Tx
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Order all transactions 

in a level set

then idtip. Blocks in each level set are ordered according the post-order DFS2.

Assume we obtain an ordered list of transactions following the above level set ordering and

DFS ordering within each level set,

Tx1, Tx2, Tx3, . . .

Let Lk be the ledger constructed based on the first k transactions and Uk denote the set of

UTXO based on Lk. We start with L1 = {Tx1} and U1 being the outputs of Tx1. In order to

obtain (Lk+1,Uk+1) from (Lk,Uk) and Txk+1, we need to perform the following check. If the

inputs of Txk+1 are all from Uk and Txk+1 passes signature verification, then

Lk+1 = Lk+1 [ (Txk+1),

Uk+1 = Uk [ {outputs from Txk+1} \ {inputs from Txk+1},

otherwise (Lk+1,Uk+1) = (Lk,Uk).

We would like to point out that any graph traversal algorithm leading to a unique ordering

will be good enough for consensus purpose but an advantage of the DFS ordering is that the

chronological order of blocks on a peer chain is kept.

5 Performance Analysis

We now provide a modeling approach to analyze the performance of such a distributed system.

We focus on the three most important measures—consensus, latency and TPS. Throughout our

analysis, we make the following synchronization assumption.

Broadcast Delay Assumption. When a peer broadcasts a message of size ⌫ size to a peer-

to-peer network with n peers, F (t) fraction of the peers will receive the message after t amount

of time. Clearly, F (t) increases with time t. We further assume there exists a finite time t0 such

that F (t0) = 1. In other words, all peers will be able to receive the message within t0 amount

of time.

Note that the broadcast curve F and the bound t0 depend on both the message size ⌫ and

the number of peers n. We point out that the block size in our DAG (typically less than one

kilobyte in our implementation) is much smaller than that of Bitcoin for example, which is one

megabyte. So our t0 should be quite small. By classical results in regular graphs, a block will

be able to reach all n honest peers in O(ln(n)) relays in expectation, assuming it is syntactically

valid such that all honest peers will relay the block immediately after receiving it.

5.1 Reaching Consensus

Since all blocks will be confirmed by some milestone block along the longest milestone chain, our

level sets essentially play the role of the blocks in Bitcoin. So the consensus of our DAG system

essentially boils down to that of the block chain. This has been formally proven by [3] who

2https://en.wikipedia.org/wiki/Tree_traversal
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Lk+1 = Lk+1 [ (Txk+1),

Uk+1 = Uk [ {outputs from Txk+1} \ {inputs from Txk+1},

otherwise (Lk+1,Uk+1) = (Lk,Uk).

We would like to point out that any graph traversal algorithm leading to a unique ordering

will be good enough for consensus purpose but an advantage of the DFS ordering is that the

chronological order of blocks on a peer chain is kept.

5 Performance Analysis

We now provide a modeling approach to analyze the performance of such a distributed system.

We focus on the three most important measures—consensus, latency and TPS. Throughout our

analysis, we make the following synchronization assumption.

Broadcast Delay Assumption. When a peer broadcasts a message of size ⌫ size to a peer-

to-peer network with n peers, F (t) fraction of the peers will receive the message after t amount

of time. Clearly, F (t) increases with time t. We further assume there exists a finite time t0 such

that F (t0) = 1. In other words, all peers will be able to receive the message within t0 amount

of time.

Note that the broadcast curve F and the bound t0 depend on both the message size ⌫ and

the number of peers n. We point out that the block size in our DAG (typically less than one

kilobyte in our implementation) is much smaller than that of Bitcoin for example, which is one

megabyte. So our t0 should be quite small. By classical results in regular graphs, a block will

be able to reach all n honest peers in O(ln(n)) relays in expectation, assuming it is syntactically

valid such that all honest peers will relay the block immediately after receiving it.

5.1 Reaching Consensus

Since all blocks will be confirmed by some milestone block along the longest milestone chain, our

level sets essentially play the role of the blocks in Bitcoin. So the consensus of our DAG system

essentially boils down to that of the block chain. This has been formally proven by [3] who

2https://en.wikipedia.org/wiki/Tree_traversal
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Model Analysis

could broadcast transactions with attractive fees in rapid succession. Such an attack would be

much less costly than owning and using a certain percentage of the hashing power on the one

hand, and can e↵ectively reduce the capacity on the other hand.

Therefore, we need to design a mechanism to e↵ectively reduce the chance of collision,

i.e., the chance of one transaction being processed by multiple miners. The basic idea is to

dynamically limit the number of transactions a miner can process at any time by using the

hash result .H(H(Bi), Tx) as a distance between transaction Tx and the miner’s state Bi, i.e. the

most recent block on miner i’s peer chain. The peer chain can also give a clear count of the

proportion of blocks created by this miner in any level set, and thus it provides a reference of

the miner’s hashing power. Suppose miner i possesses qi 2 [0, 1] proportion of the total hashing

power. We say that transaction Tx is workable for miner i only if the distance

.H(H(Bi), Tx)  cqi, (12)

where c is parameter to be specified based on some careful analysis in Section 5. This means

that a transaction has a probability of only min(cqi, 1) to be workable for miner i at any time.

We now provide some simple calculation to give some idea. First, miner i can surely process

all transactions if c is chosen such that cqi � 1. So we just limit our choice of c to the range

(0, 1/maxi qi). Under this assumption, we have

P(Tx is not workable for any miner) =
nY

i=1

(1� cqi)

 (

Pn
i=1(1� cqi)

n
)n

=
⇣
1� c

n

⌘n

⇡ e�c,

(13)

as n becomes large. So intuitively, making c small cause a transaction hard to be processed

by miners in the network. Here we want to estimate the probability that a transaction can be

processed by two or more miners. To do so, we need to compute

P(Tx is workable for exactly one miner) =
nX

i=1

cqi
Y

j 6=i

(1� cqj)

⇡ e�c
nX

i=1

cqi
1� cqi

⇡ ce�c,

(14)

as n becomes large. The last estimate in the above is under the assumption that no miner owns

a significant portion hashing power thus 1� cqi can be approximated by 1 when n is large. In

this way, we obtain a neat answer and we can see clearly how the parameter c plays a role.

Summarizing the above two estimates, the probability of collision is given by

P(Tx is workable by more than one miners) ⇡ 1� e�c � ce�c. (15)
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Model Analysis

where t̄ = E(Ti) =
R t0
0 tdF (t), and the last inequality is obtained by Jenson’s inequality as the

above conditional probability is convex in t. The probability that Tx is mined exactly once is

lower-bounded by

nY

i=1

(1� P(Ai)) � (e�
c
nµt̄(1� e�µt̄) + e�µt̄)n ! e�cµt̄(1�eµt̄)

as n ! 1. The expected number of copies of mined Tx is upper-bounded by

1 +
nX

i=1

P(Ai)  1 + (1� e�µt̄)n(1� e�µt̄ c
n ) ! 1 + (1� e�µt̄)µct̄

as n ! 1. So the proportion of capacity that is wasted is upper-bounded by

✓(c) =
(1� e�µt̄)µct̄

1 + (1� e�µt̄)µct̄
. (16)

c is a design parameter, and the smaller c is, the less capacity that is wasted.

5.3 Latency

After a transaction enters the mempool, it will go through three phases before it is finally

confirmed in the public ledger. Firstly, the transaction has to wait in the mempool until some

miner creates a block B to store it. We call this waiting time the queueing latency W1. Next, this

block needs to be confirmed by a milestone Bm. Recall the definition of confirmation given in

(10). We call this period the infection latency W2 since it will be analyzed through an infection

model. Lastly, the milestone Bm needs to be extended by a chain of future milestones with a

certain number to ensure a certain level of security. We call the last stage secure latency W3.

Queueing Latency. Suppose new transactions arrive at the mempool following a counting

process with a constant rate �. The mempool is essentially a queueing system with arrival rate

� and e↵ective processing rate depending on both nµ and the transaction assignment rule (12).

We now give an estimation of the waiting time in queue W1 based on the idea of the fluid model

in queueing theory.

Denote by Q the stable queue length, i.e. number of transactions in the mempool. Whenever

a miner tries to find a transaction from the mempool to work on, he will find that the number

of transactions he can process follows the binomial distribution with total number of trials Q

and success probability c/n, which can be approximated by the Poisson distribution with rate

(Qc/n) since Q is large and c/n is small. So the proportion of time that a miner has to work on

an empty block is the probability that the Poisson random variable equals 0, i.e. e�Qc/n. The

rate at which blocks containing transactions are generated is therefore nµ(1�e�Qc/n). As noted

in the previous section, only (1� ✓(c)) of the transactions are distinct, so the rate at which the

transactions in the mempool are processed is (1� ✓(c))nµ(1� e�Qc/n). For the system to have

a stable Q, it is required that

nµ(1� e�Qc/n)(1� ✓(c)) = �.

20

Solving the above equation yields Q = n
c ln(

nµ
nµ��/(1�✓(c))). By Little’s law, the average waiting

time of a transaction is

W1 =
n

c�
ln

 
nµ

nµ� �
1�✓(c)

!
=

1

c

1

⇢µ
ln

 
1

1� ⇢
1�✓(c)

!
, (17)

where ⇢ = �
nµ denotes the tra�c intensity. Note that the number of miners does not a↵ect the

queueing latency as long as the rate at which new blocks are produced remains the same. The

influence of c on W1 is complicated. On the one hand, a larger c will result in less idle time, thus

increasing the e↵ective processing rate. On the other hand, a larger c leads to a higher proportion

of duplicate blocks, thus decreasing the e↵ective processing rate. The relation between wasted

capacity and queueing latency can be described as follows:

W1(✓) =
(1� ✓)t̄(1� e�µt̄)

✓⇢
ln

 
1

1� ⇢
1�✓

!
(18)

Our quantitative modeling analysis sheds the light on how the parameter c can be chosen to

strike a balance between collision and latency.

Traditional queueing theory suggests that the waiting time will blow up when the tra�c

intensity ⇢
1�✓ approaches 1. A more complicated model can be analyzed by allowing each

transaction to have an expiration clock, without which the mempool size will grow without a

bound. For the time being, the above queueing model is good enough to get the system started.

Infection Latency. A primary di↵erence between the DAG and chain structures is that the

former goes beyond the one-dimensional linear structure by allowing parallelism. Despite the

many advantages of the DAG, one issue is that a block may not necessarily be confirmed by

the next milestone—it may have to wait for a later milestone. A natural question is how long it

takes for a block to be confirmed by a milestone block after it is broadcasted to all miners. We

now provide an upper bound on this waiting time by modeling confirmation in our DAG using

an infection model. In our analysis, we assume all of the n miners are incentivized to follow the

three principles specified in Section 4.

Suppose that at time 0, block B is in the pending set, i.e. it has not been confirmed by any

milestone. As previously discussed, new blocks arrive following a Poisson process with rate nµ.

Each new block has probability p of being a milestone. Suppose that at time s > 0, there are

Xs miners whose head block can reach B by following a path in the DAG. We say that these

miners are infected by B. Note that if all miners are infected, then B will surely be confirmed

by the next milestone. Assume the next new block is created by miner a at time t > s. With

probability n�Xs
n , miner a is not infected. In this case, the probability that he will become

infected assuming he randomly picks any of the n chain heads is Xs
n . Note that this probability

is lower than the actual probability because block B may have already been confirmed by a

milestone if the chain head of any of the Xs infected miners’s is a milestone. Since we are

considering an upper bound, we may assume X0 = 1 and

Xr =

8
<

:
Xs + 1 with probability Xs(n�Xs)

n2 ,

Xs with probability 1� Xs(n�Xs)
n2 .

(19)
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We also introduce Ms, which indicates whether or not B is confirmed by a milestone. So M0 = 0

and

Mt =

8
<

:
1 with probability pXs

n ,

0 with probability 1� pXs
n .

(20)

The above modeling gives a continuous-time Markov chain (Xt,Mt) and we are interested in the

expected time taken to hit the set {(x,m) : x,� 1,m = 1}. Let qx denote the expected jumps

needed to hit the set starting from (x, 0). Then

qx = 1 +
⇣
1� p

x

n

⌘✓
x(n� x)

n2
qx+1 + (1� x(n� x)

n2
)qx

◆
, x = 1, 2, · · · , n� 1,

qn =
1

p
.

Therefore,

q1 =
nX

k=1

n3

pk3 � n(p+ 1)k2 + n2(p+ 1)k

k�1Y

j=1

(pj � n)(j � n)

pj2 � n(p+ 1)j + n2(p+ 1)

< 2n(1 + ln(n)) +
1

p
.

Let ⌧1 := inf{t : Mt = 1}, the time needed for B to be confirmed by a milestone. Since blocks

arrive at the rate nµ, which is exactly the rate for all jumps, the infection latency is

W2 = E(⌧) = 1

nµ
q1 <

2 + 2 ln(n)

µ
+

1

npµ
. (21)

Note that the second term in the above upper bound is basically the expected time it takes for

a milestone to arrive, which is fixed. Another contribution to the infection latency comes from

ln(n) in the first term. Intuitively, the infection latency increases with the number of miners,

n, due to parallelism. The relationship is better than linear in that it is a slow logarithmic

increase.

Secure Latency. After a block is confirmed by a milestone, we still need to wait for this

milestone to be extended by a number of future milestones for security guarantee. This is

essentially the same latency that occurs in blockchain systems like Bitcoin. This type of latency

was analyzed in [6] in a simple model assuming honest miners will not fork among themselves.

However, honest miners may fork among themselves due to broadcast delay because when an

honest miner creates a new block, he may not be aware of a recent block created by another

honest miner. A round-based model was formulated by [3] to handle this situation. The

synchronization assumption is that whatever happened in the previous round will be made

known to all honest miners in the present round so that they can act accordingly. However,

such a model requires a worst-case scenario analysis and thus is too conservative for parameter

selection. We now describe a continuous-time model to incorporate the broadcast delay function

F and the potential forking among honest miners.

Consider the arrival process of milestones created by honest peers. Let us call such milestones

honest milestone blocks. The creation of honest milestone blocks is a Poisson process with rate

22

preceding honest milestones and we will then tag milestone i with a 1. Mathematically,

Yi =

8
<

:
0, if (Yi�1 = 0 and Ui  t0) or (Yi�1 = 1 and Zi = 0),

1, otherwise.
(22)

The milestone chain evolves as follows. First, a number of milestones are tagged with a 1

meaning the longest milestone chain will grow whenever an honest peer produces a milestone.

When the first type-0 milestone arrives, it may be of the same height as a previous type-1

milestone, and thus it could potentially lead to forks. Once a type-0 milestone arrives, all newly

arriving milestone blocks will be regarded as useless until another milestone tagged with a 1

arrives, the height of which will exceed that of any milestone previously mined by honest peers.

Beyond that point in time, the regenerative cycle restarts. This is a conservative model, because

after a typ-0 milestone arrives, the miner of some subsequent milestone with inter-arrival time

less than t0 may be informed of all preceding honest milestones if he is lucky enough, but an

inter-arrival time greater than t0 will ensure that he will be informed.

In each regenerative cycle, the milestones tagged with a 0 can be regarded as wasted. Actu-

ally, we can consider the wasted milestone as if they were created by malicious miners. In other

words, the e↵ective hashing power of honest miners should be discounted by the proportion of

the blocks tagged with a 1 in a cycle. In each cycle, the number of blocks tagged with a 1 follows

the geometric distribution with success probability
R t0
0 (1�F (t))pnµe�pnµtdt and the number of

blocks tagged with a 0 is geometric with success probability e�pnµt0 . Thus, the long-run average

proportion of milestones tagged with a 1 can be estimated as

e�pnµt0

e�pnµt0 +
R t0
0 pnµ(1� F (t))e�pnµtdt

.

If pnµ = 0.1/s, t0 = 2s and F (t) = t � t2/4, then the above fraction will be 0.928. So in a

network where 10% of miners are malicious and 90% are honest, at least 90 ⇥ 0.928% of the

hashing power would be devoted to growing the chain. One method to compute the number

of milestones we need to wait for is to simply replace 90% with 90 ⇥ 0.928% in the Nakamoto

model [6].

0 100 200 300 400 500 600 700 800 900 1,000

10�4

10�3

10�2

10�1

100

Secure Latency T

F
ai
lu
re

F
re
qu

en
cy

10% adversary
30% adversary

Figure 5: Failure Frequency based on Simulation of 106 Sample Paths

24

Waste

Queueing latency

Infection delay



Performance
System parameters
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Performance

Modeling assumptions
Tx arrival rate Percentage of malicious hashing power

1000 30%

Performance
Queueing latency Infection delay Security latency Wasted capacity

188 seconds 23 seconds 810 seconds 1.7%

System parameters
Partition factor c Block generation speed MS interval Avg. # of blocks per 

level set

0.01 1200 blocks/second 10 seconds 12000
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Summary
consensus reward algorithm economic model

  TPS

  Latency: waiting + confirmation

  Concentration of mining power

  Transactions with little fees

How to issue new coins: inflation, limited 
supply, …?

How to incentivize people to provide 
storage and bandwidth service?



Summary
consensus reward algorithm economic model optimization

  TPS

  Latency: waiting + confirmation

  Concentration of mining power

  Transactions with little fees

How to issue new coins: inflation, limited 
supply, …?

How to incentivize people to provide 
storage and bandwidth service?

How to adaptively adjust the number of 
blocks created per unit of time?
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Abstract

We introduce a structure for the directed acyclic graph (DAG) and a mechanism design

based on that structure so that peers can reach consensus at large scale based on proof

of work (PoW). We also design a mempool transaction assignment method based on the

DAG structure to render negligible the probability that a transaction being processed by

more than one miners. The result is a significant scale-up of the capacity without sacrificing

security and decentralization.

Key words: consensus; directed acyclic graph; proof of work; transaction assignment.

1 Introduction

Blockchain technology is fundamentally a consensus mechanism design based on a chain struc-

ture of storing information in a distributed manner over a peer-to-peer network. Taking Bitcoin

[6] for example, multiple transactions are grouped together and stored in a block that is less

than 1 megabyte in size, and all blocks are connected in a chain structure. Although this may

not be the most e�cient way of storing information, with the help of cryptographic tools such

as hash functions and public/private keys for integrity check and authentication, Nakamoto

consensus [6] proposed based on the chain structure is able to achieve both security and decen-

tralization. Blockchain technology has achieved great success as exemplified by Bitcoin [6] and

Ethereum [11]. They have proved that a decentralized and secure public ledger system is not

only possible, but also has a great impact in our financial system and gives rise to a whole new

ecosystem with extendable services and applications.

In Bitcoin, all participants compete in solving cryptographic puzzles by tuning a nonce so

that the hash result exhibits a certain required pattern known as proof of work (PoW). The
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