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Abstract

We introduce a structure for the directed acyclic graph (DAG) and a mechanism design

based on that structure so that peers can reach consensus at large scale based on proof

of work (PoW). We also design a mempool transaction assignment method based on the

DAG structure to render negligible the probability that a transaction being processed by

more than one miners. The result is a significant scale-up of the capacity without sacrificing

security and decentralization.
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1 Introduction

Blockchain technology is fundamentally a consensus mechanism design based on a chain struc-

ture of storing information in a distributed manner over a peer-to-peer network. Taking Bitcoin

[6] for example, multiple transactions are grouped together and stored in a block that is less

than 1 megabyte in size, and all blocks are connected in a chain structure. Although this may

not be the most efficient way of storing information, with the help of cryptographic tools such

as hash functions and public/private keys for integrity check and authentication, Nakamoto

consensus [6] proposed based on the chain structure is able to achieve both security and decen-

tralization. Blockchain technology has achieved great success as exemplified by Bitcoin [6] and

Ethereum [11]. They have proved that a decentralized and secure public ledger system is not

only possible, but also has a great impact in our financial system and gives rise to a whole new

ecosystem with extendable services and applications.

In Bitcoin, all participants compete in solving cryptographic puzzles by tuning a nonce so

that the hash result exhibits a certain required pattern known as proof of work (PoW). The
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puzzles are so difficult that in a given period of time, long enough for a block of a given size

to propagate over the network, it is likely only one miner can form such a block. Miners, in

fact those who will create future blocks, can choose not to agree with the information in a

block simply by forking from a position preceding that block. Based on the honest majority

assumption, all honest miners will eventually be able to collectively agree upon a chain of valid

blocks, with invalid blocks on the forks. So all blocks ever created form a tree. The longest chain

in the tree, referred to as the Nakamoto chain, is collectively created by all honest miners using

PoW. It is the Nakamoto chain that confirms all the historical records. A rigorous formulation

of consensus has been proposed by [3] together with a probabilistic model that formally proves

it. With its rapid adoption over the last decade, blockchain technology has now come face to

face with a serious bottleneck, the extremely limited capacity, i.e., small number of transactions

per second (TPS). Removing this bottleneck will be a significant breakthrough in advancing

the blockchain technology, and open the possibility for a wide range of applications. However,

scaling up the capacity should not be at any compromise of security and decentralization.

Within the confines of the chain structure, we can try to increase the block size, or equiva-

lently to decrease the time interval between blocks, or use a combination there of to increase the

TPS. However, since larger blocks require more time to propagate over a peer-to-peer network,

such an attempt would increase the occurrence of forked blocks, even in the absence of mali-

cious miners. In order to increase the capacity by an order of magnitude, it is inevitable that

we explore beyond the chain structure. This naturally leads to the idea of expanding the chain

of blocks to a directed acyclic graph (DAG) of blocks to allow parallelism. The idea has been

implemented by IOTA [9]. In IOTA, everyone has the right to form a small block as no PoW is

required. The validity of a block is justified whenever someone is willing to append a new block

to it either directly or indirectly. This requires performing the computationally expensive task

of updating weights to calculate the number of blocks appended to each block. The weights

update approaches such as Ghost [10] suffer from what is known as the “balancing attack” [1].

Meanwhile, capacity is not the only issue in current blockchain systems. With the ever-growing

hashing power, cryptographic puzzles are becoming increasingly difficult. Miners with certain

hashing power would be able to mine a certain number of blocks and collect the corresponding

reward in expectation. However, the huge fluctuations of the actual reward around the expec-

tation force most miners to join mining pools in order to smooth their income, leading to the

concentration of hashing power within a few big mining pools. Another issue is the high latency

since it takes a long time to confirm a transaction. In addition, because they are self-interested,

miners would try to pack transactions with high fees into their blocks to maximize their reward.

Thus, transactions with little to no transaction fees hardly have a chance to be processed.

Among the different ways to achieve security and decentralization, PoW and Nakamoto

consensus are two fundamental tools that have been proven to be effective. In this paper, we

further explore the idea of expanding the chain to a DAG, while still keeping using these two

fundamental tools. Without sacrificing security and decentralization whatsoever, the objectives

are to
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• scale up the capacity;

• shorten the latency;

• deconcentrate the mining power;

• increase the probability that transactions with small fees are processed.

Our key idea is to embed a Nakamoto chain in a DAG by designing a structure that is strongly

connected and incorporates miner information. In this way, the security of our design is guaran-

teed by the security of the proven Nakamoto consensus, eliminating the need to update weights.

Based on the guaranteed security, we will take advantage of the strong connectivity in our DAG

structure to increase the throughput and shorten the latency. A DAG also provides an ordering

of transactions so that all honest peers (miners) 1 will be able to build the same public ledger

once they have reached a consensus on the DAG. We will also explore the rich possibility of

using our designed structure in DAGs to realize various improvements in line with the above

objectives.

Our design breaks a large block into multiple smaller ones. In fact, for simplicity, we put

only one transaction in each block. This does not only lead to a smaller block size, but also

much easier cryptographic puzzles. This design enables miners to broadcast transactions (stored

in small blocks) continuously over time, instead of waiting to broadcast a large batch of trans-

actions every once in a while. As mentioned earlier that a major bottleneck for blockchains

is their linear structure which forbids parallelism and the tradeoff between block size and syn-

chronization time. Using small blocks allows fast peer-to-peer propagation and parallelism,

thus significantly improving the throughput. However, a well-designed structure in the DAG

is needed together with a consensus mechanism for security and robustness. This leads to our

idea of interspersing relatively more difficult blocks, referred to as milestones, in the DAG for

security purpose. Our DAG starts from the genesis block, which contains a set of trusted setup

information. The workflow is the same for creating every block, regardless of whether it will

be a milestone or a regular block. When preparing a new block, every miner must choose a

transaction that is valid to the best of his latest knowledge, and specify three pointers. The

first pointer points to the miner’s previous block, or the genesis if the miner does not have any

previous block. With this requirement, each miner will have a peer chain representing the state

of that miner, which enables the possibility of incorporating information such as the miner’s

“identity” and hashing power. The second pointer points to the previous milestone, or the

genesis if there is no previous milestone, following the traditional longest chain principle in the

case where there is a fork. This pointer is required because the miner does not know whether

or not the new block will turn out to be a milestone. If the new block does turn out to be a

milestone, we will need all of the milestones to be connected to form a Nakamoto chain. The

last pointer must point to another miner’s recent regular block to enhance connectivity among

peer chains. Note that pointing to too old a block contribute little to connectivity and thus is

1We use the terms“miner” and “peer” almost interchangeably. The only subtle difference is that a miner must

solve cryptographic puzzles to create blocks, while a peer does not. Like a miner, a peer may propagate blocks

to a peer-to-peer network.
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undesirable. The reward scheme in our protocol incentivizes miners to connect to recent blocks.

Our DAG structure is illustrated in Figure 1, where peer chains and the Nakamoto chain are

highlighted.

After preparing a block, the miner will simply hash this block by tuning the nonce. If the

hashing result exhibits a certain required pattern, e.g. the 10 leading bits are all 0, then it

is a valid block. If by luck, the hashing result exhibits a more difficult pattern, e.g. the 15

leading bits are all 0, then it is a milestone block. A block, regardless of its type, serves as a

transaction container. The milestone blocks form a Nakamoto chain, which has the additional

role of assisting peers in reaching a consensus. Note that whether or not a block is a milestone

is random and only revealed when the mining process is completed. No miner can devote

his hashing power exclusively for milestone blocks since the workflow for creating any block

is the same and the hash function has three desirable properties — collision-free, hiding and

puzzle-friendly [7].

Such a design enables scaling up the capacity. Moreover, the milestone chain is completely

decentralized and enables reaching a consensus in the same way that the Nakamoto chain does.

The latency is reduced since a new block is soon confirmed by a milestone as analyzed in

Section 5. By “confirm” we mean that there is a path from a milestone block to this new

block by following a sequence of the above-mentioned pointers. A smaller block yields a smaller

reward but it also requires a smaller hashing effort. This greatly reduces the variability in

mining rewards, thus eliminating miners’ need to rely on mining pools to smooth their income.

As the capacity is scaled up, there is a higher chance that a transaction will be processed

by more than one miner during a short time interval. Although the conflict can be resolved by

consensus, it is a waste of capacity — something we are trying so hard to increase — to have

multiple blocks containing the same transaction. Thus we need a mechanism to avoid this kind

of collision. The main idea is to divide all of the transactions in the mempool among the miners

according to their hashing power. This requires knowledge of their identity and hashing power,

which can be inferred from the peer chain design. A miner can only process a transaction if

the hashing result of its most recent block concatenated with the transaction satisfies a certain

pattern, e.g. the leading several bits are 0. Miners are always allowed to create “empty” blocks

containing no transaction only earn a reward for creating blocks but no transaction fee. By

carefully choosing the parameters, this method effectively reduces the waste of capacity without

sacrificing too much the waiting time of transaction in the mempool, as shown in our analysis

in Section 5.

Having introduced the above ideas of scaling up the capacity, we will now discuss the physi-

cal ceiling of capacity. One constraint comes from network synchronization. For a public ledger

system with a specified TPS, data will be accumulated at a corresponding speed. One way or

another, this amount of data needs to be synchronized among all peers over the current Inter-

net infrastructure. In fact, the network synchronization affects both throughput and latency.

Another constraint comes from computing. For example, what is the fastest speed of writing

and reading a database (e.g., LevelDB). We also find that the secp256k1 ECDSA key verifi-
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cation is computationally expensive and could potentially be a bottleneck as TPS increases.

Our mechanism design can help a system to approach the ceiling. Our design does not require

strong information synchronization as in some current systems. Unlike systems requiring fre-

quent weights updates, our design does not require expensive computing. Putting only one

transaction in a block may seem inefficient, but the amount of overhead created is in fact quite

small due to the registration and redemption design introduced in Section 4, and so the design

is worthwhile considering the advantages it brings. How close our design is to the ceiling can

only be verified through an open test net, which is under development at the time of writing.

We hope to add running results of our open test net in future version updates.

Our mechanism design can be viewed as an extension of blockchain technology, such as

Bitcoin [6] and Ethereum [11], and unstructured DAGs, such as IOTA [9]. Recently, building

upon the idea of DAG, Conflux [5]solves the waste of discarding the fork blocks by selecting

the “pivot chain” with the highest “weight” whose consensus is guaranteed by Ghost [10].

In contrast, we eliminate the need to compute weights and use Nakamoto consensus instead.

Algorand [2] provides a new scaling consensus based on Byzantine Agreement, and Thunderella

[8] offers a new consensus mechanism that is robust in the worst case and enables fast transaction

confirmation in the optimistic case. These topics are beyond the scope of this paper. Many

problems exist in the emerging field of blockchain and cryptocurrency. For example, as TPS

increases to the thousands, a dozen terabytes of data will easily accumulate each year. The

current reward scheme only incentivizes people to provide mining service to a public ledger.

How do we design an economic model that incentivizes people to provide storage and the

required bandwidth? We will leave this kind of problem to future research.

2 A Structured DAG

Among many applications, a graph can describe a data structure, with each vertex representing

a basic unit of information, and each edge the relationship between two units. In this section,

we describe in detail our proposed structure in a DAG. The objective of this structure is to

enable miners across the network to reach a consensus on a set of data, so that they can build

and maintain a public ledger in a distributed fashion that all honest peers agrees on. We present

the DAG structure in a general setting without too much dependency on public ledgers, since

it can potentially have other applications.

We first describe the basic element, namely a block, in the DAG. As a basic unit of infor-

mation, a block B should contain a message, which is the essential data such as transactions

for cryptocurrency applications. It should also contain some additional information, namely

the block header, for integrity checking and positioning in the DAG. Assume there is a random

oracle H which maps a string of arbitrary length to a unique identity. In actual implementa-

tion, we would use a reasonably good cryptographic hash function, e.g. SHA-256, as the random

oracle. We apply the random oracle to the concatenation of all parts of a block, symbolically

denoted by H(B), to obtain the block’s identity. To check a block’s integrity, we just need to
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check whether the block and its identity match under the random oracle. Formally, a block

B = (idprev, idms, idtip, peer, nonce, message), (1)

where (idprev, idms, idtip) are the unique identities of some other blocks in the DAG, peer is

the miner who creates on this block, and nonce is the solution to the cryptographic puzzle.

Before giving further explaining the components of a block, we define the genesis O to be a

special block containing certain trusted setup information.

Proof of Work. We require a proof of work (PoW) for each block in order to decide if a

miner has the right to form the block. The miner should tune the nonce until the hash of the

block H(B) exhibits a certain pattern. Suppose the hash result H(B) is a string of zero-one

bits and denote by .H(B) the number in [0, 1] to which this string of bits converts following

the convention in [2]. Since H is a random oracle, .H(B) can be modeled as a random variable

uniformly distributed on the interval [0,1] for any block a priori. In order to “prove work”,

a miner needs to vary the nonce until .H(B) < d, where d is called the difficulty. Among all

the blocks, we allow a portion of them to be of a special type, called milestones. A block is

a milestone if .H(B)) < pd, where p is the probability that a block is a milestone. Note that

a miner has to specify all parts of a block including the three pointers, the main message and

the nonce before working on it (computing the hash). The type of block is revealed only after

the peer has worked on it. In other words, a peer does not know whether he is working toward

a milestone or a regular block. A miner may continue working on the block after obtaining a

hash .H(B) ∈ [pd, d) with the intention of making it a milestone. However, devoting a miner’s

hashing power to the creation of milestone blocks will not change the expected number of

milestone blocks he is able to create. Since a regular block also yields a mining reward, albeit

a smaller reward than that offered by a milestone, and involves a transaction fee, exclusively

mining milestone blocks is not economically beneficial for peers.

To describe the structure we want to design in a DAG, we now explain how the three pointers

(idprev, idms, idtip) position the block in the DAG and the intuitions behind our design.

Peer Chain. The first pointer idprev points to the most recent block created by the same

miner or the genesis if the miner has not mined any blocks before. By this mechanism, blocks

mined by the same miner are organized into a chain, namely the peer chain. The head of the

chain, defined to be the most recent block, of the chain can also be interpreted as the state

of the miner. A peer chain is designed to provide not only a clear structure in the DAG, but

also valuable information including the miner’s mining history, from which we can estimate the

miner’s hashing power. In Section 4, we will introduce a transaction scheduling scheme that

utilizes the miner state and estimated hashing power to reduce the probability that a transaction

is processed by multiple miners. The peer chain could also potentially generalize our design to

credit-based applications. Formally, we require

B.idprev = H(B′) =⇒ {B′.peer = B.peer} or {B′ = O}. (2)
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Note that this mathematical requirement cannot prevent a miner from forking his own peer

chain (e.g., not appending to the miner’s most recent block) nor attacking (e.g., forking another

miner’s peer chain). As explained later in the reward scheme in Section 4, a miner not appending

to his most recent block only cause less mining reward and waste of his hashing power. And

a miner mining on another miner’s peer chain might be wasting a small amount of the system

capacity at the cost of his own hashing power without any benefit to anyone. None of the above

actions would affect the consensus. In fact, incentivizing a miner to append a newly mined

block to his most recent block lessens the effect of “lazy connecting”, i.e. not appending to

recent blocks, an issue raised in the implementation of IOTA [9]. The pointer B.idprev specified

in (2) is essentially a directed edge from B to B′ if we view each block as a vertex in a graph. Any

directed edge plays a confirmation role in that block B confirms B′, which confirms its previous

blocks via its three pointers.

Connectivity. To create the connectivity among different peer chains, we use idtip to point

to a regular block of another miner. The genesis O is set as the default when no such block

exists. Formally,

B.idtip = H(Bt) =⇒ {Bt.peer 6= B.peer, .H(Bt) ∈ [pd, d)} or {Bt = O}. (3)

Again, the directed edge from block B to Bt plays a role of confirming Bt and all of the blocks that

Bt confirms. See (10) for a mathematical definition of confirming previous blocks. Intuitively,

a stronger connection leads to faster confirmations, thus we could have multiple such pointers

to further enhance the connectivity. However, these pointers have to be synchronized, verified

and stored by all peers and therefore having more pointers will incur a higher overhead cost.

Our analysis in Section 5.3 shows that having one such pointer is enough to ensure reasonable

confirmation latency.

Embedding a milestone chain. The pointer idms points to a milestone block Bm or the

genesis O, i.e.

B.idms = H(Bm) =⇒ {.H(Bm) < pd} or {Bm = O}. (4)

Our milestone chain works the same ways as the Bitcoin blockchain. The difference is that

each blocks on our milestone chain is smaller and confirms some other regular blocks in a

structured way. A major barrier to scaling up the capacity of a blockchain system is the slow

synchronization of large blocks in a peer-to-peer network. Our milestone chain, consists of much

smaller blocks, is designed as a bridge between high throughput and stable synchronization.

Each milestone, despite being small, confirms a relatively large number of other blocks as

defined in (10). In other words, each milestone confirms a part of history. Therefore, as long as

the peers reach a consensus on all milestones, they reach a consensus on the entire history. To

achieve the objective, we have to put all milestones in a chain structure by requiring all blocks

to have a pointer pointing to a previous milestone. This is because when preparing a block, in

particular when setting the pointer idms, there is no way of knowing whether or not that block
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will be a milestone until cryptographic puzzle is solved. If the block turns out to be a milestone,

we want to make sure it connects to a previous milestone via the pointer idms.

Let G be a collection of blocks including the genesis O, such that each non-genesis block

satisfies (2)–(4), and

∀ B ∈ G,H(B′) = B.idkey, key ∈ {prev, ms, tip} =⇒ B′ ∈ G. (5)

In other words, all blocks to which B ∈ G points are also in G. Essentially, G is a directed graph

if we regard blocks as vertices and pointers as directed edges. We say there exists a path from

B to B′ if starting at block B we can follow a consistently-directed sequence of edges to reach

block B′. Such a graph is called acyclic if for any block B in G there is no directed path from B

to itself.

A block is syntactically valid if its format satisfies (1) and it matches its identity. This is

similar to the integrity check of a block in Bitcoin. A DAG G is syntactically valid if all of its

blocks are syntactically valid, and it is acyclic and satisfies (5). A block B is syntactically valid

for the sDAG G if G ∪ {B} is syntactically valid. A peer’s first task is to ensure his local DAG

is syntactically valid. Such a check protects the system from being flooded with invalid blocks.

It will become self-evident that under our protocol, the milestone tree is essentially the tree

occurring in a blockchain with forks. The milestone tree plays an essential role in connecting

all of the peer chains, while the pointers idtip further enhance the connectivity of the DAG

Figure 1 provides an illustration of such a structure.

O

miner 5

miner 4

miner 3

miner 2

miner 1

Figure 1: DAG structure for 5 miners with milestone forks.

We now define the height of milestone blocks in a structured DAG. The height of the genesis

η(O) = 0, and for a milestone block B, i.e., H(B) < pd, the height is defined as

η(B) = η(Bm) + 1, where H(B) < pd and B.idms = H(Bm). (6)

The genesis and all milestone blocks in G form a tree where the depth of each milestone block

is its height. The leaf set of all milestone blocks is

Tm(G) = {Bm ∈ G : H(Bm) < pd and

∄ B′m ∈ G s.t. H(B′m) < pd and B′m.idms = H(Bm)}.
(7)

For a milestone block Bm in the leaf set with η(Bm) = n, following the pointers idms we can

find a sequence of blocks

Bm,n = Bm, Bm,n−1, Bm,n−2, ...., Bm,1, Bm,0 = O, (8)
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such that H(Bm,k) < pd and Bm,k.idms = H(Bm,k−1) for all k = 1, 2, . . . , n. We call such a

sequence the milestone chain for block Bm. So each block in the leaf set of all milestone blocks

represents a milestone chain, whose length is equal to the height of that block. We define the

height of the DAG to be the length of the longest chain(s),

η(G) = max{η(B) : B ∈ Tm(G)}. (9)

Note that multiple longest chains might exist. To choose a longest chain, we just need to choose

a block with the largest height in the leaf set. The nth milestone is defined to be the block on

the longest milestone chain with height n.

For any milestone block Bm ∈ G, we define the DAG confirmed by the milestone Bm to be

C(Bm) = {B ∈ G : there exits a path from B to Bm} ∪ {Bm}. (10)

If B′m ∈ G is the milestone or genesis that immediately preceding Bm, i.e. Bm.idms = H(B′m),

then we define the level set to be

S(Bm, B′m) = C(Bm) \ C(B′m). (11)

With slight extension of notation, we define C(k) = C(Bm,k) to be the DAG confirmed by the

kth milestone and S(k) = C(k) \ C(k − 1) to be the kth level set, with C(0) = {O}. In Figure 2,

level sets S(k), S(k + 1), S(k + 2) and S(k + 3) are shaded in gray. The pending set is defined

to be the set of all blocks that have not yet been confirmed by any milestone on the longest

milestone chain. It is worth pointing out that the blue block is also a milestone block. This

milestone forked from the (k + 1)th milestone due to either network synchronization delay or

attack. The blue and red blocks in Figure 2 form the milestone tree above defined. The blue

block and the current (k + 2)th milestone will compete for confirmations by future milestones

based on Nakamoto consensus. If the blue blocks fails, i.e. all honest peers thinks it is a fork,

it will be treated as a regular block in Section 4 when we building the ledger.

O

miner 5

miner 4

miner 3

miner 2

miner 1

k − 1 k k + 1 k + 2 k + 3

Pending Set

Figure 2: An Illustration of Level Sets and the Pending Set

3 Protocol for Maintaining a Local DAG

The structured DAG is collectively created and maintained in a distributed fashion by all peers

over a peer-to-peer network following a protocol. Peers following this protocol are said to be
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honest and peers not following this protocol are said to be malicious. In a decentralized system,

each peer will have his own local DAG, which can be different from the local DAG of another peer

due to issues like network synchronization delay and malicious attacks. This can be illustrated

by comparing Figure 2 and Figure 3. Suppose the due to network synchronization, an honest

peer has not received the latest milestone created by miner 5. He may then think that the blue

milestone is the (k + 2)th on the longest chain. In this case, his view is depicted in Figure 3.

O

miner 5

miner 4

miner 3

miner 2

miner 1

k − 1 k k + 1 k + 2 Pending Set

Figure 3: Level Sets from a Different Perspective

For a peer a, denote his local DAG by Ga, which is evolving he creates and receives blocks.

All miners start their peer chains from the genesis block O. We now describe the protocol to be

followed by each peer/miner. The objective for all honest peers to agree upon the same DAG

(see Section 5.1), and consequently to use the same set of data to construct the public ledger.

We will present our protocol in the setting of a cryptocurrency application for concreteness

and clarity, although the protocol can potentially be generalized to other applications. To this

end, we first discuss the mempool, which is the buffer holding all pending transactions to be

processed.

3.1 Mempool Transaction Assignment

When someone wants to initiate a transaction, he will broadcast it to a few connected peers.

This is implemented via an inventory message and getdata approach in Bitcoin for example. If

a peer considers the transaction valid after receiving it, he will also broadcast the transaction

to all of his peers. A peer also need to remove a transaction from his local mempool once he

find out that transaction has already been put in a block, created either by himself or other

peers. In such a way, all peers will locally have a buffer of all outstanding transactions waiting

to be processed.

The purpose of expanding the chain structure to a DAG structure is to allow parallelism for

scaling up the capacity. However, with the current mempool design, it is highly possible that the

same transaction, especially when it is associated with a high transaction fee, will be processed

by multiple miners due to network broadcast delay. Consequently, the same transaction may

end up in multiple blocks. Although only one block will be valid according to our local algorithm

of constructing the ledger from the local DAG, much capacity would go to waste. If someone

with malicious intent wants to ruin the network by wasting a large portion of the capacity, he

10



could broadcast transactions with attractive fees in rapid succession. Such an attack would be

much less costly than owning and using a certain percentage of the hashing power on the one

hand, and can effectively reduce the capacity on the other hand.

Therefore, we need to design a mechanism to effectively reduce the chance of collision,

i.e., the chance of one transaction being processed by multiple miners. The basic idea is to

dynamically limit the number of transactions a miner can process at any time by using the

hash result .H(H(Bi), Tx) as a distance between transaction Tx and the miner’s state Bi, i.e. the

most recent block on miner i’s peer chain. The peer chain can also give a clear count of the

proportion of blocks created by this miner in any level set, and thus it provides a reference of

the miner’s hashing power. Suppose miner i possesses qi ∈ [0, 1] proportion of the total hashing

power. We say that transaction Tx is workable for miner i only if the distance

.H(H(Bi), Tx) ≤ cqi, (12)

where c is parameter to be specified based on some careful analysis in Section 5. This means

that a transaction has a probability of only min(cqi, 1) to be workable for miner i at any time.

We now provide some simple calculation to give some idea. First, miner i can surely process

all transactions if c is chosen such that cqi ≥ 1. So we just limit our choice of c to the range

(0, 1/maxi qi). Under this assumption, we have

P(Tx is not workable for any miner) =

n
∏

i=1

(1− cqi)

≤ (

∑n
i=1(1− cqi)

n
)n

=
(

1−
c

n

)n

≈ e−c,

(13)

as n becomes large. So intuitively, making c small cause a transaction hard to be processed

by miners in the network. Here we want to estimate the probability that a transaction can be

processed by two or more miners. To do so, we need to compute

P(Tx is workable for exactly one miner) =

n
∑

i=1

cqi
∏

j 6=i

(1− cqj)

≈ e−c
n
∑

i=1

cqi
1− cqi

≈ ce−c,

(14)

as n becomes large. The last estimate in the above is under the assumption that no miner owns

a significant portion hashing power thus 1− cqi can be approximated by 1 when n is large. In

this way, we obtain a neat answer and we can see clearly how the parameter c plays a role.

Summarizing the above two estimates, the probability of collision is given by

P(Tx is workable by more than one miners) ≈ 1− e−c − ce−c. (15)
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Making c smaller helps to reduce collision. To give some quantitative idea, simply setting c = 0.1

will make the collision probability less than 0.5%.

Note that the set of workable transactions for each miner is dynamic as the miner state

changes every time the miner creates a new block. So how long a transaction has to wait in

the mempool and how much capacity will be wasted due to collision require detailed analysis

via a modeling approach in Sections 5.2 and 5.3. Through such an analysis, we can choose the

parameter c wisely to strike a balance between the wasted capacity and waiting time.

3.2 Receiving a Block

A peer may be new to the network or has been offline for a while. In this case, the peer should

first learn from his connected peers the height of the longest milestone chain. If the height of his

local DAG is much smaller, he should start downloading the missing level sets. Once a peer’s

local height is close to the heights of his connected peers, e.g., within a threshold specified in our

code implementation, the peer can start to receive broadcasted newly mined blocks. Suppose

peer a receives a block B through broadcast. It is possible that he does not have some blocks

to which B either directly or indirectly points due to synchronization delay. He should start a

process to solidify the block B by asking his peers for the missing blocks from its peers. Once he

has obtained all the missing blocks, peer a needs perform topological sorting (e.g. Section 2.2.3

in [4]) of these blocks, so that blocks can be added sequentially to the peer’s local DAG.

We now describe how to add a block B, where the blocks to which it points are already in

the DAG Ga. First, check if block B is syntactically valid for Ga = C(Bm). If not, discarded the

it immediately; otherwise update the local DAG Ga by letting

Ga := Ga ∪ {B}

and relay the block B to connected peers. If block B contains a transaction that is in the

peer’s mempool, the peer removes the transaction from his mempool. Note that we do not

require the peer to verify the transaction in block B at this stage. Taking Bitcoin for example,

the verification requires verifying signatures and checking that all inputs of the transaction

correspond to some unspent outputs in the public ledger according to the current local DAG,

and ensuring no double spending occurs among all transactions. We postpone such verification

to the time when we convert the local DAG to a ledger, primarily because it takes time, in

particular the secure latency (Section 5.3), to reach consensus on the DAG.

The primary concern is whether block B is a forked milestone or not. In other words, we

need to consider what kind of block it is. If block B is regular, do nothing. If block B is a

milestone, we need to compare the height of Ga with η(B). If η(B) > η(Bm), then set

Ga := C(B).

This means a major update of the Ga since the peer needs to switch from the current milestone

chain to the newly discovered longest milestone chain in the local DAG.
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3.3 Creating a block

If a miner wants to create a block B, and have it accepted by all other peers as part of their

local DAGs, the actions to be taken are as follows. The first thing the miner needs to do is

to find a transaction that he can process from his mempool as required in by (12), and put

this transaction in a block. We also require the selected transaction to be compatible with the

miner’s ledger, i.e. the input(s) for this transaction should be in the unspent outputs of the

ledger constructed based on the DAG C(Bm), where Bm is the highest milestone in its local

DAG.

Next, the miner must prepare three pointers so that the block will be syntactically valid.

The steps are as follows

1. Pick the highest milestone Bm in his local DAG Ga and set B.idms = H(Bm).

Note that Bm is the most recent milestone in the local DAG Ga. However, due to network

synchronization, Bm is may not necessarily be the most recent milestone block in reality.

2. Pick the most recent block B′ created by himself in Ga and set B.idprev = H(B′). If no

such B′ exists, set B.idprev = H(O).

Note that block B′ and B being consecutive blocks created by the same miner is a stronger

requirement than (2). See further discussion in the next section.

3. Define the tip set to be the set of regular blocks to which none of the blocks in Ga points

and are not created by the miner a. Randomly pick a block Bt from the tip set and set

B.idtip = H(Bt). If the tip set is {O} or empty, then set B.idtip = H(O).

This means that the miner needs to find a regular block Bt created by some other miner.

4. Keep applying the hash function to this block by changing the nonce untill .H(B) < d.

5. Finally, the miner needs to broadcast B through a peer-to-peer network. This certainly

takes time, as we will discuss in the subsection on the broadcast delay assumption in

Section 5.

4 Building a Public Ledger

We present this section in the context of the unspent transaction output (UTXO) model of

Bitcoin for concreteness. The idea of constructing a public ledger from the DAG structure can

be extended to other models. In the UTXO model, a transaction essentially specifies previous

transaction outputs as new transaction inputs and allocates all input values to new outputs.

Obviously, signatures are required in order to use an output as a transaction input. Readers can

refer to Bitcoin documents for details. A ledger is an ordered list of transactions, from which

we can construct the set of UTXOs. We say that a transaction is valid if it passes the signature

validation and its inputs are indeed from the UTXOs according to all preceding transactions.

A ledger is valid if all of its transactions are valid.
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Since we do not impose validity checks when receiving transactions packed in blocks, there

is no guarantee that all of the transactions in a local DAG are valid. For example, it is likely

two or more double-spending transactions coexist in a local DAG. The level sets in our DAG

along the longest milestone chain provide the natural ordering of level sets from low to high.

Within each level set, we utilize a depth-first search algorithm to order all its transactions. In

this way, as long as peers agree on the same DAG, they agree on the same way to order the

same set of transactions. We then specify an algorithm to chose a subset of this transaction

following the same ordering to form the public ledger.

Recall the definition of syntactical validity of our DAG, which every honest peer shall check

when updating it. Although it specifies a structure in the DAG, it does not enforce hard

constraints on the following requirements:

• Each miner should keep the blocks created by himself in a chain structure without any

forks.

• A new block shall point to the most recent milestone being created.

• A new block shall point to a recent regular block on another peer chain when created.

In fact, we could not enforce hard constraints in most cases since there is synchronization takes

time. For example, ideally, we would like to force each miner to connect to a block on another

peer chain in the pending set. But as illustrated in Figures 2 and 3, there may be no consensus

on the pending set due to temporary broadcast delay. Also, forbidding forking of a peer chain

add too many complicated rules while performing syntactical validity check and is not easy to

reach consensus when there is a forking attack. On the other side, not following the above three

principles decreases the performance of our system in terms of latency and wasted capacity. For

example, connecting to a too old regular block on another peer chain contributes very little to

the connectivity, thus slow down the confirmation by a milestone block. Also, not connecting to

the latest milestone creates the same issue of forking as in Bitcoin. Though eventually honest

peer will reach consensus on the longest milestone chain, forking is not desirable as it is a waste

of mined milestone blocks and cause delay in secure confirmation.

Reward Scheme. We design the following reward scheme to incentivize miners to follow the

above mentioned principles. A miner should be rewarded by a fixed fee (even if the block does

not contain a transaction) plus the transaction fee for creating a block. Exactly how much a

miner can get out of a block depends on three factors: the type of the block, the ultimate status

of this block, and the validity of the transaction in this block. The first two factors depends on

consensus dictated by the longest milestone chain, and the last one depends on the ordering of

transactions as we will explain later.

We have been using milestone and regular as block types so far. As discussed in Section 2, all

the milestone blocks form a tree. When computing the reward, we would like to treat milestone

block not on the longest chain as regular blocks. For ease of reference, let’s call regular and

forked milestone blocks regular+. Let rm and rn denote the fixed reward for milestones on the
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longest milestone chain and regular+ blocks, respectively. It is natural that rm > rn milestone

blocks are more difficult to create. As mentioned before, miners do not know the type of a

block a priori when working on it. Let Bm and B′m be two consecutive milestones on the longest

milestone chain with Bm.idms = H(B′m). Define

R(Bm) = rn(|S(Bm, B′m)| − 1)

to be the total amount of regular+ block rewards in the level set S(Bm, B′m). We summarize our

reward scheme in the following table:

Block Type Block Status Transaction Reward

regular+ on peer chain Valid rn + Tx fee

regular+ on peer chain Invalid rn

regular+ forked from peer chain Valid 0

regular+ forked from peer chain Invalid 0

milestone on the longest milestone chain Valid rm + Tx fee + δR(Bm)

milestone on the longest milestone chain Invalid rm + δR(Bm)

Table 1: Reward Scheme

On top of fixed amount rm and the transaction fee if valid, a milestone block also brings

additional reward of δR(Bm). We can think of the parameter δ as for example 2%. This means

that any miner who created a milestone, he will get in addition 2% of the rewards for all the

blocks that milestone confirmed in its level set. For example, if a system is running at 1000 TPS,

and milestones are generated every 10 seconds, there will be on average 10000 blocks in a level

set. So there is quite a big bonus compared with the situation where the block, despite qualified

to be a milestone, end up being a regular+ block because it is not on the longest chain. By

appropriately chose the parameters rn, rm and δ, we hope to provide miners enough incentive

to try their best to point to the most recent milestone when creating new blocks. Since the

extra bonus depend on the number of blocks in the level set, this will also incentivize a miner

to point a new block to a recent regular block on another peer chain to maximize the number

of blocks he can confirm.

The economic model is out of the scope of this paper which focus on consensus. Under our

design, one can choose to adjust rn and rm every once in a while so that the total number of

issued coins is fixed like in Bitcoin. Alternatively, one can keep them fixed so that the total

amount of currency in the system will inflate. There are many ways to design the financial

system, which we will not discuss here. No matter how to choose these parameters, such a

scheme together with smaller blocks which can be miner more easily will make miner i’s income

rate commensurate (without too much volatility) to his qi proportion of total hashing power

times the rate at which new currencies are issued plus transaction fees.

Note that in the above table, forked blocks from a peer chain brings zero reward thus

incentivize miners to follow the principle of maintaining the structure in peer chains. How

exactly does this work will be discussed in the following part.
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Registration and Redemption. As we can see in the designed scheme, the reward for a

block cannot be recorded as a static numerical number upon the time creating the block. Thus,

we need a mechanism that rewards each miner after consensus has been reached on the DAG.

One possible solution is to build a script in each block which will be able to calculate the

exact reward based on the three factors. But this solution costs too much storage overhead

for a block with only one transaction since a script itself will contain address and public key

accumulating to about the similar size as a transaction. It is also computationally expensive

since we find the secp256k1 ECDSA key verification time consuming. We hence propose the

following registration-redemption solution The first block each miner creates (the one directly

points to the genesis) should contain a special transaction called registration, which specifies an

address where future rewards on the peer chain should be awarded to. Every once in a while, a

miner can choose to create a block on his peer chain contain another special transaction called

redemption, which plays two roles. The first is to redeem the accumulated reward since the

previous redemption (registration) transaction on his peer chain to the address specified by the

previous redemption (registration) transaction. The second is to specify the address to which

next redemption shall be awarded to. To publish the a redemption block block, a miner has to

prove the ownership of the address in his previous redemption block by using his secrete key. As

such, the reward of a miner can only be claim by himself. Also, a miner can choose to redeem

whenever he wants and have the option to specify a different address to store his reward every

time he redeems. Since a redemption block can only redeem all the rewards in the blocks on the

peer chain since the previous redemption block, this effectively prevent a miner from forking his

own peer chain since in that way, the forked block costs computing power but brings no reward.

This design also prevents the forking attack on a peer chain by another miner. Suppose a

malicious miner, Alice, try to fork the peer chain of an honest miner Bob. Alice first spends

some hashing power to create a block whose peer is set to Bob and pointer idprev is set to point

to some block on Bob’s peer chain. If the chosen block is not the head of Bob’s peer chain, Alice

creates a fork on Bob’s peer chain. Alice can surely extend this fork by continuing spending

mining power to create more blocks along it. Note that Alice cannot publish a redemption block

on Bob’s chain since that requires Bob’s private key to prove the ownership of the address in

Bob’s previous redemption block. Thus there is no way Alice can redeem any reward on Bob’s

chain, even the reward in the forked blocks which are create by Alice. In fact, this actually

gives Bob a choice if the rewards along the fork is larger, Bob can easily append a redemption

block to that fork to redeem the rewards. Of course, Bob has to give up the blocks mined by

himself by doing so. Such an attack causes no damage to consensus and Bob’s revenue and

Alice’s hashing power will be wasted.

In summary, the registration and redemption approach help to determine a unique peer

chain for each miner by embedding a sequence of redemptions block which requires that miner’s

signature. Note that a simple idea is to a signature in every block in order to determine a

unique peer chain. But a signature require substantial space in the block, causing too much

storage and computation (for signature verification) overhead.
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Depth-first Search. The final preparation before constructing the ledger is to provide an or-

dering of all the transactions (equivalently blocks). Recall in Section 2 that blocks are organized

in level sets S(1), S(2), S(3), . . . along the longest milestone chain. So we order the level sets

using the heights of their milestones from low to high. According to the definition (11), level set

S(n) is a directed binary tree with the root being the nth milestone Bm,n. Each directed edge

in the tree is essentially a pointer in {idprev, idtip}. Note that we remove idms since it either

points to a previous level set or is redundant. We use the depth-first search (DFS) to traverse

this tree starting from the root Bm,n along the directed edges in the order of first idprev and

then idtip. Blocks in each level set are ordered according the post-order DFS2.

Assume we obtain an ordered list of transactions following the above level set ordering and

DFS ordering within each level set,

Tx1, Tx2, Tx3, . . .

Let Lk be the ledger constructed based on the first k transactions and Uk denote the set of

UTXO based on Lk. We start with L1 = {Tx1} and U1 being the outputs of Tx1. In order to

obtain (Lk+1,Uk+1) from (Lk,Uk) and Txk+1, we need to perform the following check. If the

inputs of Txk+1 are all from Uk and Txk+1 passes signature verification, then

Lk+1 = Lk+1 ∪ (Txk+1),

Uk+1 = Uk ∪ {outputs from Txk+1} \ {inputs from Txk+1},

otherwise (Lk+1,Uk+1) = (Lk,Uk).

We would like to point out that any graph traversal algorithm leading to a unique ordering

will be good enough for consensus purpose but an advantage of the DFS ordering is that the

chronological order of blocks on a peer chain is kept.

5 Performance Analysis

We now provide a modeling approach to analyze the performance of such a distributed system.

We focus on the three most important measures—consensus, latency and TPS. Throughout our

analysis, we make the following synchronization assumption.

Broadcast Delay Assumption. When a peer broadcasts a message of size ν size to a peer-

to-peer network with n peers, F (t) fraction of the peers will receive the message after t amount

of time. Clearly, F (t) increases with time t. We further assume there exists a finite time t0 such

that F (t0) = 1. In other words, all peers will be able to receive the message within t0 amount

of time.

Note that the broadcast curve F and the bound t0 depend on both the message size ν and

the number of peers n. We point out that the block size in our DAG (typically less than one

kilobyte in our implementation) is much smaller than that of Bitcoin for example, which is one

2https://en.wikipedia.org/wiki/Tree_traversal
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megabyte. So our t0 should be quite small. By classical results in regular graphs, a block will

be able to reach all n honest peers in O(ln(n)) relays in expectation, assuming it is syntactically

valid such that all honest peers will relay the block immediately after receiving it.

5.1 Reaching Consensus

Since all blocks will be confirmed by some milestone block along the longest milestone chain, our

level sets essentially play the role of the blocks in Bitcoin. So the consensus of our DAG system

essentially boils down to that of the block chain. This has been formally proven by [3] who

proposed the Bitcoin Backbone Protocol model. We will not repeat the proof here. Instead,

we make the connection to convince readers that it is legitimate for us to directly borrow their

result with the following assumptions.

The analysis in [3] is based on discrete rounds, which is not too different from our model.

We can discretize our time line into intervals of length t0 and let time interval (rt0, (r+1)t0] be

round r. Based on our broadcast delay assumption, blocks produced in round r will reach all

honest peers by the end of round r + 1. In the round-based model, we assume all actions are

taken at the end of each round.

Let f be the probability that there exists an honest peer producing one milestone in a round.

The honest majority assumption requires that the number of malicious peers κ, constitute only

a small fraction of the total population. Specifically, the number of malicious miner

κ ≤ (1− 2f)n

Note that a large f intuitively implies a high chance that honest miners will create more than

one milestones miners in the same round. This would increase the chance of their forking the

milestone chain due to broadcast delay. Thus the larger the f , the smaller the proportion of

malicious miners required for the following result to hold true. In fact, more subtle relationships

exist between f and (n, κ). Interested readers can refer to the proofs in [3] for more details.

The good news is that under the honest majority assumption, we have the following result on

consensus. The following property follows from Theorem 15 in [3].

Common Prefix. Consider any pair of honest peers p1 and p2 following our protocol to

maintain their local DAGs. Let Gp1 be the local DAG of peer p1 at round r1, and Gp2 be the

local DAG of peer p2 at round r2. Suppose r1 ≤ r2 and the height of Gp1 is h. For any positive

integer h′, let Bm,h′ be the milestone of height h′ in Gp1 , and Cp1(Bm,h′) be the DAG confirmed

by Bm,h′ in p1’s local DAG. There exists a k such that Cp1(Bm,h−k) ⊆ Gp2 with probability higher

than 1− e−Ω(k/f), where Ω(x) dominates x as x grows.

Note that the Bitcoin Backbone Protocol model is well designed for proving the consensus

property, as we are only interested in the existence of the number k and the probability 1 −

e−Ω(k/f) in the above. However, it is not suitable for parameter selection. For example, to ensure

the probability 1− e−Ω(k/f) exceeds 99.9%, we may end up with a too big a k for practical use.
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This is because the estimations in the backbone model are quite conservative. We propose a

more accurate model in the next subsection for setting a practical parameter k.

5.2 Wasted Capacity

Due to synchronization issues, a transaction may be processed by multiple peers and put in

several blocks. The extra copies are a waste of hashing power. This subsection is devoted to

giving an upper bound for the wasted capacity under our transaction assignment protocol (12).

In the subsequent analysis, we assume there are n honest miners with equal hashing power.

We also assume that with the current total hashing power, new blocks are created by following

a Poisson process with rate nµ (blocks/unit of time), where µ denotes the average rate of block

creation for each miner.

Suppose transaction Tx reaches miner i at time 0. However, Tx has just been mined by

some miner, who has subsequently broadcasted his block Btx containing this transaction to

the network at time 0. Suppose it takes Ti amount of time for miner i to receive this block.

According to our broadcast delay assumption, Ti is a random variable following distribution

F . Let us assume the worst case where the transaction fee of Tx is so attractive that miner i

will surely mine this transaction whenever he can before time Ti. Let Ni(t) denote the number

of blocks miner i can create during time (0, t]. Clearly Ni(·) is a Poisson process with rate µ.

During the time (0, t], miner i will have changed his miner chain head Ni(t) times, which follows

the Poisson distribution with rate µt. So conditional on Ni(t) = k, the probability that miner i

is eligible to work on transaction Tx some time during the interval (0, t] is

P(Ii(t) = 1|Ni(t) = k) = 1− (1−
c

n
)k ≤ 1− e−

ck

n ,

where Ii(t) indicates whether or not miner i is eligible to work on Tx.

Let Ai denote the event where miner i successfully mines Tx before he receives the block by

time Ti. We have the conditional probabilities

P(Ai|Ii(Ti) = 1, Ti = t) ≤ 1− e−µt,

P(Ai|Ii(Ti) = 0, Ti = t) = 0

where 1 − e−µt is the probability that miner i will successfully create the block in time t and

this is an upper bound for the left side of the first expression.

So, conditional on Ti = t, the probability that miner i creates a block for transaction Tx can

be bounded as follows:

P(Ai|Ti = t) ≤ (1− e−µt)P(Ii(Ti) = 1|Ti = t)

= (1− e−µt)ENi
[1− (1−

c

n
)Ni |Ti = t]

= (1− e−µt)(1− e−µt c

n )

This implies

P(Ai) ≤ E(1− e−µTi)(1− e−
c

n
µTi) ≤ (1− e−µt̄)(1− e−µt̄ c

n ),
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where t̄ = E(Ti) =
∫ t0
0 tdF (t), and the last inequality is obtained by Jenson’s inequality as the

above conditional probability is convex in t. The probability that Tx is mined exactly once is

lower-bounded by

n
∏

i=1

(1− P(Ai)) ≥ (e−
c

n
µt̄(1− e−µt̄) + e−µt̄)n → e−cµt̄(1−eµt̄)

as n → ∞. The expected number of copies of mined Tx is upper-bounded by

1 +
n
∑

i=1

P(Ai) ≤ 1 + (1− e−µt̄)n(1− e−µt̄ c

n ) → 1 + (1− e−µt̄)µct̄

as n → ∞. So the proportion of capacity that is wasted is upper-bounded by

θ(c) =
(1− e−µt̄)µct̄

1 + (1− e−µt̄)µct̄
. (16)

c is a design parameter, and the smaller c is, the less capacity that is wasted.

5.3 Latency

After a transaction enters the mempool, it will go through three phases before it is finally

confirmed in the public ledger. Firstly, the transaction has to wait in the mempool until some

miner creates a block B to store it. We call this waiting time the queueing latency W1. Next, this

block needs to be confirmed by a milestone Bm. Recall the definition of confirmation given in

(10). We call this period the infection latency W2 since it will be analyzed through an infection

model. Lastly, the milestone Bm needs to be extended by a chain of future milestones with a

certain number to ensure a certain level of security. We call the last stage secure latency W3.

Queueing Latency. Suppose new transactions arrive at the mempool following a counting

process with a constant rate λ. The mempool is essentially a queueing system with arrival rate

λ and effective processing rate depending on both nµ and the transaction assignment rule (12).

We now give an estimation of the waiting time in queue W1 based on the idea of the fluid model

in queueing theory.

Denote by Q the stable queue length, i.e. number of transactions in the mempool. Whenever

a miner tries to find a transaction from the mempool to work on, he will find that the number

of transactions he can process follows the binomial distribution with total number of trials Q

and success probability c/n, which can be approximated by the Poisson distribution with rate

(Qc/n) since Q is large and c/n is small. So the proportion of time that a miner has to work on

an empty block is the probability that the Poisson random variable equals 0, i.e. e−Qc/n. The

rate at which blocks containing transactions are generated is therefore nµ(1−e−Qc/n). As noted

in the previous section, only (1− θ(c)) of the transactions are distinct, so the rate at which the

transactions in the mempool are processed is (1− θ(c))nµ(1− e−Qc/n). For the system to have

a stable Q, it is required that

nµ(1− e−Qc/n)(1− θ(c)) = λ.
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Solving the above equation yields Q = n
c ln(

nµ
nµ−λ/(1−θ(c)) ). By Little’s law, the average waiting

time of a transaction is

W1 =
n

cλ
ln

(

nµ

nµ− λ
1−θ(c)

)

=
1

c

1

ρµ
ln

(

1

1− ρ
1−θ(c)

)

, (17)

where ρ = λ
nµ denotes the traffic intensity. Note that the number of miners does not affect the

queueing latency as long as the rate at which new blocks are produced remains the same. The

influence of c on W1 is complicated. On the one hand, a larger c will result in less idle time, thus

increasing the effective processing rate. On the other hand, a larger c leads to a higher proportion

of duplicate blocks, thus decreasing the effective processing rate. The relation between wasted

capacity and queueing latency can be described as follows:

W1(θ) =
(1− θ)t̄(1− e−µt̄)

θρ
ln

(

1

1− ρ
1−θ

)

(18)

Our quantitative modeling analysis sheds the light on how the parameter c can be chosen to

strike a balance between collision and latency.

Traditional queueing theory suggests that the waiting time will blow up when the traffic

intensity ρ
1−θ approaches 1. A more complicated model can be analyzed by allowing each

transaction to have an expiration clock, without which the mempool size will grow without a

bound. For the time being, the above queueing model is good enough to get the system started.

Infection Latency. A primary difference between the DAG and chain structures is that the

former goes beyond the one-dimensional linear structure by allowing parallelism. Despite the

many advantages of the DAG, one issue is that a block may not necessarily be confirmed by

the next milestone—it may have to wait for a later milestone. A natural question is how long it

takes for a block to be confirmed by a milestone block after it is broadcasted to all miners. We

now provide an upper bound on this waiting time by modeling confirmation in our DAG using

an infection model. In our analysis, we assume all of the n miners are incentivized to follow the

three principles specified in Section 4.

Suppose that at time 0, block B is in the pending set, i.e. it has not been confirmed by any

milestone. As previously discussed, new blocks arrive following a Poisson process with rate nµ.

Each new block has probability p of being a milestone. Suppose that at time s > 0, there are

Xs miners whose head block can reach B by following a path in the DAG. We say that these

miners are infected by B. Note that if all miners are infected, then B will surely be confirmed

by the next milestone. Assume the next new block is created by miner a at time t > s. With

probability n−Xs

n , miner a is not infected. In this case, the probability that he will become

infected assuming he randomly picks any of the n chain heads is Xs

n . Note that this probability

is lower than the actual probability because block B may have already been confirmed by a

milestone if the chain head of any of the Xs infected miners’s is a milestone. Since we are

considering an upper bound, we may assume X0 = 1 and

Xr =







Xs + 1 with probability Xs(n−Xs)
n2 ,

Xs with probability 1− Xs(n−Xs)
n2 .

(19)
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We also introduce Ms, which indicates whether or not B is confirmed by a milestone. So M0 = 0

and

Mt =







1 with probability pXs

n ,

0 with probability 1− pXs

n .
(20)

The above modeling gives a continuous-time Markov chain (Xt,Mt) and we are interested in the

expected time taken to hit the set {(x,m) : x,≥ 1,m = 1}. Let qx denote the expected jumps

needed to hit the set starting from (x, 0). Then

qx = 1 +
(

1− p
x

n

)

(

x(n− x)

n2
qx+1 + (1−

x(n− x)

n2
)qx

)

, x = 1, 2, · · · , n− 1,

qn =
1

p
.

Therefore,

q1 =

n
∑

k=1

n3

pk3 − n(p+ 1)k2 + n2(p+ 1)k

k−1
∏

j=1

(pj − n)(j − n)

pj2 − n(p+ 1)j + n2(p + 1)

< 2n(1 + ln(n)) +
1

p
.

Let τ1 := inf{t : Mt = 1}, the time needed for B to be confirmed by a milestone. Since blocks

arrive at the rate nµ, which is exactly the rate for all jumps, the infection latency is

W2 = E(τ) =
1

nµ
q1 <

2 + 2 ln(n)

µ
+

1

npµ
. (21)

Note that the second term in the above upper bound is basically the expected time it takes for

a milestone to arrive, which is fixed. Another contribution to the infection latency comes from

ln(n) in the first term. Intuitively, the infection latency increases with the number of miners,

n, due to parallelism. The relationship is better than linear in that it is a slow logarithmic

increase.

Secure Latency. After a block is confirmed by a milestone, we still need to wait for this

milestone to be extended by a number of future milestones for security guarantee. This is

essentially the same latency that occurs in blockchain systems like Bitcoin. This type of latency

was analyzed in [6] in a simple model assuming honest miners will not fork among themselves.

However, honest miners may fork among themselves due to broadcast delay because when an

honest miner creates a new block, he may not be aware of a recent block created by another

honest miner. A round-based model was formulated by [3] to handle this situation. The

synchronization assumption is that whatever happened in the previous round will be made

known to all honest miners in the present round so that they can act accordingly. However,

such a model requires a worst-case scenario analysis and thus is too conservative for parameter

selection. We now describe a continuous-time model to incorporate the broadcast delay function

F and the potential forking among honest miners.

Consider the arrival process of milestones created by honest peers. Let us call such milestones

honest milestone blocks. The creation of honest milestone blocks is a Poisson process with rate
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pnµ. Let U1, U2, U3, . . . denote the inter-arrival times of milestones in this process. They are

independent and follow the exponential distribution with rate pnµ. Let us call the ith arrival

milestone i. This milestone is chronologically the ith milestone created by the honest peers, but

it may not be the ith milestone ever created in the network due to the exsitence of malicious

miners. We would like to tag milestone i with a value Yi ∈ {0, 1}, for i = 1, 2, . . ., in such a

way that if Yi = 1 then the creator of milestone i will have received all preceding milestones

created by all honest miners upon the creation of milestone i. The tag Yi = 1 implies that

milestone i must be higher than any previous milestone tagged with a 1 because the creator of

milestone i is aware of all previous type-1 milestones when he is creating milestone i. Intuitively,

being tagged with a 1 is a good signal and will likely lead to a height increment of the longest

chain. It follows from our tagging method that, among all milestones of the same height in the

milestone tree, at most one can be tagged with a 1 as illustrated in Figure 4, where * represents

a milestone of type-0 or a milestone created by a malicious peer.

* * 1 *

1 * * 1 1 1

* *

1

height: k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6

Figure 4: Illustration of Tags in the Milestone Tree

The first arrival is tagged with a 1, i.e., Y1 = 1, as it is the first milestone created by honest

peers after the genesis O. Let us now think about then circumstances in which a future honest

milestone, say milestone i, may be tagged with a 0. Consider the case where its preceding

honest milestone is tagged with a 1, i.e., Yi−1 = 1. If the inter-arrival time between milestone

(i − 1) and milestone i, Ui, exceeds t0, then the honest miner who creates milestone i will

have certainly received all honest milestones. Suppose Ui = t ∈ (0, t0), then according to the

broadcast delay assumption, the honest miner who creates milestone i have probability F (t) of

having received milestone (i− 1) and thus all preceding honest milestones. So milestone i will

be tagged with a 1 with probability F (t). In general, let Zi be a Bernoulli random variable with

success probability

P(Zi = 1) =

∫ t0

0
F (t)pnµe−pnµtdt+ e−pnµt0 .

Milestone i will be tagged with a 1 if Yi−1 = 1 and Zi = 0. Now consider the case where the

preceding honest milestone is tagged with a 0, i.e., Yi−1 = 0. We would like to be conservative

by tagging milestone i with a 0 whenever Ui < t0. In this case, only when the inter-arrival time

Ui exceeds t0 can we be sure that the honest miner who creates milestone i has received all
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preceding honest milestones and we will then tag milestone i with a 1. Mathematically,

Yi =







0, if (Yi−1 = 0 and Ui ≤ t0) or (Yi−1 = 1 and Zi = 0),

1, otherwise.
(22)

The milestone chain evolves as follows. First, a number of milestones are tagged with a 1

meaning the longest milestone chain will grow whenever an honest peer produces a milestone.

When the first type-0 milestone arrives, it may be of the same height as a previous type-1

milestone, and thus it could potentially lead to forks. Once a type-0 milestone arrives, all newly

arriving milestone blocks will be regarded as useless until another milestone tagged with a 1

arrives, the height of which will exceed that of any milestone previously mined by honest peers.

Beyond that point in time, the regenerative cycle restarts. This is a conservative model, because

after a typ-0 milestone arrives, the miner of some subsequent milestone with inter-arrival time

less than t0 may be informed of all preceding honest milestones if he is lucky enough, but an

inter-arrival time greater than t0 will ensure that he will be informed.

In each regenerative cycle, the milestones tagged with a 0 can be regarded as wasted. Actu-

ally, we can consider the wasted milestone as if they were created by malicious miners. In other

words, the effective hashing power of honest miners should be discounted by the proportion of

the blocks tagged with a 1 in a cycle. In each cycle, the number of blocks tagged with a 1 follows

the geometric distribution with success probability
∫ t0
0 (1−F (t))pnµe−pnµtdt and the number of

blocks tagged with a 0 is geometric with success probability e−pnµt0 . Thus, the long-run average

proportion of milestones tagged with a 1 can be estimated as

e−pnµt0

e−pnµt0 +
∫ t0
0 pnµ(1− F (t))e−pnµtdt

.

If pnµ = 0.1/s, t0 = 2s and F (t) = t − t2/4, then the above fraction will be 0.928. So in a

network where 10% of miners are malicious and 90% are honest, at least 90 × 0.928% of the

hashing power would be devoted to growing the chain. One method to compute the number

of milestones we need to wait for is to simply replace 90% with 90 × 0.928% in the Nakamoto

model [6].
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Figure 5: Failure Frequency based on Simulation of 106 Sample Paths
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Alternatively, we can perform simulations based on our model to determine how long the

secure latency needs to be in order to ensure a given level of security. Suppose a milestone

Bm is created at time t, and is still part of the longest chain in the local DAG of some honest

peer after a period of time T . We want Bm to be in the longest milestone chain from every

honest peer’s perspective and to stay in the longest chain thereafter with a high probability.

Suppose at time t + T , milestone Bm is on the currently longest chain C1 of one honest peer,

and there exists another honest peer adopting a chain C2 which does not contain Bm. Consider

the type-1 arrivals during [t + t0, t + T − t0], all of them are higher than Bm and are received

by all honest peers by t+ T . Suppose that B is one of them and is of height h > η(Bm). Both

C1 and C2 have a block of height h, say B1 and B2 respectively, since both peers have received

B and C1 and C2 are the longest chain from each peer’s own point of view. In addition B1 6= B2

as both of them are higher than Bm but only B1 extends Bm. Hence either B 6= B1 or B 6= B2

or both are true. Therefore the number of 1s during [t + t0, t + T − t0] is less than the total

number of 0s plus the number of milestones created by malicious miners during [t, t+ T ]. The

probability of this event is low when T is sufficiently large and decays rapidly with respect to

T as shown in our simulation results in Figure 5. To be on the conservative side, we start our

simulation with the first tag being 0, which is stochastically a worse initial condition. It can be

seen from the figure that we have to wait 130 seconds and 810 seconds assuming 10% and 30%

of the hashing power comes from malicious miners, respectively, to ensure a failure frequency

of less than 10−3. We use pnµ = 0.1/s, t0 = 2s and F (t) = t − t2/4 in our simulation. This

means once a transaction is first confirmed by a milestone, we need to wait for another 81 and

13 milestones on average before finally accepting the milestone assuming 10% and 30% of the

hashing power are attributed to malicious miners, respectively.

Discussion on Parameter Selection We now summarize the above analysis, and provide

a concrete example demonstrating parameter selection and its corresponding performances.

We assume that there are n = 1000 honest miners in the system, with each miner creating

blocks at the rate µ of 1.2 blocks per second. We also assume that the mempool assignment

parameter c = 0.01 in (12). So the max TPS of the design is approximately 0.983nµ = 1179.6

as 1− θ(c) = 0.983 according to (16).

The total latency is W = W1 + W2 + W3, where W1 is the queueing latency, W2 is the

infection latency and W3 is the secure latency.

By assuming that transactions arrive at the rate λ of 1000 per second, the queueing latency

W1 is approximately 188 seconds according to (17). We further assume that the expectation

of the inter-arrival time of milestones is 1/pnµ = 10 seconds (i.e., p = 1/12000). So the

infection latency W2 is approximately 23 seconds according to (21). If we use the broadcast

curve F (t) = t − t2/4 as before, then t0 = 2 and t̄ = 5/3. Suppose also that less than 30%

of hashing power comes from malicious miners. If we want to ensure that the probability of a

successful attack is less than 10−3, then W3 is 810 seconds according to the simulation shown

in Figure 5. So the total latency W is approximately 1021 seconds or just over 17 minutes.
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