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With a dominant volume of global transportation being conducted by sea, ocean container
transport greatly impacts the global economy. Since sea vessels are drastically more fuel
efficient when traveling at lower speeds, slow steaming has become a widely adopted
practice to reduce bunker costs. However, this leads to a longer transportation time, which
together with the unpredictability of the delay has been a big challenge. We propose a
model to quantify the relationship among shipping time, bunker cost and delivery reliabil-
ity. Our findings lead to a simple and implementable policy with a controlled cost and
guaranteed delivery reliability.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Globalization has extensively restructured the global supply chain in today’s world economy. Products can be mass
assembled at a site, with components shipped from multiple locations, and then distributed worldwide. This has been made
possible, to a large degree, by the development of cost-effective and timely ocean shipping services which make the frequent
exchange of on a large scale affordable. Ocean container transport plays an important role in global supply chains by con-
necting supply, manufacturing and distribution around the world.

Nevertheless, the ocean transportation industry is facing huge challenges. First, the fuel price has increased significantly
over the years. Viewing the supply chain as a whole, the cost of bunker fuel is in one way or another shared by all those
involved so that the direct monetary metric is important for everyone. Second, customers such as shippers and freight for-
warders are increasingly demanding on-time delivery. Delivery reliability is of great importance for retailers who need to put
products on their shelves, and for manufacturers who need to maintain the material flow to keep the factory running.
According to Page (2010), in a new round of contract negotiations between shippers and a range of liners, priorities have
been made clear and simple: service, reliability and price, in that order. In response, liners have started making firmer com-
mitments to their customers to provide on-time delivery. Most contracts in this industry are set through party-to-party
negotiation, and so the demand, price and reliability do not exhibit high elasticity as they do in airline revenue management.
In this study, therefore, we focus on the two key performance metrics of bunker fuel cost and delivery reliability, without
delving into the price/quality/demand issue.

We now describe the two challenges – delivery reliability and fuel cost – in more detail. Delivering on time is not easy
even with today’s advanced nautical technology. Late deliveries can result from port congestion, inefficient port operations,
extreme weather conditions, machine breakdowns and other factors. Among them, port congestion has become the most
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important contributing factor. According to Notteboom (2006), who used survey data on the East Asia–Europe route, unex-
pected waiting before berthing as a result of port congestion contributed to 65.5% of the schedule unreliability. In general,
Notteboom (2006) singled out randomness in the waiting and service times at ports as the major obstacle to making deliv-
eries on time. Our own analysis of data from Orient Overseas Container Line (OOCL) supports his findings.

The variance is due primarily to the number of box moves, but port congestion and varying productivity at terminals also
contribute. The significance of the variance can be observed from the histogram (depicted in Fig. 1) of port times at the Hong
Kong port for all vessels on OOCL’s trans-Pacific service route during 2009–2011. Port congestion is a result of the tremen-
dous growth in the demand for container transport which has outstripped the growth of container handling capacity at
ports. The industry expects that port congestion will remain an exogenous factor. In addition to the waiting time caused
by congestion, the vessel processing time which depends on the number of boxes to be offloaded and loaded also has a large
variability. The resulting variability of total port time has become a huge challenge for liners hoping to deliver boxes on
schedule.

In the case of fuel cost, the fuel consumption of sea vessels depends heavily on the steaming speed. Analysis of the OOCL
data shows that increasing the speed by a couple of knots burns almost 50% more fuel per unit of distance traveled (see
Fig. 2). Ocean vessels could make up for delays by properly speeding up, but this action generates much higher fuel costs.
According to the World Shipping Council WSC (2008), fuel costs represent as much as 50–60% of total operating costs. In
the past when the fuel price was much lower, the steaming speed was not a big issue. However, as the fuel price continues
to climb, the whole ocean transport industry has been forced to move from 23–25 knots steaming to 20–22 knots steaming,
or even extra slow steaming at 17–19 knots. Slow steaming lengthens the round-trip time by 10–20% depending on the ser-
vice route and port times along the route. Though this is undesirable, shippers usually accept it following price and service
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Fig. 1. Histogram of total port times at the port of Hong Kong.
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Fig. 2. Fuel efficiency of sea vessels (data from OOCL 8000-TEU vessels sailing from LGB to KHH).
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negotiations. According to OOCL, 90% of its Euro-Asia routes and 60% of its Trans-Pacific routes have adopted slow steaming.
A lower base speed now yields more room to speed vessels up. In fact, the extra fuel cost of speeding up by 1 knot from 16
knots is much less than that of speeding up by 1 from 22 knots, since the fuel consumption function is sharply convex.
Freight rates, however, have stayed roughly the same as the increased fuel price cancels out the savings on fuel. Furthermore,
customers do not see any improvement in delivery reliability as liners remain reluctant to speed up even when the base
speed is lower than before. A central question is how can ocean carriers make use of slow steaming for fuel savings while
at the same time improving delivery reliability?

It has been an industry standard for liners to call each port on a service route at a fixed frequency (normally once a week).
Thus slow steaming may require liners to deploy more vessels on a given route. OOCL vessels used to sail at an average speed
of 22.4 knots, leading to a round-trip time of 56 days on a particular service route. To maintain weekly service to ports along
that route, they deployed 8 vessels. Since adopting slow steaming, their vessels have been sailing at an average speed of
20.2 knots and the round-trip time has been extended to 63 days. Consequently, they have to deploy one more vessel to
maintain the same service frequency. Even with the additional vessel, slow steaming still helps substantially reduce the total
operating cost due to the huge savings on fuel. Using estimates from AlphaLiner, Bonney (2010) has shown that with the
bunker fuel price at $500 per ton, slow steaming reduces the total operating costs on long-haul loops by 5–7%. The annual
savings could reach $15 million to $20 million for a typical Asia–Europe route using 8500-TEU ships. Bunker fuel costed
between $1000 and $1500 per ton1 in the year of 2014. Slow steaming has drawn widespread attention as it is both a cost saver
and environmentally friendly (see Cariou, 2010 for a quantitative estimation of the reduction in emissions due to slow
steaming).

There are three layers of decision making in the liner container business: strategic, tactical and operational. At the strate-
gic level, liners deal with long-term planning issues such as vessel procurement. At the tactical level, they deal with issues
such as vessel routing and schedule planning. Once routing and scheduling are sorted out, at the operational level, they are
interested in finding ways to manage their operations better, for example, by adopting slow steaming on a voyage. Our paper
deals with the operational level decision. In particular, we study delivery reliability and fuel consumption by incorporating
port time randomness into a stylized yet practical model. We do not concern ourselves with the decision analysis on pur-
chasing new vessels, which is a long-term investment, and chartering, which serves as an option when a liner is incapable
of or decides not to make a long-term investment. We also ignore the demand and its dependence on price, service quality
and competition in our analysis, since demand does not depend strongly on these factors as mentioned above.

In general, operations research can also help improve liner shipping services by offering insights into two key aspects.
The first aspect is the design of the service routes and delivery schedules. A service provider decides a route consisting of a
sequence of ports and a fleet consisting of several vessels of a certain size to operate on this route. The selection of routes
and fleet depends on the service frequency, which in turn depends on the demand at the ports along the route. Once the
route and fleet size are fixed, the liner needs to set the delivery schedule, i.e., the dates on which its vessels are scheduled
to arrive at the ports along the route. The delivery schedules are normally published quarterly. Designing the delivery
schedule requires quantitatively studying the relationship among the shipping time, delay and fuel consumption. This
is one of the focuses of our paper. The second key aspect is the operational decision of when to speed up a vessel upon
the realization of random port times (and potential delays) on service routes. Typically, this decision also concerns the
speed at which a vessel should sail toward downstream ports. If the observed delay is significant, it might not be possible
to make up for all the time lost. In this paper, we will also incorporate the operational decision of when to switch from a
low speed to a high speed.

Our paper contributes to the literature by providing a better understanding of the impact of random port operating times
(including waiting times at ports) on delivery reliability and fuel consumption cost. We propose a model and use it to ana-
lyze the inter-relationships of delivery reliability, fuel cost, and transportation lead times by giving some bound estimations.
The significance of our results is to provide some implementable policy to achieve certain service quality (measured by delay
probability) while keeping the fuel consumption under control.

After reviewing the literature in Section 2, we propose a model in Section 3 to capture steaming speed as the decision
variable and port time as the source of uncertainty. Section 4 studies the impacts of slow steaming on the delay probability,
variance of delivery time, fuel consumption and shipping time. Section 5 discusses how these impacts affect both the liners
and the shippers. A simulation study based on data collected from OOCL is also provided. We conclude our paper in Section 6.
2. Literature review

Operations research in ocean transportation has traditionally focused on terminal operations. Steenken et al. (2004) pro-
vided a comprehensive survey on the state of the art of operations at a container terminal. Stahlbock and Voß (2008)
reviewed more recent works on (a) the design of terminal structure, handling equipment, human resources and supporting
systems, and (b) operation and optimization of terminal logistics.

Another line of research relates to vessel routing to minimize transportation cost, which is a relevant problem due to ris-
ing fuel prices. Fagerholt et al. (2010) studied an optimization model based on a shortest path problem on a directed acyclic
1 http://www.bunkerworld.com/prices/.
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graph for minimizing fuel consumption subject to the constraint that deliveries at each port on a predetermined service
route must be made within certain time windows. Notteboom and Vernimmen (2008) studied how shipping liners have
adapted their liner service schedules (in terms of commercial speed, the number of vessels deployed per loop, etc.) to deal
with increasing bunker costs. A simple cost model was used to simulate the impact of bunker cost changes on operating costs
in liner services. Recently, Qi and Song (2012) proposed simulation-based stochastic approximation methods to design an
optimal delivery schedule for a given route to minimize the total expected fuel consumption while considering the uncer-
tainty of port times. They pointed out that the relationship between fuel consumption and liner service design has not drawn
enough academic attention, even though it has been a major concern of the shipping liners. Instead of using simulation, we
use an analytical model to estimate the inter-relationship of delivery reliability, fuel cost and transportation lead time.

For the design of service routes, Rana and Vickson (1991) formulated a mathematical programming model to determine
the optimal sequence of ports of call, service frequency, and the number of cargo units to be transported between each pair of
ports by each ship. Fagerholt (1999) studied the problem of determining an optimal fleet (the type of ships and the number
of each type) in a special network where all cargos are transported from a set of production ports to a single depot. Ting and
Tzeng (2003) developed a dynamic program for scheduling decisions like cruising speed, quay crane dispatching, and rough
schedule arrangements. However, they did not consider port congestion. Agarwal and Ergun (2008) proposed a model for the
design of efficient service routes given a set of demands to be transported and a set of ports to be served. They presented a
mixed-integer linear program to solve the ship scheduling and cargo routing problems simultaneously. Leveraging this mod-
el and game theory concepts, Agarwal and Ergun (2010) further designed a mechanism to guide the carriers in an alliance to
pursue an optimal collaborative strategy. The mechanism provides side payments to the carriers, as an added incentive, to
motivate them to act in the best interest of the alliance while maximizing their own profits. Brouer et al. (2014) proposed a
base integer programming model and benchmark suite for liner-shipping network design. Álvarez (2009) presented a model
and an algorithm to jointly determine the optimal routing and deployment of a fleet of container vessels. Readers interested
in the literature on ship scheduling and routing may turn to the reviews by Ronen (1983, 1993) and Christiansen et al.
(2004). Most works in this line of research either assumed deterministic port times, or did not consider the possibility of
speeding up. Wang and Meng (2012a) studied the problem of designing a tactical-level liner schedule. They developed a
mixed-integer non-linear stochastic programming model for the problem by minimizing the expected bunker cost and other
related cost while maintaining a required service level in terms of transit times. Christiansen et al. (2013) and Meng et al.
(2014) provided a review and outlook for ship routing and scheduling. In our paper, we are given a service route and our
purpose is to analyze the relationship of reliability and transportation lead time.

Recently, in an expositional paper, Fransoo and Lee (2013) identified several key questions and issues relevant in supply
chain management: the coordination of container shipments across the container supply chain, pricing and risk manage-
ment in the container supply chain, competition between ports, carriers and container terminals, and capacity management
in the container supply chain. Furthermore, they explicitly mentioned the need to study the extent to which operational vari-
ability exists and how it affects decision making. Indeed, how to manage time is an important issue in contemporary liner
services, since significant waiting times and delays at ports put pressure on schedule reliability.

A survey by Vernimmen et al. (2007) revealed that over 40% of the vessels deployed by liners worldwide arrive one or
more days behind schedule, despite liners’ claims that most of their container ships operate on fixed weekly schedules. A
recent survey by Drewry (2010) gave more detailed statistics by carrier, trade and service from December 2005 to June
2010. The industry average of delay was found to range from 32% to 54%. The delays not only caused complaints, but also
imposed real costs on the shippers and their customers. Vernimmen et al. (2007) presented a case study to illustrate the
impact of schedule unreliability on the level of safety stock needed by a manufacturer who sources spare parts from over-
seas. Their analysis showed that an improvement in schedule reliability can lead to significant cost savings for the manufac-
turer. Notteboom (2006) identified the causes of schedule unreliability, and discussed a wide array of measures and planning
tools that liners deployed to maximize schedule reliability. However, the paper did not provide any quantitative result on the
tradeoffs between these measures and schedule reliability.

Slow steaming has began attracting research attention in recent years. Notteboom and Cariou (2011) provided data from
mid 2008 to late 2010 to show that (i) slow steaming has become an industry-wide trend; (ii) slow steaming leads to longer
shipping times but much lower fuel cost; and (iii) slow steaming does not lead to sharing of savings on fuel cost and the fuel
surcharge stays more or less the same as that before slow steaming. The second point further supports the quantitative
insight we have obtained using our modeling approach. Ronen (2011) developed a cost model to study the optimal speed
and the number of vessels needed for maintaining a service frequency while minimizing the total cost, including bunker cost,
vessel fixed cost, and other operating cost. Wang and Meng (2012b) used historical operating data of a global shipping liner
to study the relationship between bunker consumption and sailing speed. They formulated a mixed-integer nonlinear pro-
gramming model to investigate the optimal speed. They also provided an efficient approximation method to obtain a nearly
optimal solution. Some studies examined the impact of slow steaming from the supply chain’s viewpoint, thus the cost mod-
el included logistics-related costs such as transit inventory holding cost. For example, Psaraftis and Kontovas (2010), and
Cariou (2011) discussed the tradeoff between the costs (including logistics-related cost, vessel operating cost) and potential
benefits (including bunker cost and CO2 emission reduction) of slow streaming. Psaraftis and Kontovas (2013) provided a
comprehensive survey on models involving steaming speed as a key decision variable. In those models, the fuel consumption
(which is proportional to CO2 emission) and revenue are the main concerns. However, the impact of port congestion and the
randomness of port time, an increasingly important factor, on fuel consumption has not been analyzed in those models.
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Corbett et al. (2009) used a speed optimization in the profit function to study the impact of fuel tax on CO2 reduction. Note
that fuel tax will affect the profit function which will then indirectly affect the optimal speed and CO2 reduction. Cariou and
Cheaitou (2012) argued that the speed limit that the European Union (EU) is thinking of imposing on all ships entering EU
ports may ultimately generate more emission, and may be suboptimal. In the above literature, they either focus on fuel con-
sumption (which is proportional to CO2 emission) or the trade-off between bunker consumption and sailing speed, our paper
mainly aims at providing quantitative estimates of delivery reliability, fuel consumption and transportation lead time and
hope to provide managerial insights and useful tools for the industry.

We want to briefly mention a stream of literature on train and metro systems. Feng et al. (2011) studied the maximum
operation speeds of metro trains for both energy saving and transport efficiency improvement. Li and Lo (2014a) developed
an optimization method to improve the operations of metro rail system. Li and Lo (2014b) proposed a dynamic train schedul-
ing and control framework for metro rail system by solving a convex optimization model to improve its energy saving per-
formance. There are some difference between the metro systems and ocean transportation. Due to the short distance
between stops in subway systems, synchronizing accelerating and braking trains is important. The time trains stop at each
station exhibit relatively less variability, which are not considered in the studies we found.

While the time dimension of container shipping is critical to the service level, there have been limited quantitative stud-
ies in the literature. The adoption of slow steaming and the emphasis on delivery reliability point to the importance of study-
ing the relationships among steaming speed, shipping time, fuel costs and delivery reliability.

3. Problem statement and notations

We introduce a model that incorporates the randomness of port times and uses steaming speed as the decision variable to
study the relationship among the leading performance metrics of fuel consumption, delivery reliability (measured by the
variance of the actual delivery time), and probability of delay.

3.1. Port time

Consider a liner that deploys a fleet on a fixed service route, which consists of a sequence of ports that each vessel in the
fleet needs to visit. We number the ports by 0;1; . . . ;K. For example, if a route consists of Rotterdam, Singapore, Hong Kong,
Shanghai, Hong Kong, Rotterdam, then K is 5 with 0 ¼ Rotterdam;1 ¼ Singapore;2 ¼ HongKong;3 ¼ Shanghai;4 ¼
HongKong;5 ¼ Rotterdam. A vessel arriving at a port may experience some waiting time based on the congestion level of
the port. It will then be assigned to a terminal at which it will load and unload container boxes. According to OOCL’s his-
torical data, the total amount of time (both waiting and service) that a vessel spends at a port was quite random. Fig. 1
depicts the histogram of the port times experienced by all vessels deployed on a trans-Pacific service route of OOCL at
the port of Hong Kong in the past three years. Let Wk be the port time experienced by a vessel at port k, including both
the waiting time and the service time. In other words, Wk is the amount of time from the arrival at port k till the departure
from port k.

3.2. Steaming speed

Let Dk denote the distance from port k� 1 to k. For planning purposes, liners need to set a default steaming speed v in
order to make a timetable of delivery at all ports along the service route. In real time, say when a vessel is about to leave
port k, there is also a decision to be made about what speed should be applied in navigating to port kþ 1, based on how much
delay has been accumulated so far. By speeding up, a vessel can normally recover part of the time lost, at the expense of
much higher fuel cost. For example, OOCL has found that for the trip from Los Angeles (LGB) to Kaohsiung (KHH), the total
consumption of heavy fuel by the main engine is 2017 tons when the vessel is traveling at an average speed of 18.2 knots,
and 1493 tons when the vessel is traveling at an average speed of 17.0 knots. A 1.2-knot increase in sailing speed increases
fuel consumption by more than 30%. Shipping liners often do not have any model to estimate the tradeoff between the extra
cost of speeding up and the benefits of making a delivery on time. In many situations, they simply choose not to speed up and
let the schedule slip. For this purpose, we try to give a bound estimate of the extra cost of speeding up by comparing a flex-
ible slow steaming strategy and a fast steaming strategy and quantifying the effects of these strategies for fuel consumption,
reliability and transit time, when accounting for unpredictability in delays.

3.3. Delivery Schedule

Liners normally work out a delivery schedule once a service route has been chosen and publish it to their customers. The
schedule basically tells their customers or partners when container boxes will be delivered at each port. In practice, the liners
set a scheduled time skðvÞ between ports (time between departing port k� 1 and departing port k) by applying a calculation
that considers the distance, the estimated waiting time, the amount of loading and unloading (mainly for the purpose of esti-
mating the expected service time), and a buffer time. The current practice is to estimate the number of ‘‘moves’’ (a ‘‘move’’ is
defined as the action of loading or unloading one container) and the speed of the cranes (measured by the number of moves
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per hour) at the terminal to arrive at an ‘‘estimated service time’’. A certain amount of time called ‘‘port contingency’’ is then
added as a buffer to deal with randomness. Essentially, liners are trying to set the schedule using the following formula
skðvÞ ¼
Dk

v þ lk þ bkrk; ð1Þ
where v is the planned speed as discussed before, lk and rk are the mean and standard deviation of port time Wk, and the
coefficient bk is a parameter chosen to denote the ‘‘port contingency’’, which plays a role as a buffer to mitigate any delay.
This is in the same spirit as many inventory policies, but we shall keep in mind that the schedule overestimates the actual
shipping time. Instead of estimating important quantities in an ad hoc way, we can take advantage of historical data and use
a quantitative model to achieve better management goal. Setting the time of leaving from port 0 to 0, the scheduled time to
depart from port k is
SkðvÞ ¼
Xk

i¼1

siðvÞ; k ¼ 1;2; . . . ;K: ð2Þ
Tracking when a vessel departs from a port gives a better estimate of when shippers can expect their deliveries than using
the arrival time at the port. The dependency of the delivery timetable on the chosen default steaming speed v is clear.

It is an industry practice to make the round-trip time multiple of weeks so that each port will be called weekly. An arbi-
trarily chosen speed may not satisfy this constraint. We first decide the number of weeks for the total round-trip time, and
then use the formulae to determine the speed. If the resulting speed falls out of the range of the vessel’s physical speed, then
we need to consider modifying the round-trip time to be some other multiple of weeks so that feasible speeds can be
obtained.

3.4. Delay

We start by assuming that the vessels can only navigate at either low speed vL or high speed vH . We will later discuss the
general case where the speed can be continuously adjusted. Due to the randomness in Wk, a vessel may not always meet the
schedule. A Markovian model can describe the evolution of delay as a vessel navigates from port to port on a service route.
We will apply this model to compare the amount of delay at each port under two possible strategies.

The first strategy, called fast steaming, is for a vessel to sail at the high speed vH throughout its entire journey. This strat-
egy was the practice before slow steaming became popular, and serves as a benchmark for analyzing the impact of slow
steaming. Let Yk denote the amount of delay upon leaving port k. Each vessel on the service route starts from the home port
(port 0). After visiting all the ports on the route, it returns home. For simplicity, we assume that Y0 ¼ 0. See Remark 1 for
discussion on the case where Y0 > 0. The delay at downstream ports evolves according to the following Markov chain:
Yk ¼ Yk�1 þ
Dk

vH
þWk � skðvHÞ; k ¼ 1;2; . . . ;K: ð3Þ
Using (1), we have
Yk ¼ Yk�1 þWk � lk � bkrk; k ¼ 1;2; . . . ;K: ð4Þ
Due to the randomness, Yk may be negative meaning that the vessel may get ahead of the schedule.
The second strategy, called flexible slow steaming, is for the liner to plan its schedule based on the low speed vL and for the

vessels to sail at this speed by default. However, if there is a delay, the vessel is allowed to sail at the high speed to make up
for time lost. To simplify the notation, let c ¼ vH�vL

vHvL
. It is clear that cDk is the maximum amount of time lost a vessel can make

up for by switching to the high speed on the trip from port k� 1 to port k. When the delay upon leaving port k� 1 is less than
cDk, the vessel will only apply the high speed over part of the distance Dk to make up for the exact amount of time lost. Let Xk

denote the amount of delay upon leaving port k in this case. Similar to the previous case, we have X0 ¼ 0 and the following
induction
Xk ¼ ðXk�1 � cDkÞþ � X�k�1 þ
Dk

vL
þWk � skðvLÞ; k ¼ 1;2; . . . ;K; ð5Þ
where aþ ¼maxða;0Þ and a� ¼maxð�a;0Þ for any a 2 R. Again, applying (1), we have
Xk ¼ ðXk�1 � cDkÞþ � X�k�1 þWk � lk � bkrk; k ¼ 1;2; . . . ;K: ð6Þ
Remark 1. Our comparison results still hold if X0 ¼ Y0 ¼ a for some constant a. However, the ports are visited in a cyclic way
as vessels embark on consecutive journeys. It could happen that cumulative delay during a few journeys becomes to
prominent. In this case, disruption recovery measures will be taken. Li et al. (in press) provided a study on disruptions
recovery.
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By writing the Markov chains (4) and (6), we allow a vessel to leave a port earlier than scheduled if it is ahead of the
schedule. This is in fact a standard industry practice now for two reasons. First, port delay or earliness is measured in hours,
however container boxes must go through several processes including a security check, and normally sit in the terminal yard
for days before the scheduled pickup time. Second, terminals are extremely busy and cannot afford to let vessels occupy pre-
cious quay space just to wait for a few boxes. So when the service is completed, the vessel must set sail, sometimes (although
rarely) leaving a few scheduled boxes behind. We should acknowledge that vessels may further slow down when getting
ahead of schedule by too much. However, we are not able to obtain any analytical result when exploring this dimension
of flexibility. In this model, liners will not speed up to get ahead of the schedule in order to hedge against any potential
delays at downstream ports. In other words, liners are myopic. This makes sense, since fuel consumption constitutes the
major cost and vessels become much less fuel-efficient at high speeds. It is also not necessary to get ahead if the planned
schedule has already factored in potential delays with buffers. In fact, due to the lack of a quantitative model to estimate
fuel consumption and fluctuating fuel prices, some liners that have adopted slow steaming avoid speeding up even when
their ships are delayed. To manage the risk of unexpectedly long waiting times, they find it more cost effective to use the
coefficients bk’s in the scheduling formula than to speed up. In ocean transportation, being on time is more critical than
reducing the lengthy shipping time. Building on this model, we will discuss in the next section how liners’ service quality
is affected by their choice of strategy and the parameters bk’s.

4. The impact of slow steaming

In this section, we discuss the impact of slow steaming on two measures of service quality in Sections 4.1 and 4.2. We will
then analyze the fuel consumption in Section 4.3. There are various measures of service quality. One of them is the delay (or
on-time) probability. Note that an alternative measure could be the expected delay, but the industry currently uses the delay
probability instead of its expectation due to the former’s ease of implementation (see Platt et al., 1997 for a similar discus-
sion of constrained service levels in inventory management). The probability that the delivery is delayed by more than a tol-
erable threshold is therefore of interest. Another important measure of service quality is the accuracy of the delivery time,
since shippers want their deliveries to be made as close as possible to the promised date. This offers ‘‘predictability’’ for ship-
pers in managing their businesses. Predictability hinges on the variance of delivery time.

4.1. Delay probability

Consider the service quality measured by the probability that the delay exceeds a certain amount s P 0. We want to com-
pare the service quality under the flexible slow steaming strategy, i.e., PðXk > sÞ, with that under the constant fast steaming
strategy, i.e., PðYk > sÞ when the schedule is set using (1) with the same bk’s. Note that when s ¼ 0 the probabilities are sim-
ply the delay probabilities.

Proposition 1. Assume that port times are independent of the delays. For any constant s, the inequality PðXk > sÞ 6
PðYk > sÞ; k ¼ 1; . . . ;K, holds for the Markov chains fXkgK

k¼1 and fYkgK
k¼1 defined in (4) and (6).

The proof can be found in Appendix A. The intuition behind the result is that the Markov chain fXkg is always stochas-
tically smaller than fYkg. Note that this result does not need any assumption on the shape of the distributions of port times
Wk, and is actually independent on the choice of bk in (1). In fact, (1) can be replaced by a more general rule,
skðvÞ ¼
Dk

v þ AkðWkÞ; ð7Þ
as long as Ak is a deterministic function of Wk. In other words, if the delivery schedule is set using formula (7), slow steaming
with the flexibility to speed up will always yield a better service quality as measured by the probability that the delay
exceeds a certain amount than constant fast steaming.

4.1.1. Service quality under the fast steaming policy
The tractability of the Markov chain fYkg suggests an iterative way of setting the bk’s so that the delay probability can be

reduced to less than 1� qk for all ports k ¼ 1; . . . ;K. By Proposition 1, 1� qk serves as a lower bound if we apply the flexible
slow steaming strategy.

The evolution of the Markov chain fYkg yields
Yk ¼
Xk

i¼1

ðWi � liÞ �
Xk

i¼1

biri: ð8Þ
For technical reasons, assume that the port times are independent and normally distributed. Although the histogram (c.f.
Fig. 1) of port times exhibits a unimodal shape that resembles the normal distribution, the port times are not exactly nor-
mally distributed as statistical tests such as the Lilliefors test would show. One possible reason is that the sample size of a
few hundred is too small. On trans-Pacific service routes, the round-trip time is about a month and a half. Over a period of
three years, only a few hundred data points can be accumulated. Even though data exist describing a much longer period,
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data from too far back in the past may not represent the current situation at ports. Approximating the random variables
using the normal distribution is the simplest way to incorporate both the mean and variance of port times into the analysis.
In fact, it will be shown that the delay probability obtained based on the assumption of a normal distribution is quite robust.
Based on this assumption, we further have
Yk¼
d
N 0;

Xk

i¼1

r2
i

 !
�
Xk

i¼1

biri; ð9Þ
where N represents a normally distributed random variable with the first parameter denoting the mean and the second one
denoting the variance. This provides an inductive way of setting the parameters bk’s for k ¼ 1; . . . ;K. Suppose that the delay
probability at port k must be less than 1� qk, which is chosen by liners based on their evaluation of the importance of service
quality at port k. By (9), PðY1 > 0Þ ¼ 1� q1 basically requires that PðN ð0;1Þ 6 b1Þ ¼ q1. Let zp denote the 100pth percentile
of a standard normal random variable for any p 2 ½0;1�. Thus b1 ¼ zq1 . This procedure can be continued inductively. Suppose
b1; . . . ; bk�1 have been determined based on q1; . . . ; qk�1. Based on (9), the general formula that connects the parameters is
Xk

i¼1

biri ¼ zqk

Xk

i¼1

r2
i

 !1=2

: ð10Þ
The following formula can then be used to determine bk based on qk:
bk ¼
zqk

Pk
i¼1r2

i

� �1=2
�
Pk�1

i¼1 biri

rk
: ð11Þ
This formula describes a procedure to set the parameter bk inductively, but alternatively, (10) suggests that
bk ¼
zqk

Pk
i¼1r2

i

� �1=2
� zqk�1

Pk�1
i¼1 r2

i

� �1=2

rk
: ð12Þ
This formula prescribes a way of managing the service quality qk by setting the parameter bk in schedule planning. It also has
a few implications. First, note that the choice of bk depends on the following factors:

(i) the standard deviation rk of port time at port k,
(ii) the accumulated variance of all port times up to port k� 1 and that up to port k, and

(iii) the desired levels of service quality qk�1 and qk at ports k� 1 and k.

If the service quality at the previous port is quite high, i.e., zqk�1
is large, then bk can be relatively small. It is worth pointing

out that bk does not necessarily need to be bigger than 0, meaning that a positive buffer or ‘‘port contingency’’ is not always

needed. We can easily imagine a case where zqk

Pk
i¼1r2

i

� �1=2
is less than zqk�1

Pk�1
i¼1 r2

i

� �1=2
, yielding a negative bk. This is some-

what counter-intuitive, but an important finding nonetheless. Reducing the extra buffer time can either reduce the planned
delivery time, which will help make a liner’s service more attractive, or allow more time at sea, which means a slower speed
and savings on bunker costs. We will explain the bunker cost part in more detail in Section 4.3.

We conclude this section with a special case to illustrate the application of formula (12). Consider the case where all port
times are i.i.d. with mean l and variance r2. Suppose the same service quality is enforced at all ports, i.e., the delay prob-

ability must be less than 1� q. In this case, formula (12) yields bk ¼ zq

ffiffiffi
k
p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
k� 1
p� �

. The extra buffer time, quantified by bk,

then decreases from port to port throughout the voyage. This may seem to contradict the general belief that it becomes more
difficult to control the timing or to stay on schedule as a voyage progresses since the variance at a downstream port is the
combined variances from all previous ports. But the truth as revealed in (12) is that the magnitude of bk is determined by
the difference between the accumulated variances up to port k and the accumulated variance up to port k� 1, and not by
the total accumulated variance. Intuitively, the main reason that bk decreases is that early arrival is allowed.

4.2. Variance of the delivery time

We now discuss the variance of delivery time under the two different strategies. As mentioned above, what shippers
care most about is the ‘‘predictability’’ of the deliveries. This has also been emphasized by the carriers. According to Eivind
Kolding, the former chief executive of Maersk Line, the leading company in the shipping industry, ‘‘Reliability is the new rate
war; we need an end-to-end view on reliability.’’ (c.f. Kolding, 2011).

Let TH
k denote the delivery time at port k in the case where the high speed is applied all the time, and TL

k denote the deliv-
ery time at port k in the case where the low speed is applied with the flexibility to speed up whenever there is a delay. As
discussed in Section 3, the departure time is a better approximation of the delivery time, thus we use the departure time as
the delivery time in the discussion in this section. It is clear that
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TH
k ¼ SkðvHÞ þ Yk; and TL

k ¼ SkðvLÞ þ Xk: ð13Þ
Note that TH
k and TL

k measure the time from leaving port 0 to when products are delivered at port k, but the time between any

two ports k and k0 can be easily computed. For simplicity, we will focus on the discussion of TH
k and TL

k. The question is
whether the flexible slow steaming strategy can lead to a more punctual delivery time at each port. We show that the vari-
ance of the delivery time under the flexible slow steaming strategy is always smaller than that under the fast steaming strat-
egy, meaning more accurate deliveries, though the expected shipping time is longer.

Proposition 2. Assume that port times are independent of the delays. For the delivery times TH
k and TL

k as defined in (13) we have
VarðTL

kÞ 6 VarðTH
k Þ, for all k ¼ 1; . . . ;K.

The proof can be found in Appendix A. It is worth pointing out that Proposition 2 does not make any assumption about the
distribution of port times Wk either. Moreover, there is no need to use the same formula to set the schedule. This is different
from the result in Proposition 1, where the same formula is required for creating the schedule. For example, instead of using
the same formula (1) to set the schedule for both high and low speeds, we can use fbH

k g to set the buffer times for fast steam-
ing and fbL

kg to set those for flexible slow steaming. In summary, the flexible slow steaming strategy is a robust strategy that
reduces delivery variability.

4.3. Fuel consumption

Putting the benefits of improved service quality aside, an important reason for using slow steaming is the significant
reduction in fuel consumption. We examined the fuel consumption data for the 8000-TEU vessels currently deployed on
the trans-Pacific service route offered by OOCL. All vessels have the same cost characteristics. Let mðvÞ denote the amount
of fuel consumed per nautical mile for these sea vessels at the steaming speed v. Fig. 2 plots the fuel efficiency, measured by
tons of heavy fuel consumed per nautical mile, versus the steaming speed for these 8000-TEU OOCL vessels deployed on their
trans-Pacific service routes. We chose the longest leg on the route, between Long Beach (LGB) and Kaohsiung (KHH), since
the estimates for average steaming speed and fuel consumption are more accurate for longer distances. The data points rep-
resent all LGB–KHH trips made between January and October of 2011, amounting to a sample size of about 30. The curve is
the smooth fitting of the data using spline. The fitted curve shows a monotonically increasing trend. In fact, the increase is
quite sharp, since the horizontal axis only ranges from 15.5 to 18.5 knots. Similar plots have been observed in other studies
in the literature (Fransoo and Lee, 2013; Notteboom, 2006; Vernimmen et al., 2007; Rodrigue et al., 2009).

Denote by D ¼
PK

i¼1Di the total travel distance on the service route. The fuel consumption per trip per vessel under the
fast steaming strategy is simply DmðvHÞ. Under the flexible slow steaming strategy, however, deriving the fuel consumption
per trip is more complicated, since not every nautical mile is travelled at the low speed under this strategy. Essentially, we
need to estimate the distance that is navigated at the high speed. The distance from port k� 1 to port k is Dk, and the distance
navigated at the high speed depends on Xþk and can be written as 1

c minðXþk ; cDkÞ. It is not possible to perform an exact ana-
lysis on the above term, but an upper bound for its expectation can be estimated by comparing the Markov chains fXkg and
fYkg.

Let GXk
and GYk

denote the cumulative distribution functions of Xk and Yk, respectively. The following upper bound esti-
mation follows from Proposition 1.
E½minðXþk ; cDkÞ� ¼
Z cDk

0
½1� GXk

�ðxÞdx 6
Z cDk

0
½1� GYk

�ðxÞdx 6 cDkPðYk > 0Þ:
If the parameters bk are chosen to meet service level qk as in the previous section, then
E
1
c

minðXþk ; cDkÞ
� �

6 Dkð1� qkÞ: ð14Þ
Since the analysis applies for all k, we have the following result.

Proposition 3. Assume that port times are independent of the delays. The expected fuel consumption for the flexible slow steaming
strategy is bounded from above by mðvLÞ

PK
i¼1Dkqk þmðvHÞ

PK
i¼1Dkð1� qkÞ.

This implies that the saving in fuel consumption per trip per vessel is at least ½mðvHÞ �mðvLÞ�
PK

i¼1Dkqk if the flexible slow
steaming strategy is adopted. If the delay probability is less than 10% for all ports, i.e., qk ¼ 0:9 for all k, then the amount of
fuel saved per trip would be 0:9½mðvHÞ �mðvLÞ�D. Since the function mð�Þ increases with a fairly steep slope, the saving could
be quite significant indeed.

Such an upper bound is quite useful in practice. In today’s liner business, fuel has become increasingly large part of oper-
ating costs. Some liners, having adopted slow steaming, are reluctant to speed up even when they are falling behind the
schedule. The main reason is the lack of quantitative insight on how much more fuel need to be burned if they speed up
whenever they fall behind schedule. Our formula shows that the cost of speeding up, following the flexible slow steaming
policy, is bounded by
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½mðvHÞ �mðvLÞ�
XK

i¼1

Dkð1� qkÞ; ð15Þ
which is lower than the savings from adopting slow steaming. Thus it can be affordable for the liners to speed up.

4.3.1. A general case with continuously adjustable speed
So far, the steaming speed has been limited to two choices, fvL;vHg. In this section, we show that if the steaming speed is

continuously adjustable, i.e., the speed can be chosen from anywhere in the interval ½vL;vH�, then the savings on fuel con-
sumption can be even greater given that the efficiency function mðvÞ is convex.

Note that it is always better to keep the speed constant rather than to vary it if the function mðvÞ is convex. The convexity
is a valid assumption based on our data analysis (c.f. Fig. 2 (RHS)). Suppose a vessel sails at speeds v1 and v2 (with v1 < v2)
for a distance D, with v1 being applied for a fraction p 2 ½0;1� of the distance D, and v2 being applied for the remaining dis-
tance. Then fuel consumption for the distance D would be pDmðv1Þ þ ð1� pÞDmðv2Þ. However, the same navigation time
could be achieved at the constant speed
v ¼ v1v2

ð1� pÞv1 þ pv2
¼ pv2

ð1� pÞv1 þ pv2
v1 þ

ð1� pÞv1

ð1� pÞv1 þ pv2
v2: ð16Þ
Both v and pv1 þ ð1� pÞv2 are linear combinations of v1 and v2. Since v2 > v1, we must have pv2
ð1�pÞv1þpv2

> p. So

v < pv1 þ ð1� pÞv2 as v has more weight pv2
ð1�pÞv1þpv2

> p on the smaller side. By the convexity of the fuel consumption

function,
mðvÞ 6 mðpv1 þ ð1� pÞv2Þ 6 pmðv1Þ þ ð1� pÞmðv2Þ: ð17Þ
Suppose a vessel is leaving port k and finds that it needs to speed up (shift from vL to vH) for a fraction p 2 ½0;1� of the
distance Dk in order to catch up with the schedule. By the above reasoning, even if the speed is continuously adjustable, it is
better to choose a constant speed v ¼ vLvH

ð1�pÞvHþpvL
to achieve the same navigation time. In this case, the fuel consumption will

be DkmðvÞ, which is lower than the fuel consumption Dk½ð1� pÞmðvLÞ þ pmðvHÞ� using the two speeds according to (17).
However, the exact shape of the function mð�Þ is required to quantify the amount of reduction.

4.4. Shipping time

We have so far discussed several advantages of the flexible slow steaming strategy. It is obvious that slow steaming will
result in longer shipping times than will the fixed high speed strategy. According to formula (1), the scheduled shipping time
will be lengthened by D vH�vL

vHvL
if the distance between the origin and the destination is D. The actual shipping time, however,

may be shorter because a vessel may speed up for part of the distance. According to formula (14), to maintain a delay prob-
ability of less than a certain percentage, at most the same percentage of the distance must be navigated at the high speed.
The high speed is adopted only when there is a delay. The flexibility to sail at the high speed mainly helps to reduce the delay
probability and the variance of delivery times, but not the shipping time. So our discussion still relies on formula (1) to deter-
mine the shipping times.
5. Discussion and numerical experiments

5.1. Impact on liners

Liners normally maintain a fixed frequency of port visits along a service route. The frequency is determined by the pro-
jected demand on the service route. Reducing the frequency would mean reducing the liner’s own business, since the
demand is there. Slowing down the vessels on a service route would mean a longer round-trip time. In order to maintain
the same visiting frequency, the liner would have to deploy more vessels on the service route. Take OOCL’s Euro-Asia service
route via the Suez Canal for example. They used to sail at an average speed of 22.4 knots, resulting in a round-trip time of
56 days. To maintain the service frequency of weekly visits to ports along the route, they needed to deploy eight vessels.
After adopting slow steaming with an average speed of 20.2 knots, the round-trip time increased to 63 days. As a conse-
quence, one more vessel was needed to maintain the same service frequency. Although the use of slow steaming required
an additional vessel, the total fuel consumption on that service route for the fleet of nine vessels actually decreased by a sig-
nificant amount. The total round-trip time is
TðvÞ ¼ D
v þ E

XK

i¼1

Wk þ bkrk

" #
: ð18Þ
Suppose the liner needs nL vessels if the flexible slow steaming strategy is adopted and nH vessels, if fast steaming is adopted
to maintain a target service frequency. This means the following relationship should hold for the number of ships nL and nH ,
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nL ¼
TðvLÞ
TðvHÞ

nH: ð19Þ
Note that nL and nH can only be integers, so vL and vH are in practice not arbitrarily chosen. Liners will normally first deter-
mine the service frequency and the number of vessels, and then apply formula (18) to calculate the speed. When slow steam-
ing is considered for a certain service route, the first question is whether to add one or two vessels. Once the number of extra
vessels has been determined, the low speed vL is calculated. The total fuel consumption for nH vessels on the route traveling
at the high speed over a time horizon ½0; T� (in practice, T is usually set to a quarter) is T

TðvHÞ
nHDmðvHÞ. The total fuel consump-

tion for the nL vessels on the route adopting the flexible slow steaming strategy (i.e., low speed by default and speeding up in
case of delay) over the same time horizon is not that easily quantified, but Proposition 3 in Section 4.3 gives an estimate of
the upper bound. By Proposition 3, the fuel consumption for nL vessels using the flexible slow steaming strategy is bounded
from the above by T

TðvLÞ
nL½qDmðvLÞ þ ð1� qÞDmðvHÞ�. Relationship (19) and the upper bound in Proposition 3 yield a conser-

vative comparison of the total amount of fuel consumption under two strategies over the same time interval ½0; T�. The total
fuel needed for the fast steaming strategy is mðvHÞT and that for the flexible slow steaming is ½qmðvLÞ þ ð1� qÞmðvHÞ�T . Since
the fuel consumption function mðvÞ increases dramatically with speed, flexible slow steaming leads to a big saving of at least
mðvHÞ �mðvLÞ
mðvHÞ

q100% ð20Þ
on fuel consumption for the whole fleet on a give route.
Of course, bunker cost is only one part of the operating cost. Adding vessels also requires additional crew, so there is an

increase in labor cost (also stores, insurances, etc.). But labor cost makes up only a small portion of the operating cost, since
only about 20 crew members are needed to operate an 8000-TEU vessel. According to OOCL’s data, the saving in bunker cost
per vessel per trip as a result of slowing down from 22.4 knots to 20.2 knots is about half a million US dollars, assuming a fuel
price of $620/ton, which is significantly larger than the labor cost. Assuming weekly frequency, the total fuel consumption of
a ship in a round trip equals the total fuel consumption of all ships in a week. Rough speaking, the annual saving is about 26
million US dollars. This is huge compared with the operating cost (labor, vessel depreciation, etc.) of an additional vessel. For
a more detailed discussion on the trade-off between total costs and benefits, see Psaraftis and Kontovas (2010) and Cariou
(2011).

Slow steaming requires additional vessels, which are huge investments. But the surplus capacity from heavy investments
of past decades and the economic downturn of 2009 have enabled most liners to simply deploy idling vessels to support slow
steaming. Once the surplus capacity is absorbed however, liners will need to decide whether to charter or purchase addition-
al vessels. Chartering gives flexibility, but costs more than operating one’s own vessel on a per trip basis. Note that the ter-
minal fees determined by the number of visits remains the same since the frequency of visits does not change. All of these
costs are important, but they are beyond the scope of this analysis, which focuses on revealing a quantitative relationship
between the steaming speed, service quality and fuel consumption. It is then up to the management of the liners to explore
the trade-off between better service quality and lower fuel consumption versus longer average shipping times and larger
fleet. Building decision models to compare the benefits of chartering and purchasing vessels would be an interesting future
research topic.

5.2. Impact on shippers

The major disadvantage of slow steaming for shippers is the longer shipping times. In general, no shipper appreciates
longer shipping times. But depending on the businesses they are involved in, shippers may evaluate the trade-off between
extended shipping time and improved reliability differently. The complicated Markov chain associated with the slow steam-
ing strategy makes theoretical calculations impossible, but the tradeoffs can be assessed by simulation.

We performed a numerical experiment to see the impact of flexible slow steaming on the variance of the delivery time as
well as the delay probability. We simulated one of the service routes of OOCL connecting Asia and the west coast of the U.S.
Vessels deployed on this route called at the ports of Shekou (SKZ), Yantian (YAT), Hong Kong (HKG), Los Angeles (LGB),
Kao-Hsiung (KHH) and Xiamen (ZIA) before heading back to HKG and finally stopping in SKZ, the home port. To provide a more
realistic environment for the simulation, the actual port times for the past three years (provided by OOCL) were used instead
of generating random variables with a specified probability distribution. There were about hundreds sample points for each
port in the data set. For this particular service route, the round-trip time was about a month and a half. The real distances
between ports and the actual steaming speeds were also used. In the simulation, vH ¼ 18 knots and vL ¼ 16 knots. Based on
(12), the b’s were set to maintain an on-time probability of 60% for each port under fast steaming. Though formula (12) was
obtained under the assumption that port times are normally distributed, it worked well for the random data samples too.
This actually demonstrated the robustness of the formula in the sense that it gives insights into the system using parameters
such as the first two moments which can be estimated from data. The constant fast steaming and the flexible slow steaming
strategies were both simulated. Fig. 3 summarizes the simulated delay probability and delivery time variance. The flexible
slow steaming strategy improved both metrics, and the improvement became increasingly significant in the course of the
voyage. In flexible slow steaming, on average 12.5% of the distance was navigated at the high speed. So the actual fuel saving
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Fig. 3. Delay probability and delivery variance for fast and slow steaming.
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compared with fast steaming was 0:875ðmðvHÞ �mðvLÞÞD, which was quite significant. Indeed, this saving was bigger than
the theoretic lower bound 0:6ðmðvHÞ �mðvLÞÞD suggested by Proposition 3.

The effect of the flexible slow steaming strategy is twofold: both the shipping time and the reliability are increased. In
practice it is difficult to quantify the positive and negative impact on shippers. After all, different shippers have different
preferences for reliability and shipping time. We now briefly illustrate how different strategies affect the safety stock of
inventory, since inventory cost could be a key interest of the consignee. Assume that the consignee’s demand for the goods
being shipped is a random variable with mean kt and variance r2t for a period of length t. Let s denote the customer’s inven-
tory service level (i.e., the in-stock probability should be larger than s). According to classical inventory theory (c.f. Nahmias,

2009, p. 277), the safety stock is zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2E½T� þ k2VarðTÞ

q
. Here, we focus on a specific customer located at a specific port on a

service route, thus the subscript k has been omitted. Fast steaming yields a shorter shipping time than flexible slow steam-
ing, i.e., E½TH� 6 E½TL�. But the variance of shipping time is larger for the former strategy than for the latter, i.e.,
VarðTHÞP VarðTLÞ. For example, if we consider a Hong Kong (HKG) based inventory which manages shipment from LBG. Sup-
pose that demand rate k is scaled to 1, and the demand variance varies from 0.1 to 2. Table 1 presents the safety stock level
(based on the above formula) from the simulation in order to maintain the in-stock probability to be at least 95%. We can see
that when the demand variance is low, shippers who primarily concern the inventory cost actually benefits from slow steam-
ing. However, shippers facing larger demand variance would prefer fast steaming. We want to point out that there is a ‘‘flat’’
phenomenon: for a wide range of demand variability, the safety stock levels under both steaming strategies do not differ
much. This means that slow steaming has relatively little impact for shippers (who are concerned with inventory cost) while
it brings huge savings in fuel cost. Customers concerned about inventory cost should estimate the demand rate k and vari-
ance r2 to evaluate the trade-off between an increase in shipping time and a reduction in delivery time variability.

Depending on the nature of the products, demand variability can vary. For many consumer goods, the demand variability
is quite small, placing them on the low variance side of the above table. For fashion apparel or electronics products, demand
variability would be higher. While our table shows the impact of slow and flexible steaming on safety stocks as a function of
demand variability, we should note that slow steaming incurs more transit inventory. Since the holding costs of in-transit
inventory versus finished goods safety stock can be different, the safety stock effects and transit inventory effects could also
be different. Our analysis shows that, in today’s ocean transportation industry, flexible slow steaming is a viable alternative
strategy, and is suitable for customers who value reliability over short lead times. At the same time this strategy burns much
less fuel than a fixed, fast speed strategy, and is therefore good for the environment. The savings resulted from flexible
steaming can eventually be divided between shippers and liners. Exactly how it is divided between the two parties can
be determined using a pricing mechanism or through contract negotiation. For shippers who are more concerned with inven-
tory costs (both safety stock and transit) and who face high demand variances, they would prefer to have fast delivery, which
has been made available by liners charging higher freighter rates as reported by Van de Weijer (2013). The pricing and
mechanism design represent another interesting future research topic.
Table 1
Comparison of safety stock level under fast steaming and flexible slow steaming.

Demand variance 0.1 0.2 0.5 0.8 1 1.2 1.5 1.8 2
Fast steaming 20.7 21.7 27.4 35.8 42.1 48.6 58.8 69.3 76.4
Flexible slow steaming 18.7 19.9 26.6 35.8 42.6 49.6 60.5 71.6 79.0
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6. Conclusion

We have built a simple yet insightful model to reveal the relationship between delivery time, service quality and bunker
cost. Using a comprehensive set of industry data, we obtained the statistical properties of port times and fuel consumption of
sea vessels. Service quality can be managed by combining these statistical properties and the model. Our study has quanti-
fied the effect of steaming strategies on service quality, bunker cost and shipping time. This can help both shippers and liners
to accurately estimate the pros and cons of implementing the slow steaming policy. The insights from this research are sum-
marized as follows:

� Slow steaming with the flexibility to speed up helps to combat the negative effects of the randomness of port times, lead-
ing to an improvement in service quality. See Propositions 1 and 2.
� The randomness of port times is usually out of liners’ control, though some liners invested in dedicated terminals to gain a

degree of control over it. By taking advantage of historical data to identify a pattern of the randomness, and calculating an
appropriate buffer time using a simple model, the delay probability can be controlled. The quantitative relationship is
given by Eq. (12).
� Calculating an appropriate buffer time for a port also requires incorporating the uncertainties of the preceding ports on a

route, as Eq. (12) demonstrates, although the buffer time does not necessarily go up for ports on the latter part of the
route.
� An upper bound of the fuel consumption under the flexible slow steaming strategy is presented in Proposition 3, which

can help liners control their bunker costs.
� If the speed can be continuously adjusted, liners can further reduce the fuel consumption by choosing an appropriate

speed according to (16).
� To maintain the same service frequency, the slow steaming strategy requires extra vessels. However, the saving in total

fuel consumption is usually higher than the cost of operating the extra vessels. The saving is shown in (20).

This study has also highlighted a few issues that are worth investigating in the future. The first is route design. Liners do
adjust their service routes by adding or removing a port or shuffling the sequence of port visits every now and then. But they
cannot do it too frequently since a fixed schedule needs to be published to customers months in advance. By exploiting data
to characterize the randomness of demand and port times, we can design a better service route. The second issue is dynamic
decision making. In this work, we applied a simple policy of speeding up if there is any delay. In reality, we may apply more
sophisticated policies. For example, whether to speed up could depend on how many ports remain to be visited on a voyage.
It would also be interesting to examine the impact of slow steaming on the design of global supply chains.
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Appendix A. Technical proofs

Proof of Proposition 1. This result follows quite easily by induction. Since X0 ¼ Y0 ¼ 0;X1 ¼ Y1. So the result is true for
k ¼ 1. Now, suppose
PðXl > sÞ 6 PðYl > sÞ; ð21Þ
for l ¼ 1; . . . ; k� 1, we will show that the inequality holds for l ¼ k. Note that
PðYk > sÞ ¼ PðYk�1 þWk � lk � bkrk > sÞ ¼
Z 1

0
PðYk�1 > sþ lk þ bkrk � sÞf kðsÞds;
where f k is the density function of Wk. The probability for Xk can be computed in a similar way.
PðXk > sÞ ¼ PððXk�1 � cDkÞþ � X�k�1 þWk � lk � bkrk > sÞ ¼
Z 1

0
PððXk�1 � cDkÞþ � X�k�1 > sþ lk þ bkrk � sÞf kðsÞds:
Since ðXk�1 � cDkÞþ � X�k�1 6 Xk�1, we must have for all s
PððXk�1 � cDkÞþ � X�k�1 > sþ lk þ bkrk � sÞ 6 PðXk�1 > sþ lk þ bkrk � sÞ 6 PðYk�1 > sþ lk þ bkrk � sÞ:
This implies that PðXk > sÞ 6 PðYk > sÞ. h
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Proof of Proposition 2. Since SkðvÞ is deterministic, it is essential only to show that VarðXkÞ 6 VarðYkÞ, for k ¼ 1; . . . ;K. We
prove this by induction. It is clear that VarðX1Þ ¼ VarðY1Þ since X1 ¼ Y1. Assume that VarðXlÞ 6 VarðYlÞ for l ¼ 1; . . . ; k < K , we
need to show that VarðXlÞ 6 VarðYlÞ for l ¼ kþ 1. By (20)
VarðYkþ1Þ ¼ VarðYkÞ þ VarðWkþ1Þ;
VarðXkþ1Þ ¼ VarððXk � cDkÞþ � X�k Þ þ VarðWkþ1Þ:
Thus, it now remains to show that
VarððXk � cDkÞþ � X�k Þ 6 VarðYkÞ: ð22Þ
Note that
ðXk � cDkÞþ þminðXþk ; cDkÞ � X�k ¼ Xþk � X�k ¼ Xk:
We then have
VarðXkÞ ¼ VarððXk � cDkÞþ � X�k Þ þ VarðminðXþk ; cDkÞÞ þ 2CovððXk � cDkÞþ � X�k ;minðXþk ; cDkÞÞ:
It turns out that the covariance
CovððXk � cDkÞþ;minðXþk ; cDkÞÞ ¼ E½ðXk � cDkÞþ minðXþk ; cDkÞ� � E½ðXk � cDkÞþ�E½minðXþk ; cDkÞ�
¼ E½ðXk � cDkÞcDkjXk P cDk�PðXk P cDkÞ þ 0PðXk < cDkÞ
� E½Xk � cDkjXk P cDk�PðXk P cDkÞ þ 0PðXk < cDkÞf gE½minðXþk ; cDkÞ�

¼ E½ðXk � cDkÞjXk P cDk�PðXk P cDkÞ cDk � E½minðXþk ; cDkÞ�
� �

� 0
and the covariance
Covð�X�k ;minðXþk ; cDkÞÞ ¼ Eð�X�k minðXþk ; cDkÞÞ þ EðX�k ÞEðminðXþk ; cDkÞÞ ¼ EðX�k ÞEðminðXþk ; cDkÞÞP 0:
Thus, we have
VarðXkÞP VarððXk � cDkÞþ � X�k Þ: ð23Þ
So we conclude that the desired result indeed holds. h
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