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Consider multiple competitors engaging in multiple competitions, each with some attributes and a reward to

the winner or winners if there is a tie. Since the competitions may share certain attributes, a costly effort to

improve an attribute may have different effects on a competitor’s winning chances in multiple competitions,

i.e., the competitions may be correlated. Furthermore, such impacts may vary for different competitors due

to their abilities in the attributes. We first define the competitor-specific correlation of the competitions

and model a competitor’s problem as finding a resource allocation to all the attributes that maximizes her

expected total reward from all competitions, given other competitors’ decisions. We then characterize a

symmetric equilibrium decision with two competitions and homogeneous competitors, which can be extended

to multiple pair-wise positively or negatively correlated competitions, and asymmetric equilibrium decisions

for some special cases with two types of competitors.
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1. Introduction

Competitions are ubiquitous in the fields of politics, economics and sports. In many competitions,

only the best performer (or performers if there is a tie) wins a trophy and/or an award. Thus,

the goal of a competitor is to outperform her opponents rather than maximize her performance

or score. For instance, a politician only needs to win the highest number of votes for a govern-

ment position, the mutual fund manager with the highest annual return wins the largest share

of future investments, and the fastest runner wins a foot race regardless of the winning margins.

Each competition requires certain skills or has certain attributes that a competitor can acquire by

exerting costly effort and consuming limited resources. Competitors with higher skill levels have a

higher probability of winning, although the actual outcome is random and is known at the end of

a competition, e.g., after a race is completed. Both internal (e.g., mental and health) and exter-

nal (e.g., weather, economic, and political) conditions during a competition can contribute to the

actual success or failure of a competitor.

In reality, people often need to engage in multiple competitions or events. An administrator may

compete to chair several functional committees in an organization; a fashion designer may need to

design outfits for sales outlets with different consumer bases; and a gymnast must be prepared for

floor, vault, uneven bars, and beam events. Different events may require different or even opposite
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skills. For instance, artistic training is essential in floor exercises but not critical in vault events, and

showmanship may benefit a politician for certain positions but hurt her for others. Thus, events

may be positively or negatively correlated. Furthermore, the extent to which a pair of competitions

is correlated may be different for various competitors due to their abilities in the attributes. Thus,

a competitor’s decision is to allocate her limited resources among the attributes wisely in order to

maximize her expected total reward considering of her own abilities.

If the events do not share any attributes, as implicitly assumed in all existing literature, the

attributes do not have to be considered explicitly and a competitor’s decision is to simply allocate

her resources among the events rather than the attributes. Thus, the reward alone is sufficient to

describe an event and a competitor’s resource allocation decision has a lower dimension as there

are usually more attributes across the events than the number of events. A high effort in an event

implies a high expected performance in the event, with competitors’ equilibrium decisions having

been successfully characterized by Roberson (2006) in the case of two competitors whose decisions

are continuous variables.

We consider multiple competitors engaging in possibly correlated events. We say that two events

are correlated if investing in an attribute to improve a competitor’s chance of winning one event

will have a positive or negative effect on the other. We describe each event by its reward as

well as an attribute vector whose elements measure the importance of the attributes for winning

the event, and define mathematically the competitor-specific correlation between two events to

allow heterogeneity of competitors’ abilities. A competitor’s decision is to allocate her limited

resources among all the attributes to maximize her expected reward from all the events. The

intricate relationship between the rewards and attributes of the events and the randomness of

the outcomes make competitors’ equilibrium behavior much more complex. The difficulty lies in

the fact that the direction of improvement in the attributes is not a simple combination of the

attribute vectors, in general, especially when some events are negatively correlated. Furthermore,

to seek more fundamental understanding of the problem, we will model an equilibrium decision as

a set of distributions with unknown and potentially high dimensional supports. Thus, it is a very

challenging problem and requires very different methodologies as those in the relevant literature.

Our main contributions can be summarized as follows:

1. Modelling

(a) Competitor-specific correlation We describe the correlation of a pair of events for a

competitor as a quadratic function of their attribute vectors with each coefficient in the function

indicating a competitor’s ability to improve a specific attribute or pair of attributes. Two events are

positively (negatively) correlated for a competitor if the value of the function is positive (negative).

Thus, two events may be correlated for one competitor but uncorrelated for another and two events

with common attributes may be uncorrelated as we will show later.
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(b) Competitors’ decision We can model a competitor’s decision as the resources devoted

to all the attributes directly. However, doing so requires making a non-trivial assumption that

her probability of winning an event is a known function of the resource allocation decisions by all

competitors. To avoid the need to identify the winning probability functions a priori and without

any knowledge about the structure of the equilibrium decisions, we model a competitor’s decision

as selecting a distribution of her state in the attributes, which includes a function and its support

as in Alpern and Howard (2017). That is, we aim to discover, rather than make assumptions about,

the distribution functions of random variables and their supports. Thus, our model seeks a more

fundamental understanding of the problem and is significantly more challenging.

2. Methodology

(a) Dimension reduction Since there can be many attributes across all the events, a com-

petitor’s decision can be high dimensional. We are able to transform a competitor’s decision from

the distributions of the state in the attributes to the scores in the events. That is, even in the pres-

ence of event correlations, we are able to aggregate the attribute information in each event while

preserving the information about event correlations for each competitor so that the dimension of

her decision is bounded from above by the number of events. In an extreme case where all the

events are identical, a competitor’s decision is characterized as one-dimension, although the events

may have many attributes.

(b) Converting a zero-sum game into a single optimization Competitors’ equilibrium

decision is a solution of a complex zero-sum game and finding it requires solving a set of optimization

problems simultaneously. By exploring some properties of the game, we are able to convert it into

a single non-convex optimization problem. Although it is still a challenging problem, we succeeded

in characterizing the equilibrium decisions under the following scenarios.

3. Two-event cases

(a) Homogeneous competitors We show the existence of a symmetric equilibrium when

the competitors are homogeneous. The equilibrium is unique except in the following two rare cases:

i. The two events are uncorrelated for all competitors, in which case the equilibrium

marginal distributions are unique and any distribution with the marginals is an equilibrium.

ii. Two competitors compete in two completely “opposite” events yet with the same reward,

in which case any feasible strategy is an equilibrium.

Furthermore, when the two events are positively correlated, the problem is reduced to a single-event

one.

(b) Two types of competitors If the competitors can be divided into two types, we are

able to identify the equilibrium solution when the two events are uncorrelated for both types of

competitors. In equilibrium, at least one type of competitors will exert all their effort into the event
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of their advantage. For general cases, we identify necessary and sufficient conditions under which

the problem can be reduced to a single-event one. We also develop an algorithm to compute and

analyze the equilibrium behavior when there is a single competitor in each type.

4. Multiple events and homogeneous competitors When the events are pair-wise positively

correlated, the problem can be reduced to a single-event one with an attribute vector as a linear

combination of the attribute vectors of all the events. When the events are pair-wise negatively

correlated, we construct an approximate strategy that works well when the number of competitors

becomes large. These results suggest efficient heuristic strategies for problems with general events

and homogeneous competitors.

The paper is organized as follows. After a brief overview of the relevant literature on competi-

tions in Section 2, we provide a general zero-sum game model and convert it into an equivalent

optimization problem in Section 3. We focus on the equilibrium decisions when there are two com-

petitions in Section 4 and extend some results to multiple events in Section 5. The paper concludes

in Section 6. All proofs can be found in the Electronic Companion.

2. Literature Review

We first review relevant literature on single-event competitions, referred to as the contest literature,

and then on multiple-event competitions, referred to as the resource allocation game literature.

2.1. Single-event Contests

In a typical contest, a number of competitors decide the amount of costly effort they would exert,

which jointly determines the winning probabilities of all competitors through some known contest

success functions. The winner of the contest receives an award. Thus, a contest can be modelled

as a game where each competitor’s payoff is a function of their expected reward minus the cost of

their effort. Corchón and Serena (2018) provide a comprehensive survey of the contest literature

on the justifications and equilibrium analyses under various contest success functions, the design

of contest success functions, as well as extended models that allow multiple rounds of a contest,

information asymmetry and competitors that are groups instead of individuals.

Although articles in the aforementioned contest literature model a competitor’s decision as their

effort which determines the probability of winning through a contest success function, there is

another line of work that models a competitor’s decision as the distribution of the score a competitor

will receive and the competitor with the highest realized score wins the contest. Instead of a cost

function, a constraint is imposed on a competitor’s expected score. Bell and Thomas (1980) are the

first to study the equilibrium decision in an investment competition under this model, followed by

Myerson (1993) who studies a similar game in the context of elections. Anderson (2012) shows that
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an equilibrium of a multi-stage competition among mutual fund managers can be characterized

by an equilibrium score distribution at the last stage. Alpern and Howard (2017) provide a more

general constraint on the score distribution and define such a problem as a distribution ranking

game. Due to the flexibility of the generalized constraint, they are able to provide an innovative

method to derive the equilibrium decision for the multi-player silent duel game under this model.

2.2. Multiple-event Contests

When there is more than one event, the problem changes fundamentally. A competitor’s decision

is to allocate a limited amount of effort or resources among the events to maximize her expected

total number of winning events and each event is won by the competitor with the highest level of

resources. Such a game is referred to as a Colonel Blotto game introduced by Borel (1953) where

two competitors compete in multiple contests or battlefields. Ahmadinejad et al. (2019) develop a

polynomial-time algorithm to compute an equilibrium.

However, when the resources are infinitely divisible, Roberson (2006) is able to fully characterize

the equilibrium solution for the game with a general number of battlefields. Since then, researchers

have identified equilibrium decisions for several variants of the basic Colonel Blotto game, focusing

mostly on the case with two competitors. Some modify the budget constraints in the game, e.g.,

Macdonell and Mastronardi (2015) allow non-linear resource constraints in a two-event contest,

while Hart (2008), Kovenock and Roberson (2010), Dziubiński (2013), Hart (2016) and Kovenock

and Roberson (2020) allow the budgets to be constrained in expectation. Others consider more

complex objective functions. Thomas (2012) constructs equilibrium solutions for contests with

heterogeneous rewards and illustrate them through the election of US presidents. Shubik and

Weber (1981) introduce complementarity among the battlefields, so the goal is not to win as many

battlefields as one can but to win a bundle of important battlefields, Rinott et al. (2012) study a

Colonel Blotto gladiator game where resources (power) need to be allocated to the gladiators in a

team and the surviving gladiators from two teams compete in a series of events. Whichever team

is still standing at the end wins the game. To our knowledge, Boix-Adserà et al. (2020) is the only

paper that constructs efficiently-sampleable symmetric equilibria for cases with multiple identical

competitors.

In all of the above games, events are either identical or differ only by theirs rewards, and a

competitor’s decision is to allocate her resources to all the events. In reality, each event may require

multiple skills or have multiple attributes, and an attribute may be shared by multiple events,

leading to possible correlations among the events. Thus, a competitor’s decision is much more

complex, and we will model event correlations and study competitor equilibrium decisions.
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3. Problem Formulation and General Properties

Consider n competitors, indexed by i∈ I = {1, · · · , n}, competing in J events, indexed by j ∈J =

{1, · · · , J}, with a total of m attributes, some shared by multiple events and others unique to an

event.

1. Events. We describe event j by its reward uj > 0 and an attribute vector wj ∈Rm, measuring

the importance of the m attributes to the winning chance of event j. The higher a positive element

in wj is, the more critical the corresponding attribute is. A negative (zero) value implies that a

particular attribute contributes negatively (has no impact) on winning event j. Without loss of

generality, we restrict wj to be a unit vector and hence, −1 ≤wT
j wj′ ≤ 1 for any j, j′ ∈ J . The

following equivalences will facilitate our analysis:

• wT
j wj′ = 1⇔wj = wj′ , i.e., j and j′ are identical events;

• wT
j wj′ =−1⇔wj =−wj′ , i.e., j and j′ are completely opposite events;

• −1<wT
j wj′ < 1⇔wj and wj′ are linearly independent.

2. Competitor’s decision and reward We define competitor i’s decision as selecting a distri-

bution function F i(·) of her state in the attributes, Xi ∈Rm, as a result of her resource allocation

decision. Since some elements of wj can be negative, we allow Xi to be a real vector and denote xi

as its realization. Furthermore, we assume that all the competitors make their decisions simulta-

neously to maximize their expected total rewards, and hence X1, · · · ,Xn are independent random

vectors.

Competitor i’s weighted state wT
j Xi can be understood as her score in event j. The competitor

or competitors with the highest realized score win event j, regardless of their winning margin, and

share the reward uj if there is a tie. Thus, restricting ‖wj‖= 1 indeed involves no loss of generality.

3. Competitor’s resource constraint. As a high state Xi requires more resources which

are limited, we impose the constraint that EF i [X
T
i DiXi]≤ 1 where Di ∈Rm×m has the following

properties.

• We require that Di be positive definite to exclude the possibility of a score to be infinite, e.g.,

wT
j Xi =∞, under a feasible decision. Thus, the diagonal elements are all positive and, the higher

a diagonal element, the more difficult it is (more resources are needed) for competitor i to improve

the corresponding attribute. A positive (negative) off-diagonal element indicates that extra (less)

effort is needed if a competitor tries to improve a pair of attributes simultaneously due to their

dissimilarity (similarity). Thus, Di is a comprehensive description of competitor i’s capabilities.

• It is easy to see that D−1
i wj is the direction along which competitor i gains the greatest chance

to win event j and
√

wT
j D−1

i wj is the highest expected score she can achieve in event j. Thus,

wT
j D−1

i wj measures the overall competitiveness of competitor i in event j and, the higher the

value, the stronger competitor i is in event j.
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4. Competitor-specific event correlations. When competitor i tries to improve her score in

event j along D−1
i wj, the impact on her score in event j′, j′ 6= j, depends on the angle between

D−1
i wj and wj′ . Thus, we define the correlation between events j and j′ for competitor i as

wT
j D−1

i wj′ which is the cosine of the angle between D−1
i wj and wj′ if D−1

i wj is also a unit vector.

It may differ for different competitors and is different from the concept of correlation between two

random variables.

For competitor i, events j and j′ are positively (negatively) correlated if wT
j D−1

i wj′ > 0 (< 0)

and uncorrelated if wT
j D−1

i wj′ = 0 in which case improving the winning chance in one event has

no effect on that in the other event. Thus, two events can be uncorrelated for a competitor even if

they share certain attributes, e.g., when D−1
i wj =

(
1√
2
, 1√

2

)
and wj′ =

(
1√
2
,− 1√

2

)
.

Throughout the paper, we use the superscript “ ∗ ” to represent equilibrium functions or val-

ues, and boldfaced letters to represent vectors or matrices whose dimensions will be clear from

the context. We define an equilibrium decision as a tuple (F 1∗, . . . ,F n∗) such that F i∗ of X∗i

is the solution to the following linear program at F−i∗ =
{
F 1∗, . . . ,F (i−1)∗,F (i+1)∗, . . . ,F n∗

}
of

(X∗1, · · · ,X∗i−1,X
∗
i+1, · · · ,X∗n),

max
F i

∑
j∈J

uj
∑

N⊆I−i

1

|N |+ 1
PF i,F−i∗

(
wT
j Xi = wT

j X∗` >wT
j X∗`′ , ∀(`, `′)∈N × (I−i−N)

)
(1)

s.t. EF i
(
XT
i DiXi

)
≤ 1, (2)

where I−i is the set of all competitors except competitor i. When competitor i wins event j

along with competitors in N ⊆ I−i, which happens with probability PF i,F−i∗(w
T
j Xi = wT

j X∗` >

wT
j X∗`′ , ∀(`, `′)∈N × (I−i−N)), the reward uj is evenly divided among the |N |+ 1 winners.

Thus, the resource allocation problem is a zero-sum game and finding an equilibrium solution

requires solving n complicated optimization problems simultaneously. Below, we will first refor-

mulate the problem as determining the distributions of the scores in Section 3.1, then convert the

problem into a single non-convex optimization one in Section 3.2, and further establish that finding

an equilibrium solution is equivalent to finding the marginal distributions of the scores in Section

3.3.

3.1. Problem Reformulation and Dimension Reduction

Let Zij = wT
j Xi denote competitor i’s score in event j and Gi

j its distribution. Then, Zi ∈
Im(WT ) = {WTx : x ∈ Rm} ⊂ RJ where W = (w1,w2, . . . ,wJ). Finding an equilibrium solution

(F 1∗, . . . ,F n∗) of the state (X∗1, . . . ,X
∗
n) is equivalent to finding distributions (G1∗, . . . ,Gn∗) of the

scores (Z1∗, . . . ,Zn∗) where Zi∗ ∈ Im(WT ) such that Gi∗ solves

max
Gi

∑
j∈J

uj
∑

N⊆I−i

1

|N |+ 1
PGi,G−i∗

(
Zij =Z`∗j >Z`

′∗
j , ∀(`, `′)∈N × (I−i−N)

)
(3)

s.t. EGi
(
Γi(Z

i)
)
≤ 1, (4)
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where Γi(z) = min
x
{xTDix : WTx = z}. Thus, we also refer to (G1∗, . . . ,Gn∗) as an equilibrium

from which we can recover F ∗i as X∗i = arg min
x
{xTDix : WTx = Zi∗}, the minimum efforts to score

Zi∗.

When there are only two events, i.e., J = 2, WTW is non-singular if and only if w1 and w2 are

linearly independent and

Γi(z) =


zT D̂iz, if WTW is non-singular,

z2
1

wT1 D−1
i w1

, if WTW is singular and z∈ Im(WT ),

∞, otherwise,

(5)

X∗i =

{
D−1
i WD̂iZ

i∗, if WTW is non-singular,
D−1
i w1Z

i∗
1

wT1 D−1
i w1

, otherwise,

where

D̂i =
(
WTD−1

i W
)−1

=
1

|WTD−1
i W|

(
wT

2 D−1
i w2 −wT

1 D−1
i w2

−wT
1 D−1

i w2 wT
1 D−1

i w1

)
.

That is, we can aggregate the m attributes for each competitor and reduce the dimension of

the problem from m to J . When J = 2, if w1 and w2 are linearly independent or equivalently,

−1 <wT
1 w2 < 1, we can simplify the description of competitor i with a symmetric matrix D̂i =

(WTD−1
i W)−1 ∈R2×2, rather than Di ∈Rm×m. The diagonal elements in D̂i indicate competitor

i’s ability to improve the scores in the two events and the single off-diagonal element is exactly

the correlation between the two events for competitor i. When w1 and w2 are linearly dependent,

i.e., w1 = ±w2, D̂i is replaced by a scalar
(
wT

1 D−1
i w1

)−1 ∈ R and competitor i’s decision is one

dimensional.

3.2. An Equivalent Optimization Problem

Note that, even with the reduction of dimensionality, the problem is still distinct from the literature

as the events share attributes and may be correlated. Moreover, this is still a zero-sum game whose

solution is n distributions with unknown supports and a highly challenging problem. Rather than

trying to solve Problem (3)-(4) for all i simultaneously, we establish that a sole winner exists in

each event almost surely if there exists x∈Rm such that the score vector WTx> 0. With that, we

are able to convert the zero-sum game into a single optimization problem in Theorem 1 whose proof

can be found in the Electronic Companion. Otherwise, we show in Proposition 1 that there can

be at most two winners in each event almost surely and solving the single optimization problem is

sufficient to find an equilibrium if it exists when J = 2. Let (Gi∗
1 ,G

i∗
2 , . . . ,G

i∗
J ) denote the marginal

distributions of Gi∗ (Zi∗) and zi as the realization of Zi.
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Theorem 1. Suppose that there exists zi > 0.

1. PGi∗,G−i∗
(
Zi∗j =Zi

′∗
j ≥Z`∗j ,∀`∈ I −{i, i′}

)
= 0 for any i′ ∈ I−i, i.e., there is a sole winner in

each event almost surely.

2. (G1∗, . . . ,Gn∗) is an equilibrium if and only if EGi∗ (Γi(Z
i∗)) = 1 for all i and

min
(λ1,...,λn)≥0

∑
i∈I

λi + max
z∈Im(WT )

∑
j∈J

uj
∏
`∈I−i

G`∗
j (zj)−λiΓi(z)



=

∑
j∈J

uj . (6)

A necessary condition for the existence of a positive zi is that wj + wj′ 6= 0 for any two events j

and j′, i.e., there does not exist two completely opposite events, and two sufficient conditions are

w1, . . . ,wJ are linearly independent and w1 = · · ·= wJ . When there exists a positive zi, competitor

i can improve her scores in all events and avoid any tie almost surely by shifting the support of Zi

along zi. Let (λ∗1, λ
∗
2, . . . , λ

∗
n) be a minimizer of the left hand side of (6). Then, the support of Zi∗

is a bounded subset of the maximizers of
∑
j∈J

uj
∏

`∈I−i
G`∗
j (zj)−λ∗iΓi(z).

By Theorem 1, the resource constraint for each competitor is tight at an equilibrium, i.e., all

competitors use up their resources. Finding an equilibrium solution is equivalent to finding a

solution that satisfies EGi∗ (Γi(Z
i∗)) = 1 for all i ∈ I and (6) which involves a single optimization

problem. That is, one can convert a zero-sum game, which requires solving n optimization problems

simultaneously, into a single optimization problem.

When w1, . . . ,wJ are linearly dependent, improving the scores in some events may hurt the

scores in some other events and the overall impact depends on the rewards and W in a complicated

manner. When J = 2 and w1 +w2 = 0, there can be at most two winners in an event almost surely

and condition (7), rewritten from condition (6), is a sufficient one.

Proposition 1. Suppose that J = 2 and w1 + w2 = 0.

1. PGi∗,G−i∗
(
Zi∗j =Zi

′∗
j =Zi

′′∗
j

)
= 0 for all i′, i′′ ∈ I−i and i′ 6= i′′, i.e., there are at most two

winners in each event almost surely.

2. The conditions in Theorem 1 (2) is sufficient, i.e., (G1∗, . . . ,Gn∗) is an equilibrium if

EGi∗
[
(Zi∗1 )

2
]

= wT
1 D−1

i w1 for all i and

min
(λ1,...,λn)≥0

∑
i∈I

λi + max
z1

u1

∏
`∈I−i

G`∗1 (z1) +u2

∏
`∈I−i

(1−G`∗1 (z1))− λiz
2
1

wT
1 D
−1
i w1



= u1 +u2. (7)

First we note that, if all the distributions in G−i are continuous, a single winner almost surely

emerges regardless of competitor i’s strategy. Theorem 1 and Proposition 1 imply that, in equilib-

rium, at most one distribution (two distributions) can be discontinuous at any given point when

w1 + w2 6= 0 (w1 + w2 = 0). Suppose that a particular competitor’s strategy in G−i∗ is discontinu-

ous at a point ẑ. Then, competitor i’s winning probability in event j as a function of z∈ Im(WT ),
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∑
N⊆I−i

1
|N|+1

PG−i∗

(
Z`∗j = zj >Z

`′∗
j , ∀(`, `′)∈N × (I−i−N)

)
, is discontinuous at ẑ. Her expected reward is

also discontinuous when w1 + w2 6= 0, while it may be continuous at this point when w1 + w2 = 0

as a positive jump in the winning probability in one event may be cancelled out by the nega-

tive effect on that in the other. However, the expected reward would be discontinuous if multiple

competitors’ strategies in G−i∗ are discontinuous at this point when w1 + w2 = 0. A competitor

is better off by including only one side of and excluding the discontinuous point in her support.

Thus, a sole winner exists in each event when w1 + w2 6= 0 and there are at most two winners

when w1 + w2 = 0. For instance, when w1 + w2 = 0, n= 2, and u1 = u2, the deterministic strategy

with Z1 = Z2 = (z∗1 ,−z∗1)T is an equilibrium under which each event is won by both competitors

for sure. In this case, Gi
1 (Gi

2) is discontinuous at z∗1 (−z∗1) while the expected reward is constant

over Im(WT ). When u1 >u2, both competitors will try to be the sole winner of event 1 and there

is a sole winner in each event almost surely.

3.3. Marginals as Decisions

Note that condition (6) only involves the marginal distributions and the joint distributions only

appear in the constraints EGi∗ (Γi(Z
i∗)) = 1. Thus, finding an equilibrium (G1∗, . . . ,Gn∗) is equiv-

alent to finding marginal distributions (Gi∗
1 , . . . ,G

i∗
J ) that satisfies (6) and

min
Gi

{
EGi

(
Γi(Z

i)
)∣∣Gi has marginal distributions (Gi∗

1 , . . . ,G
i∗
J )
}

= 1 (8)

for all i∈ I. Thus, an infinite number of equilibria may exist.

Note that the optimization problem in (8) is a multi-marginal optimal transportation problem

with quadratic costs (see e.g., Pass (2012)), and the general structure of the support of Zi∗ is

unknown and complicated. Interestingly, when J = 2, it reduces to a classic transportation problem

where the supports of Gi
1 and Gi

2 are the origins and destinations, respectively. Origin zi1 has Gi
1(zi1)

amount of supply and the demand at destination zi2 is Gi
1(zi1), and it costs Γi(z

i
1, z

i
2) to transport

one unit from zi1 to zi2. With that, we first focus on the case with J = 2.

4. Two Events

We say that a set in R2 is increasing (decreasing) if, for any two points x and y in the set,

(x1− y1)(x2− y2)≥ 0 (≤ 0). Proposition 2 provides the relationship between an equilibrium, if one

exists, and its marginals, which also reveals the shape of the support of Zi∗. When the two events

are uncorrelated, Γi is separable in z1 and z2 and any (G1, · · · ,Gn) with the marginals (Gi∗
1 ,G

i∗
2 ),

i∈ I, is an equilibrium. When the two events are positively (negatively) correlated, the support of

Zi∗ is increasing (decreasing) as expected. These properties are critical in identifying an equilibrium

solution.
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Proposition 2. The relationship between an equilibrium, if one exists, and its marginals is as

follows:

1. If wT
1 D−1

i w2 = 0, any distribution with the marginals (Gi∗
1 ,G

i∗
2 ) is an equilibrium.

2. If wT
1 D−1

i w2 > 0, Gi∗(z) =Gi∗
1 (z1)∧Gi∗

2 (z2), i.e., Zi∗ has an increasing support.

3. If wT
1 D−1

i w2 < 0, Gi∗(z) = [Gi∗
1 (z1) +Gi∗

2 (z2)− 1]
+

, i.e., Zi∗ has a decreasing support.

4.1. Homogeneous Competitors

With homogeneous competitors, Di = D for all i ∈ I. As we can view the problem as one with

w̃j =
√

D
−1

wj, X̃i =
√

DXi, and E
(
X̃T
i X̃i

)
≤ 1, it is sufficient to analyze the case where D = I

and the correlation between the two events is simply wT
1 w2 for all competitors. The two events are

uncorrelated if wT
1 w2 = 0 and positively (negatively) correlated if wT

1 w2 > 0 (< 0), respectively.

Furthermore, we only consider symmetric equilibria and omit the index i in our notation. Then,

condition (6) becomes

λ∗+ max
z

{
2∑
j=1

ujG
∗
j (zj)

n−1−λ∗Γ(z)

}
=
u1 +u2

n

where

Γ(z) =

{
z2
1−2wT1 w2z1z2+z2

2

1−(wT1 w2)2
, if WTW is non-singular,

z2
1 , otherwise.

Under symmetric equilibria, Theorem 1 implies that Z∗j is a continuous random variable or

G∗j (zj) is continuous in zj. That is, G∗j (zj) should be differentiable almost everywhere. To simplify

the analysis, we make the following assumption.

Assumption 1. G∗j (zj) is differentiable in the support of Z∗j .

Under this assumption, condition (6) is also necessary when w1 + w2 = 0 if n > 2 or u1 6= u2.

Furthermore, by Theorem 1, any maximizer of
2∑
j=1

uj
[
G∗j (zj)

]n−1 − λ∗Γ(z) must satisfy the first-

order optimality conditions,

(n− 1)uj[G
∗
j (zj)]

n−2G∗
′

j (zj) =
2λ∗

1− (wT
1 w2)

2

(
zj −wT

1 w2z3−j
)
, j = 1,2. (9)

We show the existence of multiple equilibria when wT
1 w2 = 0 or the two events are uncorrelated

in Section 4.1.1. When the two events are correlated, we show the existence and uniqueness of an

equilibrium when 0< |wT
1 w2|< 1 in Section 4.1.2 and analyze the case when wT

1 w2 =±1 in Section

4.1.3.



12

4.1.1. Existence of Multiple Equilibria When wT
1 w2 = 0 When the two events are uncor-

related, condition (9) only involves zj and its distribution function G∗j . Thus, the marginal distribu-

tions can be found separately and an infinite number of equilibria exists as stated in Proposition 3.

Proposition 3. When wT
1 w2 = 0, a two-dimensional distribution G∗ is an equilibrium if and only

if its marginal distributions are G∗j (zj) =
(
u1+u2
nuj

z2
j

) 1
n−1

with E(Z∗j )2 =
uj

u1+u2
, j = 1,2.

That is, a competitor can decide the distribution of the scores of the two events separately

and the effort devoted to the score in an event is proportional to its reward. For marginals G∗1

and G∗2 given above, G∗(z) = G∗1(z1)G∗2(z2) under which Z∗1 and Z∗2 are independent, G∗(z) =

min{G∗1(z1),G∗2(z2)} under which
Z∗1
Z∗2

=
(
u2
u1

)n−1
2

, and G∗(z) = [G∗1(z1) +G∗2(z2)− 1]
+

under which(
Z∗21
u1

) 1
n−1

+
(
Z∗22
u2

) 1
n−1

= n
u1+u2

are all equilibrium distributions.

Proposition 3, obtained for the case with two uncorrelated events and multiple competitors, is

similar to some existing results, e.g., Theorem 1 in Kovenock and Roberson (2020) which charac-

terizes equilibrium resource allocation decisions of two heterogeneous competitors’ competing in

multiple events without shared attributes.

4.1.2. Existence and Uniqueness of an Equilibrium When 0< |wT
1 w2|< 1 In this case,

the two events are correlated and w1 and w2 are linearly independent but not orthogonal to each

other. Thus, there is a one-to-one correspondence between z∗1 and z∗2 by (9) and hence, the support

of Z∗ must be one-dimensional. Furthermore, given that z∗ is a maximizer of
2∑
j=1

uj
[
G∗j (zj)

]n−1−
λ∗zT (WTW)−1z by Theorem 1, the support of Z∗ must be a continuous curve, as otherwise there

would exist a rectangular region (not in the support) in which G∗ is a constant in (0,1) and a

higher objective value than
2∑
j=1

uj
[
G∗j
(
z∗j
)]n−1−λ∗z∗T (WTW)−1z∗ occurs at a certain point.

Lemma 1. The support of Z∗ is a continuous and strictly monotonic one-dimensional curve in

the cone spanned by (1,wT
1 w2)T and (wT

1 w2,1)T , i.e., it is between the lines z1 = z2w
T
1 w2 and

z2 = z1w
T
1 w2, and the marginal distribution G∗j is strictly increasing when G∗j (zj)∈ (0,1).

We refer to the cone spanned by (1,wT
1 w2)T and (wT

1 w2,1)Tas the cone for convenience. By

Lemma 1, we can represent the support of Z∗ by {z(t) = (z1(t), z2(t))T : t∈ [0,1]} where z1(t) is

the t-quantile of G∗1 and z2(t) is uniquely determined by z1(t). Furthermore, z1(t) is continuous

and strictly increasing in t∈ (0,1) and z2(t) is strictly monotone and continuous in t. By Proposi-

tion 2, z2(t) is strictly increasing (decreasing) if and only if wT
1 w2 > 0 (wT

1 w2 < 0). Proposition 4

establishes the existence and uniqueness of an equilibrium.

Proposition 4. A unique equilibrium exists when 0< |wT
1 w2|< 1.
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1. When 0 <wT
1 w2 < 1, G∗1(z1(t)) = G∗2(z2(t)) and the support of Z∗ is a segment on the line

z2 = vz1 with z(0) = 0 where

v=

√
[(u2−u1)wT

1 w2]2 + 4u1u2− (u2−u1)wT
1 w2

2u1

≥ 0. (10)

2. When −1<wT
1 w2 < 0, G∗1(z1(t)) +G∗2(z2(t)) = 1 and z1(0)

z2(0)
= z2(1)

z1(1)
= wT

1 w2.

When 0<wT
1 w2 < 1, Z∗2 = vZ∗1 and Condition (6) reduces to

λ∗+ max
z1

{
(u1 +u2)[G∗1(z1)]n−1−λ∗z2

1Γ
(
(1, v)T

)}
=
u1 +u2

n
.

Letting

w̃ = W(WTW)−1(1, v)T =
1− vwT

1 w2

1− (wT
1 w2)

2 w1 +
v−wT

1 w2

1− (wT
1 w2)

2 w2,

we have X∗ = W(WTW)−1Z∗ = Z∗1 w̃, Z∗1 = w̃TX∗

w̃T w̃
, G∗1(z1) = PF∗

(
w̃TX∗

w̃T w̃
≤ z1

)
, and Γ((1, v)T ) =

w̃T w̃. Thus, the equilibrium strategy F ∗ satisfies

λ∗+ max
x

{
(u1 +u2)PF∗(w̃

TX∗ ≤ w̃Tx)−λ∗xTx
}

=
u1 +u2

n
.

That is, the problem is reduced to a single event one with a reward u1 +u2 and an attribute vector

w̃
‖w̃‖2

which lies inside the cone spanned by w1 and w2 and improving a competitor’s effort along

w̃ results in the highest expected total reward. If u1 = u2, then v = 1 and w̃ = 1
1+wT1 w2

(w1 + w2)

lies exactly in the middle of w1 and w2. As u2
u1

increases, w̃ gets increasingly closer to w2. Figure 1

illustrates the supports and density functions of Z∗ and X∗.

2

2

1

2

z2 = vz1

z2 = z1w
T
1 w2

z1 = z2w
T
1 w2

z1
z2

2

2

1

2

w1

w2w̃
x1 x2

Figure 1 The supports and density functions of Z∗ and X∗ when u1 = 2u2 and wT
1 w2 = 0.7
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z(0)

z(1)

z1 = z2w
T
1 w2

z2 = z1w
T
1 w2

z1

z2

Figure 2 The support of Z∗ when z2(t) is decreasing

When −1 < wT
1 w2 < 0, we are unable to derive the explicit form of the support of Z∗ as

z2 decreases in z1 in a nonlinear fashion in general as illustrated in Figure 2. For instance,

when u1 = u2 and n = 2, the solution to (EC.14)–(EC.15) must satisfy z2
1(t) + z2

2(t) −
2z1(t)z2(t)wT

1 w2 = 1 − (wT
1 w2)

2
, i.e., the support is a segment of an ellipse and G∗j (zj) =

1
2

+
−sin(2θ0+2 arcsinzj)−2wT1 w2(θ0+arccoszj−π2 )

2 sin 2θ0−4wT1 w2θ0
where θ0 = arcsin

(√
1−wT1 w2

2

)
and G∗(z) = [G∗1(z1) +

G∗2(z2)− 1]+. Under the equilibrium strategy, each competitor is more likely to achieve a positive

score for both events than sacrificing one event, as illustrated in Figure 3, where the density of Z∗

is symmetric and the highest at the center of the support.

z1 = z2w
T
1 w2

z1 = z2w
T
1 w2

z1

z2

Figure 3 The density of Z∗ on its support when u1 = u2, n= 2, and wT
1 w2 =−0.7

However, we can provide some insights into its support and the distribution on the support as

n becomes large in Proposition 5. Let t0 =
n−2√u2

n−2√u1+ n−2√u2
.
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Proposition 5. When, −1 < wT
1 w2 < 0, for any given n and ε ≥ u1t

n−1
0 ∨ u2(1− t0)n−1, an ε-

equilibrium strategy exists whose support lies on the boundary of the cone. Its density is unimodal on

the support with P (Z1 > 0) = 1− t0 and P (Z2 > 0) = t0, and reaches its peak at z = 0. Furthermore,

the strategy approaches G∗ as n→∞.

−1 1 2

1

z1 = z2w
T
1 w2

z2 = z1w
T
1 w2

z1

z2 n = 2
n = 3
n = 6
n = 10

Figure 4 Support of Z∗ for various n when w1
Tw2 = −1√

5
and u1 = 2u2

As the number of competitors becomes large, the support of Z∗ moves towards the boundary of

the cone. Furthermore, t0→ 1
2

as n→∞ and the equilibrium strategy assigns an equal probability

to a positive z1 and a positive z2. However, the conditional tail probability P (Zj > zj|Zj > 0) is

lower than the unconditioned one under a single event scenario. With two events, a competitor has

a positive probability of winning the other event and hence assigns a lower probability towards

either tail.

4.1.3. When wT
1 w2 =±1 In these two cases, w2 =±w1 and condition (6) is equivalent to

λ∗+u1 [G∗1(z1)]
n−1

+u2

[
G∗2(z1w

T
1 w2)

]n−1−λ∗z2
1 =

u1 +u2

n
(11)

on the support of Z∗1 .

Theorem 2. When wT
1 w2 = −1 and u1 = u2, any feasible G∗ is an equilibrium. Otherwise, a

unique equilibrium exists when wT
1 w2 =±1.

1. When wT
1 w2 = 1, λ∗ = u1+u2

n
and G∗j (zj) =

n−1

√
z2
j

n
, zj ∈ [0,

√
n], j = 1,2.

2. When wT
1 w2 =−1, G∗1(−z) +G∗2(z) = 1.

(a) If n= 2, G∗j (zj) =
z2
j

2
, zj ∈

[
0,
√

2
]

if uj >u3−j, j = 1,2.

(b) If n> 2, u1 [G∗1(z1)]
n−1

+u2[1−G∗1(z1)]n−1 = λ∗(z2
1 − 1) + u1+u2

n
,

z1 ∈
[
−
√

u2+λ∗−u1+u2
n

λ∗ ,

√
u1+λ∗−u1+u2

n
λ∗

]
, where λ∗ = u1+u2

n
−u1t

n−1
0 −u2(1− t0)n−1.
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Recall that two equilibria may exist only when wT
1 w2 =−1 by Theorem 1 and Proposition 1. With

homogeneous competitors, Theorem 2 further establishes that multiple equilibria can only occur

if u1 = u2 and n= 2, in which case (11) holds for any feasible G∗ and λ∗ = 0. Each event is won

either by one competitor or both competitors (e.g., following a deterministic strategy as discussed

in the paragraph following Proposition 1). In either case, each competitor gains half of the total

rewards.

When wT
1 w2 = 1, a unique equilibrium exists and the problem reduces to a single-event one with

w̃ = w1, which has been considered by Alpern and Howard (2017) under a more general constraint.

They show that G∗1(z1) =
n−1

√
z2
1
n

is a symmetric equilibrium, but only establish its uniqueness for

n= 2. We are able to establish both the existence and uniqueness of the symmetric equilibrium for

any given n. The variance of the score V ar (Z∗1 ) = 1− 2
√
n

n+1
and the size of the support [0,

√
n] increase

in n, implying that competitors are taking more risky actions to outperform more competitors,

while the average score E (Z∗1 ) = 2
√
n

n+1
decreases in n. However, the distribution of the highest

score [G∗1(z1)]
n

is stochastically increasing in n, suggesting that more contestants participating in

a qualifying tournament of a major contest, e.g., an Olympic game, increases a country’s winning

chance in the game.

When wT
1 w2 = −1, the problem cannot be reduced to a single-event one in general, because

winning in one event means losing for sure in the other one and a competitor needs to strike a

balance. However, when n= 2, the loser in one event becomes the winner in the other event and

each competitor takes an event. Thus, the aim is to win the event with a higher reward and the

problem reduces to one with a single event.

Unlike the case where −1<wT
1 w2 < 0, the problem when wT

1 w2 =−1 can be reduced to a single-

dimensional problem although it is not a single-event problem. This is because the cone itself in

which the support of G∗ lies becomes a straight line z1 =−z2 and the support is a segment on the

line passing through the origin.

4.1.4. Summary of Symmetric Equilibria From the preceding analysis, we are ready to

summarize the symmetric equilibria as a function of D, (w1,w2), and (u1, u2).

Theorem 3. A symmetric equilibrium always exists.

1. If the two events are uncorrelated, i.e., wT
1 D−1w2 = 0, then, G∗j (zj) =

(
u1+u2
nuj

z2
j

wTj D−1wj

) 1
n−1

with E

[
Z2
j

wTj D−1wj

]
=

uj
u1+u2

, j = 1,2, and any joint distribution G∗ is an equilibrium if and only if

it has the above marginals.

2. Otherwise, except when w1 =−w2, n= 2, and u1 = u2, in which case any feasible G∗ is an

equilibrium, a unique symmetric equilibrium exists.
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(a) If wT
1 D−1w2 > 0, then, Z∗2 = vZ∗1 , where v is the unique positive solution to the quadratic

equation wT
1 D−1w1u1v

2 + wT
1 D−1w2(u2−u1)v−wT

2 D−1w2u2 = 0 and the problem is reduced to a

single-event one with w̃
‖w̃‖2

where

w̃ =

{
(wT

2 D−1w2− vwT
1 D−1w2)w1 + (−wT

1 D−1w2 + vwT
1 D−1w1)w2, if w1 6= w2,

w1, if w1 = w2.

(b) If wT
1 D−1w2 < 0, then, G∗ has a decreasing support that approaches the boundary of the

cone spanned by (1,wT
1 D−1w2) and (wT

1 D−1w2,1) as the number of competitors grows large.

4.2. Two Types of Competitors

With heterogeneous competitors, a competitor may face both inter-type and intra-type competi-

tions, and equilibrium strategies are asymmetric in general and difficult to obtain. Suppose that

there are ni type i competitors with Di and homogeneous strategy Zi ∼Gi, i= 1,2. We provide

equilibrium solutions when they compete in two uncorrelated events in Section 4.2.1 and charac-

terize necessary and sufficient conditions under which the problem can be reduced to a single event

one in Section 4.2.2.

Recall that wT
j D−1

i wj measures the competitiveness of type i competitors in event j and thus,
wT1 D−1

i w1

wT2 D−1
i w2

measures type i competitors’ relative competitiveness in event 1 over event 2. Without

loss of generality, we assume that
wT1 D−1

2 w1

wT2 D−1
2 w2

≥ wT1 D−1
1 w1

wT2 D−1
1 w2

, i.e., compared with type 1 competitors,

type 2 competitors have more advantage in event 1 over event 2. When w1 and w2 are linearly

independent, condition (6) reduces to

2∑
i=1

niλ
∗
i +nimax

z

{
2∑
j=1

ujG
i∗
j (zj)

ni−1Gi′∗
j (zj)

ni′ −λ∗i zT D̂iz

}
= u1 +u2, (12)

for i, i′ = 1,2, and i 6= i′.

4.2.1. When wT
1 D−1

1 w2 = wT
1 D−1

2 w2 = 0 In this case, the two events are uncorrelated for

all competitors, although the events may share some or all attributes. When wT
1 D−1

1 w2 = 0, a

sufficient condition for wT
1 D−1

2 w2 = 0 to hold is that w1 and w2 are the eigenvectors of D−1
1 D2,

which is certainly true if D2 is proportional to D1. When wT
1 D−1

1 w2 = wT
1 D−1

2 w2 = 0, improving

the performance at one event has no impact on that of the other for both types of competitors.

Similar to the symmetric case with identical competitors, an infinite number of equilibria exists

with the same marginal distributions as summarized in Proposition 6.

Proposition 6. Suppose that wT
1 D−1

1 w2 = wT
1 D−1

2 w2 = 0 and
wT1 D−1

2 w1

wT2 D−1
2 w2

≥ wT1 D−1
1 w1

wT2 D−1
1 w2

. Any

(G1∗,G2∗) with the following marginal distributions is an equilibrium and type 1 (2) competitors

always compete in event 2 (1).
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1. If ni = ni′ = 1, for i, i′ = 1,2, and i 6= i′,

Gi∗
j (zj) =

1
2

2∑
j=1

uj

(
wTj D−1

2 wj

wTj D−1
1 wj

∧ wTj D−1
1 wj

wTj D−1
2 wj

)
ujwT

j D−1
i wj

z2
j +

(
1− wT

j D−1
i wj

wT
j D−1

i′ wj

)+

, j = 1,2,

i.e., both competitors compete in both events, and competitor i’s expected reward is

2∑
j=1

uj

(1− wT
j D−1

i′ wj

wT
j D−1

i wj

)+

+
1

2

(
wT
j D−1

2 wj

wT
j D−1

1 wj

∧ wT
j D−1

1 wj

wT
j D−1

2 wj

) .
2. If ni > 1, i = 1,2, the marginal distributions are given in Proposition EC.1 in the Elec-

tronic Companion. Type 1 (2) competitors compete in both events if and only if u1n1
u2n2

>
wT2 D−1

2 w2

wT2 D−1
1 w2(

u2n2
u1n1

>
wT1 D−1

1 w1

wT1 D−1
2 w1

)
.

3. Otherwise, the marginal distributions are presented in Proposition EC.2 in the Electronic

Companion.

• The majority will always compete in both events.

• The sole minority will compete in both events if and only if the relative reward from the event

of her advantage to that of the other event, u2
u1

if n1 = 1, is below a threshold. Furthermore, the

threshold is decreasing in the size of the majority.

If one type is a singleton, the sole competitor faces no intra-type competition and will win an

event without any effort if the other type does not participate. Thus, if both types are singletons,

the sole competitor in each type will compete in both events. Otherwise, if only one type is a

singleton, the sole minority competitor may give up one event if its reward is relatively low and

her advantage in the other event is high enough, while the majority will always participate in both

events.

If there are at least two competitors in each type, the ratio n1
n2

, which reflects the intensity of

intra-type and inter-type competitions, and the ratio between the rewards u1
u2

jointly contribute to

the equilibrium strategies. Each type of competitors will compete in both events if they are not

significantly outnumbered and the event of their advantage does not provide a high enough reward.

4.2.2. When Can the Problem Be Reduced to a Single-Event One? It is obvious

that when w1 = w2, in which case the two events differ only in their rewards or are identical, the

problem is a single-event one with reward u1 +u2. When w1 =−w2, expect when n1 = n2 = 1 and

u1 = u2, improving the performance along any single direction would result in a negative score in

one of the events for all competitors. Thus, a competitor can win an event effortlessly by deviating

from that direction and the problem cannot be reduced to a single-event one. When w1 =−w2,

n1 = n2 = 1 and u1 = u2, it is easy to show that Theorem 3 still applies, i.e., any strategy is an

equilibrium, including reducing the problem to any single-event one.
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When w1 and w2 are linearly independent, i.e., WTW is non-singular, recall that

D̂i =
(
WTD−1

i W
)−1

=
1

|WTD−1
i W|

(
wT

2 D−1
i w2 −wT

1 D−1
i w2

−wT
1 D−1

i w2 wT
1 D−1

i w1

)
,

1

|WTD−1
i W|

(
di22 d

i
12

di12 d
i
11

)
as defined in (6). Proposition 7 provides a necessary and sufficient condition under which the

problem can be reduced to a single-event one. Similar to Theorem 3, let

w̃ =
(
d1

22− vd1
12

)
w1 +

(
vd1

11− d1
12

)
w2,

and v is the unique positive solution to d1
11u1v

2 + d1
12(u2−u1)v− d1

22u2 = 0.

Proposition 7. A problem can be reduced to a single-event one if and only if di12 ≥ 0, i = 1,2,

and (
d2

11

d2
22

− d1
11

d1
22

)(
d1

22

d1
11

− d2
22

d2
11

)
=

(u2−u1)2

u1u2

(
d1

12

d1
22

− d2
12

d2
22

)(
d1

12

d1
11

− d2
12

d2
11

)
. (13)

The single event has the attribute vector w̃
‖w̃‖2

and reward u1 +u2, and an equilibrium is given in

Proposition EC.3 in the Electronic Companion.

Proposition 7 further excludes the possibility of any negatively correlated events to be reduced to a

single-event one, because a competitor is better off balancing two negatively correlated events than

aiming to improve the performance in both events simultaneously. When the two events are either

positively correlated or uncorrelated, i.e., di12 ≥ 0, i= 1,2, condition (13) ensures a perfect balance

between the rewards from and efforts required in both events for both types of competitors. Below

are some examples.

1. u1 = u2 and di11 = di22 for i = 1,2, i.e., the rewards from and the effort required in the two

events are the same for all competitors, in which case, v= 1 and w̃ is proportional to w1 + w2.

2. d1
12 = d2

12 = 0, i.e., the events are uncorrelated for both types of competitors, in which case

condition (13) implies
d2
11

d2
22

=
d1
11

d1
22

, i.e., the relative advantage of event 1 over event 2 is the same for

both types of competitors, and w̃ is proportional to
√

u1

d1
11

w1 +
√

u2

d1
22

w2.

3.
d1
11

d1
22

=
d2
11

d2
22

, i.e. the relative advantage of event 1 over event 2 is the same for both types of

competitors, in which case condition (13) implies that either u1 = u2 or
d1
12

d1
jj

=
d2
12

d2
jj

, j = 1,2, i.e., the

relative ability of improving the performance in both events simultaneously is the same for both

types of competitors.

Alpern and Howard (2017) studied a single-event problem with two competitors and a more gener-

alized constraint, and the case where n1 = n2 = 1 of Proposition 7 is a special case of their Corollary

5. However, the equilibrium solutions in the Electronic Companion for the case where either n1 > 1

and/or n2 > 1 may shed some light on the single-event problems in their paper for more than two

competitors and different budget constraints.
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4.3. Two Heterogeneous Competitors

This is the case with n1 = n2 = 1 in Section 4.2 for which we have a complete characterization of

the equilibrium structure when wT
1 D−1

1 w2 = wT
1 D−1

2 w2 = 0 in Proposition 6 and when the problem

can be reduced to a single-event one in Proposition 7. In this section, we develop an algorithm to

calculate an equilibrium under more general conditions and conduct a numerical study to reveal

some properties of the equilibria.

4.3.1. Algorithm for Finding an Equilibrium Suppose that the score Zi∗j takes discrete

values in S = {0,±1,±2, . . . ,±S}, i= 1,2 and j = 1,2. Since the optimization problem in (6) can be

decomposed into two convex optimization problems for i= 1,2, we will solve each of them through

the ellipsoid method which requires the creation of a separation and subgradient oracle as follows.

The method starts with an ellipsoid that includes all the feasible solutions and the separation oracle

tests the feasibility of the center of the ellipsoid. If it is (not) feasible, the subgradient (separation)

oracle generates a hyperplane that separates some suboptimal (infeasible) points from the rest of

the ellipsoid. The process continues until the remaining ellipsoid is small enough.

Separation Oracle When w1 and w2 are linearly dependent or wT
1 D−1

i w2 = 0, the left hand side

of constraint (8) is a linear function and easy to solve. Otherwise, for any given (Gi
1(·),Gi

2(·)),
constraint (8) is equivalent to the following linear constraint following a similar argument as in the

proof of Proposition 2,
2∑
j=1

∑
zj∈S

ϕij(zj)G
i
j(zj)≤ 1, (14)

where

ϕi1(z1) =

{
Γi
(
z1,max

{
z2 :Gi2(z2)≤Gi1(z1)

})
−Γi

(
z1 + 1,max

{
z2 :Gi2(z2)≤Gi1(z1)

})
, z1 <S,

Γi(S,S)
2

, z1 = S,

ϕi2(z2) =

{
Γi
(
min

{
z1 :Gi1(z1)>Gi2(z2)

}
, z2

)
−Γi

(
min

{
z1 :Gi1(z1)>Gi2(z2)

}
, z2 + 1

)
, z2 <S,

Γi(S,S)
2

, z2 = S,

when wT
1 D−1

i w2 > 0 and

ϕ̂i1,z1 =

{
Γi
(
z1,min

{
z2 :Gi1(z1) +Gi2(z2)≥ 1

})
−Γi

(
z1 + 1,min

{
z2 :Gi1(z1) +Gi2(z2)≥ 1

})
, z1 <S,

Γi(S,−S), z1 = S,

ϕ̂i2,z2 =


Γi
(
min

{
z1 :Gi1(z1) +Gi2(z2)≥ 1

}
, z2

)
−Γi

(
min

{
z1 :Gi1(z1) +Gi2(z2)≥ 1

}
, z2 + 1

)
, z2 <S,

−
S−1∑
z′2=−S

ϕi2,z′2
, z2 = S,

when wT
1 D−1

i w2 < 0. Thus, feasibility of a solution can be easily checked. If a solution is not

feasible, one can cut the half space defined by the linear constraint from the ellipsoid.
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Subgradient Oracle Suppose that (λ̂i′ , Ĝ
i
1(·), Ĝi

2(·)) is a feasible solution and zi∗ is an optimal

solution to the maximization problem in (6). Then, any point in the half space defined by

λi′ +
2∑
j=1

uj
Gi
j(z

i
j − 1) +Gi

j(z
i
j)

2
−λi′Γi′(zi∗)> λ̂i′ +

2∑
j=1

uj
Ĝi
j(z

i
j − 1) + Ĝi

j(z
i
j)

2
− λ̂i′Γi′(zi∗)

cannot be an optimal solution.

Next, we conduct a numerical study using the above algorithm to examine the equilibrium

supports and distribution functions for various combinations of the parameters. Since the problem

is equivalent to one with w̃j =

√
D1
−1

wj∥∥∥∥√D1
−1

wj

∥∥∥∥
2

, D̃1 = I, D̃2 =
√

D1
−1

D2

√
D1
−1

, we assume D1 = I

without loss of generality and vary (u1, u2,w1,w2,D2).

4.3.2. Numerical Results

When D2 = dI, d> 0, a Scalar Matrix

In this case, competitor 2 is weaker (stronger) than competitor 1 in both events if d > 1 (d < 1)

and the two events are correlated for both competitors if wT
1 w2 6= 0 and uncorrelated otherwise, in

which case any distribution with the marginals specified in Proposition 6 is an equilibrium.

We plot the equilibrium probability mass functions on their supports by the intensity of the

colors for d= 2, wT
1 w2 =± 2

3
,± 1

3
and u2

u1
= 1,10 in Table 1. When wT

1 w2 > 0, the problems can be

reduced to a single-event one and thus, the supports of the equilibria are increasing sets on straight

lines. Competitor 2 as the weaker one has a higher probability of losing both events, although both

competitors gain a higher score in expectation as wT
1 w2 increases. When wT

1 w2 < 0, the supports

are decreasing sets and do not include the origin in all the examples, implying that a competitor

can still obtain relatively low positive scores in both events. The supports of competitor 2, the

weaker one, always lie below those of competitor 1, implying lower scores in both events. However,

negative correlation of the events give the weaker competitor a better chance of winning one event.

Note also that, when u1 = u2, the supports are symmetric. That is, competitors aim to achieve

the same score in both events when wT
1 w2 > 0, while they balance the scores from the two events

symmetrically when wT
1 w2 < 0. As u2 increases, both competitors shift their effort toward event 2

as expected when wT
1 w2 > 0. When wT

1 w2 < 0, the stronger competitor focuses more on event 2

while the weaker one has a lower chance of winning event 2.

Figure 5 plots competitor 1’s expected share of the total reward as a function of wT
1 w2 for d= 1.5,

3, 4.5, and u2
u1

= 1, 10. For a given d, competitor 1’s expected share is increasing when wT
1 w2 ≤ 0,

i.e., the weaker competitor benefits from a stronger negative correlation as it is less likely for the

stronger competitor to win both events, especially when the rewards from the two events are close.

When wT
1 w2 > 0, the problem is reduced to a single-event one and a competitor’s probability of

winning is purely determined by her advantage over the other, d in this case, regardless of the level

of correlation. Hence, the competitors’ shares remain constant.
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Table 1 Equilibrium distributions when D2 = 2I

For general D2

To focus on the impact of the correlations, we examine cases with wT
j D−1

2 wj = 1 for j = 1,2, i.e.,

the competitors are equally strong in both events. In this case, WTW =

(
1 wT

1 w2

wT
1 w2 1

)
and

WTD−1
2 W =

(
1 wT

1 D−1
2 w2

wT
1 D−1

2 w2 1

)
.

We fix wT
1 D−1

2 w2 = 0.8, and demonstrate the equilibrium probability mass functions by the

intensity of the colors on their supports for wT
1 w2 =±0.6,±0.2 and u2

u1
= 1,10 in Figure 6. As one

can see, when wT
1 w2 > 0, condition (13) is met and the problem can be reduced to a single-event

one if and only if u1 = u2, in which case, the supports of the competitors’ equilibrium distributions

are different. The supports are not even straight lines when u1 6= u2. When wT
1 w2 < 0 and u1 6= u2,

competitor 1 focuses on the event with a higher reward while competitor 2 does not give up any

event.

Figure 7 plots competitor 1’s expected share of the total reward as a function of wT
1 w2 for

wT
1 D−1

2 w2 =−0.5, 0, 0.5, and u2
u1

= 1, 10. Competitor 1’s expected share strictly increases in wT
1 w2
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Figure 5 Competitor 1’s expected shares of the total reward when D2 = dI

and is equal to 0.5 when wT
1 w2 = wT

1 D−1
2 w2, implying that a higher positive correlation of the

events always leads to a higher reward. The total reward is more evenly distributed between the

two competitors when u1
u2

or u2
u1

becomes large.

5. More Than Two Events

We first establish in Section 5.1 that, if a set of events are linearly dependent, then the problem can

be approximated by one with linearly independent events. We then provide equilibrium solutions

under certain conditions when all the events are linearly independent in Section 5.2.

5.1. Linearly Dependent Events

If w1, . . . ,wJ are linearly dependent, consider a problem with the attribute vectors w̃
(k)
j =

(
wj
1
k
ej

)
where k > 0 and ej ∈ RJ is the vector with 1 in the jth coordinate and 0 elsewhere, and D̃

(k)
i =(

Di 0
0 kIJ

)
where IJ is a J dimensional identity matrix. That is, we add a unique dummy attribute

to each event such that any effort to improve it will have a negligible effect on winning the event

when k is large enough, and w̃
(k)
1 , . . . , w̃

(k)
J are linearly independent. Proposition 8 establishes that

a solution to the original problem is a limit of solutions to the modified problems, denoted as

(Gk1∗, . . . ,Gkn).

Proposition 8. A subsequence of
{

(Gk1, . . . ,Gkn) : k= 1,2, . . .
}

converges to an equilibrium of the

original problem.

As k grows large, competitors will eventually stop investing in enhancing the dummy attributes as

such an effort only consumes resources without improving the probabilities of winning the events.
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Figure 6 Equilibrium distributions when wT

1 D
−1
2 w2 = 0.8

In the next section, we provide equilibrium solutions to problems with linearly independent events

and homogeneous competitors.

5.2. Linearly Independent Events and Homogeneous Competitors

We show analytically in Proposition 9 that the problem of finding symmetric equilibria can be

reduced to a single-event one if all the events are pairwise positively correlated or uncorrelated

because the support of an equilibrium distribution is still a line segment given in the proof in the

Electronic Companion. Furthermore, we identify an ε-equilibrium when all the events are pairwise

negatively correlated or uncorrelated, in which case the support is a union of J line segments{
t
√

D
−1

wj|t≥ 0
}

, j = 1,2, . . . , J . This ε-equilibrium implies that focusing on a randomly chosen

event, regardless of its reward, is a good strategy when all the events are negatively correlated and

there is a sufficient number of competitors.

Proposition 9. Suppose that w1,w2, · · · ,wJ are linearly independent.
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Figure 7 Competitor 1’s expected share of the total reward for wT
1 D
−1
2 w2 =−0.5, 0, 0.5

1. If wT
j D−1wj′ ≥ 0 for all j and j′, the problem can be reduced to a single-event one.

2. If wT
j D−1wj′ ≤ 0 for all j and j′, for any given ε ≥

(
J−1
J

)n J∑
j=1

uj, an ε-equilibrium exists

which assigns an equal probability mass, 1
J

, on a segment of the line{
t
√

D
−1

wj|t≥ 0
}

, j = 1,2, . . . , J .

Proposition 9 suggests the following heuristic strategies when there are multiple events and com-

petitors are homogeneous.

1. If all the events are pairwise positively correlated or uncorrelated, identifying the equivalent

single event involves solving a complicated system of multivariate quadratic equations. Thus, we

suggest the following procedure to find a solution efficiently. We first find the equivalent single

event for two events with the highest correlation using Proposition 4 and repeat the process until

there is a single event.

2. If all the events are negatively correlated or uncorrelated, we follow the ε-equilibrium strategy

G(z) where Z = WTX is such that P (X ∈ {t
√

D
−1

wj|t ∈ [0, zj]}) = 1 ∧
[(

J−1
J

)n−1
+ λ̂

uj
z2
j

] 1
n−1 −

J−1
J

where λ̂ = Jn+(n−1)(J−1)n−nJ(J−1)n−1

nJn

J∑
j=1

uj for any j ∈ J and zj ≥ 0 provided in the proof of

Proposition 9.

3. For general events, we start with two events with the highest positive correlation and replace

them with the equivalent single event and continue the process until all the events are pairwise

negatively correlated or uncorrelated for which we adopt the strategy in 2.

As Proposition 9 provides a theoretical guarantee for the performance of the heuristic under sce-

nario 2, we only need to evaluate the effectiveness of our heuristic strategies under scenarios 1
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and 3. Since the expected reward for each competitor is 1
n

∑
j∈J

uj under all the heuristic strate-

gies, we conduct a numerical study to compare 1
n

∑
j∈J

uj against the highest expected reward if a

competitor deviates from the heuristic strategies, denoted as R∗ and exactly the left hand side of

(6) when all but one competitor adopt a heuristic strategy. We calculate the potential percentage

gain of deviating from a heuristic strategy η = R∗
1
n

∑
j∈J uj

− 1. We consider events with m= 2, i.e.,

there is a total of two attributes, and uniformly generate each attribute vector wj from the set of

non-negative unit vectors and its reward uj from a folded normal distribution.

Under scenario 1, we consider problems with J = 6. Figure 8(a) presents the average and per-

centiles of ε over 1000 incidents for n= 12,24,48,96. Evidently, our heuristic performs extremely

well although η increases as n becomes large, in which case the potential gain by deviating from

the heuristic is higher as the reward 1
n

∑
j∈J

uj decreases in n much faster than R∗. Furthermore,

merging events according to their correlations is significantly more effective than in a random order

as shown in Figure 8(b) or according to their rewards from the highest to the lowest as shown in

Figure 8(c). This result indicates that correlations are more important than rewards in identifying

a good strategy. To see this, suppose that there is cluster consisting of a large number of highly

correlated events, each with a low reward while their aggregated reward is extremely high, and

another event with a medium reward and low correlation with this cluster of events. Merging the

events according to their rewards would end up with a single event closer to this medium-reward

event, while ordering according to correlations leads to a single event closer to the high-reward

cluster.

20 40 60 80 100

0%

0.5%

1%

1.5%

2%

2.5%

n

η

mean
.25 percentile
.50 percentile
.75 percentile

(a) The Heuristic

20 40 60 80 100

0%

2%

4%

6%

n

η

mean
.25 percentile
.50 percentile
.75 percentile

(b) Random Order

20 40 60 80 100

0%

2%

4%

6%

8%

10%

n

η

mean
.25 percentile
.50 percentile
.75 percentile

(c) Order by Rewards

Figure 8 Average and Percentiles of Potential Percentage Gain with Positively Correlated Events

For scenario 3, we consider problems with J = 3. Figure 9 presents the average and percentiles

of η over 1000 incidents for n= 12,24,48,96. Intuitively, if we can successfully group events into

negatively correlated clusters such that events in each cluster are “highly” positively correlated,

then our heuristic strategy should perform well, especially when n is large, as implied by Proposi-

tion 9. Otherwise, a significant amount of information might be lost when merging weakly positively

correlated events, which is the reason for the high average of η in Figure 9.
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Figure 9 Average and Percentiles of Potential Percentage Gain with Events of General Correlations

Consider the example where (u1, u2, u3) = (2,0.5,1) and (w1,w2,w3) =

(
1 0.3 0.3
0
√

0.91 −
√

0.91

)
, as

illustrated in Figure 10. In this case, w1 is weakly positively correlated with w2 and w3, while

w1 = (1, 0)T

w2 = (0.3,
√
0.91)T

w13 = (0.891,−0.454)T

w3 = (0.3,−
√
0.91)T

Figure 10 An example with three events

w2 and w3 are negatively correlated. Clustering as described above is not possible. Suppose that

we merge w1 and w3 first to w13 = (0.891,−0.454) with reward u13 = 3. Then, w13 is negatively

correlated with w2 and the positive correlation between w1 and w2 is lost, which results in η =

R∗
1
n (u1+u2+u3)

− 1≈ 10.68. In general, our heuristic fails when the events are more evenly spread out

or weakly correlated. In fact, it is not clear what an equilibrium solution looks like and how to find

one, which reflects many difficult decisions we face in real life.

6. Conclusions

Organizations and individuals often engage in multiple competitions or events simultaneously and a

competitor wins a competition by outperforming her opponents, regardless of the winning margin.

Since winning a competition comes with a reward, competitors will exert effort by consuming

resources to improve their winning chances. Since resources are often limited and competitions

may be correlated due to shared attributes, e.g., improving an attribute may have different or even

conflicting effects on different competitions, competitors need to allocate their limited resources

wisely. The resource allocation decision is further complicated as the outcome of a competition can
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be affected by external random factors and it is not clear how the winning probability functions

of the competitions should depend on a competitor’s abilities in the attributes. In this study, we

study competitors’ equilibrium distributions of their states in the attributes and their supports. We

first describe mathematically the competitor-specific correlation between any pair of competitions

and model the problem as a zero-sum game. By exploring some properties of the problem, we

are able to reduce the dimension of the decisions and convert the game into a single non-convex

optimization problem.

For the case with two events, we first analyze competitors’ symmetric equilibrium decision with

homogeneous competitors. We show that the problem can be reduced to a single-event one if the

two events are positively correlated. If the two events are negatively correlated, we establish the

existence and uniqueness of the equilibrium solution and, as the number of competitors becomes

large, that each competitor will randomly choose an event to focus on. We then analyze the

equilibrium decisions when there are two types of competitors, in which case, a competitor may face

both intra-type and inter-type competitions and the problem becomes very challenging. We are able

to derive the equilibrium solutions if the two events are uncorrelated for both types of competitors,

and provide a necessary and sufficient condition under which the problem can be reduced to a single-

event one. Numerical studies on the case with two heterogeneous competitors, i.e., there is a single

competitor in each type, further shed some light on problems with heterogeneous competitors.

When there are more than two events and competitors are homogeneous, we show that the

problem can be reduced to a single-event one if the events are pair-wise positively correlated.

When the events are pare-wisely negatively correlated, we are able to construct an approximate

equilibrium solution that works well when the number of competitors is large enough. These results

suggest efficient heuristic strategies for general problems with general events and homogeneous

competitors.

Future research can allow for more general objective functions and resource constraints. We

believe that such a problem can be approached by exploiting structural properties of the underlying

transportation problem. For example, if we replace constraint (2) by E [Φ (XTDiX)]≤ 1 for some

differentiable increasing function Φ, the support of the equilibrium solution may be on the same

line we identified and the problems can still be reduced to a single-event one with two positively

correlated events and homogeneous competitors.
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EC.1. Equilibrium Solutions with Two Types of Competitors

Proposition EC.1. Suppose that wT
1 D−1

1 w2 = wT
1 D−1

2 w2 = 0, β2 =
wT1 D−1

2 w1

wT2 D−1
2 w2

≥ β1 =
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1 w1

wT2 D−1
1 w2

,
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Proof. The proof can be found in Section EC.2. �
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2. Otherwise,
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Proof. The proof can be found in Section EC.2. �

Proposition EC.3. Let Γi = Γi((1, v)T ), defined in (5). Under the conditions given in Proposi-

tion 7, the equilibrium solutions are given as follows:
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3. Otherwise, suppose that ni > 1 and ni′ = 1.

(a) If Γi > Γi′, for z1 ∈
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(b) If Γi < Γi′, for z1 ∈
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]
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Proof. The proof can be found in Section EC.2. �

EC.2. Proofs

Proof of Theorem 1.

1. The objective in (1) is rewritten as EGi

(∑
j∈J

ujHj

(
Zij
))

where

Hj(zj) =
∑
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)
, j ∈J , (EC.4)

is competitor i’s probability of winning event j when her score is zj. We assume

that PGi∗,G−i∗
(
Zi∗1 =Zi

′∗
1 = z1 ≥Z`∗,∀`∈ I −{i, i′}

)
> 0 for some z1. Then, lim
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along which competitor i can increase her outcomes in both events, that is, 0< v ∈ Im(WT ), as
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2. We can rewrite (3)–(4) as
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PGi,G−i∗
(
Zij =Zi

′∗
j ≥Z`∗j ,∀`∈ I −{i, i′}

)
= 0, ∀i′ ∈ I−i, . (EC.7)
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We show that the optimal objective value (EC.5) is the same with or without (EC.7) if an optimal

solution to (1)–(2) exists. By applying strong duality to problem (EC.5)–(EC.6), we obtain a

necessary and sufficient condition of an equilibrium.

For any optimal solution Ĝi to (EC.5)–(EC.6),

Z =
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the optimal objective value of (EC.5)–(EC.6). Therefore, the optimal objective value of (EC.5)

is the same with or without (EC.7) if an optimal solution to (1)–(2) exists. Since the objective

function in (EC.5) is upper semi-continuous, no duality gap exists between (EC.5)-(EC.6) and its
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)
−λiΓi(z)


 (EC.8)

by the duality Theorem of Shapiro (2001), and thus, (6) holds.

We now show that Gi∗ is an optimal solution to (3)–(4) if (6) holds and EGi∗ (Γi(Z
i∗))≤ 1 for

all i. Note that (EC.5)–(EC.6) represent competitor i’s problem in a game where every winner of

event j gets a reward uj. Thus,∑
i∈I

∑
j∈J

ujPGi∗,G−i∗
(
Z`∗j ≤Zi∗j ,∀`∈ I−i

)
=
∑
j∈J

ujE [number of winners in event j] .

Weak duality implies that
∑
j∈J

uj ≥
∑
j∈J

ujE [number of winners in event j]. As there is always a

winner in each event, there will be no tie almost surely. Consequently, the objective value at Gi∗

in (EC.5) is equal to that in (1) and Gi∗ is an optimal solution to (1)–(2).

We claim that λ∗i > 0, because otherwise, the optimal objective value of the dual (EC.8) (and

hence competitor i’s expected reward) is equal to u1 + u2, which violates (6). By complementary

slackness, constraint (2) must be tight and objective (EC.5) can be written as

λ∗i +

∫
x

∑
j∈J

uj
∏
`∈I−i

PG`∗
(
Z`∗j ≤ zj

)
−λ∗iΓi(z)

dGi∗(x),

which is equal to the optimal dual objective if and only if all z in the support of Zi∗ are maximizers

of the integrand. Since the set of maximizers of
∑
j∈J

uj
∏

`∈I−i
PG`∗

(
Z`∗j ≤ zj

)
− λ∗iΓi(z) is bounded,

the support of Zi∗ is also bounded.
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�

Proof of Theorem 2. Suppose that an equilibrium G∗1 exists. When wT
1 w2 = 1, (11) reduces

to (u1 +u2) [G∗1(z1)]
n−1−λ∗z2

1 = u1+u2
n
−λ∗. As all the points in the support of Z∗1 are maximizers

of (u1 +u2) [G∗1(z1)]
n−1−λ∗z2

1 and

(u1 +u2) [G∗1(0)]
n−1−λ∗0≥−λ∗z2

1 = (u1 +u2) [G∗1(z1)]
n−1−λ∗z2

1,

where z1 is the smallest number in the bounded support, 0 must be in the support and G∗1(0) = 0.

Thus, λ∗ = u1+u2
n

and G∗1(z1) =
n−1

√
z2
1
n

.

When wT
1 w2 =−1 and n= 2, (11) reduces to (u1−u2) [G∗1(z1)]

n−1−λ∗z2
1 = u1−u2

2
−λ∗. If u1 = u2,

then no matter what strategy a competitor applies, she will receive a reward of u1, such that

any feasible strategy is an equilibrium. If u1 6= u2, then by a similar argument as the case where

wT
1 w2 = 1, we have G∗1(z1) =

z2
1
2

, z1 ∈ [0,
√

2] when u1 >u2 and G∗1(z1) = 1− z2
1
2

, z1 ∈ [−
√

2,0] when

u2 >u1.

When wT
1 w2 =−1, (11) reduces to u1G

∗n−1
1 (z1) + u2(1−G∗1(z1))n−1 = λ∗z2

1 + u1+u2
n
− λ∗, which

we claim has a unique solution G∗1. The right hand side is a convex function of z1 that achieves its

minimum at z1 = 0, while the left hand side first decreases until it reaches z1 =G∗−1
1 (t0) and then

increases when n > 2. Thus, G∗−1
1 (t0) = 0 and u1 [G∗1(0)]

n−1
+ u2 [1−G∗1(0)]

n−1
= u1+u2

n
− λ∗, i.e.,

λ∗ = u1+u2
n
−u1t

n−1
0 −u2(1− t0)n−1 when n> 2.

We can verify that the solutions derived above satisfy (11), and thus are the unique equilibria

under the three cases.

�

Proof of Proposition 1.

1. When w1 + w2 = 0, i.e., w1 = −w2, suppose that PGi∗,G−i∗
(
Zi∗1 =Zi

′∗
1 =Zi

′′∗
1 = z1

)
> 0 for

some z1. Then, competitor i’s total reward u1H1 (Zi∗1 ) + u2H2 (−Zi∗1 ) is discontinuous at Zi∗1 = z1

as

lim
ε↓0
{u1H1(z1 + ε) +u2H2(−(z1 + ε)) +u1H1(z1− ε) +u2H2(−(z1− ε))− 2(u1H1(z1) +u2H2(−z1))}

=
∑

∅6=N⊆I−i

|N | − 1

|N |+ 1

u1

∏
`∈I−i−N

PG`∗
(
Z`∗ < z1

)
+u2

∏
`∈I−i−N

PF∗
`

(
Z`∗ > z1

)∏
`∈N

PF∗
`

(
Z`∗ = z1

)
> 0.

Without loss of generality, we assume that lim
ε↓0
{u1H1(z1 + ε) + u2H2(−(z1 + ε))} > u1H1(z1) +

u2H2(−z1). When z1 6= 0, we move Zi∗ along (1,−1)T at Zi∗1 = z1 as

Z =


Zi∗, if Zi∗1 6= z1,

Zi∗+ ε(1,−1)T , w.p.
z2
1

(z1+ε)2
∧ 1,

0, w.p.
[
1− z2

1
(z1+ε)2

]+

,

 if Zi∗1 = z1,
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and move Zi∗ along (1,−1)T at every point when z1 = 0 as

Z =


Zi∗+ ε(1,−1)T , w.p.

E(Γi(Z
i∗))

E(Γi(Z
i∗+ε(1,−1)T ))

∧ 1,

0, w.p.

[
1− E(Γi(Z

i∗))
E(Γi(Z

i∗+ε(1,−1)T ))

]+

.

We can easily verify that Z is feasible and, when z1 6= 0, yields a higher objective value than Zi∗.

Thus, u1H1(Zi∗1 ) + u2H2(−Zi∗1 ) must be continuous at z1 if PF∗i (Zi∗1 = z1 6= 0)> 0 and, as ε→ 0,

the expected total reward under Z when z1 = 0,

E

(
2∑
j=1

ujHj (Zj)

)
≥

{
E
(
Γi(Z

i∗)
)

E (Γi(Zi∗+ ε(1,−1)T ))

}
×
{
E
[(
u1H1

(
Zi∗1 + ε

)
+u2H2

(
−(Zi∗1 + ε)

))]}

→ E

(
2∑
j=1

ujHj(Z
i∗)

)
+
[

lim
ε→0

u1H1(ε) +u2H2(−ε)−u1H1(0)−u2H2(0)
]
>E

(
2∑
j=1

ujHj
(
Zi∗j

))
,

the expected total reward under Zi∗.

2. It follows from the same sufficiency argument as in the proof of Theorem 1.

�

Proof of Proposition 2. If wT
1 D−1

i w2 = 0, any feasible solution to the left hand side of (8)

is optimal and is therefore an equilibrium. If wT
1 D−1

i w2 > 0 and w1 and w2 are linearly depen-

dent, Zi∗1 = Zi∗2 and thus Gi∗(z) =Gi∗
1 (z1)∧Gi∗

2 (z2). If wT
1 D−1

i w2 > 0 and w1 and w2 are linearly

independent, then the optimal solutions to (8) are the same as those to

min
Gi

{
−
∫
z

z1z2dG
i(z)

∣∣∣∣Gi has marginal distributions Gi∗
1 ,G

i∗
2

}
, (EC.9)

whose dual is given by

max
ψ1,ψ2

{
2∑
j=1

∫
zj

ψj(zj)dG
i∗
j (zj)

∣∣∣∣∣
2∑
j=1

ψj(zj)≤−z1z2

}
. (EC.10)

Let zj and z̄j be the smallest and largest numbers on the support of Zi∗j and define

ψ∗1(z1) = −z1z2−
∫ z1

z1

z2 ∨ sup
{
z2 :Gi∗

2 (z2)<Gi∗
1 (u)

}
du,

ψ∗2(z2) = −
∫ z2

z2

z̄1 ∧ inf
{
z1 :Gi∗

1 (z1)>Gi∗
2 (u)

}
du.

As inf {z1 :Gi∗
1 (z1)>Gi∗

2 (u)} = inf {z1 : sup{z2 :Gi∗
2 (z2)<Gi∗

1 (z1)}>u}, ψ∗1(z1) + ψ∗2(z2) ≤ −z1z2

and the equality holds if and only if Gi∗
1 (z1) > Gi∗

2 (z2) ≥ lim
ε↓0

Gi∗
1 (z1 − ε) or ∀δ > 0, Gi∗

2 (z2 − δ) <
Gi∗

1 (z1)≤Gi∗
2 (z2) by Young’s inequality (Mitroi and Niculescu (2011)). Thus, (ψ∗1 ,ψ

∗
2) is a feasible

solution to (EC.10) and ψ∗1(z1) + ψ∗2(z2) = −z1z2 on the support of Gi∗
1 (z1) ∧Gi∗

2 (z2), that is, no

duality gap exists. Thus, Gi∗(z) = Gi∗
1 (z1) ∧Gi∗

2 (z2) is the unique optimal solution to (EC.9) by

complementary slackness.
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If wT
1 D−1

i w2 < 0 and w1 and w2 are linearly dependent, Zi∗2 = −Zi∗1 and thus, Gi∗(z) =

[Gi∗
1 (z1) +Gi∗

2 (z2)− 1]
+

. If wT
1 D−1

i w2 < 0 and w1 and w2 are linearly independent, the result fol-

lows from a similar argument as the case when wT
1 D−1

i w2 > 0 and w1 and w2 are linearly dependent

with z1z2 replaced by −z1z2 and

ψ∗1(z1) =

∫ z1

z1

z2 ∨ sup
{
z2 :Gi∗

1 (u) +Gi∗
2 (z2)< 1

}
du,

ψ∗2(z2) = z1z̄2 +

∫ z2

z̄2

z1 ∨ sup
{
z1 :Gi∗

1 (z1) +Gi∗
2 (u)< 1

}
du.

�

Proof of Proposition 3. We can easily check that a distribution with the given marginals

satisfies (6) with λ∗ = u1+u2
n

and therefore, is an equilibrium by Theorem 1. For any equilibrium

G∗, the support of Z∗j must be an interval with left end 0 by Theorem 1. Solving (9) with the

boundary condition G∗j (0) = 0, we obtain G∗j (zj) =
(
u1+u2
nuj

z2
j

) 1
n−1

.

�

We first establish Lemma EC.1 which is critical in the proof of Proposition 4.

Lemma EC.1. There is a unique λ∗, λ∗ > u1+u2
n
− u1t

n−1
0 − u2(1− t0)n−1 where t0 ∈ [0,1] is the

maximizer of u1t
n−1 +u2(1− t)n−1, such that a solution to (EC.17) satisfying lim

t↓0
θ(t) =− lim

t↑1
θ(t) =

−θ0 exists. Furthermore, such a solution is unique.

Proof. First, we show that for each λ∗ > 0, a unique solution exists, denoted as θ∞(t), to (EC.17)

such that lim
t↓0

θ∞(t) = −θ0. As, for any (t, θ) ∈ [0,1]× [−θ0, θ0] \ {(0,−θ0), (1, θ0)}, the right hand

side of (EC.17) is locally Lipschitz in θ (or its reciprocal is locally Lipschitz in t), a unique solution

θ(·) to (EC.17) exists such that θ(t) = θ by Picard’s Theorem. Let θk(·), k= 1,2, . . . , be the unique

solution to (EC.17) passing through (t, θ) =
(
0,
(
−1 + 1

k

)
θ0

)
. Then, θk(t) is decreasing in k and

thus, point-wise converges to a function which we will show is the unique solution θ∞(t) to (EC.17)

such that lim
t↓0

θ∞(t) =−θ0.

For t∈ [ε,2ε], ε > 0 small enough, θk(t) is bounded from below by the solution to (EC.17) passing

through
(
ε
2
,−θ0

)
. Thus, θ′k(t) is uniformly convergent as k→∞. As limsup

t↓0
θ∞(t) ≤ lim

t↓0
θk(t) =(

−1 + 1
k

)
θ0 for all k, lim

t↓0
θ∞(t) =−θ0 and θ∞(t) is a solution.

Any solution to (EC.17) starts with (t, θ) = (0,−θ0) and will never cross other solutions even if

they exist. As the right hand side of (EC.17) is decreasing in θ when t and θ is small enough, θ∞

is the unique solution.

We then show that there exists a unique λ∗, λ∗ > u1+u2
n
− u1t

n−1
0 − u2(1 − t0)n−1, at which

θ∞(1) = θ0. By (EC.17),
dθ

dt
≤ (n− 1)(u1 +u2) cot(θ+ θ0)

λ∗
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for θ < 0. As dθ
dt

= (n−1)(u1+u2) cot(θ+θ0))

λ∗ , where θ(0) = −θ0 has a solution cos(θ(t) + θ0) =

e−
(n−1)(u1+u2)

λ∗ t, θ(1)< 0 and θ∞(t) intersects with the line t= 1 for λ∗ that is large enough.

Let λ∗(ε) = u1+u2
n
−u1t

n−1
0 −u2(1− t0)n−1 + ε. For t∈ [t0− δ, t0 + δ], where δ > 0 small enough,

θ(t0 + δ)≥−θ0 + min
t∈[t0−δ,t0+δ]

θ′∞(t)2δ

by mean-value Theorem, and

lim
ε↓0

min
t∈[t0−δ,t0+δ]

θ′∞(t)2δ≥ lim
ε↓0

n− 1

2

min
t∈[t0−δ,t0+δ],θ∈[−θ0,θ0]

{
u1t

n−2 cot(θ+ θ0) +u2(1− t)n−2 cot(θ0− θ)
}

max
t∈[t0−δ,t0+δ]

{
u1t

n−1
0 +u2(1− t)n−1− u1+u2

n
+λ∗(ε)

} 2δ

=
cot(θ0)

[
u1t

n−2
0 +u2(1− t0)n−2

]
+O(δ)

O(δ2)
δ→∞, as δ→ 0.

Thus, there exist ε, δ > 0 such that θ∞(t) = θ0 at λ∗ = λ∗(ε) for some t≤ t0 + δ. Thus, for λ∗ that

is small enough, θ∞(t) intersects with the line θ= θ0.

Since θ∞(t) and hence its unique intersection with t= 1 or θ= θ0 are continuous in λ∗, a λ∗ exists

such that θ∞(1) = θ0. Furthermore, it can be shown by contradiction that θ∞(t) passes through

(1, θ0) only if θ′∞(t) ≥ 0 for all t by (EC.17). Thus, θ′∞(t) is decreasing in λ∗ and there exists a

unique λ∗ such that θ∞(1) = θ0.

�

Proof of Proposition 4.

1. When wT
1 w2 > 0, G∗1(z1(t)) =G∗(z(t)) =G∗2(z2(t)) and z(0) = 0 by Theorem 1 as

2∑
j=1

uj
[
G∗j (zj(0))

]n−1−λz(0)T (WTW)−1z(0) =−λz(0)T (WW T )−1z(0)≤
2∑
j=1

uj
[
G∗j (0)

]n−1
.

We then establish that, when z(t) is increasing in t, an equilibrium must be unique if it exists. The

first-order condition (9) is equivalent to

uj(n− 1)
[
G∗j (zj(t))

]n−2
G∗
′

j (zj(t))z
′
j(t) =

2λ∗

1− (wT
1 w2)

2 (zj(t)−wT
1 w2z3−j(t))z

′
j(t). (EC.11)

Since G∗1(z1(t)) =G∗2(z2(t)), (EC.11) reduces to

dz2

dz1

=
u2(z1− z2w

T
1 w2)

u1(z2− z1wT
1 w2)

≥ 0, (EC.12)

as z(t) is increasing in t. Letting v= z2
z1

, we can rewrite (EC.12) as

z1

dv

dz1

=
u2− (u2−u1)wT

1 w2v−u1v
2

u1(v−wT
1 w2)

. (EC.13)

For any v that satisfies the boundary condition, u2 − (u2 − u1)wT
1 w2v − u1v

2 = 0, which has

exactly two solutions: one positive and one negative. Since dz2
dz1

= v + dv
dz1
z1 ≥ 0, only the positive

solution, v =

√
[(u2−u1)wT1 w2]2+4u1u2−(u2−u1)wT1 w2

2u1
, satisfies (EC.12) and a unique solution G∗1(z1) =
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(
λ∗(1−wT1 w2v)

u1

(
1−(wT1 w2)

2)z2
1

) 1
n−1

to (EC.11) exists for any λ∗ ≥ 0. The support of G∗ is the line seg-

ment
{

(z1, vz1)T
∣∣z1 ∈

[
0,G∗−1

1 (1)
]}

. By Theorem 1, (6) becomes λ∗ + (u1 + u2)G∗n−1
1 (z1(t)) −

λ∗z(t)T (WTW)−1z(t) = u1+u2
n

and thus, λ∗ = u1+u2
n

and is unique.

As the Hessian of
2∑
j=1

ujG
∗
j
n−1(zj) − λ∗zT (WTW)−1z,

2wT1 w2λ
∗

1−(wT1 w2)
2

(
−v 1
1 −1/v

)
where v is the

positive root of u2− (u2−u1)wT
1 w2v−u1v

2 = 0, is negative semi-definite and an equilibrium exists.

2. When wT
1 w2 < 0, G∗1(z1(t)) + G∗2(z2(t)) = 1 for any given t ∈ [0,1]. Letting ẑ =

z2(0)(wT
1 w2,1)T , we have

2∑
j=1

[
G∗j (ẑj)

]n−1−λẑT (WTW)−1ẑ≥
2∑
j=1

[
G∗j (zj(0))

]n−1−λz(0)T (WTW)−1z(0)

and hence, z(0) = ẑ by Theorem 1. Following a similarly argument, z2(1) = z1(1)wT
1 w2 and the

support of Z∗ intersects with the lines z1 = z2w
T
1 w2 and z2 = z1w

T
1 w2 at z(0) and z(1), respectively.

We now establish that, when wT
1 w2 < 0, an equilibrium must be unique if it exists. Then, the

first-order condition can be simplified as

(n− 1)u1t
n−2 =

2λ∗

1− (wT
1 w2)

2 (z1(t)− z2(t)wT
1 w2)z′1(t), (EC.14)

−(n− 1)u2(1− t)n−2 =
2λ∗

1− (wT
1 w2)

2 (z2(t)− z1(t)wT
1 w2)z′2(t). (EC.15)

Letting r(t) =
√

z(t)(WTW)−1z(t) and θ(t) = arcsin
(
z2(t)−z1(t)

2r(t) sin(θ0)

)
where θ0 = arcsin

(√
1−wT1 w2

2

)
and applying (6), we have the equivalence between (EC.14)–(EC.15)

and

r2(t) =
1

λ∗

(
u1t

n−1 +u2(1− t)n−1− u1 +u2

n
+λ∗

)
, (EC.16)

1

n− 1

dθ

dt
=
u1t

n−2 cot(θ+ θ0) +u2(1− t)n−2 cot(θ0− θ)
2
(
u1tn−1 +u2(1− t)n−1− u1+u2

n
+λ∗

) . (EC.17)

The differential equation (EC.17) has the boundary conditions θ0 = θ(1) =−θ(0) and has a unique

solution (λ∗, θ(t)) by Lemma EC.1.

An equilibrium exists if and only if the Hessian of
2∑
j=1

ujG
∗
j (zj)−λ∗z (WTW)

−1
z at z(t),

wT
1 w2(n− 1)2u1u2t

n−2(1− t)n−2

2λr2(t) sin(θ(t) + θ0) sin(θ0− θ(t))
·

 1

(z′1(t))
2 − 1

z′1(t)z′2(t)

− 1
z′1(t)z′2(t)

1

(z′2(t))
2


is negative semi-definite, which holds as wT

1 w2 < 0.

�
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Proof of Proposition 5. Let

ẑ(t) =

{
r̂(t)(wT

1 w2,1), when t∈ [0, t0],

r̂(t)(1,wT
1 w2), when t∈ [t0,1],

and Ĝ1(ẑ1(t)) = 1− Ĝ2(ẑ2(t)) = t, where r̂(t) =

√
u1tn−1+u2(1−t)n−1

u1+u2
n −u1t

n−1
0 −u2(1−t0)n−1

. If all other competitors

are applying Ĝ, then the optimization problem for an individual competitor is

max
G

∫
z

2∑
j=1

ujĜ
n−1
j (zj)dG(z) (EC.18)

s.t.

∫
z

z(WTW)−1zdG(z)≤ 1. (EC.19)

The objective value of Ĝ is u1+u2
n

, while the optimal objective value can be bounded by the dual

objective λ+ max
z

{∑2

j=1 ujĜj(zj)−λz (WTW)
−1

z
}

for any feasible λ > 0. Taking λ = u1+u2
n
−

u1t
n−1
0 −u2(1− t0)n−1 > 0, we have

λ+ max
z

{
2∑
j=1

ujĜj(zj)−λz
(
WTW

)−1
z

}

=λ+ max
t1,t2∈[0,1]

{
u1t

n−1
1 +u2(1− t2)n−1−λ(ẑ1(t1), ẑ2(t2))

(
WTW

)−1
(
ẑ1(t1)
ẑ2(t2)

)}
≤u1 +u2

n
+u1t

n−1
0 ∨u2(1− t0)n−1.

Therefore, the difference in objective value (EC.18) between the optimal solution and Ĝ is upper

bounded by u1t
n−1
0 ∨u2(1− t0)n−1.

Recall that (λ∗, θ(t)) is the unique solution to (EC.17) with the boundary condition θ(0) =

−θ(1) = −θ0. Also note that r(t) =

√
u1tn−1+u2(1−t)n−1−u1+u2

n +λ∗

λ∗ , r̂(t) =
√

u1tn−1+u2(1−t)n−1

λ̂
where

λ̂= u1+u2
n
− u1t

n−1
0 − u2(1− t0)n−1 = u1+u2

n
+O(2−n). Let θ̂(t) =−θ0 when t ∈ [0, t0] and θ̂(t) = θ0

when t∈ (t0,1].

As θ′(t)≥ 0, we have

t≥
n−2
√
u2 cot(θ(t)− θ0)

n−2
√
u1 cot(θ(t) + θ0) + n−2

√
u2 cot(θ(t)− θ0)

for t∈

0,

n−2

√
u2 cot

(
−π

4
− θ0

)
n−2

√
u1 cot

(
θ0− π

4

)
+ n−2

√
u2 cot

(
−π

4
− θ0

)
 ,

t≤
n−2
√
u2 cot(θ(t)− θ0)

n−2
√
u1 cot(θ(t) + θ0) + n−2

√
u2 cot(θ(t)− θ0)

for t∈

 n−2

√
u2 cot

(
π
4
− θ0

)
n−2

√
u1 cot

(
θ0 + π

4

)
+ n−2

√
u2 cot

(
π
4
− θ0

) ,1
 .

Thus, θ(t)+θ0 =O(3−n) for t∈
[
0, 1

4

]
and θ0−θ(t) =O(3−n) for t∈

[
3
4
,1
]
. Furthermore, according

to the mean value theorem,

π
8
−
(
−π

8

)
n−2
√
u2 cot(π4−θ0)

n−2
√
u1 cot(θ0+π

4 )+ n−2
√
u2 cot(π4−θ0)

−
n−2
√
u2 cot(−π4−θ0)

n−2
√
u1 cot(θ0−π4 )+ n−2

√
u2 cot(−π4−θ0)

≤ (n− 1)(u1t
n−2
0 +u2(1− t0)n−2)O(1)

λ∗− λ̂
,
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and thus, λ∗− λ̂=O
(
u1t

n−2
0 +u2(1− t0)n−2

)
=O(2−n). Therefore,

sup
t∈[0, 14 ]

∥∥∥(r(t) cosθ(t), r(t) sinθ(t))−
(
r̂(t) cos θ̂(t), r̂(t) sin θ̂(t)

)∥∥∥
2

≤O(r̂(0)(θ(t) + θ0)) + sup
t∈[0, 14 ]

|r(t)− r̂(t)|=O

(√
n

3n

)
,

sup
t∈[ 1

4 ,
3
4 ]

∥∥∥(r(t) cosθ(t), r(t) sinθ(t))−
(
r̂(t) cos θ̂(t), r̂(t) sin θ̂(t)

)∥∥∥
2

≤ sup
t∈[ 1

4 ,
3
4 ]
r(t) + r̂(t) =O

(
√
n

(√
3

2

)n)
,

sup
t∈[ 3

4 ,1]

∥∥∥(r(t) cosθ(t), r(t) sinθ(t))−
(
r̂(t) cos θ̂(t), r̂(t) sin θ̂(t)

)∥∥∥
2

≤O(r̂(1)(θ0− θ(t))) + sup
t∈[ 3

4 ,1]
|r(t)− r̂(t)|=O

(√
n

3n

)
,

and hence, sup
t∈[0,1]

∥∥∥(r(t) cosθ(t), r(t) sinθ(t))−
(
r̂(t) cos θ̂(t), r̂(t) sin θ̂(t)

)∥∥∥→ 0 as n→∞.

�

Proof of Proposition EC.1. If wT
1 D−1

1 w2 = wT
1 D−1

2 w2 = 0, then, z(WTD−1
i W)−1z =

z2
1

wT1 D−1
i w1

+
z2
2

wT2 D−1
i w2

, i= 1,2.

1. We show that (12) holds at (λ∗1, λ
∗
2) = (λwT

2 D−1
1 w2, λwT

2 D−1
2 w2).

(a) Both G1∗ and G2∗ are feasible as∫
z(WTD−1

1 W)−1zdG1∗(z) =

∫ 1

L

u2

λ∗1
d

(
G1∗

1

)n1+n2

n1 +n2
=
u2(1−Ln1+n2)

λ∗1(n1 +n2)
= 1,∫

z(WTD−1
2 W)−1zdG2∗(z) =

1

λ∗2

(∫ 1

0

u1d

(
G2∗

1

)n2

n2
+

∫ L

0

u2L
n1d

(
G2∗

2

)n2

n2
+

∫ 1

L

u2d

(
G2∗

2

)n1+n2

n1 +n2

)

=
1

λ∗2

[
u1

n2
+

u2

n1 +n2

(
1 +

n1L
n1+n2

n2

)]
= 1.

Since β1 ≤ β2, for z1 ∈
[
0,
√

u1β2
λ

]
and z2 ∈

[
0,
√

u2
λ

]
,

2∑
j=1

ujG
1∗
j (zj)

n1−1G2∗
j (zj)

n2 =λ∗1
z2

1

wT
1 D
−1
1 w1

[
β1

β2

(
λz2

1

u1β2

) 1
n2−1

]
+λ∗1

z2
2

wT
2 D
−1
1 w2

[
1

L

(
λ∗1z

2
2

u2Ln1

) 1
n2−1

∧ 1

]

≤ λ∗1
(

z2
1

wT
1 D
−1
1 w1

+
z2

2

wT
2 D
−1
1 w2

)
,

2∑
j=1

ujG
1∗
j (zj)

n1G2∗
j (zj)

n2−1 =λ∗2

(
z2

1

wT
1 D
−1
2 w1

+
z2

2

wT
2 D
−1
2 w2

)
,

and the equality holds when z1 = z2 = 0.

(b) Both G1∗ and G2∗ are feasible as∫
z(WTW)−1zdG1∗(z) =

u2

λ∗1

(∫ L

0

Ln2d

(
G1∗

1

)n1

n1
+

∫ 1

L

d

(
G1∗

1

)n1+n2

n1 +n2

)
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=
u2

λ∗1

(
n1 +n2L

n1+n2

n1(n1 +n2)

)
= 1,∫

z(WTD−1
2 W)−1zdG2∗(z) =

1

λ∗2

(∫ 1

0

u1d

(
G2∗

1

)n2

n2
+

∫ 1

L

u2d

(
G2∗

2

)n1+n2

n1 +n2

)

=
1

λ∗2

[
u1

n2
+
u2

(
1−Ln1+n2

)
n1 +n2

]
= 1.

Furthermore, since wT
2 D−1

2 w2 ≤wT
1 D−1

2 w1,

2∑
j=1

ujG
1∗
j (zj)

n1−1G2∗
j (zj)

n2 =
λ∗1z

2
1

wT
1 D
−1
1 w1

[
β1

β2

(
λz2

1

u1β2

) 1
n2−1

]
+

λ∗1z
2
2

wT
2 D
−1
1 w2

≤ λ∗1
(

z2
1

wT
1 D
−1
1 w1

+
z2

2

wT
2 D
−1
1 w2

)
,

2∑
j=1

ujG
1∗
j (zj)

n1G2∗
j (zj)

n2−1 =
λ∗2z

2
1

wT
1 D
−1
2 w1

+
λ∗2z

2
2

wT
2 D
−1
2 w2


(
λ∗1z

2
2

u2L
n2

) 1
n1−1

L
∧ 1


≤λ∗2

(
z2

1

wT
1 D
−1
2 w1

+
z2

2

wT
2 D
−1
2 w2

)

for z1 ∈
[
0,

√
u1w

T
1 D−1

2 w1

λ∗1w
T
2 D−1

2 w2

]
and z2 ∈

[
0,
√

u2
λ∗1

]
, and the equality holds at z1 = z2 = 0.

2. We can easily verify that (12) holds at (λ∗1, λ
∗
2) = (λwT

1 D−1
1 w1, λwT

1 D−1
2 w1) following a similar

argument.

3. We can also verify that G1∗ and G2∗ are feasible, and (12) holds at λ∗1 = u1
n1

and λ∗2 = u2
n2

.

�

Proof of Proposition EC.2. The case with n1 = 1 and n2 > 1 and the case with n2 = 1 and

n1 > 1 are symmetric. The proofs are almost identical, so we only present the proof with i= 2 and

omit the other case for brevity.

1. (a) follows from an identical proof of 1(a) in Proposition EC.1. For (b), we will show that

(12) holds at (λ∗i , λ
∗
i′) =

(
wT
i D−1

i wiλ,w
T
i D−1

i′ wi(1−L)λ
)
. Both Gi∗ and Gi′∗ are feasible as

∫
z(WTD−1

i′ W)−1zdGi
′∗(z) =

ui
λ∗i′

∫ 1

Gi∗i =L
1
ni

[(
Gi∗i

)ni
−L

]
d

[(
Gi∗i
)ni −L

1−L

(
Gi∗i

)1−ni
]

=
ui
λ∗i′

[
−nih(L)

(1−L)(ni + 1)
+ 1−L

]
= 1,∫

z(WTD−1
i W)−1zdGi∗(z) =

1

λ∗i

(∫ 1

0

ui′d

(
Gi∗i′
)ni

ni
+

∫ 1

L
1
n2

ui
1−L

((
G2∗

2

)n2 −L
)
dG2∗

2

)

=
1

λ∗i

[
ui′

ni
+

uih(L)

(1−L)(ni + 1)

]
= 1.

Note that, when L increases from 0 to 1 − wT
i′D
−1
i′ wi′

wTi D−1
i′ wi

· wTi D−1
i wi

wT
i′D
−1
i wi′

, the left hand side

of (EC.1) decreases from ui
ni+1

− wTi D−1
i winiui−wTi D−1

i′ wiui′

(wTi D−1
i′ wi+wTi D−1

i wini)ni
≥ 0 to

uiC(wTi D−1
i′ wi·wTi′D

−1
i wi′)

2

(ni+1)(wT
i′D
−1
i′ wi′ ·w

T
i D−1

i wi)
2 −
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wTi D−1
i winiui−wTi D−1

i′ wiui′(
wT
i′D
−1
i′ wi′ ·

wT
i
D−1
i

wi

wT
i′
D−1
i

wi′
+wTi D−1

i wini

)
ni

≤ 0. Therefore, there is a unique

L∈
[
0,1− wT

i′D
−1
i′ wi′

wTi D−1
i′ wi

· wTi D−1
i wi

wT
i′D
−1
i wi′

]
satisfying (EC.1), at which

2∑
j=1

ujG
i∗
j (zj)

ni =
λ∗i′z

2
i′

wT
i′D
−1
i′ wi′

[
wT
i′D
−1
i′ wi′

wT
i D
−1
i′ wi

· w
T
i D
−1
i wi

wT
i′D
−1
i wi′

· G
i∗
i′ (zi′)

(1−L)

]
+

λ∗1z
2
2

wT
i D
−1
i′ wi

+uiL

≤λ∗i′
(

z2
i′

wT
i′D
−1
i′ wi′

+
z2
i

wT
i D
−1
i′ wi

)
+uiL,

2∑
j=1

ujG
1∗
j (zj)G

2∗
j (zj)

n2−1 =λ∗i

(
z2
i′

wT
i′D
−1
i wi′

+
z2
i

wT
i D
−1
i wi

)
.

2. At (λ∗i , λ
∗
i′) = λ

(
wT
i′D

−1
i wi′ ,w

T
i′D

−1
i′ wi′

)
,

2∑
j=1

ujG
i∗
j (zj)

ni =
λ∗i′z

2
i′

wT
i′D
−1
i′ wi′

(
1

L

(
λz2
i′

ui′L

) 1
ni−1

∧ 1

)

+
λ∗i′z

2
i

wT
i D
−1
i′ wi

+ui

(
1−

wT
i′D
−1
i′ wi′

wT
i D
−1
i′ wi

· w
T
i D
−1
i wi

wT
i′D
−1
i wi′

)

≤λ∗i′
(

z2
i′

wT
i′D
−1
i′ wi′

+
z2
i

wT
i D
−1
i′ wi

)
+ui

(
1−

wT
i′D
−1
i′ wi′

wT
i D
−1
i′ wi

· w
T
i D
−1
i wi

wT
i′D
−1
i wi′

)
,

2∑
j=1

ujG
i′∗
j (zj)G

i∗
j (zj)

ni−1 =λ∗i

(
z2
i′

wT
i′D
−1
i wi′

+
z2
i

wT
i D
−1
i wi

)
,

and both Gi∗ and Gi′∗ are feasible as∫
z(WTD−1

i′ W)−1zdGi
′∗(z) =

ui
λ∗i′

[
wT
i′D
−1
i′ wi′

wT
i D
−1
i′ wi

· w
T
i D
−1
i wi

wT
i′D
−1
i wi′

−
wT
i D
−1
i′ wi

wT
i′D
−1
i′ wi′

· w
T
i′D
−1
i wi′

wT
i D
−1
i wi

· n2C

(n2 + 1)

]

+
ui′(1−Lni+1)

λ∗i′(ni + 1)
= 1,∫

z(WTD−1
i W)−1zdGi∗(z) =

ui′

λ∗i

ni +L1+ni

ni(ni + 1)
+

wT
i D
−1
i′ wi

wT
i′D
−1
i′ wi′

· w
T
i′D
−1
i wi′

wT
i D
−1
i wi

· uiC

λ∗i (ni + 1)
= 1.

Thus, (12) holds. (b) holds following a similar argument.

�

Proof of Propositions 7 and EC.3. If the problem can be reduced to a single-event one

with w̃, then Zi∗ is parallel to WT w̃. As ui > 0, w̃ 6= wi for i= 1,2 and Zi∗2 = v̂Zi∗1 for some v̂ > 0.

By Theorem 1, the support of Zi∗ is a subset of the maximizers of
2∑
j=1

ujG
i∗
j (zj)

ni−1Gi′∗
j (zj)

ni′ −
λ∗i z

T (WTD−1
i W)−1z. Since Gi∗

1 (z1) =Gi∗
2 (v̂z1), the first-order conditions are

di22− di12v̂

v̂u1

=
di11v̂− di12

u2

, i= 1,2.

Eliminating v̂ in the preceding equations yields (13) and solving the equations yields v̂ = v. The

second-order condition then implies that di12 ≥ 0, i= 1,2.

At this point, we verify that the distributions in the proposition are indeed equilibria when the

conditions hold.
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1. We will show that (12) holds at λ∗i =
Γi′ (u1+u2)

n1Γ2+n2Γ1
, i, i′ = 1,2 and i 6= i′. When L> 0, both G1∗

and G2∗ are feasible as∫
z(WTW)−1zdG1∗(z)

=
Γ1(n1Γ2 +n2Γ1)

Γ1Γ2

(n1L)
1

n1+n2

∫ (n1L)

n2
n1+n2

0

d

(
G1∗)n1

n1
+

∫ 1

(n1L)
1

n1+n2

d

(
G1∗)n1+n2

n1 +n2

= 1,

∫
z(WTD−1

2 W)−1zdG2∗(z) = Γ2
n1Γ2 +n2Γ1

Γ1Γ2

∫ 1

(n1L)
1

n1+n2

d

(
G2∗)n1+n2

n1 +n2
= 1,

and
2∑
j=1

ujG
i∗
j (zj)

ni−1Gi′∗
j (zj)

ni′ −λ∗i z(WTD−1
i W)−1z≤ −λ∗i vdi12

|WTD−1
i W|

(
z1−

z2

v

)2

≤ 0

for z1 ∈
[
0,
√

n1Γ2+n2Γ1
Γ1Γ2

]
and z2 ∈

[
0, v
√

n1Γ2+n2Γ1
Γ1Γ2

]
. When L < 0, the statement follows from a

similar argument.

2. We can directly verify that Gi∗ is feasible and (12) holds at λ∗1 = λ∗2 = 1
2

(
Γ2
Γ1
∧ Γ1

Γ2

)
.

3. (a) As the left hand side of (EC.3) increases from
Γi′−Γi

(ni+1)(Γi+niΓi′ )
< 0 to 1

2ni
> 0 as L

increases from 0 to 1, there is a unique L ∈ [0,1] satisfying (EC.3). Following a similar argument

as in 1, We can easily verify that Gi∗ and Gi′∗ are feasible and (12) holds at λ∗i′ =
(1−L)2Γi(u1+u2)

(1−L)Γi+niΓi′

and λ∗i = (1−L)Γ1(u1+u2)

(1−L)Γi+niΓi′
.

(b) Following a similar argument, we can easily verify that Gi∗ and Gi′∗ are feasible and (12)

holds at λ∗i =
Γi′ (u1+u2)

Γi+niΓi′
and λ∗i′ =

Γi(u1+u2)

Γi+niΓi′
.

�

Proof of Proposition 8. Since (w̃
(k)
1 , . . . , w̃

(k)
J ) are linearly independent, following a similar

argument as in the proof of Theorem 1, there exists (λ∗k1, . . . , λ
∗
kn)> 0 such that

∑
i∈I

λ∗ki + max
x∈Rm,y∈RJ

∑
j∈J

uj
∏
`∈I−i

Gk`
j

(
wT
j x +

1

k
yj

)
−λ∗ki

(
xTDix + kyTy

)=
∑
j∈J

uj .

There exists (xki∗,yki∗) such that (xki∗)
T

Dix
ki∗ + k (yki∗)

T
yki∗ ≤ 1 and is in the support of

competitor i’s equilibrium distribution, which is a subset of the maximizers of the optimization

problem in the above equation.

Since λ∗ki ∈
[
0,
∑
j∈J

uj

]
, max

x∈Rm,y∈RJ

{∑
j∈J

uj
∏

`∈I−i
Gk`
j

(
wT
j x + 1

k
yj
)
−λ∗ki (xTDix + kyTy)

}
∈[

0,
∑
j∈J

uj

]
, Gki

j is increasing and bounded, xki∗ is bounded, and
∥∥yki∗∥∥

2
≤ 1

k
, there exists

a subsequence {kr : r = 1,2, . . .} ⊆ N and (λ∗i ,G
i∗,xi∗), i = 1, . . . , n, such that, as r → ∞,

λ∗kri→ λ∗i , G
kri
j →Gi∗

j , j ∈J , xkri∗→ xi∗, ykri∗→ 0, and∑
j∈J

uj
∏
`∈I−i

Gkr`j

(
wT
j x

kri∗+
1

kr
ykri∗j

)
−λ∗kri

(
xkri∗

T
Dix

kri∗+ kry
kri∗Tykri∗

)

= max
x∈Rm,y∈RJ

∑
j∈J

uj
∏
`∈I−i

Gkr`∗j

(
wT
j x+

1

kr
yj

)
−λ∗kri

(
xTDix+ kry

Ty
)
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converges. Furthermore, for any x∈Rn,∑
j∈J

uj
∏
`∈I−i

G`∗
j

(
wT
j xi∗

)
−λ∗i

(
xi∗

T
Dix

i∗
)

= lim
r→∞

∑
j∈J

uj
∏
`∈I−i

Gkr`
j

(
wT
j xkri∗+

1

kr
ykri∗j

)
−λ∗kri

(
xkri∗

T
Dix

kri∗+ kry
kri∗Tykri∗

)
≥ lim

r→∞

∑
j∈J

uj
∏
`∈I−i

Gkr`
j

(
wT
j x
)
−λ∗kri

(
xTDix

)
=
∑
j∈J

uj
∏
`∈I−i

G`∗
j

(
wT
j x
)
−λ∗i

(
xTDix

)
,

i.e., xi∗ maximizes
∑
j∈J

uj
∏

`∈I−i
G`∗
j

(
wT
j x
)
−λ∗i (xTDix), and hence,

∑
i∈I

λ∗i + max
x∈Rm,y∈RJ

∑
j∈J

uj
∏
`∈I−i

G`∗
j (wT

j x)−λ∗i
(
xTDix

)=
∑
j∈J

uj .

The proposition then follows from a similar argument as in the proof of Theorem 1.

�

Proof of Proposision 9. We assume, without loss of generality, that D = I.

1. When wT
j wj′ ≥ 0 for all j and j′, let Φ(y) = diag(y)WTWy be a function from RJ to RJ .

It is obvious that Φ(y) is continuous and closed. If RJ+ * Φ(RJ+), then there exists a v> 0 in the

boundary of Φ(RJ+). As Φ is closed, there exists y> 0 such that Φ(y) = v and the Jacobian at y,

diag(y)WTW + diag

(
J∑
j=1

wT
1 wjyj,

J∑
j=1

wT
2 wjyj, · · ·

J∑
j=1

wT
Jwjyj

)
is positive definite. Thus, v cannot be on the boundary and RJ+ ⊆Φ(RJ+) must hold. As a result,

there exists ŷ ∈RJ+ such that Φ(ŷ) = 1
λ∗ (u1, u2, . . . , uJ)T ∈RJ+ where λ∗ = 1

n

(
J∑
j=1

uj

)
.

Let Z∗ = ẑU
n−1

2 with distribution G∗, where U follows a uniform distribution on [0,1] and

ẑ = 1
λ∗ (

u1
ŷ1
, u2
ŷ2
, . . . , uJ

ŷJ
). Since E

(
Z∗T (WTW)

−1
Z∗
)

= ẑT (WTW)−1ẑE (Un−1) = 1, G∗ is feasible to

(6) and

λ∗ +
J∑
j=1

ujG
∗
j
n−1 (zj)−λ∗zT (WTW)−1z

= λ∗+
J∑
j=1

uj
ẑ2
j

[
z2
j − (zj ∧ 0)2 + ẑ2

j − (ẑj ∨ zj)2
]
−λ∗zT (WTW)−1z

≤ 1

n

J∑
j=1

uj +λ∗zT
[
diag

(
(WTW)−1ẑ

)
diag(ẑ)−1−

(
WTW

)−1
]
z.

Since

xT
[
diag

((
WTW

)−1
ẑ
)(

WTW
)

diag
((

WTW
)−1

z
)
−diag

((
WTW

)−1
ẑ
)

diag (ẑ)
]
x

=
∑
j,j′

uj
ẑjλ∗

wT
j wj′

uj′

ẑj′λ∗
xjxj′ −

uj
ẑjλ∗

wT
j wj′

uj′

ẑj′λ∗
x2
i =−

∑
i<j

ujuj′

ẑj ẑj′λ∗2
wT
j wj′(xi−xj)2 ≤ 0,
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diag
(

(WTW)
−1

ẑ
)

(WTW)diag
(

(WTW)
−1

z
)
− diag

(
(WTW)

−1
ẑ
)

diag (ẑ) is negative semi-

definite, and so is diag ((WTW)−1ẑ)diag(ẑ)−1 − (WTW)−1. Therefore, condition (6) holds and

the problem can be treated as a single-event problem with w̃ = W(WTW)−1ẑ.

2. When wT
j wj′ ≤ 0 for all j and j′, letting λ̂ = Jn+(n−1)(J−1)n−nJ(J−1)n−1

nJn

J∑
j=1

uj and X̂ be a

random variable with the distribution P (X̂ ∈ {twj|t ∈ [0, zj]}) = 1 ∧
[(

J−1
J

)n−1
+ λ̂

uj
z2
j

] 1
n−1 − J−1

J

for any zj > 0, we have

E
(
X̂T X̂

)
=

J∑
j=1

∫ √
uj

λ̂

[
1−(J−1

J )
n−1]

0

z2
jd

[(
J − 1

J

)n−1

+
λ̂

uj
z2
j

] 1
n−1

= 1

and the distribution of X̂ is feasible. Since wT
j wj′ < 0 for all j 6= j′, wT

j X̂ > 0 if and only if

X̂∈ {twj|t≥ 0}. Thus, Ĝj(zj) := P (wT
j X̂≤ zj)≤ 1∧

[(
J−1
J

)n−1
+ λ̂

uj
(0∨ zj)2

] 1
n−1

and

λ̂+
J∑
j=1

ujĜ
n−1
j (zj)− λ̂zT (WTW)−1z≤

[
1

n
+

(
J − 1

J

)n] J∑
j=1

uj.

Therefore, Ĝ is an ε-equilibrium for ε≥
(
J−1
J

)n J∑
j=1

uj.

�
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