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Abstract

Proportional fairness is a popular service allocation mechanism to describe and analyze

the performance of data networks at flow level. Recently, several authors have shown that

the invariant distribution of networks operating according to proportional fairness admits

a product form distribution under critical loading. They focus however on exponential

job size distributions, leaving the case of general job size distributions as an open question.

Motivated by this, we consider a network operating under proportional fairness where the job

size distributions belong to a dense class of distributions. We establish a heavy-traffic process

limit theorem and show that the invariant distribution of the limit process is determined by

the first moments of the job sizes. Our analysis relies on a uniform convergence result for a

fluid model, which is of independent interest.

AMS subject classification: 60K25, 68M20, 90B15

Keywords: Brownian approximations, Lyapunov functions, network utility maximization

1 Introduction

A popular way to model congestion of data traffic is to consider such traffic at a level where

files or jobs are represented by continuous flows rather than discrete packets. This gives rise

to bandwidth-sharing networks, as introduced in Massoulié and Roberts (1999). Such net-

works model the dynamic interaction among flows that compete for bandwidth along their

source-destination paths. Apart from offering insight into the complex behavior of computer-

communication networks, they have also been suggested recently as a model to analyze road-

traffic congestion (see for instance Kelly and Williams (2010)). The analysis of bandwidth-

sharing networks is challenging, requiring tools from both optimization and stochastics.

The most important bandwidth-allocation mechanism that has been considered so far is

perhaps proportional fairness. In a static setting, this policy can be implemented in a distributed

fashion, simultaneously maximizing users’ utility; cf. Kelly (1997), Yi and Chiang (2008). In

addition, proportional fairness is known to be the only policy that satisfies the four axioms of
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the Nash bargaining theory (Mazumdar et al. (1991); Ştefănescu and Ştefănescu (1984)). These

are desirable properties in a static setting. Furthermore, proportional fairness has attractive

dynamic properties: while being a greedy policy, proportional fairness has also been shown

to optimize some long term cost objectives, at least in a heavy traffic environment (Ye and

Yao (2012)). In particular, it is known to be stable in internet flow-level models (Massoulié

(2007)), assuming phase-type document size distributions. Recently, proportional fairness has

been suggested as an attractive alternative to maximum-pressure policies in Walton (2014b).

In some special cases detailed below, a bandwidth-sharing network operating under propor-

tional fairness admits a (computable) invariant distribution of the number of users. As these

cases are rather restrictive, it is natural to obtain insight in the performance of proportional

fairness for more general network topologies. In Kang et al. (2009), it is shown, assuming expo-

nential job size distributions, that the performance of proportional fairness is still tractable if

the network is heavily loaded. Under a heavy traffic assumption, a limit theorem is developed

yielding an approximating semimartingale reflected Brownian motion (SRBM), of which the

invariant distribution is shown to have a product form. A restrictive assumption in Kang et al.

(2009) is the so-called ‘local traffic assumption’, stating that each link in the network serves a

route consisting only of that link. This was removed in Ye and Yao (2012) by using elegant

geometric arguments. While Ye and Yao (2012) allows for generally distributed flow sizes, it

assumes that the service policy within a class is first-in-first-out (FIFO). This is well-suited for

packet-level models Walton (2014a), but not for flow-level models, which has been the main

focus in the literature. In the present paper, we focus on flow-level models, where the per-class

discipline is Processor Sharing (PS). This discipline is harder to analyze than FIFO and cor-

responds to the original open question posed in Kang et al. (2009). A recent survey on these

developments can be found in Williams (2015).

While the Poisson arrival assumption can often be justified to some degree in practice, the

same cannot be said for exponential job size distributions. As such, it is desirable for the

performance of a network to be insensitive to fluctuations in higher moments of the job size

distribution. There is overwhelming statistical evidence that the variance of file sizes is in fact

infinite (Resnick (1997)). As perfectly stated in Bonald and Proutière (2003): “the practical

value of insensitivity is best illustrated by the enduring success of Erlang’s loss formula in

telephone networks”. In Bonald and Proutière (2003), it is shown that proportional fairness

is the only utility-maximizing policy that yields this insensitivity property, provided that the

network topology has a hypercube structure and that all servers work at the same speed.

Given these limitations on the insensitivity of proportional fairness, some related allocation

mechanisms have been suggested that yield insensitivity for arbitrary networks topologies. One

such suggestion, based on connections with Whittle networks, is balanced fairness (Bonald and

Proutière (2003)). Another suggestion (Massoulié (2007)) is modified proportional fairness.

However, neither of these two policies are utility maximizing.

Though proportional fairness itself may not be always insensitive, it remains a key allocation

mechanism for the reasons mentioned above. In fact, the key question addressed but left open

in both Kang et al. (2009) and Ye and Yao (2012), is whether the product form property of

their heavy traffic approximation, derived for exponential job sizes, still holds for more general

job size distributions, yielding insensitivity of proportional fairness in heavy traffic. Informally,

the main conjecture is whether the vector N of the number of users along each route in steady
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state can be approximated as follows:

N ≈ diag (ρ)ATEs. (1.1)

Here, diag (ρ) is a diagonal matrix having the load of each route on the diagonal, A is a 0-1

matrix encoding which server (link) is used by which route, and Es is a vector of independent

exponential random variables. Each random variable corresponds to a server and has as pa-

rameter the slack of that resource; i.e., if c is the vector of service speeds, then s = c − Aρ.

The random variables Es can be interpreted as equilibrium values of the Lagrange multipliers

associated with the resources. In Walton (2014a), this property is called product form resource

pooling. In addition, Jonckheere and López (2014) establish insensitivity of large deviation rate

functions assuming the network has a tree topology. Other recent developments of proportional

fairness are described in Harrison et al. (2014).

Though we are not resolving the conjecture (1.1) in this paper, we develop several results that

support this conjecture. In particular, our main results are Theorems 4.1, 6.1 and 7.1 below. To

derive these results, we adapt the state-space collapse approach of Bramson (1998); Williams

(1998); Stolyar (2004) to our setting, building also on Bramson (1996); Kang et al. (2009);

Massoulié (2007); Ye and Yao (2012). Specifically, we first investigate a fluid model assuming

the system is critically loaded, and define a critical fluid model, significantly extending and

simplifying the treatment of a Lyapounov function that was introduced by Massoulié (2007)

in the subcritical case. Adapting and extending techniques from Ye and Yao (2012) and Kang

et al. (2009), we investigate the set of invariant points of the fluid model. Our set-up is related

to Ye and Yao (2012) in terms of the assumptions on the network topology. However, unlike Ye

and Yao (2012), we do not need to assume that the service discipline within a class is FIFO.

Instead, we consider Processor Sharing, as in all other works in this domain. We are able to

extend the geometric ideas in Ye and Yao (2012) to deal with some form of routing in the

network, which is sufficiently general to deal with phase-type distributions. Our results can

be seen as extensions to networks of heavy-traffic limits for single-node single class Processor

Sharing queues, as derived in Gromoll (2004); Puha and Williams (2004).

The main technical challenge of this paper is to show that fluid model solutions converge

uniformly and at an exponential rate to an invariant point, which is Theorem 4.1. Ideas from

Bramson (1996) and Massoulié (2007) form a useful starting point, but the analysis pertaining

to our setting demands significant additional work. In particular, though we use the same

candidate Lyapounov function that Massoulie Massoulié (2007) used in the analysis of the

sub-critical regime, the analysis in the critical regime is much harder. Our main idea is a

novel application of a rearrangement inequality, significantly simplifying Massoulié (2007). The

resulting upper bound on the derivative of this function is then bounded further using properties

like the utility-maximizing nature of proportional fairness. The fact that the proportionally fair

bandwidth-allocation function may be discontinuous at the boundary complicates the analysis.

The analysis of the fluid model is valid for general Markovian routing; we expect the convergence

result to be useful beyond its present application, though we need to assume that all external

arrival rates are positive. With the uniform convergence of fluid model solutions in place, the

remaining steps follow arguments similar to Ye and Yao (2012), using in particular some of their

intermediate results. This yields the diffusion limit in Theorem 6.1.

In our analysis, we additionally assume that job size distributions have a particular phase-
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type structure, which is non-restrictive in the sense that any distribution with nonnegative

support can be approximated arbitrary closely by such a phase-type distribution. This assump-

tion is technically convenient as it allows for a finite-dimensional Markovian description of the

system. Extending our results to more general distributions requires a measure-valued state

descriptor and is beyond the scope of the techniques developed in this paper. Note that this

would still not cover the practically relevant case of job sizes with infinite variance, which has

not even been resolved even in the single-node single-class case, cf. Lambert et al. (2013). In the

present paper, second moments show up in the description of the process limit, but cancel out

against one another while computing the invariant distribution of the SRBM, using the skew

symmetric condition developed by Harrison and Williams (1987). In particular, we characterize

and simplify the invariant distribution in Theorem 7.1 using, among others, renewal-theoretic

arguments in the computations.

To provide further context to our results, we note that Conjecture (1.1) relies on the as-

sumption that a link in the network is work-conserving. When individual users have additional

constraints on their individual access rates, (1.1) no longer holds and the distribution of N is

better approximated by a multivariate normal, cf. Reed and Zwart (2014). When relaxing the

assumption of proportional fairness to other utility-maximizing bandwidth-allocation policies,

the theory becomes much harder and is still partly conjectural, as the resulting SRBMs no

longer live in polyhedral domains, cf. Kang and Williams (2007); Kang et al. (2009). In this

case, the simple approximation (1.1) cannot be expected to hold. Another assumption is that

A is of full row rank. In Kelly et al. (2009), it is shown that (1.1) may not hold in in general if

A is not of full row rank. Extensions to multi-path routing, of which its nature and importance

is described in Kang et al. (2009), require the elements of A to be nonnegative rather than 0-1.

The methodology developed in the present paper can deal with this more general case. To prove

(1.1) for phase-type distributions, an interchange of the heavy traffic and steady state limits

is required. In the case of exponential job sizes, this interchange is established in Shah et al.

(2014) (using the process limit that was derived in Kang et al. (2009); Ye and Yao (2012)).

Unfortunately, we were not able to utilize the existing methods and techniques from Gamarnik

and Zeevi (2006); Budhiraja and Lee (2009); Gurvich (2014); Braverman et al. (2015); Ye and

Yao (2016) to resolve this interchange problem, and we (have to) leave this question open. We

hope our work stimulates more research in this direction.

The paper is organized as follows. The network model and some assumptions are introduced

in Section 2. In Section 3, we give a detailed description of the dynamics of our model. An

auxiliary fluid model with general Markovian routing is introduced and analyzed in detail in

Section 4. In Section 5, we develop a suitable decomposition of our process. The diffusion limit

is given in Section 6, and its invariant distribution is computed in Section 7.

2 The network model

In this section, we provide a detailed model description. As we make heavy use of results from

Ye and Yao (2012), we follow their notation whenever possible. All vectors are column vectors.

Throughout the paper, e is a column vector with all elements equal to 1 and I denotes the

identity matrix. The dimensions of e and I should be clear from the context.
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Network structure. The network consists of a set of routes R = {1, . . . , R}, which are

typically indexed by r. Each route traverses several links, which are indexed by l, l ∈ L =

{1, . . . , L}. Each link has a service capacity cl. Let A denote the link-route matrix of dimension

L×R. We set Al,r = 1 if route r needs 1 unit of capacity from link l and 0 otherwise. Assume

A has full row rank; hence L ≤ R. We note that all arguments in the paper remain valid if A

is a nonnegative matrix of full row rank.

Stochastic assumptions. Next, we introduce the arrival process and service time assump-

tions. We assume for convenience that arrival processes are Poisson with rate λr. Service

times at route r follow a phase type distribution with Fr phases. The set Fr = {1, . . . , Fr}
contains all phases for jobs on route r. As is commonplace (cf. Asmussen (2003)), a phase-

type random variable is the lifetime of an absorbing Markov chain with initial distribution

ar = (ar,1, . . . ,ar,Fr)T ∈ RFr
+ , sub-stochastic transition matrix P r ∈ RFr × RFr with P ri,j being

the transition probability from state i to state j and 1−
∑

j P
r
i,j being the transition probability

from state i to the absorbing state (which corresponds to service completion). Furthermore, it

is assumed that the service time in phase f is exponentially distributed with rate µr,f , and we

write µr = (µr,1, . . . ,µr,Fr)T ∈ RFr
+ . In particular, the mean service time in phase f on route r

is mr,f = 1
µr,f

, and mr = (mr,1, . . . ,mr,Fr)T ∈ RFr
+ . We assume

λrar,f > 0 for all f ∈ Fr and r ∈ R, (2.1)

(I − P r) is invertible. (2.2)

The first assumption, that all routes have arrivals for each phase, is non-standard, and required

in our analysis in Section 4. It is non-restrictive in the sense that an inspection of the proof of

(Asmussen, 2003, Theorem III.4.2) shows that the resulting class of distributions is still dense

in the class of all distributions with nonnegative support. Let P r,T , aTr and mT
r denote the

transpose of P r, ar and mr. Then the mean service requirement βr at route r is

βr = mT
r (I − P r,T )−1ar. (2.3)

State-space description. Denote the R-dimensional vector of jobs on each route by n =

(n1, . . . , nR)T , with nr being the number of jobs on route r ∈ R. To obtain a Markovian

description of our network, it is useful to introduce a more detailed state-space descriptor:

n = (n1,1, . . . ,n1,F1 , . . . . . . ,nR,1, . . . ,nR,FR
)T , (2.4)

with nr,f denoting the number of jobs on phase f at route r. It is clear that n is a
∑

r∈R Fr-

dimensional vector and nr =
∑

f∈Fr
nr,f . We also need a link-phase matrix, denoted by A,

which is of dimension L×
∑

r∈R Fr. For a link l ∈ L and for all f =
∑r−1

r′=1 Fr′ +1, . . . ,
∑r

r′=1 Fr′ ,

we have

Al,f = Al,r, r ∈ R. (2.5)

Thus, A is obtained by taking the rth column of A and repeating it for Fr times. From now

on, when we make a distinction between routes and phases, we speak of ‘route level’ and ‘phase

level’. The associated notation will be distinguished by using boldface.
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Traffic load. The route-level traffic load for each r ∈ R is

ρr = λrβr. (2.6)

Denote ρ = (ρ1, . . . , ρR)T ∈ RR+ and c = (c1, . . . , cL)T ∈ RL+, then

Aρ = c. (2.7)

Let Al be the lth row of A. A link l is said to be a bottleneck if Alρ = cl. For convenience, we

assume that all links are a bottleneck. This assumption can be removed along the lines of the

electronic companion of Ye and Yao (2012). Note however that we assume (2.7) for our limiting

process. Later on, we introduce a sequence of processes, indexed by k = 1, 2, 3, . . ., for which

c−Aρk is of the order 1/k.

Let diag (x) be a square matrix with the diagonal being equal to the vector x and all off-

diagonal elements being equal to 0. The traffic load for each route r at the phase level is defined

as

ρr = λr[diag (mr) (I − P r,T )−1ar]. (2.8)

In other words, ρr = (ρr,1, . . . ,ρr,Fr)T ∈ RFr
+ . It is clear from (2.3) and (2.6) that the aggregated

load for each route r is

ρr =
∑
f∈Fr

ρr,f . (2.9)

Proportional fairness allocation. Denote by Λr(n), r ∈ R, the capacity allocated to route

r jobs when the network status is n. Let Γ denote the set of all feasible allocations, i.e.

Γ =
{
γ ∈ RR : Aγ ≤ c, γ ≥ 0

}
. (2.10)

The proportional fair allocation Λ(n) is the unique solution to the optimization problem

max
γ∈Γ

∑
r∈R

nr log(γr), (2.11)

with Λr(n) = 0 if nr = 0. According to the optimality condition, this optimal solution to (2.11)

satisfies
nr

Λr(n)
=
∑
l∈L

Al,rηl, r ∈ R, (2.12)

for some η = (ηl)l ∈ RL+. It is known that Λ is directionally differentiable on (0,∞)R by Reed

and Zwart (2014) (earlier Kelly and Williams (2004) established continuity). In addition, Λ is

radially homogeneous, i.e. Λ(yn) = Λ(n) for y > 0, cf. Kelly and Williams (2004).

The allocation to each phase f on route r is Λr,f (n) =
nr,f

nr
Λr(n), where we make the

convention throughout the paper that 0/0 = 0 ×∞ = 0. This is consistent with the fact that

Λ(n), as a
∑

r∈R Fr-dimensional vector, is the optimal solution to

max
γ∈Γ

∑
r∈R,f∈Fr

nr,f log(γr,f ), (2.13)

where

Γ =
{
γ ∈ R

∑
r∈R Fr : Aγ ≤ c,γ ≥ 0

}
.
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The extended vector γ, together with µ, m and ρ, is interpreted in the same way as (2.4).

Extending (2.12) to phase level yields

nr,f
Λr,f (n)

=
∑
l∈L

Al,rηl, r ∈ R, (2.14)

for some η = (ηl)l ∈ RL+.

3 System dynamics

Consider a sequence of systems indexed by k = 1, 2, . . .. For the kth system, let Nk
r,f (t) denote

the number of jobs on route r at phase f ; then, Nk
r (t) =

∑
f∈Fr

Nk
r,f (t) denotes the total

number of jobs on route r. Set the column vector Nk(t) = (Nk
r,f (t)). The resource allocated

to phase f on route r at time t is Λr,f (Nk(t)) according to (2.13).

For convenience, set P rf,0 = 1−
∑

f ′∈Fr
P rf,f ′ . Let Er,f (·) and Sr,f,f ′(·), r ∈ R, f ∈ Fr, f ′ ∈

Fr ∪ {0}, denote independent unit rate Poisson processes. In the remainder, symbols without

subscript denote the column vector with the corresponding component; e.g., E(·) = (Er,f (·)).
The dynamics of Nk(t) can be written as

Nk
r,f (t) = Nk

r,f (0) +Er,f (λkrar,f t) +
∑
f ′∈Fr

Sr,f ′,f

(
µr,f ′P

r
f ′,fDr,f ′(t)

)
−

∑
f ′∈Fr∪{0}

Sr,f,f ′
(
µr,fP

r
f,f ′D

k
r,f (t)

)
,

(3.1)

where

Dk
r,f (t) =

∫ t

0
Λr,f (Nk(s))ds. (3.2)

As users at a given route and phase may not leave the network immediately, we define a phase-

based workload W k(t) as a
∑

r∈R Fr-dimensional vector interpreted as in (2.4). In particular,

setting

P =


P 1 0 0 0

0 P 2 0 0
...

...
. . .

...

0 0 · · · PR

 , (3.3)

the phase-base workload is now defined as

W k(t) = diag (m) (I − P T )−1Nk(t). (3.4)

This is not the true workload, but a convenient proxy and a customary choice in heavy-traffic

analysis; see Harrison (2000) for background.

Define the centered processes

Ĕk
r,f (t) = Er,f (λkrar,f t)− λkrar,f t, (3.5)

S̆kr,f,f ′(t) = Skr,f,f ′(µr,fP
r
f,f ′t)− µr,fP rf,f ′t, (3.6)
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and (
S̆k+(Dk(t))

)
r,f

=
∑
f ′∈Fr

S̆kr,f ′,f (Dk
r,f ′(t)), (3.7)

(
S̆k−(Dk(t))

)
r,f

=
∑

f ′∈Fr∪{0}

S̆kr,f,f ′(D
k
r,f (t)). (3.8)

Define the vector ρk as in (2.8) with λr replaced by λkr . It follows from (3.1) and (3.2) that

W k(t) = W k(0) +Xk(t) +

∫ t

0
[ρ−Λ(Nk(s))]ds, (3.9)

where

Xk(t) = (ρk − ρ)t+ diag (m) (I − P T )−1
[
Ĕk(t) + S̆k+(Dk(t))− S̆k−(Dk(t))

]
. (3.10)

Let

Y k(t) = A

∫ t

0
[ρ−Λ(Nk(s)]ds. (3.11)

It is easily seen that

Y k(t) =

∫ t

0
[c−AΛ(Nk(s))]ds =

∫ t

0
[c−AΛ(Nk(s))]ds.

The vector Y k(t) can be interpreted as cumulative service capacities that have not been used

in [0, t].

4 A fluid model and its convergence to equilibrium

The goal of this self-contained section is to introduce and analyze a fluid model. We consider

a more general setting: rather than analyzing the model at the phase level, we assume there is

a general routing matrix P between different routes. The precise condition P needs to satisfy

is stated in (4.1). Completed jobs from route r have probability Pr,r′ to be routed to route r′.

It is clear that this setting is more general than the phase-type model introduced in Section 2,

where routing is only restricted within phases of each route. This also allows us to simplify the

notation in this section.

The overview of the present section is as follows.

1. We introduce a fluid model for a model with general routing, which is related to the

fluid model in Massoulié (2007) – in fact, we add another requirement to the definition

of Massoulié (2007), so that a function which is a fluid model in our sense, also satisfies

the requirements in Massoulié (2007). We introduce an entropy-like function, which was

shown in Massoulié (2007) to be a Lyapunov function in the sub-critically loaded case.

2. We show that the entropy-like function remains a Lyapunov function under critical load-

ing. This requires a careful analysis, as also stipulated in Bramson (1996), who considered

subcritical and critical fluid models of head of the line PS systems. As in Massoulié (2007),

we use classical rearrangement inequalities, but we do so in an entirely different way: we

show that the derivative of the Lyapunov function can be rewritten as the expected value
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of a path functional of a terminating Markov chain, for which we obtain pathwise bounds

(see proof of Lemma 4.2). Our arguments can provide a substantial simplification of the

subcritical case treated in Massoulié (2007).

3. Using the bound of the derivative of the Lyapunov function, we then proceed to prove

uniform convergence of fluid model solutions towards the invariant manifold, leading to

Theorem 4.1. On a high level, our approach is similar to that of Bramson (1996):

(a) Find a function L that is a Lyapunov function; i.e., show that f(t) = L(n(t)) has

negative derivative bounded by −g(n(t)), with g a nonnegative function.

(b) Show that f(t) ≤ |n(t)|Kg(n(t)) for some constant K independent of n(t).

(c) The two inequalities combined give f ′(t) ≤ −f(t)/(K|n(t)|). By bounding |n(t)| in

terms of |n(0)|, we get uniform rates of convergence of f(t) to 0, leading to uniform

convergence of n(t) for all fluid models starting in a compact set.

On a more detailed level, our arguments are different. Apart from simplifying and ex-

tending ideas from Massoulié (2007), we develop and use several additional properties of

proportional fairness in the process.

In this section, we use lower case for fluid model quantities, such as n(t).

4.1 A fluid model

Consider a network model with Poisson arrival vector λ, exponential service rate vector µ, and

general routing matrix P that is no longer block-diagonal. Define ρ = diag
(

1
µ

)
(1 − P T )−1λ.

Later, in Section 6, we apply results obtained in this section by specializing the routing matrix

to the block-diagonal P defined in (3.3). For notational simplicity, we still use R to denote the

set of routes. The two assumptions we invoke are

I − P T is invertible, (4.1)

λr > 0 for all r ∈ R. (4.2)

The latter assumption is required for the analysis in this section. Recall that Λr(n(t)) solves

the problem (2.11). In what follows, we mainly follow the notation of Massoulié (2007). We

can now present our definition of a fluid model.

Definition 4.1 (Fluid Model). A fluid model solution is a vector-valued function {n(t), t ≥ 0}
where for t ≥ 0, n(t) = (nr(t))r∈R satisfies the following two conditions: 1) For each r ∈ R,

nr(·) is a nonnegative function that is absolutely continuous with respect to the Lebesgue measure

and for almost every t

ṅr(t) = λr − µrΦr(n(t)) +
∑
s∈R

Ps,rµsΦs(n(t)), (4.3)

where

Φr(n(t))

{
= Λr(n(t)), if nr(t) > 0,

∈ [0, lim supy→n(t) Λr(y)], if nr(t) = 0.
(4.4)
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2) For almost every t ≥ 0, ∑
r∈R

Al,rΦr(n(t)) ≤ cl for all l ∈ L. (4.5)

Last, define the auxiliary functions w(·) and y(·) by

w(t) = diag (m) (I − P T )−1n(t), (4.6)

y(t) = A

∫ t

0
[ρ− Φ(n(s))]ds. (4.7)

This definition of a fluid model solution is essentially the same as the one in Massoulié

(2007), though we also require (4.5). As our fluid model solutions also are fluid model solutions

in the sense of Massoulié (2007), we can exploit properties developed in that work. We call

any t for which (4.3)–(4.5) are satisfied for all routes r ∈ R, a regular point. If t is regular,

we will often say that the associated state n(t) is regular. We now provide a more explicit

representation for Φr(n(t)) for any regular t. For each t ≥ 0, introduce

R0(t) = {r ∈ R : nr(t) = 0} and R+(t) = {r ∈ R : nr(t) > 0}. (4.8)

Since any fluid model solution is nonnegative, (4.8) gives a partition of all the routes. Note that

R0 and R+ depends on t. We drop the notation t in the following when the context is clear.

It is immediate that for any regular t, nr(t) = ṅr(t) = 0 for r ∈ R0(t) because nr(s) ≥ 0 for all

s ≥ 0 and r ∈ R. This implies that for each regular t

λr − µrΦr(n(t)) +
∑
s∈R0

µsΦs(n(t))Ps,r +
∑
s∈R+

µsΛs(n(t))Ps,r = 0, r ∈ R0. (4.9)

This gives an affine relationship between (Φr)r∈R0 and (Λr)r∈R+ . Such an affine relationship

depends on the set R+, which can take only finitely many different values. Thus, we can derive

the scalability of Φ from that of Λ; i.e., for any fluid model solution n(t) at a regular t and a

scalar y > 0,

Φ(n(t)) = Φ(yn(t)). (4.10)

The main goal of this section is to give a proof of the following result:

Theorem 4.1. Assume (4.1) and (4.2). Let n(·) be a fluid model solution. If |n(0)| < M for

some constant M > 0, then for all ε > 0, there exists a time TM,ε (not depending on n(·)) and

a state n(∞), such that

|n(t)− n(∞)| < ε for all t > TM,ε.

This theorem will be a key tool in the derivation of the diffusion limit later on. The remainder

of the current section is devoted to its proof.

4.2 A Lyapunov function

Introduce

L(n(t)) =
∑
r∈R

nr(t) log

(
Φr(n(t))

ρr

)
. (4.11)

Note that 0 log 0 is set to be 0. For convenience, denote f(t) = L(n(t)). We follow Lemma 5 of

Massoulié (2007), which we copy almost verbatim.
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Lemma 4.1 (Basic characterizations from Massoulié (2007)). Let n(·) be a fluid model solution

and let R0(·) and R+(·) be as defined in (4.8).

(i) There exists a constant M , such that for all t ≥ 0:

lim sup
h↓0

f(t+ h)− f(t)

h
≤M.

With some abuse of notation, define for all regular t > 0

ḟ(t) :=
∑

r∈R+(t)

ṅr(t) log

(
Λr(n(t))

ρr

)
. (4.12)

Then for every regular t > 0,

lim sup
h↓0

f(t+ h)− f(t)

h
≤ ḟ(t).

(ii) For every regular t > 0, there exist modified arrival rates (λ̃r)r∈R+(t) and modified rout-

ing probabilities (P̃r,s)r,s∈R+(t) that depend only on the set R0(t), such that the matrix

(P̃r,s)r,s∈R+(t) is sub-stochastic with spectral radius strictly less than 1. The identity

(λr)r∈R+(t) = (I − P̃ T )−1λ̃

holds, and in addition

ṅr(t) =

{
λ̃r +

∑
s∈R+(t) µsP̃r,sΛs(n(t))− µrΛr(n(t)), r ∈ R+(t),

0, r ∈ R0(t).
(4.13)

(iii) For a regular t > 0, let ur(t) = log
(

Λr(n(t))
ρr

)
for all r ∈ R+(t). We then have

ḟ(t) = −
∑
r

λr

∞∑
k=0

∑
s∈R+(t)

P̃ kr,s(e
us(t) − 1)

us(t)− ∑
s′∈R+(t)

P̃s,s′us′(t)

 . (4.14)

Proof. Properties (i) and (ii) follow from Lemma 5 of Massoulié (2007) and property (iii) follows

from the arguments on page 821 of Massoulié (2007).

In Massoulié (2007), an elaborated argument is followed to show that ḟ(t) < 0 in the sub-

critically loaded case. In this paper, we study the critical loaded case (i.e., Aρ = c). The

arguments in these two cases are quite different (cf. the difference in complexity between the

convergence of subcritical and critical fluid models, as exhibited in Bramson (1996)). From this

moment on, our analysis and the analysis in Massoulié (2007) follow separate ways.

4.3 Bounding the derivative of the Lyapunov function

Proposition 4.1. Suppose that n(·) is a fluid model solution. For any regular t > 0,

ḟ(t) ≤ −
∑

r∈R+(t)

λr

(
Λr(n(t))

ρr
− 1

)
log

(
Λr(n(t))

ρr

)
.
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Furthermore, there exists an ε > 0 such that

ḟ(t) ≤ −ε
∑

r∈R+(t)

(Λr(n(t))− ρr) log

(
Φr(n(t))

ρr

)
.

The proof follows directly from (4.2), (4.14) and the following lemma that is based on a

rearrangement inequality, which is of independent interest.

Lemma 4.2. Let {ur}r∈R+ be arbitrary real numbers, where R+ is any subset of positive inte-

gers. Let P̂ be an |R+|-dimensional sub-stochastic matrix such that 1− P̂ is invertible. Define

hr =

∞∑
k=0

∑
s∈R+

P̂ kr,s(e
us − 1)

us − ∑
s′∈R+

P̂s,s′us′

 .
Then

hr ≥ ur(eur − 1).

Proof. Let Xk be a Markov chain on R+ ∪ {0} starting from X0 = r and evolving according to

the transition matrix P̂ with 0 as absorbing state. Note that P̂ is extended with one row and

one column so as to add 0 as an additional state making P̂ stochastic. Set h0 = 0 and u0 = 0.

Note that

P(Xk = s,Xk+1 = s′ | X0 = r) = P̂ kr,sP̂s,s′ .

Let Er[·] denote the conditional expectation given that X0 = r. Set vr = eur − 1 for all

r ∈ R+ ∪ {0}, since u0 = 0 we have

hr =

∞∑
k=0

∑
s∈R+

P̂ kr,svs(us −
∑

s′∈R+∪{0}

P̂s,s′us′) =

∞∑
k=0

∑
s∈R+

∑
s′∈R+∪{0}

P̂ kr,sP̂s,s′vs(us − us′)

=

∞∑
k=0

Er
[
vXk

(uXk
− uXk+1

)
]
.

Let k0 = inf{k : Xk = 0}, then

hr = Er

[
k0−1∑
k=0

vXk
(uXk

− uXk+1
)

]
= Er

[
k0−1∑
k=0

vXk
(uXk

1{k>0} − uXk+1
)

]
+ vrur.

We claim that, a.s.,
k0−1∑
k=0

vXk
uXk

1{k>0} ≥
k0−1∑
k=0

vXk
uXk+1

. (4.15)

This follows from a classical rearrangement inequality in Hardy et al. (1988) stating that if

(ak) and (bk) are two nondecreasing finite sequences and (b
[p]
k ) is a permutation of (bk), then∑

k akbk ≥
∑

k akb
[p]
k . Note that uj ≥ ui if and only if vj ≥ vi. So the left hand side of (4.15)

is the same as the sum if we order the sequences {vi} and {ui} from small to large, while the

right hand side is the sum of a rearrangement since 0 = uX01{0>0} = uXk0
. Thus, hr ≥ vrur

and the lemma is proven.
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4.4 Bounding the Lyapunov function in terms of its derivative

Having established an upper bound for ḟ(t), our next task is to connect this bound to f(t),

which is establish in the next proposition.

Proposition 4.2. Suppose that n(·) is a fluid model solution. Let ε be given by Proposition 4.1.

There exists 0 < ζ∗ <∞ such that for any regular point t > 0,

ḟ(t) ≤ − ε

ζ∗
1

|n(t)|
f(t).

The proposition will be proven after developing some necessary background. Given a fluid

model solution n(·), define p(t) = n(t)
|n(t)| with the convention that 0/0 = 0. By the scalability of Φ

in (4.10), we have that Φr(n(t)) = Φr(p(t)). Let (ηl(p(t)))l∈L be the Lagrange multipliers satis-

fying the Karush-Kuhn-Tucker (KKT) conditions (cf. Section 5.5.3 in Boyd and Vandenberghe

(2004)) associated with the optimization problem (2.11), and define for any vector p ≥ 0

ζr(p) =
∑
l

Al,rηl(p).

Lemma 4.3. (i) For any r,

sup
{p}

ζr(p) <∞.

Here the supremum is taken over all p for which we can write p = n(t)/|n(t)| for a regular time

t, which implies that |p| = 1andthatAΦ(p) ≤ c.
(ii) In particular, if for a regular time t, pr(t) = 0, then ζr(p(t)) = 0.

Proof. It follows from (4.9) and condition (4.2) that Φr(p) ≥ λr
µr

> 0, for all r ∈ R0. For all

regular t > 0, define

L0 = {l ∈ L : Al,r > 0 for some r ∈ R0}.

Since regularity implies AΦ(p) ≤ c we obtain∑
r∈R+

Al,rΦr(p) ≤ cl −
∑
r∈R0

λr
µr

< cl (4.16)

for all l ∈ L0. We can see that ηl(p) = 0 for all l ∈ L0 since the lth constraint in (2.10) is not

binding due to (4.16). This implies that ζr(p) = 0 for any regular p with pr = 0, and leads to

statement (ii) of the lemma.

For statement (i) we also need to handle cases where pr > 0. We use Lagrange duality. For

fixed t, let

L+ = {l ∈ L : Al,r > 0 for some r ∈ R+}.

We see that L+ 6= ∅. Note that though this set depends on t, we drop this for convenience. The

Lagrangian dual H(η) : R|L+| → R for any fixed (ηl)l∈L+ of the optimization problem (2.11)

with feasible region (2.10) can be written as

H(η) = max
γr,r∈R+

∑
r∈R+

pr log γr −
∑
l∈L+

ηl

∑
r∈R+

Al,rγr − cl

 . (4.17)
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In this representation we have removed the constraints for the lines l ∈ L \ L+, which are

irrelevant for this t.

The optimal solution (γr)r∈R satisfies the optimality condition pr
γr

=
∑

l∈L+ Al,rηl, for all

r ∈ R+. So we obtain

∑
l∈L+

ηl
∑
r∈R+

Al,rγr =
∑
l∈L+

ηl
∑
r∈R+

Al,r
pr∑

l′∈L+ ηl′Al′,r
=
∑
r∈R+

pr

∑
l∈L+ ηlAl,r∑
l′∈L+ ηl′Al′,r

= 1.

Thus, (4.17) can be simplified as

H(η) =
∑
r∈R+

pr log pr −
∑
r∈R+

pr log
( ∑
l∈L+

ηlAl,r

)
+
∑
l∈L+

ηlcl − 1.

By duality, (ηl(p))l∈L+ solves the optimization problem

inf
η≥0

∑
l∈L+

ηlcl −
∑
r∈R+

pr log
( ∑
l∈L+

ηlAl,r

) ,

which, by recalling that
∑

r∈R+
pr = 1, is equivalent to

sup
η≥0

∑
r∈R+

pr

log
( ∑
l∈L+

ηlAl,r

)
−
∑
l∈L+

ηlcl

 .
Since cl > 0 for l ∈ L+, we have that

[
log(

∑
l∈L+ ηlAl,r)−

∑
l∈L+ ηlcl

]
is negative when η is

outside a compact set. This implies that η(p) is necessarily uniformly bounded in p for any fixed

L+. Since there are only finite choices (2L) for L+, we must have supp:|p|=1 |η(p)| <∞.

Proof of Proposition 4.2. Let t be a regular point. By Lemma 4.3, let ζ∗ < ∞ be an upper

bound of ζr(p(t)) for all p(t) such that |p(t)| = 1 and AΦ(p(t)) ≤ c. Using (4.10) and Proposi-

tion 4.1, we have

ḟ(t) ≤ −ε
∑

r∈R+(t)

(Φr(p(t))− ρr) log

(
Φr(p(t))

ρr

)

≤ − ε

ζ∗

∑
r∈R+(t)

ζr(p(t))(Φr(p(t))− ρr) log

(
Φr(p(t))

ρr

)
. (4.18)

By the KKT conditions, pr(t) = ζr(p(t))Φr(p(t)) for all r ∈ R+(t). Define qr(t) = ζr(p(t))ρr for

all r ∈ R. Observe that qr(t) = 0 for all r ∈ R0(t) due to Lemma 4.3 (ii). Then (4.18) becomes

ḟ(t) ≤ − ε

ζ∗

∑
r∈R+(t)

(pr(t)− qr(t)) log

(
Φr(p(t))

ρr

)
. (4.19)

Consider now the allocation Λ(q), which is the solution to the program maxγ
∑

r∈R qr log γr sub-

ject to Aγ ≤ c and γr = 0 if qr = 0. The KKT conditions then read qr/Λr(q) =
∑

l∈LAl,rηl(q),

η(q)(AΛ(q) − c) = 0 for some η(q) ≥ 0. Since the network is critically loaded, i.e., Aρ = c,

a feasible solution to these KKT equations is to take η(q) = η(p) and Λr(q) = ρr if qr > 0.
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From this, it follows that since Φ(q(t)) is maximizing the function
∑

r∈R+(t) qr(t) log γr over all

feasible γ, ∑
r∈R+(t)

qr(t) log Φr(p(t)) ≤
∑

r∈R+(t)

qr(t) log Φr(q(t)) =
∑
r∈R+

qr(t) log ρr.

This together with (4.19) implies

ḟ(t) ≤ − ε

ζ∗

∑
r∈R

pr(t) log

(
Φr(p(t))

ρr

)
= − ε

ζ∗
1

|n(t)|
f(t).

4.5 Compactness and convergence to the invariant manifold

We first derive some additional properties of f in order to be able to use some ideas developed

in Bramson (1996).

Proposition 4.3. The following inequalities hold.

f(0) =
∑
r∈R

nr(0) log

(
Φr(n(0))

ρr

)
≤ |n(0)| log

(
maxl cl
minr ρr

)
,

ḟ(t) ≤ −ε
∑
r∈R

(
Φr(n(t))

ρr
− 1

)2

,

for some ε > 0 and almost every t.

Proof. The first inequality is trivial. The second inequality is derived in two steps. Let t be a

regular point. We first note that

ḟ(t) ≤ −ε
∑
r∈R+

(
Φr(n(t))

ρr
− 1

)2

, (4.20)

which follows from Proposition 4.1 and the inequality (a − b) log(a/b) ≥ (a − b)2/max{a, b}.
Again, the exact value of ε may change from step to step, but it will always be strictly positive.

The challenge is to extend this to the entire index set r, a task the rest of this proof is devoted

to.

Let (νr)r∈R be the solution to the following traffic equation

νr = λr +
∑
r′∈R

Pr′,rνr′ for all r ∈ R.

Then ρr = νr/µr. Set dr(t) = µrΦr(n(t)). We see that

ḟ(t) ≤ −ε
∑
r∈R+

(dr(t)− νr)2 .

Note that

dr(t) = λr +
∑
r′∈R

Pr′,rdr′(t) for all r ∈ R0(t).
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So for all r ∈ R0(t),

dr(t)− νr =
∑
r′∈R

Pr′,r(dr′(t)− νr′).

We use this expression to derive properties of the vector (d(t) − ν)|R0(t), which is formed by

the coordinates of the vector d(t) − ν corresponding to those coordinates r ∈ R0(t). Let P 0,0

be the matrix built up from all routing probabilities from R0(t) to R0(t) and let P+,0 be the

matrix consisting of routing probabilities from states R+(t) to R0(t). Then

(d(t)− ν)|R0 = P 0,0(d(t)− ν)|R0 + P+,0(d(t)− ν)|R+ .

Since I − P is invertible, so is I − P 0,0 (where I is of appropriate dimension) and we see that

(d(t)− ν)|R0 = (I − P 0,0)−1P+,0(d(t)− ν)|R+ =: P †(d(t)− ν)|R+ .

The matrix P † consists of nonnegative elements. We conclude that for r ∈ R0,

dr(t)− νr =
∑
r′∈R+

P †r′r(dr′(t)− νr′). (4.21)

The Cauchy-Schwarz inequality yields

(dr(t)− νr)2 ≤
∑
r′∈R+

P †r′r
2
(dr′(t)− νr′)2 ≤ ‖P †‖2∞

∑
r′∈R+

(dr′(t)− νr′)2,

where ‖P †‖∞ denotes the largest element in the matrix P †. Summing up over r ∈ R0(t) yields∑
r′∈R0(t)

(dr′(t)− νr′)2 ≤ ‖P †‖2∞R
∑

r′∈R+(t)

(dr′(t)− νr′)2.

Combining the above inequality and (4.20) leads to the second inequality of this proposition.

Proof of Theorem 4.1. Bramson’s proof of his Proposition 6.1 also applies to our setting if we

set dr(t) =
(

Φr(n(t))
ρr

− 1
)

. The same holds for his Proposition 6.2, using Proposition 5.3 at

various points in his line of argument. We omit the details. This guarantees the existence of a

constant B such that for all t ≥ 0,

|n(t)| ≤ B|n(0)|.

Combining this with Proposition 4.2 and recalling that f(t) is nonincreasing, we see that there

exists an ε > 0 such that for all t ≥ 0 and all δ ∈ (0, t)

f(t)− f(t− δ) ≤ −εδf(t)/|n(0)|.

Thus, assuming t/δ is an integer, we derive by iteration that

f(t) ≤ f(t− δ)/(1 + δε/|n(0)|) ≤ · · · ≤ f(0)

(
1

1 + δε/|n(0)|

)t/δ
.

Since this is true for every δ such that t/δ is an integer, we obtain by letting δ ↓ 0 along an

appropriate sequence that

f(t) ≤ f(0) exp{−εt/|n(0)|}. (4.22)
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From (6.26)–(6.28) of Bramson (1996), we then obtain that for all t′ ≥ t ≥ 0

|n(t)− n(t′)| ≤ B|n(0)| exp{−εt/|n(0)|},

for appropriate constants ε, B. Consequently, n(t) satisfies the Cauchy criterion for convergence,

and thus converges to some n(∞). The last equation implies that for all t ≥ 0

|n(t)− n(∞)| ≤ B|n(0)| exp{−εt/|n(0)|}.

In other words, convergence is exponentially fast, u.o.c. in |n(0)|. Recall the definition of L(n(t))

in (4.12). Since f(x) is lower semi-continuous (cf. Theorem 1 in Massoulié (2007)), we see that

0 ≤ L(n(∞)) ≤ lim inf
t→∞

L(n(t)) = lim
t→∞

f(t) = 0.

Consequently,

0 =
∑
r

nr(∞) log(Φr(n(∞))/ρr) =
∑

r:nr(∞)>0

nr(∞) log(Λr(n(∞))/ρr).

Furthermore,
∑

r nr(∞) log(Λr(n(∞))) ≥
∑

r nr(∞) log(Λ′r) for any feasible Λ′, since Λ(n(∞))

is the unique optimum of the PF utility maximization problem. It then follows that Φr(n(∞)) =

Λr(n(∞)) = ρr if nr(∞) > 0. If nr(∞) = 0, an additional argument is needed to show that

Φr(n(∞)) = ρr.

Observe that n(∞) is an invariant point, since n(t) and n(t+ s) both converge to n(∞) for

every fixed s as t → ∞, and (n(t + s))s can be seen as time-shifted fluid model with starting

point n(t). Since fluid model solutions are regular almost everywhere, a fluid model solution

with starting position n(∞) is regular everywhere. This enables us to apply equation (4.21)

with t = ∞ to conclude that Φr(n(∞)) = ρr when nr(∞) = 0. Consequently, n(∞) is on the

invariant manifold.

5 Geometry of the fixed-point state space

In this section, we determine and analyze the set of points n for which Λ(n) = ρ. As we have

seen in the previous section, this equality (practically saying that on average, work is flowing out

and in at the same rate) determines the invariant points of our fluid model. A main technical

task is to show that only such states n show up in the heavy-traffic limit. The analysis in this

section is inspired by (Ye and Yao, 2012, Section 3), though our situation is different, as we

need to deal with routing.

Let B† = diag (m) (I − P T )−1diag (ρ). Define

W := {w = B†ATπ : π = (πl)l∈L ≥ 0}. (5.1)

The following lemma shows that W arises from the so-called invariant manifold, or fixed-point

state space for the fluid model introduced in Definition 4.1.

Lemma 5.1. For any state n ≥ 0 satisfying Λr,f (n) = ρr,f for all r ∈ R and l ∈ L, its

associated workload, as defined by (3.4), must be in W.
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Proof. Suppose γr,f = ρr,f , for all r ∈ R and l ∈ L, is the optimal solution to (2.13) and let

πl = ηl ≥ 0 be the corresponding Lagrangian multiplier. According to (3.4), the workload of

phase f on route r is

wr,f = mr,f

∑
f ′

[(1− P r,T )−1]f,f ′nr,f ′ = mr,f

∑
f ′

[(1− P r,T )−1]f,f ′ρr,f ′
∑
l∈L

Al,rπl.

In matrix form, w = BATπ.

The routing in our model is only “local” in the sense that phase transitions only happen

within each route. This means that P is a block-diagonal matrix and so is B†. We now develop

some notions that enable us to connect this part of the analysis to work done in Ye and Yao

(2012). Let C be an R×
∑

r∈R Fr matrix with the first F1 columns all being the R-dimensional

vector (1, 0, . . . , 0)T , the next F2 columns all being (0, 1, . . . , 0)T and so on. In particular,

C =


1 . . . 1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

...
...

...
...

...
...

...
...

...

0 . . . 0 0 . . . 0 . . . 1 . . . 1

 .

Then, we have that

A = AC. (5.2)

Define now the diagonal matrix

B := diag (m) diag
(
(I − P T )−1ρ

)
. (5.3)

Due to the structure of A (repeating the rth column of A for Fr times; see (2.5)), we have

B†AT = BAT . (5.4)

The key difference between our model and that of Ye and Yao (2012) is in the definition of the

workload in (3.4). Since some of our work is rerouted, we need to carefully handle the indirect

work that an arrival brings to the system. As a consequence, the matrix B† is not a diagonal

matrix, as required in the geometric analysis in Ye and Yao (2012). However, due to the special

structure of our routing matrix (3.3), we can replace B† with B (cf. (5.4)) and the structure

of W coincides with that of the similar manifold introduced in Ye and Yao (2012). Thus, all

the analysis in Ye and Yao (2012) applies to our situation; this would no longer be the case if

we consider more general routing schemes as considered in Section 4. We now briefly cite some

relevant results from Ye and Yao (2012).

Workload decomposition. Let ∆ be the left null space of AT , i.e. the kernel of A:

∆ := {δ ∈ R
∑

r∈R Fr : Aδ = 0},

as A is of full row rank. We assume without loss of generality that
∑

r∈R Fr > L; if equality

were true, then this would actually simplify the analysis, as W would be the positive orthant in

this case. ∆ is of dimension
∑

r∈R Fr − L. Since B is diagonal, and thus of full rank, then for

any basis H (which is of dimension
∑

r∈R Fr × (
∑

r∈R Fr − L)) of ∆, BH is also a basis and

ABH = 0. (5.5)

18



Moreover, as B is symmetric, one can chose the basis H such that

HTBH = I.

The null space ∆ can now be expressed as

∆ = {BHz : z ∈ R
∑

r∈R Fr−L}. (5.6)

So any
∑

r∈R Fr-dimensional real-valued vector w can be decomposed into two linearly inde-

pendent vectors, one belonging to W and one belonging to ∆:

w = BATπ +BHz, (5.7)

with π and z as specified in (5.1) and (5.6). Note that because A and B are both full rank and

AB is surjective, ABAT is invertible. Then, set G = AT (ABAT )−1 and observe that

GTBTG = GTBG = (ABAT )−1, GTBH = 0, GTBTAT = GTBAT = ABG = I. (5.8)

In other words, gl, the lth column of G, is perpendicular to Bhm, with hm the mth column of

H. (Keep in mind that B is diagonal.) Let Wl := {w ∈ W : πl = 0} denote the lth facet of W;

we see that gl is perpendicular to Wl. The
∑

r∈R Fr-dimensional matrix (G,H) is invertible

(cf. Ye and Yao (2012)); hence, we can decompose the
∑

r∈R Fr-dimensional vector w as

w = BGy +BHz. (5.9)

It follows from (5.5), (5.7) and (5.8) that

HTw = z and GTw = π. (5.10)

Dynamic complementarity problem. Consider the following dynamic complementarity

problem (DCP), also known as Skorokhod problem.

w(t) = w(0) + x(t) +BGy(t) +BHz(t) ≥ 0, (5.11)

GTw(t) ≥ 0, (5.12)

yl(t) is nondecreasing in t with y(0) = 0, (5.13)∫ ∞
0
w(t)TGdy(t) = 0, (5.14)

HTw(t) = 0. (5.15)

If we multiply (5.11) by HT from the left, we have z(t) = −HTx(t) due to (5.5), (5.8) and

(5.15). Also note that (5.7) and (5.10) imply that

BATGT +BHHT = I.

Therefore, we can eliminate z(t) in (5.11) to obtain

w(t) = w(0) +BATGTx(t) +BGy(t) ≥ 0. (5.16)

It is pointed out in Ye and Yao (2012) that the DCP characterized by (5.16) and (5.12)–(5.15)

can be transformed to a standard Skorohod problem (e.g., Williams (1998)) if we consider

wG(t) = GTw(t). Let Ψ : D → D3 denote the solution to the DCP (5.11)–(5.15), i.e.,

(w, y, z) = Ψ(x).

The results in this section are required to derive the diffusion limit in Section 6.
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Reflection on the boundary. To connect this DCP with our workload process, observe that

by applying the decomposition (5.9) to
∫ t

0 [ρ − Λ(Nk(s))]ds, the dynamics for the stochastic

workload process (3.9) can be written as

W k(t) = W k(0) +Xk(t) +BGY k(t) +BHZk(t), (5.17)

where Y k(t) is defined in (3.11) and

Zk(t) = HT

∫ t

0
[ρ−Λ(Nk(s))]ds.

We see that (5.11) and (5.13) are valid, while in general (5.12), (5.14) and (5.15) are not. A

main technical challenge of the paper is to show that they are approximately valid for large k

under a heavy traffic assumption.

The condition (5.15) says w lives in W. This is not the case in the pre-limit, but if w is

close to W and there is backlog at link l, then that link is working at full capacity, which is

approximately (5.14). To make this formal, define the distance from any state w to W as

dfp(w) =
∑
l∈L

(−gTl w)+ +

∑
r∈R Fr−L∑
m=1

|hTmw|.

The intuition behind this definition is that, following from (5.10), w is an invariant point if and

only if z = HTw = 0 and π ≡ GTw ≥ 0. A key lemma is (Ye and Yao, 2012, Lemma 2).

Lemma 5.2 (Ye and Yao (2012)). Let M > 0 and ε > 0 be given. There exists a constant

σ = σ(M, ε) > 0 (sufficiently small) such that the following implication holds for any l ∈ L:

gTl w > ε⇒ AlΛ(n) = cl

if both |w| ≤M and dfp(w) ≤ σ.

6 Diffusion approximations

The main objective of this section is to study the network in heavy traffic in order to establish the

diffusion approximation, which is stated in Theorem 6.1 below. The main difficulty is that the

DCP in Section 5 does not hold for the stochastic system; however, it holds only asymptotically

in the heavy traffic regime, in a sense we make precise later on. To this end, we establish state

space collapse (SSC) in Section 6.2, which shows that the diffusion-scaled workload process will

be close to the invariant manifold and the DCP is satisfied asymptotically (Proposition 6.2(ii)).

Using the framework of Bramson (1998), we prove SSC using a uniform fluid approximation

shown in Section 6.1 and the convergence to the invariant state of the fluid model, as we have

shown in Section 4.

Our heavy-traffic assumption is, as k →∞,

λk → λ, (6.1)

k(ρ− ρk)→ θ, (6.2)
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for some λ and θ ∈ RR+. By (2.8), this implies k(ρr,f −ρkr,f )→ θr,f for some θr,f ≥ 0 as k →∞.

The diffusion scaling is defined as

N̂k(t) =
1

k
Nk(k2t), Ŵ k(t) =

1

k
W k(k2t),

and the diffusion scaling for the process quantities is defined as

Êk(t) =
1

k
Ĕk(k2t), Ŝk(t) =

1

k
S̆k(k2t).

The definitions of the scaling for the corresponding route-level quantities are defined in exactly

the same way. Following the above definition, we have the following diffusion scaling

X̂k(t) = diag (m) (I − P T )−1Êk(t) + k(ρk − ρ)t

+ diag (m) (I − P T )−1
[
Ŝk+
(
D̃k(t)

)
− Ŝk−

(
D̃k(t)

)]
, (6.3)

Ŷ k(t) =
1

k
A

∫ k2t

0
[ρ−Λ(Nk(s)]ds,

Ẑk(t) =
1

k
HT

∫ k2t

0
[ρ−Λ(Nk(s)]ds,

where D̃k(t) = Dk(k2t)/k2. The above diffusion-scaled processes still satisfiy the dynamic

equation (5.17). We do not copy it, but later refer to it as the diffusion-scaled version of (5.17).

Theorem 6.1. Assume that (2.1), (2.2), (2.7), (6.1), and (6.2) hold. In addition, assume that

the diffusion-scaled initial state converges weakly as k →∞:

Ŵ k(0)⇒ χ0 ∈ W. (6.4)

The stochastic processes under the proportional-fairness allocation policy converge weakly as

k →∞ (
X̂k(·), Ŵ k(·), Ŷ k(·), Ẑk(·)

)
⇒
(
X̂(·),Ψ(X̂)(·)

)
,

where Ψ is defined after the DCP in Section 5 and X̂(·) is a Brownian motion with drift −θ
and covariance matrix

ΣX = diag (m) (I − P T )−1 (diag (λa) + ΣU ) (I − P )−1diag (m) , (6.5)

with

ΣU = diag
(
(I + P T )(ρ · µ)

)
− P Tdiag (ρ · µ)− diag (ρ · µ)P , (6.6)

(λa)r,f = λrar,f , and (ρ · µ)r,f = ρr,fµr,f .

The proof of this theorem is postponed to the end of this section. The strategy of proving

this result follows that of Williams (1998) where the key step is to prove the state spaces collapse

(Proposition 6.2) using the method developed by Bramson (1998).
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6.1 Uniform fluid approximations

We follow the approach and terminology of Bramson (1998). The shifted fluid scaling for

“status” quantities (the state at a particular time) is defined as

Ūk,j(t) =
1

k
Uk(kj + kt),

where Uk could be any of the processes Nk, W k, Dk and Y k. The shifted fluid scaling for

“process” quantities (the accumulative number of events by a particular time) is defined as

Ūk,j(t) =
1

k
[Uk(kj + kt)− Uk(kj)],

where Uk could be any of the processes Ĕk and S̆k. To connect the shifted fluid scaling and

diffusion scaling, consider the diffusion-scaled process on the interval [0, T ], which corresponds

to the interval [0, k2T ] for the unscaled process. Fix a constant L > 1; then, the interval will

be covered by the bkT c+ 1 overlapping intervals

[kj, kj + kL], j = 1, 2, . . . , bkT c.

For each t ∈ [0, T ], there exists a j ∈ {0, ..., bkT c} and s ∈ [0, L] (which may not be unique)

such that k2t = kj + ks. Thus,

X̂k(t) = X̄k,j(s). (6.7)

To utilize the shifted fluid-scaled processes to analyze the diffusion-scaled processes, we

present a uniform fluid approximation, which is the same as (Ye and Yao, 2012, Lemma 12).

Proposition 6.1. Assume (6.1) and the existence of M > 0 such that the initial state |N̄k,jk(0)| <
M for all k, where jk is an integer in [0, kT ]. For any subsequence of {k}∞0 , there exists a sub-

sequence K along which (N̄k,jk(·), W̄ k,jk(·), D̄k,jk(·), Ȳ k,jk(·)) converges with probability 1 u.o.c.

to a fluid model solution (N̄(·), W̄ (·), D̄(·), Ȳ (·)) that satisfies the fluid model equations (4.3)–

(4.7).

Proof. Following (Bramson, 1998, Proposition 4.2) and (Stolyar, 2004, Appendix A.2), using

Chebyshev’s inequality and the Borel-Cantelli lemma, we have that, as k →∞,

sup
s∈[0,kT ]

sup
t∈[0,L]

|1
k
Ĕk(ks+ kt)| → 0,

sup
s∈[0,kT ]

sup
t∈[0,L]

|1
k
S̆k(ks+ kt)| → 0,

a.s. (almost surely) for any fixed T > 0 and L > 0. This implies that a.s. as k →∞,

max
j∈kT

sup
t∈[0,L]

( ¯̆
Ek,j(t),

¯̆
Sk,j(t)

)
→ (0,0).

From this point, we can apply exactly the same approach as in (Massoulié, 2007, Appendix A.1)

to obtain convergence. Applying the shifted fluid scaling to the dynamics equations (3.1) and

(3.2) and the scalability of Λr,f (·) (see the comment after (2.12)), we have

N̄k,j
r,f (t) = N̄k,j

r,f (0) + λrar,f t+
∑
f ′∈Fr

µr,f ′P
r
f ′,f

∫ t

0
Λr,f ′

(
N̄k,j(s)

)
ds

− µr,f
∫ t

0
Λr,f

(
N̄k,j(s)

)
ds+ ε̄kr,f (t),
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where, utilizing the notations defined in (3.5)–(3.8),

sup
t∈[0,L]

|ε̄kr,f (t)| ≤ sup
s∈[0,kT ]

sup
t∈[0,L]

1

k
|Ĕk

r,f (ks+ kt)|

+ sup
s∈[0,kT ]

sup
t∈[0,L]

1

k

∑
f ′∈F∪{0}

|S̆kr,f,f ′(ks+ kt)|+ sup
s∈[0,kT ]

sup
t∈[0,L]

1

k

∑
f ′∈F

|S̆kr,f ′,f (ks+ kt)|.

This implies supt∈[0,L] |ε̄kr,f (t)| → 0 a.s. as k → ∞. Moreover, |N̄k,j(0)| < M for all j, k by

our assumption. So we have verified the two conditions of a variation of the Arzela-Ascoli

theorem (see (Ye et al., 2005, Lemma 6.3)). Thus, for any subsequence, there exists a further

subsequence such that, as k →∞, almost surely,∫ ·
0

Λr,f

(
N̄k,j(s)

)
ds→ D̄r,f ′(·) u.o.c. on [0, L], (6.8)

N̄k,j
r,f (·)→ N̄(·) u.o.c. on [0, L],

where

N̄r,f (t) = N̄r,f (0) + λrar,f t+
∑
f ′∈Fr

µr,f ′P
r
f ′,fD̄r,f (t)− µr,fD̄r,f (t).

To avoid complicating the notation, we still use k to index the subsequence. By Rademacher’s

theorem, D̄r,f (t) is differentiable almost everywhere on [0, L]. For any differentiable point t, if

N̄r,f (t) > 0, then Λr,f (·) is continuous at N̄(t) according to (Ye et al., 2005, Lemma 6.2(b)).

Thus, there exists an h > 0 such that N̄r,f (s) > 0 for all s ∈ [t, t+ h] and as k →∞,∫ t+h

t
Λr,f

(
N̄k,j(s)

)
ds→

∫ t+h

t
Λr,f

(
N̄(s)

)
ds.

If N̄r,f (t) = 0, then by Fatou’s lemma,

lim
k→∞

∫ t+h

t
Λr,f

(
N̄k,j(s)

)
ds ≤

∫ t+h

t
lim sup
y→N̄(s)

Λr,f (y)ds.

On the other hand, the function x→ lim supy→x Λr,f (y) is upper semi-continuous, thus

lim sup
s→t

lim sup
y→N̄(s)

Λr,f (y) ≤ lim sup
y→N̄(t)

Λr,f (y).

This implies that the derivative of D̄r,f (t) at t must lie in the interval [0, lim supy→N̄(t) Λr,f (y)].

This is why we construct Φ(·) (see (4.4)) as the extension of Λ(·) in Definition 4.1. It remains

to be shown that for all regular t ≥ 0,

AΦ(N̄(t)) ≤ c. (6.9)

Observing that AΛ(n) ≤ c for any regular state n due to the allocation policy (2.11), we

conclude for the pre-limit process N̄(·) that∫ t+h

t
AΛr,f

(
N̄k,j(s)

)
ds ≤ ch.

By the convergence (6.8), we must have (6.9).
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6.2 State space collapse and asymptotic complementarity

There are two key properties leading to the proof of Theorem 6.1. Note that the diffusion-scaled

stochastic process (X̂k(·), Ŵ k(·), Ŷ k(·), Ẑk(·)) only satisfies equations (5.11) and (5.13) of the

DCP, but does not satisfy equations (5.12), (5.14) and (5.15). We will show in the following

proposition that it satisfies these equations in an approximation sense. The approximate sat-

isfaction of (5.12) and (5.15) is called state space collapse, meaning that the diffusion-scaled

workload process Ŵ k(·) gets close to the invariant manifold W as k grows large; The ap-

proximate satisfaction of (5.14) is called Asymptotic Complementarity and is instrumental in

establishing tightness. The latter is formalized by the following proposition.

Proposition 6.2. Pick a sample-path dependent constant C such that

sup
s,t∈[0,T ]

|X̂k(t)− X̂k(s)| ≤ C, (6.10)

and any ε > 0. Under condition (6.4), there exists a constant k(ε) such that for all k > k(ε)

the following properties hold:

1. State space collapse:

dfp
(
Ŵ k(t)

)
≤ ε, for all t ∈ [0, T ];

2. Asymptotic complementarity:

Ŷ k
l (t) can not increase at time t if gTl Ŵ

k(t) > 2ε, for all t ∈ [0, T ];

3. Boundedness: There exists M > 0, depending on C and network parameters, such that

|Ŵ k(t)| ≤M, for all t ∈ [0, T ].

Proof. Due to the relationship (6.7) between the diffusion and fluid-scaled processes, we just

need prove these three results for the shifted fluid-scaled processes, i.e.,

dfp
(
W̄ k,j(s)

)
≤ ε, (6.11)

Ȳ k,j
l (s) = Ȳ k,j

l (0) if sup
s′∈[0,L]

gTl W̄
k,j(s′) > 2ε, (6.12)

|W̄ k,j(s)| ≤M, (6.13)

for all j = 0, 1, . . . , bkT c and s ∈ [0, L]. We choose L > TM,min(ε/4,σ/2) + 1 with TM,min(ε/4,σ/2)

specified in Theorem 4.1 and use induction. First, we show (6.11)–(6.13) hold for j = 0. It

follows from the initial condition (6.4), Proposition 6.1 and Theorem 4.1 that

W̄ k,0(s)→ χ u.o.c. on [0, L],

for some χ ∈ W. Though the above convergence should be interpreted as for any subsequence

there is a further convergent subsequence, an easy proof by contradiction can show this is

enough to prove results for all sufficiently large k. Thus, we omit the complication of introducing

notation for subsequences. Thus (6.11) and (6.13) hold for j = 0 and all sufficiently large k.

Moreover,

|gTl
(
W̄ k,0(s)− χ

)
| < min(ε/4, σ/2),
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for all s ∈ [0, L]. This implies that

|gTl W̄ k,0(s)− gTl W̄ k,0(s′)|

≤ |gTl
(
W̄ k,0(s)− χ

)
|+ |gTl

(
W̄ k,0(s′)− χ

)
|

≤ ε.

(6.14)

So if sups′∈[0,L] g
T
l W̄

k,0(s′) > 2ε for some link l, then infs′∈[0,L] g
T
l W̄

k,0(s′) > ε due to the

triangle inequality

gTl W̄
k,0(s) ≥ gTl W̄ k,0(s′)− |gTl W̄ k,0(s)− gTl W̄ k,0(s′)|.

Applying Lemma 5.2, we have

Ȳ k,0
l (t)− Ȳ k,0

l (0) =

∫ t

0

(
cl −AlΛ(N̂k(s))

)
ds = 0. (6.15)

Thus (6.12) is proved for j = 0.

Now assume for each k there exits jk such that (6.11)–(6.13) hold for all j = 0, 1, . . . , jk − 1

for all sufficiently large k. Note that

W̄ k,jk(s) = W̄ k,jk−1(1 + s). (6.16)

Since L > 1, due to overlapping, (6.11)–(6.13) hold for j = jk on [0, L − 1]. We just need to

extend the result from [0, L− 1] to [0, L]. By Proposition 6.1 (again we omit the technicality of

subsequences), as k →∞

W̄ k,jk(s)→ W̄ (s) u.o.c. on [0, L], (6.17)

for some fluid limit W̄ (·). Due to (6.16), we readily have |W̄ k,jk(0)| ≤ M . This implies that

|W̄ (0)| ≤M . So, by applying Theorem 4.1, we have for all s ≥ L− 1 ≥ TM,ε/4

dfp
(
W̄ (s)

)
< min(ε/4, σ/2), (6.18)

|gTl
(
W̄ (s)− χ

)
| < min(ε/4, σ/2), (6.19)

for some χ ∈ W. Moreover, (6.17) and (6.18) imply that (6.11) holds for j = jk and s ∈ [L−1, L].

Further, (6.17) and (6.19) imply that

|gTl
(
W̄ k,j(s)− χ

)
| ≤ |gTl

(
W̄ k,j(s)− W̄ (s)|+ |gTl

(
W̄ (s)− χ

)
| ≤ min(ε/2, σ),

for all s ∈ [L − 1, L]. So (6.14) and (6.15) also hold for j = jk on [L − 1, L]. By Lemma 5.2,

(6.12) is proved for j = jk and s ∈ [L − 1, L]. The proof of boundedness (6.13) relies on the

asymptotic complementarity (6.12). Introduce the oscillation of a function on the interval [a, b]

Osc(f, [a, b]) = sup
a≤s≤t≤b

|f(t)− f(s)|.

It follows from (Ye and Yao, 2012, Lemma 13) (also see (Kang et al., 2009, Proposition 7)) that

(6.12) implies that

Osc(GTŴ k, [0,
jk + L

k
]) ≤ κcOsc(X̂k, [0,

jk + L

k
]) + κcε (6.20)

≤ κc(C + ε)
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by condition (6.10). Recall the definition G = AT (ABAT )−1, and observe that we have

AŴ k(t) = (ABAT )GTŴ k(t). (6.21)

So there exists another constant κa, which only depends on (ABAT ), such that

|AŴ k(t)| ≤ |AŴ k(0)|+ Osc(AŴ k, [0, t]) ≤ |Aχ0|+ ε+ κaκc(C + ε)

for all t ≤ (jk + L)/k and all sufficiently large k, where the last inequality is due to the initial

condition (6.4) and (6.21). Choose

M =
|Aχ0|+ ε+ κaκc(C + ε)

minl,r{Al,r : Al,r > 0}
.

Thus, |W̄ k,jk(s)| ≤M for all s ∈ [0, L] due to (6.7), and (6.13) holds for j = jk.

Proof of Theorem 6.1. According to the functional central limit theorem (e.g., Chapter 5 of

Chen and Yao (2001)), as k →∞,

Êk(·)⇒ Ê(·) and Ŝk(·)⇒ Ŝ(·), (6.22)

where Êr,f (·) and Ŝr,f (·) are standard Brownian motions independent of each other. Using the

Skorohod representation theorem, we can map all random objects to the same probability space

on which the above convergence, as well as the convergence (6.4), holds a.s. This enables us to

employ sample-path arguments for the rest of this proof.

We first show the convergence of X̂k(·). Define the scaling W̃ k(t) := W k(k2t)/k2. Such

a scaling is essentially same as the fluid scaling we introduced in Section 6.1, with the only

difference being that k2 is used to scale the time and space instead of k. Without symbolically

repeating the proof, we claim that the fluid approximation result in Proposition 6.1 still holds

for W̃ k(·). Note that by condition (6.4), as k →∞,

W̃ k(0) =
1

k
Ŵ k(0)→ 0 ∈ W.

This implies, by Theorem 4.1, that, as k →∞,

D̃k
r,f (·)→ ρr,f ·, u.o.c. on [0,∞). (6.23)

The convergence (6.23), together with the a.s. version of (6.22), implies that

Ŝkr,f,f ′
(
D̃r,f (·)

)
→ Ŝr,f,f ′(ρr,f ·), u.o.c. on [0,∞). (6.24)

Let

Û(t) =
∑
f ′∈Fr

Ŝr,f ′,f (ρr,f ′t)−
∑

f ′∈Fr∪{0}

Ŝr,f,f ′(ρr,f t).

Recall (6.3), the diffusion-scaled version of the system dynamics (3.10). From the above con-

vergence (6.22)–(6.24), we can conclude that, u.o.c. on [0,∞),

X̂k(·)→ X̂(·), (6.25)

where X̂(t) = −θt + diag (m) (I − P T )−1(Ê(at) + Û(t)). Clearly, this is a Brownian motion

with drift −θ. We now show that the covariance matrix is (6.5). The covariance matrix of
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Ê(a·) is diag (λa). To compute the covariance matrix of Û(·), we only need to do that for each

fixed r ∈ R. Note that each Ŝkr,f,f ′(ρr,f ·), f ∈ Fr, f ′ ∈ Fr ∪ {0}, is an independent Brownian

motion with variance ρr,fµr,fP
r
f,f ′ . Observe that for any t ≥ 0,

E[Ûf0(t)Ûf1(t)]

= E

[( ∑
g∈Fr

Ŝr,g,f0(ρr,gt)−
∑

g∈Fr∪{0}

Ŝr,f0,g(ρr,f0t)
)( ∑

g∈Fr

Ŝr,g,f1(ρr,gt)−
∑

g∈Fr∪{0}

Ŝr,f1,g(ρr,f1t)
)]

Writing out this product we get an expression of the form I− II− III+ IV . We compute each

term separately. Let 1{·} be the indicator function.

I = 1{f0=f1}
∑
g∈Fr

E
[
Ŝ2
r,g,f0(ρr,gt)

]
= 1{f0=f1}

∑
g∈Fr

µr,gρgPgf0 ,

IV = 1{f0=f1}µr,f0ρr,f0 , II = ρr,f1µr,f1P
r
f1,f0 , III = ρr,f0µr,f0P

r
f0,f1 .

Thus, the covariance matrix of Û is given by (6.6), from which we obtain (6.5).

Second, we study the convergence of Ẑk(·). By Proposition 6.2 (a), as k →∞,

|hTmŴ k(·)| → 0, u.o.c. on [0,∞).

Multiplying both sides of the diffusion-scaled version of (5.17), we have for all t ≥ 0,

hTmŴ
k(t) = hTmŴ

k(0) + hTmX̂
k(t) + Ẑk(t).

Thus, as k →∞,

Ẑk(·)→ Ẑ(·) := −hTmX̂(·), u.o.c. on [0,∞). (6.26)

Next, we study the convergence of Ŷ k(·). It follows from Proposition 6.2 (c) that Ŷ k(·) is also

uniformly bounded on the interval [0, T ]. Hence, according to Helly’s selection theorem (e.g.,

(Billingsley, 1995, p. 336)), for any subsequence of Ŷ k(t), there exists a further subsequence K
along which as k →∞,

Ŷ k(t)→ Ŷ (t), (6.27)

for a nondecreasing function Ŷ (t) which is continuous almost everywhere. The above conver-

gence holds for all time t ∈ [0, T ] at which Ŷ (t) is continuous.

Summarizing (6.25)–(6.27), by (5.17), we have along the subsequence K as k →∞,

Ŵ k(t)→ Ŵ (t) = Ŵ (0) + X̂(t) +BGŶ (t) +BHẐ(t)

for almost all t ∈ [0, L] (those t at which Ŷ (t) is continuous). Note that Ŷ (·) can be chosen

to be right continuous with left limits since it is continuous almost everywhere. Thus, Ŵ (·)
is also right continuous with left limits. By Proposition 6.2, the

(
Ŵ k(·), X̂k(·), Ŷ k(·), Ẑk(·)

)
satisfies the DCP (5.11)–(5.15). It follows from the oscillation bound (6.20) that the limit

Ŵ (·) is continuous, and so is the process Ŷ (·). By the uniqueness of the solution to the DCP

(e.g., (Ye and Yao, 2012, Proposition 4)), the convergence along the subsequence K implies the

convergence along the original sequence.

27



7 The invariant distribution: insensitivity and product form

In this section we analyze the SRBM N̂(t), t ≥ 0; the limit of our queue-length process. Define

ŴG(t) = GTŴ (t), t ≥ 0.

It follows from (5.4) and (5.8) (in particular GTBAT = I) that

Ŵ (t) = BAT ŴG(t) = B†AT ŴG(t), t ≥ 0.

Letting 1/m be the vector with each component being the reciprocal of the corresponding one

of m, we obtain by (3.4),

N̂(t) = (I − P T )diag (1/m) Ŵ (t), t ≥ 0.

According to the definition of B† (given above (4.1)),

N̂(t) = diag (ρ)AT ŴG(t), t ≥ 0.

Since by definition Nr(t) =
∑

f∈Fr
Nr,f (t), the same relation holds for the diffusion limits N̂r(t),

r ∈ R, t ≥ 0 and N̂r,f (t), r ∈ route, f ∈ Fr, t ≥ 0. By invoking (5.2), the limiting queue length

process at the route level, given by N̂(t) = (N̂r(t), r ∈ R), t ≥ 0, satisfies

N̂(t) = diag (ρ)AT ŴG(t), t ≥ 0. (7.1)

The main result of this section is an expression for the invariant distribution of ŴG(t), t ≥ 0:

Theorem 7.1. Assume θ > 0. As t→∞, ŴG(t)→ ŴG(∞) in distribution, where the random

variable ŴG(∞) is a vector of independent exponential distributions with rate θ.

Observe that this result, combined with (7.1), is consistent with conjecture (1.1).

We prove Theorem 7.1 by checking a sufficient condition for product form, due to Harrison

and Williams (1987). A version of this result, suitable for our purposes, is stated in Section 7.1.

The condition involves a relationship between the covariance matrix and the reflection matrix,

which are analyzed in Section 7.2 and 7.3. All insights are combined in Section 7.4.

7.1 Sufficient condition for product form

The results in Sections 5 and 6 imply that WG, t ≥ 0, is a semi-martingale reflected Brownian

motion as defined in, e.g. Harrison and Williams (1987). A SRBM is characterized by the

drift −θ, covariance matrix Γ of the driving Brownian motion, and reflection matrix R. In our

setting, the SRBM has a stationary distribution as we assume θ > 0. Harrison and Williams

(1987) shows when this stationary distribution is of product form assuming a normalized form

of R. For our purposes the version presented as Theorem 7.12 in Chen and Yao (2001) is most

convenient, and we follow that verbatim here.

Suppose that R−1θ > 0. Let Γd be a diagonal matrix containing the diagonal elements of

Γ, and let Rd be a diagonal matrix containing the diagonal elements of R. If

2Γ = RR−1
d Γd + ΓdR

−1
d RT , (7.2)
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the density of the stationary distribution is given by

f(z) =
∏
r∈R

σre
−σrz,

where for all r, σr are elements of the R-dimensional vector σ = 2Γ−1
d Rdθ. We need to verify

this in our situation. From the discussion of the reflection mapping in Section 5, in particular

(5.16), we have for t ≥ 0,

ŴG(t) = ŴG(0) +GT X̂(t) +GTBGY (t)

= ŴG(0) + (ABAT )−1AX̂(t) + (ABAT )−1Y (t),

where the last inequality follows from the definition of G (recall G = AT (ABAT )−1) and (5.8).

So, the reflection matrix is given by R = (ABAT )−1. Since in our case the reflection matrix is

symmetric, the sufficient condition (7.2) becomes

Γ = RR−1
d Γd. (7.3)

The remainder of this section is devoted to the verification of (7.3). In Section 7.2, we derive

an expression for the covariance matrix of AX̂(t), t ≥ 0. Then in Section 7.3, we simplify the

reflection matrix R. Together, these insights yield the covariance matrix of GT X̂(t) = RAX̂(t),

t ≥ 0, allowing us to verify (7.3) in Section 7.4.

7.2 The covariance matrix

The covariance matrix of AX̂(t), t ≥ 0, is

AΣXA
T = ACΣXC

TAT , (7.4)

by Theorem 6.1 and (5.2). We use the representation (6.5) of ΣX and set τr = (I − P r)−1mr.

In other words, τr = (τr,1, . . . , τr,Fr)T where τr,f can be interpreted as the residual service

requirement of a job at phase f on route r. Note that by (6.5) and (6.6), ΣX is a block diagonal

matrix with the rth block being the Fr-dimensional matrix

Σr
X = λrdiag (ar) + Σr

U ,

where

Σr
U = diag

(
(I + P r,T )(ρr · µr)

)
− P r,Tdiag (ρr · µr)− diag (ρr · µr)P r. (7.5)

Due to the structure of C (cf. Section 5), the matrix CΣXC
T is an R × R diagonal matrix,

with on each diagonal entry an expression of the form

τTr (λrdiag (ar) + Σr
U ) τr. (7.6)

To simplify this expression, we first need to simplify Σr
U . Note that, by (2.8)

ρr = λrdiag (mr) (I − P r,T )−1ar. (7.7)

Thus, we see that

ρr · µr = λr(I − P r,T )−1ar.
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Consequently, we have

(I + P r,T )(ρr · µr) = λr(I + P r,T )(I − P r,T )−1ar = λr[2(I − P r,T )−1 − I]ar.

So the first term on the right hand side of (7.5) can be transformed into 2λrdiag
(
(I − P r,T )−1ar

)
−

λrdiag (ar). The second and the third terms on the right hand side of (7.5) are just transpose

of each other, thus they play the same role in computing the quadratic form (7.6). This implies

that (7.6) can be written as

2λrτ
T
r

(
diag

(
aTr (I − P r)−1

)
(I − P r)

)
τr = 2λrm

T
r (I − P r,T )−1diag

(
aTr (I − P r)−1

)
mr

= 2λrm
T
r (I − P r,T )−1ρr, (7.8)

where the first equality is due to the definition of τr in the above. Let β
(2)
r be the second

moment of the phase-type distribution specified by ar and P r. We now show that (7.8) equals

λrβ
(2)
r . The normalized load vector ρr/ρr has a renewal-theoretic interpretation: for a renewal

process with phase-type inter-renewal times, ρr,f/ρr contains the probability that the renewal

process is in phase f in stationarity. Using renewal theory, and recalling (2.3), we see that

β
(2)
r

2βr
=
τTr ρr
ρr

=
mT

r (I − P r,T )−1diag (mr) (I − P r,T )−1ar
βr

=
mT

r (I − P r,T )−1ρr
βr

,

where the last equality is due to (7.7). Consequently,

β(2)
r = 2mT

r (I − P r,T )−1ρr.

In view of (7.6)–(7.8), the rth element of the diagonal matrix CΣXC
T is λrβ

(2)
r . Thus, setting

β(2) = (β
(2)
1 , . . . , β

(2)
R ),

CΣXC
T = diag

(
λ · β(2)

)
.

By (7.4), we conclude that the covariance matrix of AX(t) is Adiag
(
λ · β(2)

)
AT .

7.3 The reflection matrix

By (5.2), the reflection mapping can be written as

R = (ABAT )−1 = (ACBCTAT )−1.

According to (5.3), B is a
∑

r∈R Fr-dimensional diagonal matrix. Due to the structure of C

(see Section 5), CBCT is an R-dimensional diagonal matrix, with the rth element being the

sum of the all the elements on the diagonal of the rth block of B. Thus, by (2.8), the rth

diagonal element of CBCT is

λrm
T
r (I − P r,T )−1diag (mr) (I − P r,T )−1ar = λrm

T
r (I − P r,T )−1ρr = λrβ

(2)
r /2.

So we have R = 1
2(Adiag

(
λ · β(2)

)
AT )−1.
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7.4 Verification of the skew symmetry condition

We are now in a position to verify the product-form condition (7.3).

Proof of Theorem 7.1. Set D = diag (λ) diag
(
β(2)

)
. In the previous two sections, we derived

for the reflection matrix R = (ADAT )−1/2 and for the covariance matrix Σ = GTAΣXA
TG,

which equals RADATR. This implies that Σ = 2R. The product form condition (7.3), which

is R−1Σ = ΣdR
−1
d , is equivalent to R−1Σ = ΣdR

−1
d , which is now trivial: both sides equal 2.

The vector σ is given by σ = 2Γ−1
d Rdθ = θ; see also Harrison and Williams (1987) and Chen

and Yao (2001).
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Massoulié, L. (2007). Structural properties of proportional fairness: stability and insensitivity.

Ann. Appl. Probab. 17 (3), 809–839.
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