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Ride-hailing platforms such as Uber, Lyft, and DiDi coordinate supply and demand by matching passen-

gers and drivers. The platform has to promptly dispatch drivers when receiving requests, since otherwise

passengers may lose patience and abandon the service by switching to alternative transportation methods.

However, having less idle drivers results in a possible lengthy pick-up time, which is a waste of system

capacity and may cause passengers to cancel the service after they are matched. Due to complex spatial

and queueing dynamics, the analysis of the matching decision is challenging. In this paper, we propose a

spatial model to approximate the pick-up time based on the number of waiting passengers and idle drivers.

We analyze the dynamics of passengers and drivers in a queueing model where the platform can control the

matching process by setting a threshold on the expected pick-up time. Applying fluid approximations, we

obtain accurate performance evaluations and an elegant optimality condition, based on which we propose a

policy that adapts to time-varying demand.
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1. Introduction

The on-demand ride-hailing market has experienced rapid growth in recent years. With Uber

operating in over 700 cities around the world (Uber (2018b)) and DiDi-Chuxing dominating the

ride-sharing market within China, ride-hailing platforms have profoundly changed the way people

travel. On-demand ride-hailing service has obvious advantages over traditional taxi service. As

the centralized controller, a ride-hailing platform connects between the drivers (supply) and the

passengers (demand) by collecting the real-time locations of drivers and responding to passengers’

requests, so that neither the drivers nor the passengers need to wander in the streets in the hope

of finding each other. In this process, however, the platform faces the challenge of how to match

idle drivers and requesting passengers.

To understand how matching affects a ride-hailing system and its users, we start with a discussion

on two important considerations in the matching decision. The first is the pick-up distance, which is

the distance between the idle driver and the requesting passenger. During pick-up, passengers must

wait at a prescribed location (the pick-up location), and drivers must drive to this exact location
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without making any profit. Therefore, a long pick-up distance not only harms the user experience

but also wastes system capacity. The other consideration is passenger patience as reflected by

abandonment and cancellation. A passenger may abandon the service if the platform does not

assign a driver promptly. Even after assignment, the passenger still has the option of cancelling

the trip if the pick-up takes too long. While abandonment leads to a loss of business, cancellation

is even worse as it also wastes driver effort and consequently the platform capacity. Forbidding

cancellation during pick-up may put passengers off requesting for service in the first place and may,

in turn, damage the platform’s reputation. Some platforms impose a small amount of cancellation

fee. For example, DiDi charges a small cancellation fee if a passenger cancels the service three

minutes after a driver is assigned DiDi (2019) and Uber applies a similar rule (Uber (2018a)).

However, the purpose such a penalty is primarily to prevent malicious attacks and irresponsible

requests for services.

Abandonments can be reduced by assigning a driver promptly, and cancellations can be mitigated

by shortening the pick-up distances. Thus, a simple greedy matching policy would always assign

the “nearest” idle driver to the passenger making the request. However, this simple greedy policy

is sub-optimal because it fails to consider the future dynamics of the system. For example, upon a

request for a service, the nearest driver may in fact be far away from the pick-up point. But after

a short while, other idle drivers may appear who happen to be closer to the pick-up location than

the first driver, or a new request may be received that is closer than the earlier request to the first

driver. A similar phenomenon is referred to as the “Wild Goose Chase” by Castillo et al. (2017).

Another reason for the sub-optimality of this greedy policy is an imbalance in supply and demand,

as explained in Ozkan and Ward (2016). In this paper, we focus on finding a guiding principle for

designing a matching policy to optimize the performance of the system. Our analysis shows that,

when pricing is exogenously given, a fine-tuned matching algorithm can benefit passengers, drivers,

and the platform simultaneously.

In a typical ride-hailing system, a driver can be in one of three states, idle, assigned and busy.

Assigned refers to the state where the driver is on the way to pick up a passenger and busy is the

state where the driver has already picked up the passenger and is heading towards the destination.

Correspondingly, there are three states for passengers, requesting, waiting for pick-up and on trip,

where the last two states are coupled with the assigned and busy states of drivers. The analysis

and optimization of a matching policy require incorporating the queueing dynamics of the drivers

and passengers in different states. For this purpose, we require a spatial model that is able to

sufficiently capture the pick-up time under the queueing dynamics. The greatest challenge is that

the dimensionality of the system explodes when we incorporate the spatial interaction into the

queueing model. Note that platforms like DiDi and Uber usually have over tens of thousands of
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drivers and passengers in major cities. Therefore, it is impractical to build a model that keeps track

of all pairwise distances between passengers and drivers. Instead, we propose a spatial model that

assumes the average pick-up time to be

1

Average Pick-up Time
=C (# of requesting passengers)

α1 × (# of idle drivers)
α2 , (1)

for some constants C, α1, α2 ∈ (0,∞). The right-hand side of (1) shares the same form as the

Cobb-Douglas production function, which was first introduced by Coma and Douglas (1928) and

has been widely used to model quantitative relationships when a response depends on two or more

factors. For example, the Cobb-Douglas production function has been used in the analysis of two-

sided markets by Rochet and Tirole (2003) and in the taxi and ride-hailing market by Yang et al.

(2010), Wang et al. (2016) and Xu et al. (2019).

On a specific map, the average pick-up time primarily depends on the number of requesting

passengers and the number of idle drivers. Moreover, the average pick-up time should be shorter

if either of the two factors increases. The parameters C, α1, α2 provide the model with substantial

richness to accommodate different maps. To give a quick and simple justification, we randomly

sample idle drivers and requesting passengers on a square map with Euclidian distance, and plot

the change in average minimum pair-wise distance dmin
1 with the two factors in Figure 1(a), along

with the proposed spatial model (1) in Figure 1(b). The two graphs look similar and only differ

by 1.7% on average. Further numerical justification is provided in Appendix B. On real city maps,

the parameters C and α1, α2 can be estimated based on real data. For details, see Appendix B

and Section 6.1.

In practice, ride-hailing platforms usually control the pick-up time by setting a maximum allowed

pick-up distance, which is variously referred to as the matching radius (Xu et al. (2019)), maximum

dispatch radius (Castillo et al. (2017)), or response cap (Feng et al. (2017)). When a passenger

requests a ride, the platform tries to find an available driver who is within the matching radius of

the pick-up location. If there is no available driver within this range, the passenger has to wait.

Castillo et al. (2017) and Feng et al. (2017) both argued that such a threshold on the pick-up

distance could improve the system performance. According to Castillo et al. (2017), Uber caps the

pick-up distance as part of their matching algorithm. Throughout the paper, without preference,

refer to the maximum allowed pick-up distance as the matching radius. In our queueing model, we

model the matching radius as a threshold on the pick-up rate. To the best of our knowledge, we

believe our work breaks ground by formally researching the choice of matching radius and obtain

tractable operational guidelines.

1 It reduces to the average pick-up time if we assume the speed of each driver is one.
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Figure 1 Comparison between the numerical experiment and the spatial model.

((a) Average taken over 5000 samples. (b) Spatial model 1 with C = 0.031 and α1 = α2 = 0.5.

m: number of requesting passengers, l: number of idle drivers);

With the help of the spatial model, we are able to characterize the dynamics of the drivers

(in states idle, assigned and busy) and passengers (in states requesting, waiting for pick-up and

on trip) using a stochastic model which is formulated in Section 3. Since the stochastic process

is prohibitively difficult to analyze, we study the fluid counterpart of the process and prove that

the fluid process converges to its equilibrium, which serves as an accurate approximation to the

system performances. Based on the fluid approximation, we formulate an optimization problem to

maximize the throughput of the system. Our most important finding is identifying an optimality

condition, which can be simply stated as

α1

# cancellations

# abandonments
+α2

# assigned drivers

# idle drivers
= 1, (2)

where α1 and α2 are the parameters of the spatial model (1). The optimality condition has two

main advantages. The first is its simplicity. Note that the first fraction in (2) involves quantities

cumulated over a time interval, which can be estimated by counting the accumulative number of

abandonments and cancellations over a short time interval. To calculate the second fraction in

(2), all we need to do is count the number of idle and assigned drivers in the system. The second

advantage of the optimality condition is that it does not involve too many parameters. To apply

this optimality condition, the platform only has to estimate the spatial parameters α1 and α2.

There is no need to estimate any other parameters, for example, the spatial parameter C, arrival

rate, abandonment rate, and cancellation rate.

These advantages lead to easy-to-implement design principles of a matching policy. Essentially,

the platform only needs to set the matching radius so that the optimality condition (2) holds.

Intuitively, the matching radius serves as an adjustable variable so that the platform can balance the
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tradeoff between matching drivers and passengers promptly and waiting to make better matchings.

Since the optimality condition does not depend on the arrival rate, we design a self-adaptive

matching policy that can automatically adjust itself in response to time-varying arrival rate. In

Section 6.3, we perform numerical experiments of the self-adaptive policy in a simulated ride-hailing

system with the aim of approximating the practical situation and demonstrate the efficacy of the

policy.

The rest of the paper is organized as follows. Section 2 reviews the related literature. In Section 3,

we formulate a stochastic model for the dynamics of drivers and passengers in different states.

We construct and analyze the corresponding fluid model in Section 4. The optimization problem

is analyzed in Section 5. In Section 6, we perform numerical experiments of our matching policy.

Section 7 concludes the paper with discussions and possible directions of future research.

2. Literature Review

There is an emerging stream of literature on on-demand services and the sharing economy, covering

a wide range of topics, including but not limited to performance analysis, control mechanisms, and

social welfare. Here we review some closely related topics such as dispatch control, service system

with state-dependent rates, two-sided matching, and pricing.

Routing and dispatch control of on-demand ride-hailing platforms has drawn attention from the

operations research field in recent years. Ozkan and Ward (2016) study revenue-maximizing state-

independent dispatch control by solving a minimum cost flow problem in the fluid limit. Iglesias

et al. (2016) consider centralized matching and repositioning decisions in the context of a closed

network model. Braverman et al. (2019) model the system as a closed queueing network of all

vehicles and propose optimal routing decisions based on the corresponding fluid model. Afeche

et al. (2018) study the problem of matching demand (riders) with self-interested capacity (drivers)

over a spatial network using a two-location fluid model. Banerjee et al. (2018) consider the design of

state-dependent controls for a closed queueing network model and develop matching policies with

exponential-decay demand-dropping probability as the number of drivers scales up. In contrast

to their research directions, we center on formulating formulate a queueing system that couples

the closed queueing network of drivers and the open queueing network of passengers under the

proposed spatial model. We develop an approximation to such a queueing system to show insights

and construct optimal control policies.

Our paper is also related to the literature that studies service systems with state-dependent

processing rates (for some examples, see Mandelbaum and Pats (1995), Mandelbaum et al. (1998)

and Powell and Schultz (2004).) Chan et al. (2014) investigate an Erlang-R service system in which

the service rate can be sped up whenever congestion is above a certain threshold and Dong et al.
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(2015) study a service system in which agents will reduce their service rate as the system’s workload

increases. In their work, the state-dependent service rates are due to the system congestion levels,

while in our model the pick-up rate depends on both the number of requesting passengers and the

number of idle drivers.

The ride-hailing model is an example of a two-sided market, pioneered by several recent works.

Hu and Zhou (2018) model dynamic matching between the demand and supply of heterogeneous

types, providing sufficient conditions such that the optimal policy follows a priority hierarchy.

Baccara et al. (2018) consider vertically different preferences of agents and show that the optimal

mechanism always matches congruent pairs immediately while holding to a stock of incongruent

pairs up to a certain threshold. A common method to control dynamic matching systems is the

market thickening approach. In ride-hailing systems, the thickness is represented by the number of

requesting passengers and that of idle drivers. We capture how the thickness affects the dynamics

of the system using the spatial model (1). In the queueing literature, Gurvich and Ward (2014)

consider a matching system where jobs of multiple classes arrive to the system dynamically and

prove the asymptotic optimality of a discrete review matching policy as the arrival rates of the jobs

increase (i.e., a large market assumption). Akbarpour et al. (2017) consider a dynamic matching

network where jobs may abandon if matching takes too long. They prove that if the system con-

troller can identify which jobs are about to abandon and prioritize them, then the thickness of the

market becomes valuable. Our results not only reveal that market thickness benefits the system

but also provide quantitative insights into the optimal thickness of the market.

There is a large amount of research on ride-sharing platforms using pricing as a leverage to

optimize the system performance (see Banerjee et al. (2015), Gurvich et al. (2019), Hu and Zhou

(2019), Bimpikis et al. (2019), Taylor (2018), Benjaafar et al. (2018) and Bai et al. (2018), to

name a few). Banerjee et al. (2016) and Ozkan (2018) deliberate the joint pricing and optimization

decisions in a ride-sharing market. Castillo et al. (2017) and Besbes et al. (2018b) look into the

role of surge pricing in ride-hailing systems. Our work focuses on the matching decisions of the

platform and takes the pricing scheme as exogenous. The performance analysis in our work has

the potential to be applied to the study of the pricing problem. For example, one possibility is to

search for a joint optimal control and pricing policy.

The most related research to ours are Feng et al. (2017), Besbes et al. (2018a), Korolko et al.

(2018) and Cheng et al. (2019), who develop models based on the fact that the total time a

passenger spends in the system consists of three parts: waiting time, pick-up time and on-trip time.

Feng et al. (2017) propose an approximation scheme and use a capped matching mechanism to

improve system efficiency. They also derive heuristic methods to calculate a near-optimal cap. In

our paper, we explicitly characterize the optimal matching radius based on a fluid approximation



7

scheme and propose a feedback-based algorithm that approaches the optimal control. Besbes et al.

(2018a) develop a Markovian queueing model that expresses the service rate as a function of the

average pick-up time and on-trip time, where the pick-up time depends on the number of idle

drivers and waiting passengers. Our spatial model can be viewed as an extension of the model

proposed by Besbes et al. (2018a). In our model, we explicitly consider the three states of drivers,

i.e., idle, assigned, and busy. Korolko et al. (2018) decompose the driver states similarly and study

the joint optimization of dynamic pricing and dynamic waiting with data from Uber in a static

equilibrium model. With the state decomposition, we approximate the long-run behavior of drivers

in different states and propose optimization methods accordingly.

3. Model

We formulate the stochastic model for a ride-hailing system. Assume there are in total K drivers

in the system. Let (Z0(t),Z1(t),Z2(t)) denote the number of (idle, assigned, busy) drivers at time

t. The drivers in different states form a closed queueing network with

Z0(t) +Z1(t) +Z2(t) =K. (3)

Passengers who cannot be matched with an idle driver immediately upon arrival join the pool of

requesting passengers (waiting pool in short), whose size is denoted by Q(t). We refer to number

of requesting passengers as the pool size for simplicity. Passengers are impatient and will abandon

from the waiting pool when their patience runs out. In addition, while waiting for a pick-up,

passengers may also lose patience and cancel the service. After being picked up, passengers will

stay in the system until the end of their journey. Upon completion of the service, passengers leave

the system and drivers become idle again. The ride-hailing system is essentially a coupled model

of an open queueing network of passengers in different states and a closed queueing network of

drivers, as the number of passengers waiting for pick-up equals the number Z1(t) of assigned drivers

and the number of passengers on trip equals the number Z2(t) of busy drivers. Figure 2 depicts

the partially coupled queueing model. To formalize the stochastic queueing dynamics, we need to

introduce additional notations and assumptions.

Passengers arrive to the system according to a Poisson process A(t) with rate λ̃. An arriving

passenger is willing to wait for a random amount of time, independent of all other random variables

and exponentially distributed with rate θ0, to be matched with a driver. Those whose patience runs

out before they are matched abandon the system. Denote by R0(t) the number of abandonments

by time t. After being matched with a driver, passengers are willing to wait for another random

amount of time, independent of all other random variables and exponentially distributed with rate

θ1, for pick-up. Passengers will cancel the service and leave the system if their patience exhausts
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Figure 2 On-demand Ride-hailing System.

before they are picked up by their assigned drivers. Denote by R1(t) the number of cancellations

by time t. If an assigned driver arrives at the pick-up location before the passenger’s patience time

runs out, we call it a successful pick-up. Let D1(t) be the number of successful pick-ups by time t.

We assume that each trip, during which passengers are not allowed to abandon, takes a random

amount of time, independent of all other random variables and exponentially distributed with rate

µ2. Let D2(t) be the number of completed trips by time t. The detailed mathematical formulations

of all these processes are presented in Appendix A. With the introduced notations, we can describe

the system dynamics of the stochastic model underlying the ride-hailing system as follows:

Q(t) =Q(0) +A(t)−R0(t)−M(t), (4)

Z0(t) =Z0(0) +R1(t) +D2(t)−M(t), (5)

Z1(t) =Z1(0) +M(t)−D1(t)−R1(t), (6)

Z2(t) =Z2(0) +D1(t)−D2(t), (7)

where M(t) is the total number of matchings made by time t. Note that the exponential distribution

assumption of a passenger’s patience and service time is made to facilitate modeling system states

as counting processes. What remains to be defined is the matching process between passengers and

drivers, which we will formulate after we introduce the spatial model.

The Spatial Model. For a passenger-driver pair matched at time t, we model the pick-up

time as a random variable following an exponential distribution with rate µ1(t). One can think of

the reciprocal of this rate as the average pick-up time. Based on the spatial model introduced in

equation (1), we make the Assumption 1.
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Assumption 1 (Spatial Model). If a passenger and a driver are matched at time t, the pick-

up of this specific passenger-driver pair takes a random amount of time following an exponential

distribution with rate

µ1(t) = C̃(Q(t))α1(Z0(t))
α2 , (8)

for some constants C̃, α1, α2 ∈ (0,∞). Conditioning on Q(t) and Z0(t), the pick-up time of this

specific passenger-driver pair is independent of all other random variables.

We refer to the above defined µ1(t) as the pick-up rate. The intuition behind Assumption 1 is that

the pick-up time is shorter when there is a higher density of requesting passengers and idle drivers

on the map. For notational simplicity, we write the pick-up rate as a function of time t. It should

be stated that that the pick-up rate depends on the number of requesting passengers and number

of idle drivers in the system. With wide-ranging parameters C, α1 and α2, the spatial model can

be applied in different scenarios, as indicated in Appendix B. The prescriptive analysis in Section 5

shows that in our model, α1 and α2 are the only parameters required for optimization.

The spatial model extends the assumption of Besbes et al. (2018a), who consider a non-idling

matching policy and approximate the mean pick-up time, with our notations, by C(Q(t)∨Z0(t)∨

1)−1/2. Note that in a non-idling policy, at most one of Q(t) and Z0(t) can be positive. Therefore,

by assuming a non-idling policy and setting α1 = α2 = 0.5, the spatial model (8) is consistent with

the assumption of Besbes et al. (2018a). Another difference is that Besbes et al. (2018a) assume

that the service rate depends on the current state of the system, while in our case the pick-up

rate of any passenger-driver pair depends on the state at the time when the matching is made.

Korolko et al. (2018) adopt a similar assumption by considering the expected pick-up time of a

single passenger as the number of idle drivers changes (e.g. µ1(t) = C̃Z0(t)
α2). They also verify

that, by relaxing the range of α2 to be (0,1), the model fits better to real Uber data.

The Matching Process. Now we are ready to define the matching process M(t). We assume

that the platform applies a threshold-based matching policy, motivated by the matching radius

which regulates the pick-up distance. In our model, where distance is not directly modeled, the

platform controls the pick-up time by setting a threshold µ1 on the pick-up rate. When µ1(t)<µ1,

the platform does not make any matchings and will let the number of requesting passengers and

idle drivers increase. As soon as µ1(t) exceeds the threshold µ1, the platform deems the pick-up

rate satisfactory and makes as many matchings as possible until µ1(t) falls below µ1 again. Without

loss of generality, we assume µ1(0) < µ1 since otherwise the platform makes a positive number

of matchings at time 0 and the pick-up rate would immediately drops below µ1. We use Mµ1
(t)

instead of M(t) to emphasize its dependence on µ1. Since a matching can only happen when a
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passenger arrives (a jump in the process A(t)) to the system or a driver becomes idle (a jump in

the process R1(t) or D2(t)), we can formulate the matching process as follows:

Mµ1
(t) =

∫ t

0

1{µ1(t)≥µ1,Z0(s−)>0}dA(s) +

∫ t

0

1{µ1(t)≥µ1,Q(s−)>0}d(R1(s) +D2(s)), (9)

where Q(s−) and Z0(s−) are the left limits. Note that this matching process directly affects the

cancellation process R1(t) and the successful pick-up process D1(t). To avoid interrupting the

flow of presentation, we postpone the detailed formulation of the complete stochastic model to

Appendix A.

In summary, we have introduced a stochastic model for the ride-hailing application with primitive

parameter settings φ= (K, λ̃,µ1, µ2, θ0, θ1, C̃,α1, α2) where µ1 is also the decision variable. Assume

that the fixed fee charged per trip is pf and that the price charged per unit of time is ps. The

expected revenue can then be written as

E
(
ps

∫ t

0

Z2(s)ds+ pfD2(t)

)
. (10)

In our work, the prices pf , ps and how the platform and drivers split the revenue are assumed to

be given and we focus our analysis on how the matching decision, i.e. the threshold µ1, affects the

system performance. In this sense, our analytical results can be applied with any pricing policy,

and any revenue allocation between the platform and the drivers, such as the ones in Taylor (2018)

and Bai et al. (2018).

4. Performance Approximation

Fluid approximation has been widely used in the queueing literature because of its efficiency and

tractability. To find a proper fluid model to approximate the stochastic system, we first intro-

duce a regime with a sequence of stochastic models indexed by the number of drivers N . In the

Nth system, the primitive parameters are φN = (N,Nλ,µ1, µ2, θ0, θ1,C/N
α1+α2 , α1, α2). In this

regime, the passenger arrival rate grows proportionally with the number of drivers while all other

rate parameters remain in order 1. The pick-up rate in the Nth system is set to be µ1(t) =

C/Nα1+α2(Q(t))α1(Z0(t))
α2 so that it remains in constant order across all systems in the regime.

In other words, we implicitly enlarge the “map” as the scale of the system grows, since otherwise

increasing the number of drivers would cause the pick-up time to converge to zero, which results in

a degenerated limit that fails to capture the critical spatial factor. The design of the regime follows

the principle that its corresponding fluid model can be used to approximate a particular system

with primitive parameters φ= (K, λ̃,µ1, µ2, θ0, θ1, C̃,α1, α2), as introduced in Section 3. Notably, by

setting λ= λ̃/K and C = C̃Kα1+α2 , we have φK = φ, meaning that the Kth system in the regime

is exactly the system we introduced in Section 3.
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We will demonstrate that in the proposed regime {φN}, the scaled stochastic pro-

cesses (Q(t)/N,Z0(t)/N,Z1(t)/N,Z2(t)/N) can be effectively approximated by the fluid model

(q(t), z0(t), z1(t), z2(t)) with corresponding parameters φf = (λ,µ1, µ2, θ0, θ1,C,α1, α2). In Sec-

tion 4.1, we formally define the fluid model and demonstrate the efficacy of the approximation at

process level. In Section 4.2, we show that the fluid model converges to a unique equilibrium and

demonstrate that the equilibrium approximates the steady-state behavior of the stochastic model

well.

4.1. Fluid Model

We introduce the fluid model with exogenous parameters φf = (λ,µ1, µ2, θ0, θ1,C,α1, α2), analogous

to the stochastic model introduced in Section 3. The idea of constructing the fluid model is to

replace the stochastic components with their average. For example, we replace the arrival process

by a deterministic flow. In the fluid model, passengers and drivers should be thought of as flow

that is not integer-valued. Let q(t) and z0(t) be respectively the number of requesting passengers

and the number of idle drivers at time t in the fluid model. Let z1(t) and z2(t) be the number of

assigned drivers and the number of busy drivers respectively. In the regime where the size of the

system, indicated by the number of drivers, scales up, what the fluid model can approximate is the

normalized stochastic processes by the system size. Thus, the total amount of drivers in the fluid

model is 1, i.e. for all time t≥ 0,

z0(t) + z1(t) + z2(t) = 1. (11)

To introduce the rest of the fluid dynamic equations, we replace the arrival process A(t) by the

deterministic fluid process λt. Regarding the definition of the stochastic abandonment processes

R0(t) and completion process D2(t) in Appendix A (see (32) and (33)), their fluid counterparts

can be written as

r0(t) = θ0

∫ t

0

q(s)ds, (12)

d2(t) = µ2

∫ t

0

z2(s)ds. (13)

The fluid counterparts of the cancellation and successful pick-up processes are more complicated

due to their dependency on the matching process. Let m(t) be amount of matchings made up to

time t, corresponding to the stochastic process M(t). Further, let d1(t) be the total number of

successful pick-ups and r1(t) be the total number of cancellations, up to time t. Analogous to the

balance equations (4)–(7) in the stochastic system, the fluid processes should satisfy

q(t) = q(0) +λt− θ0
∫ t

0

q(s)ds−m(t), (14)



12

z0(t) = z0(0) + r1(t) +µ2

∫ t

0

z2(s)ds−m(t), (15)

z1(t) = z1(0) +m(t)− d1(t)− r1(t), (16)

z2(t) = z2(0) + d1(t)− d2(t). (17)

The following equations formally define d1(t) and r1(t).

d1(t) =
µ1

µ1 + θ1
z1(0)(1− e−(µ1+θ1)t) +

∫ t

0

µ1(s)

µ1(s) + θ1
(1− e−(µ1(s)+θ1)(t−s))dm(s), (18)

r1(t) =
θ1

µ1 + θ1
z1(0)(1− e−(µ1+θ1)t) +

∫ t

0

θ1
µ1(s) + θ1

(1− e−(µ1(s)+θ1)(t−s))dm(s). (19)

The first term on the right-hand side of (18) is about the initial state, where z1(0)e−(µ1+θ1)t is the

number of drivers who remain in the assigned state at time t, with the rest transited either to

the idle state due to cancellation or the busy state due to successful pick-up. Note that µ1
µ1+θ1

is

the probability that a pick-up is successful for the assigned drivers at time 0. The second term

calculates the total number of successful pick-ups resulting from passengers matched during the

time interval (0, t] by taking integrals from 0 to t. To see this, for the dm(s) amount of passengers

matched at time s, a proportion of 1− e−(µ1(s)+θ1)(t−s) have turned into either successful pick-ups

or cancellations by time t. Note that µ1(s)

(µ1(s)+θ1)
is the probability of a successful picking-up if the

passenger is matched at time s, thus the amount of successful pick-ups that are matched at time

s is µ1(s)

µ1(s)+θ1
(1− e−(µ1(s)+θ1)(t−s))dm(s) at time t. Taking integrals from 0 to t leads to the second

term on the right-hand side of (18). The explanations for (19) follows the same logic by replacing

successful pick-ups with cancellations.

We now analyze how m(t) is determined by our matching policy. Following Assumption 1, the

fluid pick-up rate function is

µ1(t) =C(q(t))α1(z0(t))
α2 . (20)

To avoid tedious discussion on the initial condition, we make a simplifying assumption that for

drivers in the assigned state at time 0, i.e., those counted in z1(0), the pick-up rate is µ1. Analogous

to the stochastic model, what the fluid match process m(t) does is to keep the matching rate

µ1(t) under the threshold µ1 by matching the minimum amount of passengers. Mathematically, we

formulate the intuition above as

µ1(t)≤ µ1, (21)∫ t

0

1{µ1(s)<µ1}dm(s) = 0. (22)

Note that (22) requires that m(t) stays constant, i.e., no passengers are matched, when µ1(t)<µ1.

Moreover, (21) and (22) imply that m(t) increases, i.e., passengers are matched, only when µ1(t) =
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µ1. In other words, in our fluid model, for all matched passenger-driver pair, the corresponding

pick-up rate must be µ1. With all the formulations introduced above, we can now define the fluid

model.

Definition 1 (Fluid process). A process x(t) = (q(t), z0(t), z1(t), z2(t)) is called the fluid pro-

cess of the stochastic system with decision µ1 if it satisfies (11)–(22).

Although the formulation does not give an analytic form of m(t), Proposition 1 establishes the

existence and uniqueness of the fluid process under the matching policy with any given threshold

µ1. The proof is postponed to Appendix D.

Proposition 1. For any initial condition satisfying q(0), z0(0), z1(0), z2(0) ≥ 0, µ1(0) =

C(q(0))α1(z0(0))α2 ≤ µ1 and z0(0) + z1(0) + z2(0) = 1, there exists a unique fluid process that satis-

fies (12)–(22).

For a side-by-side comparison between the stochastic model and the fluid model, please see

Table 4 in Appendix A. To illustrate how the fluid model approximates the stochastic one, Figure 3

plots the fluid process and the normalized stochastic process with size N = 500 under two set of

parameters. Two observations can be made based on the figure. First, the fluid model is indeed an

accurate approximation to the stochastic one at the process level. Second, both the scaled process

and the fluid process seem to converge to some “equilibrium”, which we will formally prove in the

next section. Similar observations can be made under various parameter settings.
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(a) λ= 5, µ1 = 10, C = 50, α1 = α2 = 0.5
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Figure 3 The scaled stochastic process φN = (N,Nλ,µ1, µ2, θ0, θ1,C/N
α1+α2 , α1, α2) (dashed lines) and the

corresponding fluid process φf = (λ,µ1, µ2, θ0, θ1,C,α1, α2) (solid lines).

Common parameters: µ2 = 1, θ0 = 10, θ1 = 5, N = 500.
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4.2. Equilibrium and Approximations

In this section, we first show that the fluid process converges to a unique equilibrium, and then

demonstrate the accuracy of the approximation. The equilibrium also reveals how the decision

variable µ1 affects the system performances and paves the way for the optimization analysis in

Section 5.

We start with some basic assumptions to avoid trivial or unrealistic cases. For a given fluid

model with φf = (λ,µ1, µ2, θ0, θ1,C,α1, α2), the effective range for µ1 is (0,C( λ
θ0

)α1 ]. Note that any

threshold µ1 that satisfies µ1 >C( λ
θ0

)α1 simply means no passengers will be matched, because

µ1(t) =C(q(t))α1(z0(t))
α2 ≤C(

λ

θ0
)α1 ,

where the inequality follows from z0(t)≤ 1 and q(t)≤ λ/θ0 by (14). Another assumption we would

like to make is θ1 >µ2. The interpretation of the assumption is that the average patience time for

pick-up is shorter than the average travel time. The assumption is made on the average level and

does not exclude the possibility that some passengers would wait longer than their travel time.

Theorem 1 establishes the equilibrium and the convergence of the fluid model x(t).

Theorem 1 (Convergence to the equilibrium). For any fluid model with parameters φf =

(λ,µ1, µ2, θ0, θ1,C,α1, α2) that satisfies θ1 >µ2 and µ1 ∈ (0,C( λ
θ0

)α1 ], the statements below hold.

1. There exists a unique solution x̄= (q̄, z̄0, z̄1, z̄2)≥ 0 to the following equations

λ= qθ0 + z1θ1 + z2µ2, (23)

z1µ1 = z2µ2, (24)

1 = z1 + z2 + z0, (25)

µ1 =C(q)α1(z0)
α2 . (26)

2. x̄ is the unique equilibrium of the fluid model x(t).

3. The fluid process converges to x̄, i.e., (q(t), z0(t), z1(t), z2(t))→ (q̄, z̄0, z̄1, z̄2) as t→∞.

The intuition behind (23)–(26) follows from the balance equations of the system in steady states.

Equation (23) requires that the arrival rate of passengers be equal to the passenger outflow, which

is the sum of passenger abandonments, passenger cancellations, and trip completions. In order for

the number of busy drivers to stay stable, the rate of successful pick-up should be equal to the trip

completion rate, as required in (24). The right-hand side of (26) follows from Assumption 1, which

should be equal to the desired matching rate µ1 in equilibrium. Equation (25) regulates the total

number of drivers in the system.
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Let E[Q], E[Z0], E[Z1] and E[Z2] be the expectation of the steady states of stochastic processes

Q(t), Z0(t), Z1(t), Z2(t), respectively. Table 1 presents the 95% confidence interval of the above-

mentioned quantities out of 4500 simulated samples after warm up and the corresponding parts in

the fluid equilibrium. We vary the arrival rate λ to cover systems of different loads. As illustrated in

Table 1, our approximation works well for large-scaled systems. We also observe that the accuracy

of our approximation decreases when E[Q] or E[Z0] is small primarily due to the rounding loss. See

Appendix C for detailed discussion on the rounding loss.

λ N E[Q]/N E[Z0]/N E[Z1]/N E[Z2]/N

λ=0.5N

100 0.0082±0.0001 0.6918±0.0015 0.0226±0.0005 0.2856±0.0014
500 0.0119±0.0001 0.7304±0.0008 0.0247±0.0002 0.2449±0.0007
1000 0.0128±0.0001 0.7295±0.0005 0.0244±0.0002 0.2461±0.0005
eq. 0.0136 0.7333 0.0242 0.2424

λ=2N

100 0.0789±0.0008 0.1213±0.0010 0.0774±0.0008 0.8013±0.0012
500 0.0789±0.0004 0.1259±0.0005 0.0791±0.0004 0.7951±0.0006
1000 0.0806±0.0002 0.1234±0.0004 0.0799±0.0002 0.7967±0.0004
eq. 0.0806 0.1241 0.0796 0.7962

λ=10N

100 0.8653±0.0029 0.0088±0.0001 0.0740±0.0007 0.9172±0.0007
500 0.8644±0.0013 0.0104±0.0001 0.0881±0.0004 0.9015±0.0004
1000 0.867±0.0009 0.011±0.0001 0.0875±0.0003 0.9014±0.0003
eq. 0.8652 0.0116 0.0899 0.8986

Table 1 A comparison of the fluid approximation with stochastic system in steady state.

C = 100, θ0 = 10, θ1 = 5, µ2 = 1, µ1 = 10, α1 = α2 = 0.5.

5. Prescriptive Analysis

Before getting into the optimization of the system, we first perform sensitivity analysis to provide

insights into how the decision variable µ1, intuitively interpreted as the reciprocal of the matching

radius, impacts on different performance metrics such as the number of requesting passengers and

the number of drivers in different states.

Lemma 1. For any fluid model φf = (λ,µ1, µ2, θ0, θ1,C,α1, α2) that satisfies θ1 >µ2, its equilib-

rium x̄= (q̄, z̄0, z̄1, z̄2) satisfies the following properties:

1. q̄ is increasing in µ1;

2. z̄1 is decreasing in µ1;

3. z̄2 is quasi-concave in µ1.

Figure 4 plots how the equilibrium x̄ changes as the decision variable µ1 varies. As µ1 increases,

the matching radius is reduced, and it is harder for the platform to find feasible passenger-driver

pairs. Consequently, the number of assigned drivers z1 decreases. Lemma 1 also echoes the intuition

that more passengers would stay in the waiting pool when a platform applies a shorter matching
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Figure 4 Fluid equilibrium x̄ under different µ1.

(Common parameters: θ0 = 10, θ1 = 5, µ2 = 1)

radius. In general, the monotonicity of z̄0 does not hold, as shown in Figure 4. For the parameter

settings in Figure 4(a), z̄0 decreases first then increases in µ1, while for the parameter settings in

Figure 4(b) z̄0 is monotonically increasing in µ1. The intuition behind the possible non-monotonicity

is that a larger threshold µ1 makes pick-ups more likely to be successful, and when trips take much

longer time than pick-ups, more drivers may end up being busy due to the higher successful pick-up

rate, leaving fewer drivers in state idle.

5.1. Optimization

Based on the fluid equilibrium introduced in Section 4.2, we formulate an optimization problem.

Our focus is on the steady-state performance under the threshold policy, which is approximated

by the fluid equilibrium (23)-(26). We obtain an elegant optimality condition that sheds light on

the optimal control. Further analysis of the optimality condition also yields interesting managerial

insights.

A well-designed matching policy improves the efficiency of the system and generally benefits all

parties. When there are z̄2 busy drivers in the fluid equilibrium, trips are completed at rate z̄2µ2.

Therefore, following (10), the total revenue is generated at rate (pfµ2+ps)z̄2, where pfµ2+ps can be

interpreted as the revenue generated by one unit of drivers during one unit of time if they are busy.

We assume that the platform splits the revenue with the drivers according to a proportion specified

in advance. The splitting proportion, pf , µ2 and ps are all considered exogenous parameters. As a

result, if we measure the system performance by revenue generated by the platform (or drivers),

our objective reduces to one of maximizing the number of busy drivers z̄2 among all fluid equilibria.

It is interesting to note that the probability of completing the trip for a new passenger is z2µ2/λ,
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which is also proportional to z2. In summary, the benefit of drivers, passengers, and the platform

boils down to z2 consistently, and we therefore formulate the optimization problem as

max
µ1,q,z0,z1,z2

z2, (27)

s.t. (23)− (26),

q, z0, z1, z2 ≥ 0.

Intuitively, if the platform matches fewer passengers, the density of requesting passengers and

idle drivers will be higher on the map, and it is therefore more likely for the platform to find

matching pairs with shorter pick-up distances. To find the optimal threshold, the platform needs to

strike a balance between matching more passengers (quantity) and shortening the pick-up distance

(quality). Let (µ∗1, q
∗, z∗0 , z

∗
1 , z
∗
2) be the optimal solution to (27). Theorem 2 below provides the

condition under which this tradeoff is optimized.

Theorem 2 (optimality condition). The optimal solution to problem (27) satisfies

α1

z∗1θ1
q∗θ0

+α2

z∗1
z∗0

= 1. (28)

The proof of Theorem 2 is postponed to Appendix D. We refer to (28) as the key optimality equa-

tion. This equation characterizes the optimality condition and also leads to an easy-to-implement

optimal control policy, as will be shown in Section 6. Notably, larger z0 and q enable the platform

to match passengers and drivers at a higher pick-up rate, which measures the quality of service.

On the other hand, z1 is the total number of on-going pick-ups, which measures the quantity of

matches. Then it is easy to see that the two fractions on the left-hand side of (28) measures

the balance between quality and quantity of our matching policy. Our analysis reveals that, in

order to maximize its revenue, the platform has to fine-tune the pick-up rate such that the linear

combination of the two fractions, with coefficients α1 and α2, is equal to 1.

The key optimality equation provides an elegant way to determine whether a decision µ1 is

optimal. Inspired by (28), we define the key matching index ζ of an equilibrium as

ζ = α1

z1θ1
qθ0

+α2

z1
z0
. (29)

Theorem 2 states that, for different decisions µ1, the optimal equilibrium is one such that the

corresponding ζ equals 1. Note that quantities involved in computing ζ can be easily translated to

observable metrics of the system, with z1θ1 and qθ0 being the rate of cancellations and abandon-

ments, and, z1 and z0 being the numbers of assigned and idle drivers. Therefore, an estimator of

the key matching index is simply

ζ̂ = α1

# cancellations

# abandonments
+α2

# assigned drivers

# idle drivers
. (30)
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Although ζ is derived from the fluid equilibrium, its estimator ζ̂ is easy to compute for a practical

ride-hailing system, as the related quantities are usually observable to the platform. Corollary 1

below shows how the platform should adjust its decision based on the value of ζ.

Corollary 1. To approach the optimal solution µ∗1, whenever ζ > 1, the system should increase

µ1; whenever ζ < 1, the system should decrease µ1.

Corollary 1 follows from the quasi-concavity of z̄2 on µ1. Combining Corollary 1 and the estimator

ζ̂ leads to a simple, data-driven, and self-adaptive control policy to find the optimal matching

radius for the system. The implementation of the control policy, together with the estimation of

α1 and α2, will be presented with a concrete example in Section 6.

5.2. More on the Optimal Decision

In this section, we investigate the sensitivity of the optimal decision with respect to a few system

inputs, and compare it with fixed-threshold policies to gain more insights into the optimal policy.

Passenger Arrival Rate The passenger arrival rate λ may be different depending on various

factors such as working day v.s. holiday and rush hour v.s. non-rush hour. It is worth studying

how the optimal matching rate and the platform’s optimal revenue change with λ.

Figure 5(a) plots how the objective z2 changes with respect to the decision variable µ1 under

different arrival rates. As we vary the matching decision µ1, the key matching index ζ also changes

accordingly. In Figure 5(b), we plot how the objective z2 changes with respect to ζ for comparison.

In both plots, we highlight the optimal solution in terms of µ1 and ζ. Although under different λ

the optimal decision variable µ∗1 for the problem (27) varies, the optimal ζ∗ remains at 1. Therefore,

ζ can be used to determine whether a decision is optimal without knowing the arrival rate λ.

Proposition 2. The optimal objective value z∗2 and the optimal decision µ∗1 of optimization

problem (27) satisfies the following:

1. The optimal objective value z∗2 is increasing in passenger arrival rate λ;

2. The optimal decision µ∗1 is increasing in λ if q∗ > α2θ1
α2

1θ0
(α2− (α1 +α2)z

∗
0)z∗0 and deceasing in λ

if q∗ ≤ α2θ1
α2

1θ0
(α2− (α1 +α2)z

∗
0)z∗0 .

The non-monotonicity of µ∗1 in Proposition 2 is illustrated in Figure 5(a). Intuitively, when

demand grows, i.e., the arrival rate increases, the platform would be more selective about pick-up

time, i.e., to increase µ∗1. However, this is in general not true as shown in Figure 5(a) when the

arrival rate increase from λ= 1 to λ= 1.8. A similar observation of the non-monotonicity is made

by Feng et al. (2017), who show that the pick-up time is not monotone in the passenger arrival rate

under an on-demand non-idling policy and that the on-demand policy may result in inefficiency

compared with a no-call policy (a policy that lets passengers and drivers meet randomly, analogous
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Figure 5 Objective value z̄2 as a function of µ1 and ζ.

C = 100, θ0 = 10, θ1 = 5, µ2 = 1, α1 = α2 = 0.5.

to the traditional taxi model). Our analysis reveals that even if the platform always applies an

optimal matching radius, the pick-up time is still not monotone in the passenger arrival rate.

On the passenger side, lowering the pick-up rate will result in lengthy pick-up times. However,

passengers’ overall experience may not necessarily be worse, since lowering the pick-up rate also

helps to reduce the total waiting time. If the user experience, in particular, the waiting time for

pick-up, is an important consideration (e.g., to enhance user loyalty), a platform can apply an

upper bound on the matching radius to avoid long pick-up times.

Abandonments and Cancellations Let Pab denote the probability that an arriving passenger

abandons the platform while waiting to be matched, and Pc denote the probability that a passenger,

who has been matched with a driver, cancels the service during the pick-up process. In the fluid

equilibrium, the abandonment probability Pab can be computed as q̄θ0/λ and the cancellation

probability Pc as θ1/(θ1 + µ1), both depending on the decision variable µ1. It follows from the

monotonicity of q̄ that Pab is increasing in µ1, and it is clear that Pc is decreasing in µ1. The

solid line in Figure 6 depicts how both probabilities changes with µ1. It follows from the fluid

balance equation that the objective z2 is linked to the probabilities of abandonment and cancellation

according to the following equation

µ2z2
λ

= (1−Pab)(1−Pc), (31)

with both sides representing the probability that an arriving passenger completes a trip.

Equation (31) characterizes a unique feature of the on-demand ride-hailing market and offers

another perspective from which to look at the tradeoff between the two probabilities. The dashed
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lines in Figure 6 are contours of Pab and Pc at different values of the objective z2. To strike a balance

between these two probabilities, we need to find the contour of z2 that is tangent to the trade-off

curve (the solid line in the picture) based on (31). The tangent point is, in fact, the optimal point.

The important message here is that abandonments and cancellations cannot be reduced at the

same time. In order to completely avoid cancellations, the platform has to apply an extremely

short matching radius, in which case the ride-hailing market reduces to a traditional taxi market

that fails to utilize the spatial information. On the other hand, to reduce abandonments as much

as possible, the platform must adopt a non-idling policy, which would cause a significant increase

in pick-up time according to the spatial model.

Comparison with Fixed Threshold Policies To better understand the intuition behind the

optimal decision, we plot how z1 and Pab change with the arrival rate λ under a fixed threshold in

Figure 7(b) and under the optimal threshold in Figure 7(a). The fixed threshold in Figure 7(b) is

chosen to be µ1 = 8, roughly the average of the optimal decisions as λ varies from 0 to 5.

The comparison in Figure 7 shows a significant difference between the two policies. Firstly, when

λ is small, the abandonment probability under the optimal decision is significantly lower than that

under a fixed threshold, which indicates that, when the passenger arrival rate is low, it is more

profitable for the platform to increase the matching distance and try to pick up more passengers

even if the expected pick-up time is long. Secondly, when λ is large, the proportion of assigned

drivers decreases as λ increases under the optimal decision, meaning that the system can achieve

a higher throughput with fewer assigned drivers. In contrast, the fixed matching threshold fails

to take advantage of a high demand and ends up keeping more drivers in the assigned state, and

2 z1 and Pab share the same axis as they both lie within [0,1]. Readers should note that the axis is interpreted
differently for z1 and Pab.
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Figure 7 Sensitivity analysis with respect to the arrival rate.2

C = 100, θ0 = 10, θ1 = 5, µ2 = 1, α1 = α2 = 0.5.

hence fewer drivers in the busy state compared to the optimal threshold. These observations are

formalized in the Proposition 3 below, whose proof is postponed to Appendix D.

Proposition 3. Let P f
ab and zf1 be respectively the abandonment probability and number of

assigned drivers in equilibrium under a given fixed threshold policy. Then

limsup
λ→0

P ∗ab < 1 = lim
λ→0

P f
ab, lim

λ→∞
z∗1 = 0,

and zf1 is increasing with λ.

6. Simulation & Implementation

In this section, we demonstrate the validity of our findings by implementing our matching policy

in simulated environments. We will also discuss the implementation in more realistic settings with

a road system, traffic information and real demand data.

Our numerical experiments are performed in two virtual cities. The first one (a square city) is a

100× 100 square equipped with Euclidian distance. We assume that the pick-up location and the

destination of each passenger are independently and uniformly distributed on the square map. The

second one (a grid city), closer to reality, is a 100× 100 grid, where drivers can only travel on the

grid. To simplify the computation of routing and travel distance, on the grid map, we require the

pick-up locations to be at a crossroads and the destinations to be on the grid (i.e. on the road).

To be specific, when a passenger arrives, the pick-up location is first generated uniformly on the

map and then rounded to the closest crossroads. The destinations are generated in the same way

but rounded to the closest point on the grid. In both cities, we assume the driving speed is 1, and
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ignore all traffic conditions. Similar settings are adopted in the simulations of Besbes et al. (2018a)

and Feng et al. (2017).

The initial locations of the drivers are assumed to be uniformly distributed on the map. For the

grid city, these locations are rounded to the closest points on the grid. Passengers arrive according

to a Poisson process with a specified rate, which is allowed to be time varying in Section 6.3. Upon

the arrival of each passenger, a pick-up location and a destination are randomly generated on the

map as discussed in the previous paragraph. As the system runs, the drivers’ locations change

as and when they are assigned to passengers. If a passenger cancels the trip during a pick-up,

the driver would stop and wait for further assignment. For simplicity, we assume that idle drivers

stay in the same location. The platform sets a matching radius and constantly checks for available

passenger-driver pairs to match. The revenue from each trip is normalized to be the travel distance

of the trip.

For demonstration purpose, we adopt the following exogenous parameters:

• Number of drivers: N = 100

• Passenger abandonment rate: θ0 = 0.2

• Passenger cancellation rate: θ1 = 0.05

Note that the platform is assumed to be unaware of any of the parameters above, nor the passenger

arrival rate. The only parameters the platform needs to estimate are α1 and α2.

6.1. Estimation of α1 and α2

As mentioned in the Introduction, the implementation of our algorithm requires estimating the

spatial parameters α1 and α2, for which we propose a simple statistical method. We assume that

the platform has a collection of samples of form (Q,Z0, Tmin), where Q is the number of requesting

passengers, Z0 is the number of idle drivers and Tmin is the average of the minimum pairwise

pick-up time when there are Q passengers and Z0 drivers. In our case, data is generated by random

sampling in the above introduced two virtual cities introduced above. For each pair of (Q,Z0) with

Q∈ {5,10,15, ...,100} and Z0 ∈ {5,10,15, ...,100}, we compute T̄min as the average of Tmin over 100

randomly generated samples. Because we assume the travel speed of drivers is 1, the pick-up time

reduces to the pick-up distance, which is measured by the Euclidean distance for the square city

and the Manhattan distance for the grid city. For the implementation in a more general setting,

with a road system and traffic, one may replace the distance measures with the pick-up travel time

estimated by the map service provider. The origin and destination may also be generated according

to the distribution obtained from historical data.

The first step of our estimation is to apply transformation V = log(1/T̄min), U = log(Q) and

W = log(Z0). Next, we use the least squares method to fit the function:

V = α1U +α2W +β
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and obtain α̂1 and α̂2 as the estimates of α1 and α2. The regression results for the square map and

the grid map are summarized in Table 2. We observe that the results are significant with R2 > 0.99

for both cities. The grid city has a slightly lower value of α̂1(α̂2) than the square city. Due to

high symmetry in our simulation setting, the estimation of α1 and α2 returns the similar values.

In general, our method also applies to the case when α1 and α2 take significantly different values.

In fact, as mentioned in the Introduction, α1 and α2 are expected to be different depending on the

road and traffic condition in different areas.

Pick-up Distribution Destination Distribution α̂1 α̂2 Ĉ R2

square Uniform Uniform 0.507 0.506 0.019 0.99
grid Uniform, rounded to crossroads Uniform, rounded to grid 0.525 0.526 0.015 0.99

Table 2 Regression results for estimating α1 and α2.

6.2. Constant Passenger Arrival

In this section, we assume a stationary environment where the passengers arrival rate is constant

λ. For different λ, we tested different matching radiuses (d) and plotted the corresponding revenue

over 10000 time units in Figure 8. The similarity between Figure 5 and Figure 8 also shows that our

theoretical result is still valid in the more realistic setting as described in this section. Figure 8(a)

and 8(c) show how revenue changes for different matching radiuses d. The dashed line marks the

optimal radius d∗, which is unique, under different arrival rates λ. Note that the key matching

index ζ is not rigorously defined in the simulation setting and we therefore use its estimator ζ̂

defined in (30). For different matching radiuses d, we plot how the revenue change with respect to

ζ̂ in Figures 8(b) and 8(d) for comparison. We can see that for the optimal decision, ζ̂ stays quite

close to 1, even though the optimal matching radius d∗ varies for different λ. The observations hold

for both square and grid cities, demonstrating the robustness of our results for roads of different

shapes.

6.3. Self-adaptive Control Policy

Corollary 1 motivates us to propose the following simple, data-driven and self-adaptive policy in a

changing environment. We assume that the platform can only collect data as the system is running

but has no prior knowledge of any system parameters except for α1 and α2.

We divide the execution of the simulation into multiple epochs, each of the same length. In

practice, the length of the epochs should be chosen such that it is long enough for the platform to

obtain a statistical estimation and short enough to capture the dynamics of market demand. Let

τ be the index of epochs. For each epoch, the platform has to choose a matching radius from a set

of matching radiuses S = {d0, d1, ...}, where the number of elements in S can be finite or infinite.3

3 S is chosen at the platform’s discretion, and we do not address theoretical learning efficiency here. In practice, the
density of elements in S should not be too high to ensure learning efficiency.
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Figure 8 Revenue v.s. matching radius (left) and revenue v.s. ζ (right).

The self-adaptive control policy works as follows. Using the estimator ζ̂ defined in equation (30),

at the beginning of epoch τ + 1, the platform estimates the key matching index for epoch τ as

ζ̂τ = α̂1

# cancellations in epoch τ

# abandonments in epoch τ
+ α̂2

average # of assigned drivers in epoch τ

average # of idle drivers in epoch τ
.

If ζ̂τ falls into a target neighborhood of 1, i.e., ζ̂τ ∈ (1− ε1,1 + ε2) for some ε1 and ε2, the platform

applies the same matching radius. Otherwise, the platform decrease the matching radius if ζ̂τ > 1+

ε2 and increase the matching radius if ζ̂τ < 1− ε1. In other words, the platform aims to dynamically

adjust the matching radius to keep the key matching index close to 1, as required by Theorem 2. The

following two numerical experiments are conducted on the grid city. For demonstration purpose,
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we run the simulation for 100 epochs, each of 1000 time units. We also assume S to be the set of

all positive integers that are smaller than 200, the largest possible distance between two points,

and the target neighborhood is set to be (0.8,1.2).

Stepwise Demand Function. We first verify that our policy adapts to different passenger arrival

rates. The 100 epochs are further divided into four periods of equal length, the first and the third

of which have passenger arrival rate 2, indicated by the different shades of gray in Figure 9. In

the second period, we set the passenger arrival rate to 1 to simulate a drop in demand. In the last

period, we set the passenger arrival rate to 10 to simulate an spike in demand. In Figure 9(a),

we compare the real-time matching radius to the optimal radius given by the simulation in the

Section 6.2. The real-time key matching index is plotted in Figure 9(b). One can see that our policy

is self-adaptive, i.e., when the demand rate switches across periods, the key matching index first

bounces out of the target neighborhood, but then falls back within the neighborhood quickly.
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Figure 9 Experiment: step-wise demand.

Continuously Varying Demand Function. In our final experiment, we assume that the passenger

arrival rate is sinusoidal as shown in Figure 10(a). As demand changes, the matching radius is

adjusted automatically, so that the key matching index is kept near the target neighborhood, as

indicated in Figure 10(b). As a comparison, we consider a static policy where the platform uses

a fixed matching radius that cannot adjust itself in the changing environment. Table 3 compares

the adaptive policy to ones with ones having a fixed matching radius. The result shows that the

adaptive policy outperforms any static policy, and the improvement ranges from 0.5% to 37%

depending on the choice of the fixed matching radius. In fact, sourcing a satisfactory fixed matching
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radius, even with the assistance of our results, requires demand forecasting and intense simulation.

In that sense, the adaptive policy not only delivers superior performance but is also more robust

to demand fluctuation.
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Figure 10 Experiment: continuously varying demand.

Matching Policy Revenue(106)
Average
Pool Size

Average Number of
assigned Drivers

Revenue Increase

self-adaptive 6.42 18.23 9.9 -
Radius= 5 4.67 21.36 2.47 37.3%
Radius=10 6.22 19.06 7.15 3.3%
Radius=11 6.30 18.73 8.07 1.9%
Radius=12 6.38 18.45 9.04 0.6%
Radius=13 6.39 18.22 9.92 0.5%
Radius=14 6.38 17.95 10.85 0.6%
Radius=15 6.37 17.74 11.79 0.8%
Radius=16 6.34 17.48 12.68 1.2%
Radius=17 6.33 17.29 13.63 1.4%
Radius=18 6.28 17.11 14.48 2.2%
Radius=19 6.22 17.02 15.40 3.2%
Radius=20 6.15 16.82 16.25 4.4%
Radius=25 5.79 16.01 20.35 10.9%

Table 3 Comparison of self-adaptive policy and static polices with different matching radiuses

7. Discussion & Conclusions
7.1. Spatial Imbalance

In our numerical experiments, both the locations of requesting passengers and idle drivers are

uniformly sampled. However, the real world may be more complicated. For example, during the
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morning rush hour, more passengers will want to travel from residential areas to business districts,

creating an imbalance between demand and supply in the spatial model. As an extension, we

provide a pilot experiment and a brief discussion on spatial imbalance. We sample pick-up locations

and destinations (hence the locations of idle drivers) using different distributions. Specifically, we

use a bivariate normal distribution with zero covariance and truncate the distribution so that the

support is within the map. We separate the means of the two distributions along a diagonal of the

map, while keeping the standard deviation fixed, to obtain different levels of imbalance.
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Figure 11 Revenue v.s. matching radius (left) and Revenue v.s. ζ (right) for imbalanced case

In Figure 11, we plot how revenue changes for different matching radiuses d and the indexes ζ̂

under different level of spatial imbalance. The figure legend shows the distance between the centers

of the demand and supply distributions, with a larger difference indicating a larger imbalance level.

Our optimality condition works reasonably well for lower levels of imbalance since the optimal

revenue occurs at somewhere close to ζ̂ = 1 for the curves corresponding to imbalance levels 0,

20
√

2 and 40
√

2 in Figure 11(b). However, as the imbalance level becomes higher (see curves

corresponding to 60
√

2, 80
√

2 and 100
√

2) the optimal revenue occurs when ζ̂ is larger than 1. As

shown in Figure 11(a), the platform needs to apply a larger matching radius to get the optimal

revenue as the imbalance become more severe. One possible explanation is that, in the absence

of an empty-car routing policy, the platform must balance the supply and demand by matching

drivers and passengers with long distances. Even if the passenger cancels their request during pick

up, the driver would still have moved closer to the high demand area. The above discussion suggests

a possible extension of our work, which is to combine the matching policy with empty-car routing
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(e.g., the one in Braverman et al. (2019)) in the case where there is a spatial imbalance between

demand and supply.

7.2. Conclusion

The pick-up process is an important feature of the ride-hailing system, in the sense that it adds

to the passengers’ waiting time, wastes drivers time, and also wastes the capacity of the platform.

Although nobody likes the pick-up process because of additional passenger waiting time, possible

misuse of driver time and wasted capacity of the platform, it is inevitable due to the spatial nature

of the system. In this paper, we studied the problem where a ride-hailing platform tries to find the

optimal matching radius. The matching radius allows the platform to balance the trade-off between

the quantity and quality of service. For tractability, we modeled the pick-up rate as a Cobb-Douglas

product function of the number of requesting passengers and the number of idle drivers. Using fluid

approximation, we obtain an optimization problem and identify an elegant optimality condition

featuring the key matching index ζ, defined in (29). Based on our theoretical findings, we also

proposed a self-adaptive that approaches the optimal decision, even without knowing the system

parameters such as the demand rate and the passenger patience time. Simulations on a square map

and a grid map suggest that our research can potentially be applied in real-world operations.

Some of the settings in our work can be relaxed or extended for future work. The first is spatial

imbalance which can potentially be alleviated by empty-car routing, as discussed in Section 7.1. The

second is pricing. In our setting, we focused on the matching policy and considered pricing policy

as exogenously given. However, as Castillo et al. (2017) argue, pricing can also be used to solve

the Wild Goose Chase problem. This emphasizes the possibility of studying the joint optimization

problem of pricing and matching. Another possible direction is the customized matching decision.

In practice, passengers use ride-hailing services for different purposes and their patience times will

be different. Furthermore, different passengers (or drivers) may have different preferences for driver

ratings and vehicle types (or pick-up distances and travel destinations). Optimization of the system

efficiency with consideration of individual preferences remains an open question.

References

Afeche, P., Z. Liu, and C. Maglaras (2018). Ride-hailing networks with strategic drivers: The impact of

platform control capabilities on performance. Columbia Business School Research Paper (18-19), 18–19.

Akbarpour, M., S. Li, and S. Oveis Gharan (2017). Thickness and information in dynamic matching markets.

Working paper .

Baccara, M., S. Lee, and L. Yariv (2018). Optimal dynamic matching. Working paper .

Bai, J., K. C. So, C. S. Tang, X. Chen, and H. Wang (2018). Coordinating supply and demand on an on-

demand service platform with impatient customers. Manufacturing & Service Operations Management .



29

Banerjee, S., D. Freund, and T. Lykouris (2016). Pricing and optimization in shared vehicle systems: An

approximation framework. arXiv preprint arXiv:1608.06819 .

Banerjee, S., Y. Kanoria, and P. Qian (2018). The value of state dependent control in ridesharing systems.

arXiv preprint arXiv:1803.04959 .

Banerjee, S., C. Riquelme, and R. Johari (2015). Pricing in ride-share platforms: A queueing-theoretic

approach. Available at SSRN 2568258 .

Benjaafar, S., J.-Y. Ding, G. Kong, and T. Taylor (2018). Labor welfare in on-demand service platforms.

Available at SSRN 3102736 .

Besbes, O., F. Castro, and I. Lobel (2018a). Spatial capacity planning. Available at SSRN .

Besbes, O., F. Castro, and I. Lobel (2018b). Surge pricing and its spatial supply response. Columbia Business

School Research Paper (18-25).

Bimpikis, K., O. Candogan, and D. Saban (2019). Spatial pricing in ride-sharing networks. Oper. Res..

Braverman, A., J. G. Dai, X. Liu, and L. Ying (2019). Empty-car routing in ridesharing systems. Oper.

Res..

Castillo, J. C., D. Knoepfle, and G. Weyl (2017). Surge pricing solves the wild goose chase. In Proceedings

of the 2017 ACM Conference on Economics and Computation, pp. 241–242. ACM.

Chan, C. W., G. Yom-Tov, and G. Escobar (2014). When to use speedup: An examination of service systems

with returns. Oper. Res. 62 (2), 462–482.

Cheng, S.-F., M. Hu, and J. Keppo (2019). Tragedy of the ride-hailing. Fifth Marketplace Innovation

Workshop.

Coma, C. W. and P. H. Douglas (1928). A theory of production. In Proceedings of the Fortieth Annual

Meeting of the American Economic Association, Volume 139, pp. 165.

DiDi (2019). Company information: https://www.didiglobal.com/law. [Online; accessed 16-May-2019].

Dong, J., P. Feldman, and G. B. Yom-Tov (2015). Service systems with slowdowns: Potential failures and

proposed solutions. Oper. Res. 63 (2), 305–324.

Feng, G., G. Kong, and Z. Wang (2017). We are on the way: Analysis of on-demand ride-hailing systems.

Working paper .

Gurvich, I., M. Lariviere, and A. Moreno (2019). Operations in the on-demand economy: Staffing services

with self-scheduling capacity. In Sharing Economy, pp. 249–278. Springer.

Gurvich, I. and A. Ward (2014). On the dynamic control of matching queues. Stochastic Systems 4 (2),

479–523.

Hu, M. and Y. Zhou (2018). Dynamic type matching. Rotman School of Management Working

Paper (2592622).



30

Hu, M. and Y. Zhou (2019). Price, wage and fixed commission in on-demand matching. Available at SSRN

2949513 .

Iglesias, R., F. Rossi, R. Zhang, and M. Pavone (2016). A bcmp network approach to modeling and controlling

autonomous mobility-on-demand systems. arXiv preprint arXiv:1607.04357 .

Korolko, N., D. Woodard, C. Yan, and H. Zhu (2018). Dynamic pricing and matching in ride-hailing

platforms. Available at SSRN .

Luxen, D. and C. Vetter (2011). Real-time routing with openstreetmap data. In Proceedings of the 19th

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS

’11, New York, NY, USA, pp. 513–516. ACM.

Mandelbaum, A. and G. Pats (1995). State-dependent queues: approximations and applications. Stochastic

networks 71, 239–282.

Mandelbaum, A., G. Pats, et al. (1998). State-dependent stochastic networks. part i. approximations and

applications with continuous diffusion limits. The Annals of Applied Probability 8 (2), 569–646.

Ozkan, E. (2018). Joint pricing and matching in ridesharing systems.

Ozkan, E. and A. R. Ward (2016). Dynamic matching for real-time ridesharing. Working paper .

Powell, S. G. and K. L. Schultz (2004). Throughput in serial lines with state-dependent behavior. Manage-

ment Science 50 (8), 1095–1105.

Rochet, J.-C. and J. Tirole (2003). Platform competition in two-sided markets. Journal of the european

economic association 1 (4), 990–1029.

Taylor, T. A. (2018). On-demand service platforms. Manufacturing & Service Operations Management .

Teschl, G. (2009). Ordinary Differential Equations and Dynamical Systems. Universiät Wien.

Uber (2018a). Cancelling an uber ride: https://help.uber.com/h/56270015-1d1d-4c08-a460-3b94a090de23.

Uber (2018b). Company information: https://www.uber.com/newsroom/company-info/. [Online; accessed

15-May-2019].

Wang, X., F. He, H. Yang, and H. O. Gao (2016). Pricing strategies for a taxi-hailing platform. Transportation

Research Part E: Logistics and Transportation Review 93, 212–231.

Xu, Z., Y. Yin, and J. Ye (2019). On the supply curve of ride-hailing systems. Transportation Research Part

B: Methodological .

Yang, H., C. W. Leung, S. Wong, and M. G. Bell (2010). Equilibria of bilateral taxi–customer searching and

meeting on networks. Transportation Research Part B: Methodological 44 (8-9), 1067–1083.



31

Appendix A: Detailed Description of the Stochastic Processes

The number of abandonments and completed trips by time t can be written as

R0(t) =W1

(
θ0

∫ t

0

Q(s)ds
)
, (32)

and

D2(t) =W2

(
µ2

∫ t

0

Z2(s)ds
)
, (33)

where W1(·) and W2(·) are independent Poisson processes with unit rate.

Processes R1(t) and D1(t) are related to initial state of the system. At time 0, there are Z1(0) matched

passengers and driver pairs. Let Y1, ..., YZ1(0) ∼ exp(µ1(0)) be the remaining pick-up time and V1, ..., VZ1(0) ∼

exp(θ1) be the remaining patience of these passengers. At time t > 0, system has matched Mµ1
(t) passengers.

Let τZ1(0)+1, ..., τZ1(0)+Mµ1 (t) be the arrival time, YZ1(0)+1, ..., YZ1(0)+Mµ1 (t) be the remaining pick-up time

and VZ1(0)+1, ..., VZ1(0)+Mµ1 (t) be the remaining patience of these passengers in arbitrary order, where Yi ∼

exp(µ1(τi)) and Vi ∼ exp(θ1). We then have:

R1(t) =

Z1(0)∑
i=1

1{Vi<min{Yi,t}}+

Z1(0)+Mµ1 (t)∑
i=Z1(0)+1

1{Vi<min{Yi,t−τi}},

D1(t) =

Z1(0)∑
i=1

1{Yi<min{Vi,t}}+

Z1(0)+Mµ1 (t)∑
i=Z1(0)+1

1{Yi<min{Vi,t−τi}}.

Note that the pool of requesting passengers is not necessarily first come first served and that the order in

which passengers are served depends on the spatial distributions of passengers and drivers. The stochastic

model cannot characterize such a spatial relationship, and therefore we utilize the memoryless property of

the exponential distribution and model the waiting pool as a pure counting process, without specifying the

serving order.

Appendix B: Numerical Justification of the Spatial Model

To justify the usage of the Cobb-Douglas type function as a spatial model, we adopt the following regression

analysis approach. The analysis follows a similar procedure to the one in Section 6.1 but is made for the

purpose of providing justification instead of estimating parameters.

1. Stylized Maps. Our first set of experiments is conducted on a set of stylized maps, including

(a) A straight line of length 100, where drivers can travel in both directions,

(b) A square map, where drivers can travel anywhere within the map, and

(c) A square map with grid roads, where drivers can only travel on the grids.

While maps a and b are highly representative of one and two-dimensional maps, map c lies somewhere in

between. We randomly sample m passengers requesting for service and l idle drivers and record the minimum

pairwise distance dmin. On map c, as drivers can only travel on the grids, the Manhattan distance is used to

measure distance. For each pair of values m and l, we take 100 samples and take the average over all dmin

to obtain E(dmin). Then we conduct the following regression analysis

log(E(dmin)) = β+α1 logm+α2 log l. (34)



32

Stochastic Model Fluid Model

Spatial Model µ1(t) = C̃(Q(t))α1(Z0(t))
α2 µ1(t) =C(q(t))α1(z0(t))

α2

State Quantities

Q(t) =Q(0) +A(t)−R0(t)−M(t) q(t) = q(0) +λt− θ0
∫ t
0
q(s)ds−m(t)

Z0(t) =Z0(0) +R1(t) +D2(t)−M(t) z0(t) = z0(0) + r1(t) +µ2

∫ t
0
z2(s)ds−m(t)

Z1(t) =Z1(0) +M(t)−D1(t)−R1(t) z1(t) = z1(0) +m(t)− d1(t)− r1(t)ds

Z2(t) =Z2(0) +D1(t)−D2(t) z2(t) = z2(0) + d1(t)−µ2

∫ t
0
z2(s)ds

Process Quantities

R0(t) =W1

(
θ0
∫ t
0
Q(s)ds

)
r0(t) = θ0

∫ t
0
q(s)ds

R1(t) =
∑Z1(0)

i=1 1{Vi<min{Yi,t}}+ r1(t) = θ1
µ1+θ1

z1(0)(1− e−(µ1+θ1)t)+∑Z1(0)+Mµ1 (t)

i=Z1(0)+1 1{Vi<min{Yi,t−τi}}
∫ t
0

θ1
µ1(s)+θ1

(1− e−(µ1(s)+θ1)(t−s))dm(s)

D1(t) =
∑Z1(0)

i=1 1{Yi<min{Vi,t}} d1(t) = µ1
µ1+θ1

z1(0)(1− e−(µ1+θ1)t)∑Z1(0)+Mµ1 (t)

i=Z1(0)+1 1{Yi<min{Vi,t−τi}}
∫ t
0

µ1(s)

µ1(s)+θ1
(1− e−(µ1(s)+θ1)(t−s))dm(s)

D2(t) =W2

(
µ2

∫ t
0
Z2(s)ds

)
d2(t) = µ2

∫ t
0
z2(s)ds

Matching Process
Mµ1

(t) =
∫ t
0

1{µ1(t)≥µ1,Z0(s−)>0}dA(s)+ µ1(t)≤ µ1∫ t
0

1{µ1(t)≥µ1,Q(s−)>0}d(R1(s) +D2(s))
∫ t
0

1{µ1(s)<µ1}dm(s) = 0

Initial Conditions
Z0(0) +Z1(0) +Z2(0) =K z0(t) + z1(0) + z2(0) = 1

µ0(t)≤ µ1 µ0(t)≤ µ1

Table 4 Stochastic model and fluid model.

driver passenger

(a)

driver

passenger

(b)

driver

passenger

(c)

Figure 12 City configurations

Results of the regression analysis are summarized in Table 5. Regression analysis shows that the spatial

model (1) can be applied to all three scenarios, with different parameter configurations. Another important

observation is that the values of the parameters α1 and α2 changes across different maps. In practice, the
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Map a. Line (goodness of fit: R2 = 0.99)
coef est. std. err T-value p-value 95% CI
β 3.9473 0.034 116.603 0 [3.881, 4.014]
α1 -1.0067 0.006 -158.466 0 [-1.019, -0.994]
α2 -1.0022 0.006 -157.759 0 [-1.015, -0.990]

Map b. Square (goodness of fit: R2 = 0.99)
coef est. std. err T-value p-value 95% CI
β 4.1950 0.020 209.399 0.000 [4.156, 4.234]
α1 -0.5246 0.004 -139.533 0.000 [-0.532, -0.517]
α2 -0.5260 0.004 -139.917 0.000 [-0.533, -0.519]

Map c. Grid (goodness of fit: R2 = 0.99)
coef est. std. err T-value p-value 95% CI
β 4.2083 0.007 573.496 0 [4.194, 4.223]
α1 -0.5274 0.001 -382.973 0 [-0.530, -0.525]
α2 -0.527 0.001 -382.722 0 [-0.530, -0.524]

Table 5 Regression analysis - stylized maps

m, l ∈ {5,10,15, ....,100}, 100 samples at each (m, l)

road system, traffic conditions, and the distributions of pick-up locations and drivers’ locations may also

affect these parameters.

2. Map of New York City In order to find out whether the spatial model (1) can be applied to real-

world situations, we use New York City as an example. We use point of interest(POI)4 and roadbed5 data

hosted by the NYC Open Data6. Both datasets are provided by the Department of Information Technology

& Telecommunications(DoITT). The POI dataset contains a list of about 20,000 common places and points

of interest with in New York City. The roadbed dataset provides the roadbed in divided pieces, each having

with a polygon shape. These polygons resemble the real road system. We assume that passengers are picked

up at random POIs and idle drivers are randomly located on the roadbed. Figure 13(a) shows the distribution

of the POIs in part of lower Manhattan, and Figure 13(b) shows the layout of the roadbed in the same

region. It can be seen that the POIs cover a wide range of places where the need for ride-hailing services

may emerge, and the roadbed is of a similar shape to the actual road system. The time it takes for a driver

to reach a passenger is computed using Open Source Routing Machine(OSRM7, Luxen and Vetter (2011)),

which provides detailed driving routes between different places. Due to the high computational complexity,

we reduce the sample size from 100 to 20. Regression results are shown in Table 6.

With a moderate sampling assumption, the regression results justify the potential use of the Cobb-Douglas

function in real cities. Notably, the estimation of α1 and α2 in New York City returns values that are

significantly different from 0.5, which indicates that α1 and α2 have to be chosen or estimated specifically

for each scenario.

4 https://data.cityofnewyork.us/City-Government/Points-Of-Interest/rxuy-2muj

5 https://data.cityofnewyork.us/City-Government/Roadbed/xgwd-7vhd

6 https://opendata.cityofnewyork.us/

7 http://project-osrm.org/
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(a) POIs: Lower Manhattan (b) Roadbed: Lower Manhattan

Figure 13 POIs and roadbed in Manhattan

Map of New York City (goodness of fit: R2 = 0.93)
coef est. std. err T-value p-value 95% CI
β 7.2849 0.067 108.152 0.000 7.151, 7.419
α1 -0.3877 0.015 -25.712 0.000 -0.418, -0.358
α2 -0.4077 0.015 -27.032 0.000 -0.438, -0.378

Table 6 Regression analysis - map of New York City

m, l ∈ {5,10,15, ....,50}, 20 samples at each (m, l)

Appendix C: Approximation-Rounding Loss

As shown in Table 1, our approximation works reasonably well, even at a scale of N = 100. But we also

observe that the accuracy of our approximation decreases as E(Q) or E(Z0) becomes small primarily due

to the subsequent rounding loss. In the original stochastic process, µ1(t) = C̃(Q(t))α1Z0(t))α2 takes discrete

values only. The jump size of the pick-up rate µ1(t) is significant if one of Q(t) and Z0(t) is small, and the

other is large. For example, when λ̃ = 0.5N with N = 100, the average pool size is only 0.01 at the fluid

scale while the amount of idle drivers is quite large at 0.73. Each time the pool size in the stochastic model

changes by 1, the pick-up rate varies dramatically. Therefore, the pick-up rate in the stochastic system will

be significantly larger than µ1, the pick-up rate in equilibrium in the fluid model. Without rounding loss,

one would expect E(Z2)/E(Z1)≈ µ1/µ2 because of (24). But in the case where λ̃= 0.5N and N = 100, the

ratio E(Z2)/E(Z1)≈ 12.6, significantly larger than µ1/µ2 = 10. Note that the rounding loss is mitigated as

N grows large, as observed in Table 1 that the approximation accuracy increases as the system scales up.

Therefore, the rounding loss is of less concern since a real ride-hailing system is usually large in scale, and

the average pool size or the number of idle drivers is rarely too small. Actually, the optimality condition we

derived in Section 5 does not require an accurate estimation of the pick-up rate.

Appendix D: Proofs

Proof of Proposition 1: For a given threshold µ1 and initial condition µ1(0)<µ1, we show that the system

must first go through the stage where µ1(t)<µ1 and then the stage where µ1(t) = µ1.
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The system starts with first stage as µ1(0)<µ1. Since m(t) does not increase at this stage (see (22)), the

evolution equations (14)-(17) become extremely simple as follows

q(t) = q(0) +λt− θ0

∫ t

0

q(s)ds, (35)

z0(t) = z0(0) +

∫ t

0

(z2(s)µ2 + z1(s)θ1)ds, (36)

z1(t) = z1(0)e−(µ1(0)+θ1)t, (37)

z2(t) = z2(0) +
µ1(0)

µ1(0) + θ1

z1(0)(1− e−(µ1(0)+θ1)t)−µ2

∫ t

0

z2(s)ds. (38)

Evidently the derivatives of the terms (with respect to t) on the right hand side in (35)-(38) are Lipschitz

continuous, so the existence and uniqueness of the process follows from the Picard-Lindelof theorem (Theorem

2.2 of Teschl (2009)). Note that q(t) and z0(t) are increasing function of t (as long as q(t)≤ λ/θ0, which can

be easily shown to be true for any t≥ 0). We show by contradiction that the system must enter the second

stage at some time point t1. Suppose that the system is at the first stage for all t≥ 0. From (35)-(38) it can

be easily shown that q(t)→ λ/θ0 and z0(t)→ 1 when t→∞. Since µ1 <C( λ
θ0

)α1 , it follows from (20) that

the system must enter the second stage when t is large enough, a contradiction.

We show that the pick-up rate µ1(t) stays at µ1 as the system enters the second stage. Suppose otherwise

there exists t1 < t2 such that µ1(t1) = µ1 > µ1(t) when t1 < t ≤ t2. According to the analysis for the first

stage, µ1(t) is increasing on the interval (t1, t2], contradicting the right continuity of µ1(t) at t= t1. What

remains to be shown is the existence and uniqueness of the process at the second stage.

Note that m(t) is monotone so π(t),m′(t) exists almost everywhere. Replace µ1(t) by µ1 in (14)-(17),

rearrange and we obtain the following differential equations

q′(t) = λ− θ0q(t)−π(t), (39)

z′0(t) = z2(t)µ2 + z1(t)θ1−π(t), (40)

z′1(t) =−(µ1(0) + θ1)z1(0)e−(µ1(0)+θ1)t +π(t)− (θ1 +µ1)z1(t). (41)

Since z0(t) + z1(t) + z2(t) = 1, the expression of z′2(t) is omitted. Let G(q, z) = Cqα1zα2 . For simplicity, let

α1 = α2 = α (the case of α1 6= α2 can be proven in a similar way). Since d
dt
G(q(t), z0(t)) = 0 at the second

stage, i.e., q′(t)
q(t)

+
z′0(t)

z0(t)
= 0, it is easy to derive

π(t) =
z0(t)

z0(t) + q(t)
(λ− θ0q(t)) +

q(t)

z0(t) + q(t)
(z2(t)µ2 + z1(t)θ1). (42)

Plug (42) into (39)-(41). Note that z0(t) + q(t)≥ 2
√
z0(t)q(t) = (µ1/C)1/(2α) which is bounded away from 0.

It is easy to show that the right-hand sides of (39)-(41) are Lipschitz continuous and again, the existence

and uniqueness of the fluid process at the second stage follows from the Picard-Lindelof theorem, completing

the proof. �

Proof of Theorem 1: First we provide a roadmap for the proof. As shown in the proof of Proposition 1,

the fluid process will go through two stages as time evolves: in the first stage where µ1(t)<µ1, when π(t) = 0,

the pool size q(t) and the number of idle drivers z0(t) will accumulate, until at some time point µ1(t) reaches

µ1, and remain there afterwards, referred to as the second stage. Since it takes finite time for the system
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to evolve from the first stage to the second stage, we only need to focus on the second stage. From (39),

(41) and (42), we can see that if (q(t), z0(t), z1(t), z2(t)) converges at all, it must converge to (q̄, z̄0, z̄1, z̄2).

To show the convergence of (q(t), z0(t), z1(t), z2(t)), noting that each of them is bounded and differentiable,

it is sufficient to show the monotonicity of each process. The proof shown below relies on a careful analysis

of the derivative of each term. For simplicity assume z1(0) = 0.

• Existence and uniqueness of the equilibrium From equations (23)-(26) it is easy to derive that

z1 =
(λ− qθ0)−µ2(1− z0)

θ1−µ2

,

z2 =
µ1

µ2

(λ− qθ0)−µ2(1− z0)

θ1−µ2

.

For a fixed µ1, let z0 = 1 and q= ( µ1

C0
)1/α1 . Then we gradually decrease z0 and increase q such that (26)

holds, and check if (25) also holds. If yes, then a feasible solution is found. Since z1 and z2 are both

increasing in z0 and decreasing in q, the uniqueness of the solution to (23)-(26) is proven. Moreover,

when z0 approaches 0, q approaches +∞, and the right-hand side of (25) is less than 1, so there must

exist a pair (z0, q) such that (25) holds by the intermediate value theorem. The existence is thus proven.

• Convergence to the equilibrium As in the proof of Proposition 1, we assume α1 = α2 = α for the

sake of simplicity. Since µ1(t) = µ1 at the second stage, µ′1(t) = (q(t)z0(t))′ = 0. Recall that π(t),m′(t),

we have

q′(t)z0(t) + q(t)z′0(t) = (A(t)−π(t))z0(t) + q(t)(B(t)−π(t)) = 0,

where

A(t) = λ− θ0q(t), B(t) = z1(t)θ1 + z2(t)µ2.

It follows that π(t) lies between the value of A(t) and B(t). We consider the following two cases:

1. The process q(t) is monotone, i.e., A(t)≥B(t) or A(t)≤B(t) holds for all t≥ 0.

First consider the case where A(t)≥B(t) for all t≥ 0. Then q(t) is an increasing function by (39),

and q(t)≤ λ/θ0, so it has limit q∗. It follows that z0(t) also has limit, denoted as z∗0. Observe the

evolution of z2(t). If z′2(t) = z1(t)µ1−z2(t)µ2 ≥ 0 or ≤ 0 for a large enough t, then z2(t) is monotone

and has limit z∗2. The proof is complete. Otherwise, by the continuity of z′1(t), there exists a t such

that z′2(t) = z1(t)µ1− z2(t)µ2 = 0. By (41), z′1(t) = π(t)− (µ1 + θ1)z1(t)>B(t)− (µ1 + θ1)z1(t) = 0

(we assume A(t) > B(t), otherwise equilibrium is already reached). Hence z′′2 (t) = z′1(t)µ1 > 0,

which implies that for a small enough ε > 0, z′2(t + ε) > 0. In summary, we have shown that if

z′2(t) = 0 for some t, then it will stay positive within a small interval. By the continuity of z′2(t),

it must lead to z′2(t)≥ 0 for all t≥ 0, and hence a limit exists. The case of A(t)≤B(t) follows a

similar analysis and thus is omitted.

2. A(t)−B(t) changes its sign infinitely many times and reaches 0 at some time point.

Suppose A(t1) =B(t1) for some t1 > 0. If z′2(t1) = z1(t1)µ1− z2(t1)µ2 = 0, then the equilibrium

is reached; now consider the case where z′2(t1)> 0 (analysis of the other case is similar and thus
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omitted). We can directly verify that A′(t1) = 0 and B′(t1) = z′2(t1)µ2 +z′1(t1)θ1 = (µ2−θ1)z′2(t1)<

0, implying that A(ti + ε) > B(ti + ε) for a small enough ε > 0. We claim that A(t)−B(t) and

z′2(t) are both nonnegative for t ≥ t1, hence both q(t) and z2(t) are monotone and have limits,

completing the proof. By the continuity of both functions, it only needs to be shown that whenever

A(t) =B(t) and z′2(t)> 0, then (A(t)−B(t))′ > 0 and whenever z′2(t) = 0 and A(t)>B(t), then

z′′2 (t) > 0. The first case was just proven above. As for the second case, it is easy to verify that

z′′2 (t) = z′1(t)µ1 − z′2(t)µ2 = z′1(t)µ1 =−z′0(t)µ1 > 0 (since q′(t)> 0 and q(t)z0(t) is constant, then

z′0(t)< 0).

�

Proof of Lemma 1: We first prove that q̄ is increasing in µ1. From (23)-(26), we have:

(
µ1

C
)1/α2 = q̄α1/α2(1− (λ− q̄θ0)(µ1 +µ2)

µ2(θ1 +µ1)
)

Take derivative over µ1, and let t= α1/α2. We have

µ2

C1/α2
((1/α2 + 1)µ1/α2

1 + θ1/α2µ
1/α2−1
1 )

= (t+ 1)θ0q̄
t dq̄

dµ1

(µ1 +µ2) + q̄1+tθ0 + (µ2−λ)q̄t + t(µ2(θ1 +µ1)−λ(µ1 +µ2))q̄t−1 dq̄

dµ1

.

Rearranging yields

dq̄

dµ1

=

µ2

C
1/α2
0

((1/α2 + 1)µ1/α2
1 + θ1/α2µ

1/α−1
1 )− (q̄1+tθ0 + (µ2−λ)q̄t)

(t+ 1)θ0q̄t(µ1 +µ2) + t(µ2(θ1 +µ1)−λ(µ1 +µ2))q̄t−1
.

The denominator is clearly positive. Plug µ1 =Cq̄α1 z̄α2
0 into the above equation. The numerator becomes

µ2((1/α2 + 1)q̄tz̄0 + 1/α2

θ1

µ1

q̄tz̄0)− q̄t(µ2−λ+ q̄θ0).

Apply the fact that λ− q̄θ0 = z̄1(µ1 + θ1) and z̄1µ1 = z̄2µ2. The numerator further reduces to

µ2q̄
t(−1 + z̄0 + z̄2 + z̄1

θ1

µ2

+ z̄0/α2 +
θ1

α2µ1

z̄0),

which is clearly positive given that θ1 >µ2.

Next we prove that z̄1 is decreasing in µ1. Again we utilize the equality λ− q̄θ0 = z̄1(µ1 + θ1). Since the

left hand side of the above equality is decreasing in µ1, it must lead to dz̄1
dµ1

< 0.

Since in the equilibrium z̄0 is not necessarily monotone in µ1, we have to consider several cases to prove

the quasi-concavity of z̄2. First note that by (24), the ratio between busy and assigned drivers z̄2/z̄1 = µ1/µ2

increases with µ1. For the range of µ1 such that z̄0 is decreasing in µ1, it follows directly from (25) that

(z̄1 + z̄2) is increasing. Thus, whenever the number of idle drivers z̄0 is decreasing in µ1, it is always better

for the platform to increase µ1. As µ1 increases, once z̄0 starts to decrease, we show that it will continue to

decrease as µ1 increases further. Finally we prove that z̄2 is quasi-concave when z̄0 is increasing in µ1. That

is, the derivative of z̄2 with respect to µ1 changes its sign for at most once. To show the quasi-concavity of

z̄2 with respect to µ1, first we take logarithm on both sides of (26) and then take derivative over µ1,

α1

dq̄

dµ1

/q̄+α2

dz̄0

dµ1

/z̄0 = µ1. (43)
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Taking derivative over µ1 on both sides of (23) and (24) gives

dq̄

dµ1

= (−θ1

dz̄1

dµ1

−µ2

dz̄2

dµ1

)/θ0,
dz̄0

dµ1

=− dz̄1

dµ1

− dz̄2

dµ1

.

Put back into (43), rearrange and we have

dz̄2

dµ1

= [α1θ1z̄1/(θ0q̄) +α2z̄1/z̄0− 1]/C1,

where C1 = (θ1 +µ1µ2)/(θ0q̄) + (1 +µ1)/z̄0 > 0.

We discuss the sign of dz̄0
dµ1

when µ1 ∈ (0,C(λ/θ0)α1 ]. If dz̄0
dµ1

> 0 for a certain range of µ1, combining that

with Lemma 1, it is easy to see that α1θ1z̄1/(θ0q̄)+α2z̄1/z̄0 is decreasing in µ1. On the other hand, if dz̄0
dµ1
≤ 0,

combining that with dz̄1
dµ1

< 0 it must lead to dz̄2
dµ1

= − dz̄0
dµ1
− dz̄1

dµ1
> 0, i.e., α1θ1z̄1/(θ0q̄) + α2z̄1/z̄0 > 1/. Let

S1 = {µ1 : α1θ1z̄1/(θ0q̄) +α2z̄1/z̄0 ≥ 1} and S2 = {µ1 : α1θ1z̄1/(θ0q̄) +α2z̄1/z̄0 ≤ 1}. It is easy to verify that

µ1 ∈ S2 when µ1→C(λ/θ0)α1 . We now argue that µ1 ∈ S1 when µ1 approaches 0. Since µ1 =C(q̄)α1(z̄0)α2 ,

at least one of q̄ and z̄0 approaches 0 when µ1 approaches 0. In addition, as z̄1 is decreasing in µ1, it follows

that α1θ1z̄1/(θ0q̄) +α2z̄1/z̄0 goes to infinity when µ1 approaches 0, hence the desired conclusion holds. Note

that when µ1 ∈ S2, it must hold that dz̄0
dµ1

> 0 and hence α1θ1z̄1/(θ0q̄) + α2z̄1/z̄0 is decreasing in µ1. So S2

is an absorbing area, i.e., as µ1 increases, once it enters S2, it will always stay within S2. It follows that S1

and S2 are intervals that complement each other, i.e., there exists a threshold value ξ such that S1 = (0, ξ]

and S2 = [ξ,C(λ/θ0)α1 ], and the quasi-concavity of z̄2 follows. �

Proof of Theorem 2: Recall in the proof of Lemma 1 that S1 = {µ1 : α1θ1z̄1/(θ0q̄)+α2z̄1/z̄0 ≥ 1} and S2 =

{µ1 : α1θ1z̄1/(θ0q̄)+α2z̄1/z̄0 ≤ 1/α}. Recall that µ1 ∈ S1 when µ1 approaches 0. First we show that there exist

a unique µ1 such that α1θ1z̄1/(θ0q̄)+α2z̄1/z̄0 = 1. By continuity, there must exists µ̂1 ∈ S1∩S2, i.e., existence

holds. At the point µ1 = µ̂1, z̄0 is increasing in µ1 and z̄1 is decreasing in µ1, hence α1θ1z̄1/(θ0q̄) +α2z̄1/z̄0

is strictly decreasing in µ1, implying the uniqueness of the solution.

Our objective is to maximize the system output rate: R = z2µ2 = z1µ1. Use q and z0 as the decision

variable. By the balancing equations (23)-(26), we have:

z1 =
(λ− qθ0)−µ2(1− z0)

θ1−µ2

Recall that G(q, z0) =C(q)α1(z0)α2 . Our optimization problem can then be reformulated as:

max
q,z0

(λ− qθ0)−µ2(1− z0)

θ1−µ2

G(q, z0)

s.t. (G(q, z0) +µ2)λ= (G(q, z0) +µ2)qθ0 +µ2(1− z0)(θ1 +G(q, z0)),

q, z0 ≥ 0,

where G(q, z0) =C(qz0)α.

The solution to the system takes one of the two forms:

1). The system runs at full capacity: either q= 0 or z0 = 0, or both.

2). Both q and z0 are positive.

It is easy to see that the optimal solution would take the second form. We now look into what properties

the optimal solution should satisfy. The Lagrangian multiplier is:

L(q, z0, µ) = ((λ−qθ0)−µ2(1−z0))G(q, z0)−µ((G(q, z0)+µ2)λ−(G(q, z0)+µ2)qθ0−µ2(1−z0)(θ1 +G(q, z0)))
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By the first order condition, we have:

∂L

∂q
=−θ0G(q, z0) +A

∂G

∂q
−µ(A

∂G

∂q
− θ0(G(q, z0) +µ2)) = 0

∂L

∂z0

= µ2G(q, z0) +A
∂G

∂z0

−µ(A
∂G

∂z0

+µ2(G(q, z0) + θ1)) = 0,

where A= (λ− qθ0)−µ2(1− z0).

A ∂G
∂z0

+µ2G

−A ∂G
∂q

+ θ0G
=
θ1

θ0

A ∂log(G)

∂z0
+µ2

−A ∂ log(G)

∂q
+ θ0

=
θ1

θ0

A(θ0

∂ log(G)

∂z0

+ θ1

∂ log(G)

∂q
) = (−µ2 + θ1)θ0

Note that A= (λ− qθ0)−µ2(1− z0) = (θ1−µ2)z1. We have the following:

z1(
∂ log(G)

∂z
+
θ1

θ0

∂ log(G)

∂q
) = 1 (44)

Since G=Cqα1zα2
0 , it follows from (44) that

α1

θ1

θ0

z1

q
+α2

z1

z0

= 1

holds for the equilibrium solution (q̄, z̄0, z̄1, z̄2). �

Proof of Proposition 2: First we show that the optimal objective value z∗2 is increasing in λ. This is easily

shown by finding a feasible solution with a larger objective value when λ increases by an amount of ∆: simply

let z′1 = z∗1 + ∆
θ1+µ2

, z′2 = z∗2 + ∆
θ1+µ2

while fixing all the other variables.

Secondly, we show that when λ→ 0 or λ→∞, the optimal decision µ∗1 is both increasing in λ. For a fixed

λ, assume z0 = z∗0, z1 = z∗1, z2 = z∗2 and q = q∗ are optimal. Now increase λ to λ+ ∆ while keeping µ1 = µ∗1

fixed. So (q̄, z̄0, z̄1, z̄2) which solve (23)-(26) are functions of λ.

We are interested in the sign of d
dλ

(α1z1/z0 + (α2z1θ1)/(qθ0)). Since µ1+µ2

µ2
z1 + z0 = 1, by replacing z1 by

the expression of z0 and canceling constants we obtain

d

dλ
(α1/z0 +α2θ1(1− z0)/(θ0q)) =−α1

dz0

dλ
/z2

0 +α2θ1/θ0 · (−
dz0

dλ
q− (1− z0)

dq

dλ
)/q2. (45)

Since G(z0, q) = µ∗1 is fixed, qα1zα2
0 is constant, implying that α1

dq

dλ
/q+α2

dz0
dλ
/z0 = 0. We show that dq

dλ
≥ 0.

Suppose otherwise dq

dλ
< 0 and dz0

dλ
> 0, which according to (24) and (25) must lead to dz1

dλ
< 0, dz2

dλ
< 0, which

contradicts (23).

Now we let dq

dλ
= α2qw, dz0

dλ
= −α1z0w, where w > 0. Putting that back into the right-hand side of (45)

yields

α2
1w/z0−α2

2θ1/θ0 · (1− (1 +α1/α2)z0)w/q. (46)

It is clear that when λ→ 0, q→ 0 and z0→ 1, so (46) is positive; when λ→∞, q→∞ and z0→ 0, so (46)

is also positive. By Corollary 1, when λ→ 0 or λ→∞, the optimal decision µ∗1 should be increasing in λ in

order for (28) to hold. (46) also provides a criterion for the monotonicity of µ∗1 with respect to λ. Specifically,

µ∗1 is increasing in λ if q∗ > α2θ1
α2
1θ0

(α2− (α1 +α2)z∗0)z∗0, and deceasing in λ otherwise. �
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Proof of Proposition 3: We start by analyzing P ∗ab and z∗1. Suppose otherwise lim supλ→0P
∗
ab = 1. By

taking subsequences, we can can assume w.l.o.g. that P ∗ab = θ0q
∗

λ
= θ0q

∗

θ0q∗+θ1z∗1+µ2z
∗
2
→ 1 when λ→∞, i.e.,

z∗1/q
∗ and z∗2/q

∗ both converge to 0. However, by (27) it follows that z∗1/z
∗
0→ 1/α2, hence z∗0/q

∗→∞, which

contradicts the fact that z∗0 + z∗1 + z∗2 = 1 and q∗→ 0 when λ→∞. limλ→∞ z
∗
1 = 0 follows from the fact that

z∗2→ 1 when λ→∞.

Next we analyze P f
ab and zf1 . Under any fixed matching radius µ̄1, when λ is small enough, the threshold

µ̄1 can never be achieved and the system makes no matches, resulting in limλ→0 z
f
1 = limλ→0 z

f
1 = 0 and hence

limλ→0P
f
ab = 1. It remains to show that zf1 is increasing with λ. Suppose zf1 decreases with λ at some point.

By (24) zf2 also decreases with λ, which leads to zf0 increasing with λ in view of zf0 + zf1 + zf2 = 1. On the

other hand, by (23) qf must also increases with λ, contradicting (26) since the matching radius is fixed. �


