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a b s t r a c t

Fluidmodels, in particular their equilibrium states, have become an important tool for the study of many-
server queueswith general service and patience time distributions. However, it remains an open question
whether the solution to a fluid model converges to the equilibrium state and under what condition.
We show in this paper that the convergence holds under some conditions. Our method builds on the
framework of measure-valued processes, which keeps track of the remaining patience and service times.

© 2014 Published by Elsevier B.V.
1. Introduction

In this paper, we analyze the asymptotic behavior of fluid mod-
els for many-server queues with abandonment. We allow both the
service time and patience time distributions to be general. To the
best of our knowledge, Whitt [10] is the earliest to propose a fluid
model for many-server queues with generally distributed service
andpatience times. In [10], the equilibriumstate for a fluidmodel is
characterized and extensive simulations show that the equilibrium
state of the fluid model yields reasonably good approximations to
the original stochastic system in steady state.

The challenge in studyingmany-server queues, especiallywhen
the service time is generally distributed, is that the status of the
server pool plays an important role in the dynamics. However, de-
scribing the status itself is quite complicated. There have been two
streams of work providing different modeling approaches. Kang
and Ramanan [5], which is based on [6] for many-server queues
without abandonment, modeled the status of the server pool by
keeping track of the ‘‘age’’ (the amount of time a customer has
been in service). Alternatively, Zhang [11]modeled the status of the
server pool by tracking each customer’s ‘‘residual’’ (the remaining
service time). The fluidmodel proposed in [5] is too complicated to
be analyzed. Even the existence and uniqueness of the fluid model
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solution is proved using heavy traffic approximation. This paper
thus builds on the second approach instead.

Both [5,11] established the fluid model as the limit of fluid-
scaled stochastic processes underlying many-server queues. How-
ever, the analysis of the fluid model itself remains open. [10,5,11]
have all been unable to show that the fluid model converges to
the equilibrium states. Such a convergence was proved in [9] for
a many-server fluid model with exponentially distributed service
and patience times. Taking advantage of the exponential distribu-
tion, the fluid model reduces to a one-dimensional ordinary dif-
ferential equation (ODE). In general, proving convergence to the
equilibrium states for fluid models is intrinsically difficult, even
though the fluid models are just deterministic dynamic systems.

The current work can be viewed as a sequel to [11]. We use the
same definition for the fluid model, and even the same set of nota-
tions for easy connection. The modeling is close to that in [12] but
themethod is significantly different due to customer abandonment
(which does not appear in [12]) and intrinsic difficulties in many-
server models. [7] offered a nice treatment for the fluid model of
the many-server queue without abandonment. Though the main
focus of that paper is not the fluid analysis, the elegant treatment of
the fluid model helps to relax the assumption on initial customers
made in [8]. Abandonment, especially with a general patience time
distribution, imposes significant challenges. A virtual buffer, which
holds all the customers who have arrived but not yet scheduled
to receive service according to the FCFS policy, is constructed to
study abandonment in [11]. The idea is to keep some abandoned
customers in the virtual buffer for tracking purposes. This paper
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adopts the same idea. Our fluid model can be shown to be equiv-
alent to the one in [7] when patience time becomes infinite (no
abandonment).

We hope the analytical tools we develop in this paper can pave
the way for studying more complicated many-server models such
as the multi-class V-model studied in [1], and models where ser-
vice and patience times are dependent in [2].

2. Fluid models of many-server queues

Let R denote the set of real numbers and R+ = [0, ∞). For
a, b ∈ R, write a+ for the positive part of a and a ∧ b for the min-
imum. Denote Cx = (x, ∞) and F c(x) = 1 − F(x) for any distribu-
tion function. At time t , let R̄(t)(Cx) denote the amount of fluid in
the virtual buffer with remaining patience time larger than x. Since
the virtual buffer also holds abandoned customers who have neg-
ative remaining patience times, the testing parameter x is allowed
to be both positive and negative for the measure R̄(t). Introduce
R̄(t) = R̄(t)(R), the total fluid content in the virtual buffer. Denote
by λ the arrival rate. So at time t , the earliest arrived fluid content
in the virtual buffer arrives at time t−R̄(t)/λ. To find out the status
of the virtual buffer at time t , we take integral from t − R̄(t)/λ to
t . If an infinitesimal amount of fluid content λds arrives at time s,
only a fraction F c(x+ t−s) of it has remaining patience time larger
than x at time t since t − s amount of time has been spent waiting
in queue. This yields Eq. (2.2). Let Z̄(t)(Cx) denote the amount of
fluid in the server pool with remaining service time larger than x
at time t . Unlike the virtual buffer, a customer leaves the system
once his remaining service time hits 0. So we restrict the testing
parameter x ∈ R+ for the measure Z̄(t). Let

B̄(t) = λt − R̄(t). (2.1)

Thephysical intuition for B̄ is that B̄(t)−B̄(s) represents the amount
of fluid in the virtual buffer that could have entered service during
time interval (s, t]. It should be pointed out that not all of it will
actually enter the server pool. At time s, an infinitesimal amount
dB̄(s) is scheduled to enter service afterwaiting in the virtual buffer
for R̄(s)/λ. Thus, a fraction F


R̄(s)
λ


has actually abandoned queue

by time s. Only the rest makes it to the service. This contributes to
the term F c


R̄(s)
λ


in (2.3). The following fluid dynamic equations

characterize how the fluid content (R̄(t), Z̄(t)) evolves over time.
For all t ≥ 0,

R̄(t)(Cx) = λ

 t

t− R̄(t)
λ

F c(x + t − s)ds, x ∈ R, (2.2)

Z̄(t)(Cx) = Z̄(0)(Cx+t) +

 t

0
F c


R̄(s)
λ


Gc(x + t − s)dB̄(s),

x ∈ R+. (2.3)

Introduce Z̄(t) = Z̄(t)(C0), the fluid content in service; and Q̄ (t) =

R̄(t)(C0), the fluid queue length. Let Z̄(t) + Q̄ (t) = X̄(t) denote
the total amount of fluid in the physical system. The following non-
idling constraints must be valid at any time t ≥ 0,

Q̄ (t) = (X̄(t) − 1)+, (2.4)

Z̄(t) = X̄(t) ∧ 1. (2.5)
Let (λ, F ,G) denote the fluid model defined by (2.2)–(2.5).

The initial state (R̄(0), Z̄(0)) is said to be valid if it satisfies
Eqs. (2.2)–(2.5) at time t = 0. Throughout this paper, we make
the following assumptions.

Assumption 1. Assume the service time distribution G is abso-
lutely continuouswith finitemean 1/µ; and the patience time dis-
tribution F is Lipschitz continuous.
According to Theorem 3.1 in [11], under Assumption 1, there
exists a unique solution to the fluid model (λ, F ,G) for any valid
initial state (R̄(0), Z̄(0)). Theorem 3.3 in [11] shows that the
fluid model solution serves as the fluid limit of the many-server
queueing models.

3. Convergence to equilibrium states

A key property of the fluid model is that it has an equilibrium
state. An equilibrium state is defined intuitively as the state from
which the fluid model solution starts and remains. More precisely,
(R̄∞, Z̄∞) is an equilibrium state of the fluid model (λ, F ,G) if
the solution to the fluid model with a valid initial state (R̄∞, Z̄∞)
satisfies (R̄(t), Z̄(t)) = (R̄∞, Z̄∞) for all t ≥ 0. As characterized
in Theorem 3.2 in [11], the state (R̄∞, Z̄∞) is an equilibrium state
of the fluid model (λ, F ,G) if and only if it satisfies

R̄∞(Cx) = λ

 ω

0
F c(x + s)ds, x ∈ R, (3.1)

Z̄∞(Cx) = min (ρ, 1) [1 − Ge(x)], x ∈ R+, (3.2)

where ρ = λ/µ is the traffic intensity, ω is the unique solution to

F(ω) = max


ρ − 1
ρ

, 0


, (3.3)

and Ge(·), called the equilibrium distribution associated with G, is
defined by

Ge(x) = µ

 x

0
Gc(y)dy, for all x ≥ 0. (3.4)

Note that we need to assume (3.3) has a unique solution (see
Remark 1 for detailed discussion). The objective is to show

lim
t→∞


R̄(t), Z̄(t)


=


R̄∞, Z̄∞


. (3.5)

Underloaded case. In this case, we can prove the convergence under
a fairly general condition.We only require the initial state to satisfy

lim
x→∞

Z̄(0)(Cx) = 0, (3.6)

which is quite mild. We do not even require the initial remaining
workload in the server pool


∞

0 Z̄(0)(Cx)dx to be finite.

Theorem 1. Under Assumption 1 and suppose λ < µ, if the initial
state satisfies (3.6), then the convergence (3.5) holds.

Critically loaded and overloaded cases. The study in these two cases
turns out to bemore challenging.We cannot prove that the conver-
gence holds in generality. If the initial state is controlled by (3.7),
we can prove the convergence without assuming additional con-
ditions on service and patience time distributions. This condition
covers the cases where the system starts from empty or initial cus-
tomers’ service times follow the equilibrium distribution.

Theorem 2. Under Assumption 1 and suppose λ ≥ µ, if there is a
unique solution to (3.3), the initial state satisfies (3.6) and

Z̄(0)′((0, t]) :=
d
dt

Z̄(0)((0, t]) ≤ λGc(t), (3.7)

then the convergence (3.5) holds.

4. Preliminary analysis

Introduce two new functions Fd(x) =
 x
0 F c(y)dy and

H(x) =


F c


F−1
d

 x
λ


, if 0 ≤ x < λNF ,

0, if x ≥ λNF ,
(4.1)
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where NF is the mean of the patience time, i.e., NF =


∞

0 F c(y)dy,
which can be either finite or infinite. In [11], the following key
equation is derived from the fluid equations (2.2)–(2.5) and will
play an import role in this paper,

X̄(t) = Z̄(0)(Ct) + Q̄ (0)Gc(t)

+
λ

µ

 t

0
H


(X̄(t − s) − 1)+


dGe(s)

+

 t

0
(X̄(t − s) − 1)+dG(s). (4.2)

We introduce an auxiliary enter service process

Ā(t) =

 t

0
F c


R̄(s)
λ


dB̄(s).

According to the fluid dynamic equation (2.2),

R̄(t)(Cx) = λ

 R̄(t)
λ

0
F c(x + s)ds. (4.3)

Plugging x = 0 into the above equation gives

Q̄ (t) = λ

 t

t− R̄(t)
λ

F c(t − s)ds = λ

 R̄(t)
λ

0
F c(s)ds. (4.4)

Utilizing (2.1), (4.1) and (4.4), and the fact that Q̄ (t) (equivalently
R̄(t)) is of bounded total variation (see p. 162 in [11]), the auxiliary
process can be written as

Ā(t) = λ

 t

0
H(Q̄ (s))ds − Q̄ (t) + Q̄ (0). (4.5)

It follows from Lemma A.3 in [11] that Ā(t) is non-decreasing in t .
Introduce the abandonment process

L̄(t) = λ

 t

0
F


R̄(s)
λ


ds = λt − λ

 t

0
H(Q̄ (s))ds, (4.6)

where the second equation can be verified from (4.1) and (4.4). This
together with (4.5) implies the balance equation

Q̄ (t) = Q̄ (0) + λt − L̄(t) − Ā(t). (4.7)

According to the fluid dynamic equation (2.3),

Z̄(t)(Cx) = Z̄(0)(Cx+t) +

 t

0
Gc(x + t − s)dĀ(s). (4.8)

Plugging x = 0 to (4.8) and performing integration by parts yield
the relation between Ā and Z̄

Ā(t) = Z̄(t) − Z̄(0)(Ct) +

 t

0
Ā(t − s)dG(s). (4.9)

Let Gn∗ be the n-fold convolution of G with itself, and denote
MG(t) =


∞

i=1 G
n∗(t) as the renewal function of G. The solution

to the above renewal equation is

Ā(t) =

Z̄(t) − Z̄(0)(Ct)


∗ UG(t), (4.10)

where UG(t) = MG(t) + 1. We can also introduce the service
completion process

S̄(t) = Z̄(0)((0, t]) +

 t

0
G(t − s)dĀ(s)

= Z̄(0)((0, t]) + (Z̄(t) − Z̄(0)(Ct)) ∗ MG(t). (4.11)

By (4.10) and (4.11) one can verify the balance equation

Z̄(t) = Z̄(0) + Ā(t) − S̄(t). (4.12)
5. Proof of the convergence

The proof is made possible by carefully analyzing the measure-
valued fluid dynamic equations (2.2)–(2.3) and the above intro-
duced auxiliary processes. The most important step is to show the
convergence of total amount of the fluid process X̄(t). However,
the measure-valued processes play a significant role in analyzing
the real-valued process X̄(t).

Proposition 1 (Underloaded). Under the same conditions in Theo-
rem 1, the fluid model solution (R̄(t), Z̄(t)) satisfies

lim
t→∞

X̄(t) =
λ

µ
. (5.1)

Proof. By (2.4) and (4.2) we have,

Q̄ (t) = −Z̄(t) + Z̄(0)(Ct) + Q̄ (0)Gc(t)

+
λ

µ

 t

0
H(Q̄ (t − s))dGe(s) +

 t

0
Q̄ (t − s)dG(s).

Define

K̄(t) = −Z̄(t) + Z̄(0)(Ct) + Q̄ (0)Gc(t)

+
λ

µ

 t

0
H(Q̄ (t − s))dGe(s), (5.2)

then

Q̄ (t) = K̄(t) +

 t

0
Q̄ (t − s)dG(s). (5.3)

So

Q̄ (t) = K̄(t) ∗ UG(t) =

 t

0
K̄(t − s)dUG(s). (5.4)

Consider the following two cases: If Q̄ (t) = 0, then by (5.3),

K̄(t) = Q̄ (t) −

 t

0
Q̄ (t − s)dG(s)

= 0 −

 t

0
Q̄ (t − s)dG(s) ≤ 0.

If Q̄ (t) > 0, then Z̄(t) = 1 due to non-idling constraints. Since
λ < µ and H(·) ≤ 1, we can pick δ = (1 − λ/µ)/3 which is
positive such that λ

µ

 t
0 H(Q̄ (t − s))dGe(s) ≤ 1− 2δ. For this given

δ > 0, there exists a T such that Z̄(0)(Ct) + Q̄ (0)Gc(t) ≤ δ for all
t ≥ T . It now follows from (5.2) that for all t ≥ T and Q̄ (t) > 0,

K̄(t) = −1 + Z̄(0)(Ct) + Q̄ (0)Gc(t) +
λ

µ

 t

0
H(Q̄ (t − s))dGe(s)

≤ −1 + δ + 1 − 2δ = −δ.

Denote by the set S = {t ≥ 0 : Q̄ (t) > 0} the collection of times
when the fluid queue is positive. We first prove by contradiction
that m(S) < ∞, where m is the Lebesgue measure on real
numbers. Now suppose m(S) = ∞. Combining the above two
cases, we have K̄(t) ≤ 0 for all t ∈ [T , +∞) and K̄(t) ≤ −δ for all
t ∈ S ∩ [T , +∞).

Write the integral in (5.4) in two parts,

Q̄ (t) =

 t−T

0
K̄(t − s)dUG(s) +

 t

t−T
K̄(t − s)dUG(s). (5.5)

It is clear that the first term in (5.5) is negative whenever t > T
since K̄(t − s) ≤ 0 for all s ∈ [0, t − T ]. Moreover K̄(t − s) ≤ −δ
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for all s ∈ St,T , where St,T := {s : t − s ∈ S ∩ [T , ∞)}. By the
assumption thatm(S) = ∞, we havem(St,T ) → ∞ as t → ∞. So
the first term on the right-hand side of (5.5) t−T

0
K̄(t − s)dUG(s) ≤


St,T

−δdUG(s),

which converges to −∞ as t → ∞. The second term on the right-
hand side of (5.5) is essentially an integral on a finite interval. Let
M = sups∈[0,T ] K̄(s), then t

t−T
K̄(t − s)dUG(s) ≤ M

 t

t−T
dUG(s) → µMT ,

as t → ∞. So we have limt→∞ Q̄ (t) = −∞, which contradicts
Q̄ (t) ≥ 0 for all t ≥ 0. Thus we have proved m(S) < ∞. As a
byproduct, the above analysis also yields an upper bound for the
fluid queue length process. Since the first term on the right-hand
side of (5.5) is always less than or equal to 0 for all t ≥ T , and
the second term has an asymptotic upper bound, there exists a
constantM1 such that

sup
t≥0

Q̄ (t) ≤ M1 + µMT . (5.6)

Since m(S) < ∞, for any ε > 0 there exists a τ such that m(S ∩

[τ , +∞)) < ε. Now consider the fluid model shifted by time τ as
in Lemma 3. Let Sτ+t := {s : τ + t − s ∈ S ∩ [τ , ∞)}, then

m (Sτ+t) ≤ m (S ∩ [τ , +∞)) < ε. (5.7)

SinceG(·) is absolutely continuous byAssumption 1,we can choose
an ε small enough and a corresponding τ such that t

0
Q̄τ (t − s)dG(s) ≤ (M1 + µMT )


Sτ+t

dG(s) ≤
1
2


1 −

λ

µ


,

where the first inequality is due to (5.6) and the second one follows
from (5.7), Theorem 12.34 in [4] and the fact that λ/µ < 1. Now
by (A.4) in Lemma 3 and that H(·) ≤ 1,

X̄τ (t) ≤ Z̄(τ )(Ct) + Q̄ (τ )Gc(t) +
λ

µ
+

1
2


1 −

λ

µ


.

Replacing (t, x) in (4.8) by (τ , t), it follows from the monotonicity
of Ā(·) and (3.6) that Z̄(τ )(Ct) vanishes as t → ∞. Therefore
there exists a τ1 such that X̄(t) < 1, consequently Q̄ (t) = 0, for
all t ≥ τ1. Then by (4.2), (2.4) and Lemma 2, (5.1) immediately
follows. �

Proposition 2 (Critically Loaded and Overloaded). Under the same
conditions in Theorem 2, if (3.3) has a unique solution ω, then the
fluid model solution (R̄(t), Z̄(t)) satisfies

lim
t→∞

X̄(t) = 1 + λ

 ω

0
F c(x)dx. (5.8)

Proof. Let T = inf{t ≥ 0 : Z̄(t) = 1}. So (2.4), (4.5) and (4.8)
reveal for any t ∈ [0, T ] we have

Z̄(t) = Z̄(0)(Ct) + λ

 t

0
Gc(s)ds, (5.9)

and Z̄(T ) = Z̄(0)(CT )+λ
 T
0 Gc(s)ds = 1. One can see T = ∞ only

when λ = µ. In this case, it is clear that limt→∞ Z̄(t) = 1 and (5.8)
holds. Thus, we focus on the case where T < ∞.

It is easy to verify that under Assumption 1 and (3.7), the fluid
model solution becomes differentiable. Take derivative of (4.11) to
obtain

S̄ ′(t) = Z̄(0)′((0, t]) +

 t

0
M ′

G(t − s)d(Z̄(s) − Z̄(0)(Cs)). (5.10)

For any t ∈ [0, T ], plug in (5.9) and apply condition (3.7)

S̄ ′(t) = Z̄(0)′((0, t]) + λ

 t

0
M ′

G(t − s)Gc(s)ds

≤ λGc(t) + λG(t) = λ;

for any t ∈ (T , ∞), split the integral in (5.10) and apply (3.7)

S̄ ′(t) = Z̄(0)′((0, t]) + λ

 T

0
M ′

G(t − s)Gc(s)ds

−

 t

T
M ′

G(t − s)dZ̄(0)(Cs) +

 t

T
M ′

G(t − s)dZ̄(s)

≤ λ +

 t

T
M ′

G(t − s)dZ̄(s). (5.11)

Specializing the patience time distribution to be F(x) = 0
for all x ≥ 0 yields the fluid model with infinite patience (no-
abandonment). This implies the remaining patience time of all the
fluid in (virtual) buffer is +∞. So we need to extend the real line
to include +∞. Let R̄p, Z̄p, R̄p, Q̄p, Z̄p, X̄p, Āp, L̄p and S̄p denote the
associated processes of the fluid model with infinite patience. We
replace Cx by C∗

x = Cx ∪ {+∞} when discussing the measure R̄p

for the virtual buffer, e.g., Q̄p(t) = R̄p(t)(C∗

0 ). It is clear that the
measure-valued process (R̄p(t), Z̄p(t)) still satisfies (2.2)–(2.3)
with the constraints (2.4)–(2.5) remaining the same. All we need is
to plug in F(·) ≡ 0 to obtain the corresponding version for the no-
abandonmentmodel. E.g., the terms F c(·) in (2.2) and (2.3) become
1. So R̄p(t)(C∗

x ) = R̄p(t) = Q̄p(t) by (2.2). To the other extreme,
specializing the patience time distribution to be F(x) = 1 for all
x ≥ 0 yields the blockedmodel (no buffer). But this is not simply an
extension of our fluidmodel. Sowe define it in Definition 1. Denote
by Q̄b, Z̄b and Āb the processes associated with the blocked fluid
model. For these two fluid models, we can explicitly solve them
(see (4.5), (4.10), (5.9) and (5.11))

Z̄p(t) =

Z̄(0)(Ct) + λ

 t

0
Gc(s)ds, t ∈ [0, T ],

1, t ∈ (T , ∞),

(5.12)

Q̄p(t) = Q̄ (0) + λt − (Z̄p(t) − Z̄(0)(Ct)) ∗ UG(t),

and Z̄b(t) = Z̄p(t), Q̄b(t) = 0. Consequently Āb(t) = Āp(t) due
to (4.10). It follows from Lemma 1 and Corollary 1 that Āb(t) =

Ā(t) = Āp(t). So we can conclude that Z̄ also satisfies (5.12) due to
(4.9). Combining this result with assumption (3.7), it is easily seen
that Z̄ ′(t) − Z̄(0)′(Ct) is directly Riemann integrable. Applying the
key renewal theorem to the differentiated version of (4.9) yields
that

lim
t→∞

Ā′(t) = µ


∞

0
Z̄ ′(t) − Z̄(0)′(Ct)dt = µ. (5.13)

Next, we prove the convergence of Q̄ (t) in two cases. Case 1:
λ = µ. Since we assume there is a unique solution to (3.3) (the
solution ω = 0 in this case), it then follows from the definition of
H(·) in (4.1) that for any ε > 0 there exists a δ > 0 such that
λH(Q̄ (t)) ≤ µ − δ whenever Q̄ (t) ≥ ε. Due to (5.13), there
exists a T0 > 0 such that for all t > T0, Ā′(t) ≥ µ − δ/2. Let
L(t) = (Q̄ (t) − 0)2, then by (4.5) for all t > T0

L′(t) = 2(Q̄ (t) − 0)(λH(Q̄ (t)) − Ā′(t)) ≤ −εδ,

whenever Q̄ (t) ≥ ε. So there must be a T1 > 0 such that
Q̄ (t) < ε for any t > T1. Due to the arbitrariness of ε, we have
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limt→∞ Q̄ (t) = 0. Case 2: λ > µ. Let Q̄∞ = λ
 ω

0 F c(x)dx. Since ω
is the unique solution to (3.3), similar to the previous case, for any
ε > 0 there exists a δ > 0 such that

λH(Q̄ (t)) ≤ µ − δ whenever Q̄ (t) ≥ Q̄∞ + ε, (5.14)

λH(Q̄ (t)) ≥ µ + δ whenever Q̄ (t) ≤ Q̄∞ − ε. (5.15)

Due to (5.13), there exists a T0 > 0 such that for all t > T0,
µ − δ/2 ≤ Ā′(t) ≤ µ + δ/2. Let L(t) = (Q̄ (t) − Q̄∞)2, then
by (4.5) for all t > T0

L′(t) = 2(Q̄ (t) − Q̄∞)(λH(Q̄ (t)) − Ā′(t)) ≤ −εδ,

whenever Q̄ (t) ≤ Q̄∞ − ε or Q̄ (t) ≥ Q̄∞ + ε. So there must be a
T1 > 0 such that Q̄ (t) ∈ (Q̄∞ − ε, Q̄∞ + ε) for all t > T1. Due to
the arbitrariness of ε, we have limt→∞ Q̄ (t) = Q̄∞. �

Remark 1. In the critically loaded and overloaded cases, if the
solution to (3.3) is not unique then define

Q̄∞,max := sup

λ

 ω

0
F c(x)dx : F(ω) =

ρ − 1
ρ


.

We can use (5.14) to show lim supt→∞ Q̄ (t) ≤ Q̄∞,max. Similarly,
we can define Q̄∞,min and use (5.15) to show lim inft→∞ Q̄ (t) ≥

Q̄∞,min.

Proving the convergence of the measure-valued process from
that of X(t) is the same for systems with different load.

Complete the proof of Theorems 1–2. Since the space of real
numbers is separable and R̄∞({x}) = Z̄∞({x}) = 0 for all x, ac-
cording to Property (iv) of the Prokhorov metric on p. 72 in [3], it
suffices to show that

lim
t→∞

R̄(t)(Cx) = R̄∞(Cx), (5.16)

lim
t→∞

Z̄(t)(Cx) = Z̄∞(Cx). (5.17)

It follows from Propositions 1–2 that the limit of Q̄ (t) is

lim
t→∞

Q̄ (t) = Q̄∞ = λ

 ω

0
F c(x)dx, (5.18)

where ω satisfies (3.3). Then by (4.1) and (4.4), limt→∞ R̄(t) =

R̄∞ = λω and

lim
t→∞

H(Q̄ (t)) = H(Q̄∞) =


1, λ ≤ µ,
µ/λ, λ > µ.

Hence, (5.16) follows from (3.1), (4.3) and the above limit. Plugging
(4.5) into (4.8) yields

Z̄(t)(Cx) = Z̄(0)(Cx+t) + λ

 t

0
H(Q̄ (t − s))Gc(x + s)ds

− Q̄ (t)Gc(x) + Q̄ (0)Gc(x + t)

−

 t

0
Q̄ (t − s)dGc(x + s).

According to Lemma 2 and the convergence of Q̄ (t) in (5.18),

lim
t→∞

Z̄(t)(Cx) =
λH(Q̄∞)

µ


1 − µ

 x

0
Gc(s)ds


.

So (5.17) follows from (3.2) and (3.4). �
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Appendix. Some auxiliary lemmas

A comparison result. Consider two fluid models with the same ar-
rival rate λ, service time distribution G, and initial state, but dif-
ferent patience time distributions Fi, i = 1, 2. Denote by Q̄i, Z̄i, Āi
and L̄i the corresponding derived processes associated with the ith
fluid model.

Lemma 1. If F c
1 (x) ≤ F c

2 (x) for all x ∈ R+, then Ā1(t) ≤ Ā2(t) for
all t ≥ 0.

Proof. For any δ > 0, let τ = inf{t ∈ R+ : Ā1(t) − Ā2(t) ≥ δ} be
the first time when Ā1 exceeds Ā2 by δ. Since the two fluid models
start from the same initial state, we must have τ > 0. Now the
objective is to show that τ = ∞. Suppose τ is finite.

For any t ∈ [0, τ ], if Z̄1(t) ≤ Z̄2(t), then by (4.9)

Ā1(t) − Ā2(t) = Z̄1(t) − Z̄2(t) −

 t

0
(Ā1(s) − Ā2(s))dG(t − s)

≤ −

 t

0
(Ā1(s) − Ā2(s))dG(t − s)

< δG(t) ≤ δ, (A.1)

for any t ∈ [0, τ ]. This implies that Z̄1(τ ) > Z̄2(τ ). A direct
consequence is that

Q̄2(τ ) = 0, (A.2)

due to the non-idling equations (2.4) and (2.5). Let r = sup{t <
τ : Q̄1(t) < Q̄2(t)} ∨ 0 be the last time Q̄1 is less than Q̄2. Thus
Q̄1(t) ≥ Q̄2(t) for each t ∈ [r, τ ]. Then it follows from (4.4) and
the fact F c

1 (x) ≤ F c
2 (x) that R̄1(t)/λ ≥ R̄2(t)/λ for all t ∈ [r, τ ].

Then by (4.6) that

L̄1(τ ) − L̄1(r) ≥ L̄2(τ ) − L̄2(r). (A.3)

By the definition of r we have Q̄1(r) = Q̄2(r) and Z̄1(r) ≤ Z̄2(r) =

1. It follows from (A.1) that Ā1(r)−Ā2(r) < δ. Consequently, r ≠ τ .
Then together with (A.2), (A.3) and the balance equation (4.7), we
conclude

Ā1(τ ) − Ā2(τ ) = Ā1(r) − Ā2(r) − [L̄1(τ ) − L̄1(r) − L̄2(τ )

+ L̄2(r)] − [Q̄1(τ ) − Q̄1(r) − Q̄2(τ )

+ Q̄2(r)] < δ,

which contradicts the definition of τ . So τ cannot be finite. Thus,
we have proved that Ā1(t) ≤ Ā2(t) for all t ≥ 0. �

Definition 1. A blocked fluid model is specified by Q̄ (t) ≡ 0,
equations (4.7)–(4.12), and

Ā′(t) =


λ, Z̄(t) < 1,
λ ∧ S̄ ′(t), Z̄(t) = 1.

Corollary 1. Denote Ā1(t) as the enter service process associatedwith
a blocked fluid model. We have Ā1(t) ≤ Ā2(t) for all t ≥ 0, where
Ā2(t) is the corresponding process for an unblocked fluid model with
the same arrival rate, service time distribution and initial state.

Proof. The proof is almost identical to that of Lemma 1, we only
point out the difference. We can use exactly the same argument
leading to (A.2). Then, have 0 = Q̄1(t) ≥ Q̄2(t) for all t ∈ [r, τ ]. It
follows from (4.6) that L̄2(τ )−L̄2(r) = 0. So the inequality (A.3) still
holds. The rest of the argument is exactly same as that of Lemma 1.
Thus we omit it. �

Limit of convolution. The following lemma is used in multiple
places. The proof is quite standard, we omit for brevity.
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Lemma 2. If f , g : [0, ∞) → R satisfy that f (∞) = limt→∞ f (t)
and


∞

0 |g(s)|ds < ∞, then

lim
t→∞

 t

0
f (t − s)g(s)ds = f (∞)


∞

0
g(s)ds.

Time shift of the fluid model. For any τ ≥ 0, denote

Z̄τ (t),

R̄τ (t)


=

Z̄(τ + t), R̄(τ + t)


. The time shift for all the derived

‘‘status’’ quantities such as Q̄τ (·), R̄τ (·), Z̄τ (·) and X̄τ (·) are defined
in the same way, e.g., Q̄τ (t) = Q̄ (τ + t). However, let Āτ (t) =

Ā(τ + t) − Ā(τ ) since Ā(t) records the ‘‘cumulative’’ amount of
fluid that has entered service by time t .

Lemma 3. Time-shifted fluid solution

Z̄τ (t), R̄τ (t)


satisfies

X̄τ (t) = Z̄(τ )(Ct) + Q̄ (τ )Gc(t) +
λ

µ

 t

0
H(Q̄τ (t − s))dGe(s)

+

 t

0
Q̄τ (t − s)dG(s). (A.4)

Proof. Plugging (4.5) into (4.8) and applying integration-by-parts
gives

Z̄(τ )(Ct) = Z̄(0)(Cτ+t) +
λ

µ

 τ+t

t
H(Q̄ (τ + t − s))dGe(s)

− Q̄ (τ )Gc(t) + Q̄ (0)Gc(τ + t)

+

 τ+t

t
Q̄ (τ + t − s)dG(s).
So the right-hand side of (A.4) becomes

Z̄(0)(Cτ+t) + Q̄ (0)Gc(τ + t) +
λ

µ

 τ+t

0
H(Q̄ (τ + t − s))dGe(s)

+

 τ+t

0
Q̄ (τ + t − s)dG(s),

which equals X̄(τ + t) by (4.2). Thus (A.4) follows by applying the
time shift definition. �
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