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Abstract We study many-server queues with abandonment in which customers have
general service and patience time distributions. The dynamics of the system are mod-
eled using measure-valued processes, to keep track of the residual service and pa-
tience times of each customer. Deterministic fluid models are established to provide
a first-order approximation for this model. The fluid model solution, which is proved
to uniquely exist, serves as the fluid limit of the many-server queue, as the number of
servers becomes large. Based on the fluid model solution, first-order approximations
for various performance quantities are proposed.

Keywords Many-server queue · Abandonment · Measure valued process · Quality
driven · Efficiency driven · Quality and efficiency driven
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1 Introduction

Recently, there has been a great interest in queues with a large number of servers,
motivated by applications to telephone call centers. Since a customer can easily hang
up after waiting for too long, abandonment is a non-negligible aspect in the study of
many-server queues. In our study, a customer can leave the system (without getting
service) once he/she has been waiting in queue for more than his patience time. A re-
cent statistical study by Brown et al. [3] suggests that the exponential assumption on
the service time distribution, in many cases, is not valid. In fact, the distribution of
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service times at call centers may be log-normal in some cases as shown in [3]. This
emphasizes the need to look at the many-server model with generally distributed ser-
vice and patience times.

In this paper we study many-server queues with general patience and service
times. The queueing model is denoted by G/GI/n+GI. The G represents a gen-
eral stationary arrival process. The first GI indicates that service times come from a
sequences of independent and identically distributed (i.i.d.) random variables with a
general distribution. The n denotes the number of homogeneous servers. There is an
unlimited waiting space, called the buffer, where customers wait be served accord-
ing to the first-come-first-served (FCFS) policy. Customers can choose to abandon if
their patience times expire before their service starts. Again, the patience times are
i.i.d. and with a general distribution (the GI after the ‘+’ sign).

Useful insights can be obtained by considering a many-server queue in limit
regimes where the number n of servers increases along the sequence with the arrival
rate λn such that the traffic intensity

ρn = λn

nμ
→ ρ as n → ∞,

where μ is the service rate of a single server (in other words, the reciprocal of the
mean service time), and ρ ∈ [0,∞). In our study, the limit ρ in the above need
not to be less than 1. In fact, according to ρ, the limit regimes can be divided into
three classes, i.e. Efficiency-Driven (ED) regime when ρ > 1, Quality-and-Efficiency-
Driven (QED) regime when ρ = 1 and Quality-Driven (QD) regime when ρ < 1.
The QED regime is also called the Halfin–Whitt regime due to the seminal work
Halfin and Whitt [13]. With this motivation, we establish the fluid (also called law
of large number) limit for the G/GI/n+GI queue in all the ED, QED and QD limit
regimes.

We show that the fluid model has an equilibrium, which yields approximations
for various performance metrics. These fluid approximations work pretty well in the
ED and QD regime where ρ is not that close to 1, as demonstrated in the numerical
experiments of Whitt [31]. However, when ρ is very close (say within 5 %) to 1,
the fluid approximations lose their accuracy and one could consider the more refined
limit, the diffusion limit, in this case. The diffusion limit is not within the scope of
the current paper.

In a system where multiple customers are processed simultaneously either by a
single server via a sharing policy or by many servers such as the model we are study-
ing in this paper, how to describe the system becomes an important issue. The number
of customers in the system does not give much information since they may all have
large remaining service times or all have small remaining service times, and this in-
formation can affect future evolution of the system. It will be nice to have a rich
descriptor that can contain more information than just the headcount. So we choose
to use finite Borel measures on (0,∞) to describe the system. At any time t ≥ 0,
in additional to recording the total number of customers in service (i.e. the number
of busy servers), we record all the remaining service times using measure Z(t). For
any Borel set C ⊂ (0,∞), Z(t)(C) indicates the number of customers in server with
remaining service time belonging to C at that time. A similar idea applies for the
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remaining patience times. We first introduce the virtual buffer, which holds all the
customers who have arrived but not yet scheduled to receive service according to the
FCFS policy. We record all the remaining patience times for those in the virtual buffer
using finite Borel measure R(t) on R = (−∞,∞). At time t ≥ 0, R(t)(C) indicates
the number of customers in the virtual buffer with remaining patience time belonging
to the Borel set C. The descriptor (R(·), Z(·)) contains quite rich information in the
sense that it reflects the residual service and patience times of all customers at time t ,
thus can help to write equations that reveal the dynamics of the system (cf. (2.4) and
(2.5)). Also, traditional performance metrics can be recovered from the descriptor.
For example, the actual number of customers in the buffer is

Q(t) = R(t)
(
(0,∞)

)
for all t ≥ 0,

since a customer with negative or zero remaining patience time has already aban-
doned. More details will be discussed when we rigorously introduce the mathemati-
cal model in Sect. 2. In the literature, another descriptor that keeps track of the ages
of customers in service and the ages of customers in waiting have been used, e.g.
[17, 31]. In almost all systems, the age information of customers is observable. In
other words, how long the customers have been in the system is recorded or can be
found out. This is not the case for tracking the residuals, though in some special sys-
tems it is possible to observe the residual. However, from the system perspective,
what we really care about is not the measure-valued process. Ultimately, we care
about performance measures such as waiting time, queue length, etc. Modeling using
measure to keep a rich information of either the “age” or the “residual” is for the
purpose of analysis. Both age and residual descriptions of the system often results in
the same steady state insights. In this paper we focus on residual processes only.

The framework of using measure-valued process has been successfully applied
to study models where multiple customers are processed at the same time. Existing
work includes Gromoll and Kruk [10], Gromoll, Puha and Williams [11] and Gro-
moll, Robert and Zwart [12], to name a few. Most of this work is on the processor
sharing queue and related models where there is no waiting buffer. Recently, Zhang,
Dai and Zwart [33, 34] applied the measure-valued process to study the limited pro-
cessor sharing queue, where only limited number of customers can be served at any
given time with extra customers waiting in a buffer. Some techniques in this paper
closely follow from those developed in [33]. There has been a large literature on
many-server queue and related models since the seminal work by Halfin and Whitt
[13]. But there are not many successes with the case where the service time distri-
bution is allowed to be non-exponential. One exception is the work of Reed [28],
in which fluid and diffusion limits of the customer-count process of many server
queues (without abandonment) are established where few assumptions beyond a first
moment are placed on the service time distribution. Later, Puhalskii and Reed [26]
extend the aforementioned results to allow noncritical loading, generally distributed
service times, and general initial conditions. Jelenković et al. [15] study the many-
server queue with deterministic service times; Garmarnik and Momčilović [8] study
the model with lattice-valued service times; Puhalskii and Reiman [27] study the
model with phase-type service time distributions. Mandelbaum and Momčilović [21]
study the virtual waiting time processes, and Kaspi and Ramanan [18] study the fluid
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limit of measure-valued processes for many-server queues with general service times.
Recently, [19] characterized the diffusion limit of the many-server queueing system
via a stochastic partial differential equation.

For the many-server queue with abandonment, a version of the fluid model has
been established as a conjecture in Whitt [30], where a lot of insights were demon-
strated, which help greatly in our work. Recently, Kang and Ramanan also worked
on the same topic and summarized their result in [17]. Although we focus on the
same topic, our work uses different methodology from that in [17] and requires fewer
assumptions on both the service time and the patience time distributions. From the
modeling aspect, our approach mainly based on tracking the “residual” processes,
while [17] tracks the “age” processes for studying the queueing model. As far as we
understand in [17], modeling based on “ages” facilities the application of martingale
techniques. However, to apply the martingale, there need to be some compensators
which involve the hazard rate functions of the distributions. Thus, the distribution
functions must have a density and there are some additional conditions on the hazard
rate functions. By tracking the “residual”, we can avoid using martingales and have a
simpler representation of the dynamics of the limiting process. This not only simpli-
fies the analysis, but also requires weaker assumptions. In this work, the only assump-
tion on the service time distribution is continuity and the assumption on the patience
time distribution is Lipchitz continuity. Since we have a simple representation of the
fluid model, the existence of the solution to the fluid model is proved directly from
the fluid dynamic equations (3.1)–(3.4) without invoking stochastic limit, while the
existence is proved by showing each limit of the fluid scaled stochastic processes
satisfies the fluid equations (3.8)–(3.16) in [17]. The ability to separate the analysis
of fluid model from stochastic limit also help to explicitly characterize the equilib-
rium state of the fluid model, which is consistent with the one proposed in [30]. As
demonstrated in [30], the equilibrium state yields approximation formulas for various
performance measures of the stochastic model in the ED regime. In addition, we also
verify at the end of this paper (cf. Sect. 6) that our fluid model is consistent with the
special case where both service and patience times are exponentially distributed, as
established in Whitt [30] for the ED regime, Garnet et al. [9] for QED regime and
Pang and Whitt [24] and Puhalskii [25] for all three regimes.

Additional work on many-server queues with abandonment includes Dai, He and
Tezcan [5] for phase-type service time distributions and exponential patience time
distribution; Zeltyn and Mandelbaum [32] for exponential service time distribution
and general patience time distributions; Mandelbaum and Momčilović [22] for both
general service time distribution and general patience time distribution. The differ-
ence between our work and [22] is that we study the fluid limit of measure-valued
processes in all three regimes, and [22] studies the diffusion limit of customer-count
processes and virtual waiting processes in the QED regime. By assuming a conve-
nient initial condition, [22] does not require a detailed fluid model analysis.

The paper is organized as follows: We begin in Sect. 2 by formulating the math-
ematical model of the G/GI/n+GI queue. The dynamics of the system are clearly
described by modeling with measure-valued processes; see (2.4) and (2.5). The main
results, including a characterization of the fluid model and the convergence of the
stochastic processes underlying the G/GI/n+GI queue to the fluid model solution
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are stated in Sect. 3. In Sect. 4 we explore the fluid model and give proofs of all the
results on the fluid model. Section 5 is devoted to establishing the convergence of
stochastic processes, which includes the proof of pre-compactness and the character-
ization of the limit as the fluid model solution.

1.1 Notation

The following notation will be used throughout. Let N, Z and R denote the set of nat-
ural numbers, integers and real numbers, respectively. Let R+ = [0,∞). For a, b ∈ R,
write a+ for the positive part of a, �a� for the integer part, 	a
 for �a� + 1, a ∨ b

for the maximum, and a ∧ b for the minimum. For any A ⊂ R, denote B(A) the
collection of all Borel subsets which are subsets of A.

Let M denote the set of all non-negative finite Borel measures on R, and M+
denote the set of all non-negative finite Borel measures on (0,∞). To simplify the
notation, let us take the convention that for any Borel set A ⊂ R, ν(A∩ (−∞,0]) = 0
for any ν ∈ M+. Also, by this convention, M+ is embedded as a subspace of M. For
ν1, ν2 ∈ M, the Prohorov metric is defined to be

d[ν1, ν2] = inf
{
ε > 0 : ν1(A) ≤ ν2

(
Aε

) + ε and

ν2(A) ≤ ν1
(
Aε

) + ε for all closed Borel set A ⊂ R
}
, (1.1)

where Aε = {b ∈ R : infa∈A |a − b| < ε}. This is the metric that induces the topology
of weak convergence of finite Borel measures. (See Sect. 6 in [2].) For any Borel
measurable function g : R → R, the integration of this function with respect to the
measure ν ∈ M is denoted by 〈g, ν〉. We denote the zero measure in M by 0.

Let M+ × M denote the Cartesian product. There are a number of ways to define
the metric on the product space. For convenience we define the metric to be the maxi-
mum of the Prohorov metric between each component. With a little abuse of notation,
we still use d to denote this metric, i.e.

d
[
(μ1, ν1), (μ2, ν2)

] = max
(
d[μ1,μ2],d[ν1, ν2]

)

for any (μ1, ν1), (μ2, ν2) ∈ M+ × M.
Let (E,π) be a general metric space. We consider the space D of all right-

continuous E-valued functions with finite left limits defined either on a finite in-
terval [0, T ] or the infinite interval [0,∞). We refer to the space as D([0, T ],E) or
D([0,∞),E) depending upon the function domain. The space D is also known as
the space of càdlàg functions. For g(·), g′(·) ∈ D([0, T ],E), the uniform metric is
defined as

υT

[
g,g′] = sup

0≤t≤T

π
[
g(t), g′(t)

]
. (1.2)

However, a more useful metric we will use is the following Skorohod J1 metric:

�T

[
g,g′] = inf

f ∈ΛT

(‖f ‖◦
T ∨ υT

[
g,g′ ◦ f

])
, (1.3)
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where g ◦ f (t) = g(f (t)) for t ≥ 0 and ΛT is the set of strictly increasing and con-
tinuous mapping of [0, T ] onto itself and

‖f ‖◦
T = sup

0≤s<t≤T

∣∣∣
∣log

f (t) − f (s)

t − s

∣∣∣
∣.

If g(·) and g′(·) are in the space D([0,∞),E), the Skorohod J1 metric is defined as

�
[
g,g′] =

∫ ∞

0
e−T

(
�T

[
g,g′] ∧ 1

)
dT . (1.4)

By saying convergence in the space D, we mean the convergence under the Skorohod
J1 topology, which is the topology induced by the Skorohod J1 metric [7].

We use “→” to denote the convergence in the metric space (E,π), and use “⇒” to
denote the convergence in distribution of random variables taking value in the metric
space (E,π).

2 Stochastic model

In this section we first describe the G/GI/n+GI queueing system and then introduce
a pair of measure-valued processes that capture the dynamics of the system.

There are n identical servers in the system. Customers arrive according to a gen-
eral stationary arrival process (the initial G) with arrival rate λ. Let ai denote the
arrival time of the ith arriving customer, i = 1,2, . . . . An arriving customer enters
service immediately upon arrival if there is a server available. If all n servers are
busy, the arriving customer waits in a buffer, which has infinite capacity. Customers
are served in the order of their arrival by the first available server. Waiting customers
may also elect to abandon. We assume that each customer has a random patience
time. A customer abandons the system once the time he has waited in the buffer ex-
ceeds his patience time. Once a customer starts his service, the customer remains until
the service is completed. There are no retrials; abandoning customers leave without
affecting future arrivals.

The two GIs in the notation mean that the service times and patience times come
from two independent sequences of i.i.d. random variables; these two sequences are
assumed to be independent of the arrival process. Let ui and vi denote the patience
and service time of the ith arriving customer, i = 1,2, . . . . In many applications
such as telephone call centers, customers cannot see the queue (the case of invisible
queues, cf. [23]), thus do not know the experience of other customers. This provides
some justifications for us to assume that the patience times are i.i.d. Denote F(·) and
G(·) the distributions for the patience and service times, respectively.

To describe the system using measure-valued process, we first introduce the notion
of virtual buffer. For the real physical buffer, a customer joins upon arrival (if all
servers are busy) and leaves upon starting service or his waiting time exceeding his
patience time. The difference for the virtual buffer is that a customer does not leave
immediately upon his waiting time exceeding his patience time. He stays in the virtual
buffer but will be tagged as “abandoned”. The virtual buffer is also served based on
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FCFS. When a customer in the virtual buffer is about to be admitted into service, the
system checks whether he has been tagged as “abandoned” or not. If yes, the system
discards this customer (now, this abandoned customer leaves the virtual buffer) and
picks the next customer in the virtual buffer and performs the same check. Otherwise,
the system admits the customer into service. At any time t ≥ 0, R(t) denotes the
random measure in M such that R(t)(C) is the number of customers in the virtual
buffer with remaining patience time in C ∈ B(R). Note that this way of modeling
requires the measure R(·) to be defined on R, not just (0,∞). In fact, the remaining
patience time being non-positive serves as the tag for indicating a customer being
abandoned. It is clear that

Q(t) = R(t)
(
(0,∞)

)
and R(t) = R(t)(R) (2.1)

represent the number of customers waiting in the real buffer and the number of cus-
tomers in the virtual buffer, respectively.

We also use a measure to describe the servers. At any time t ≥ 0, Z(t) denotes a
measure in M+ such that Z(t)(C) is the number of customers in service with remain-
ing service time in C ∈ B((0,∞)). Differently from the virtual buffer, the servers
only hold customers with positive remaining service times, so we only care about the
subsets in (0,∞). The quantity

Z(t) = Z(t)
(
(0,∞)

)
, (2.2)

represents the number of customers in service at any time t ≥ 0.
The measure-valued (taking value in M × M+) stochastic process (R(·), Z(·))

serves as the descriptor for the G/GI/n+GI queueing model. Before we use it to
describe the dynamics of the system, let us first talk about the initial condition, since
the system is allowed to be non-empty initially. The initial state specifies R(0), the
number of customers in the virtual buffer as well as their remaining patience times
ui and service times vi , i = 1 − R(0),2 − R(0), . . . ,0. The initial state also specifies
Z(0), the number of customers in service as well as their remaining service times
vi , i = 1 − R(0) − Z(0), . . . ,−R(0). Briefly, the initial customers are given negative
index, in order not to conflict with the index of arriving customers. Those initial
customers in the buffer are also assumed to have i.i.d. service times with distribution
G(·). For each t ≥ 0, denote E(t) the number of customers that has arrived during
the time interval (0, t]. Arriving customers are indexed by 1,2, . . . according to the
order of their arrival. From this way of indexing customers, it is clear that the index
of the head-of-the-line customer in the virtual buffer at time t ≥ 0 is B(t) + 1, where

B(t) = E(t) − R(t). (2.3)

In other words, B(t) can be interpreted as the number of customers in the virtual
buffer who could have entered the service by time t . It should be pointed out that
not all of them really get the service. At the time a customer in the virtual buffer is
allowed to enter service, the system will check whether he has abandon the system
(i.e. remaining patience time is less than 0). The customer can only be admitted into
service if he has not abandoned the system at that time. Denote by τi the time when
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the ith job starts service for all i ≥ 1 − R(0). For i < 0, ai may be a negative number
indicating how long the ith customer had been there by time 0. We will impose some
conditions on ai ’s with i < 0 later on. Let δx and δ(x,y) denote the Dirac point measure
at x ∈ R and (x, y) ∈ R

2, respectively. Denote C +x = {c +x : x ∈ C} for any subset
C ⊂ R. For any subsets C,C′ ⊂ R, let C ×C′ denote the Cartesian product. Using the
Dirac measure and the above introduced notations, the evolution of the virtual buffer
and the servers can be captured by the following stochastic dynamic equations:

R(t)(C) =
E(t)∑

i=1+B(t)

δui
(C + t − ai), for all C ∈ B(R), (2.4)

Z(t)(C) =
−R(0)∑

i=1−R(0)−Z(0)

δvi
(C + t)

+
B(t)∑

i=1−R(0)

δ(ui ,vi )(C0 + τi − ai) × (C + t − τi),

for all C ∈ B
(
(0,∞)

)
, (2.5)

for all t ≥ 0. Note that the buffer size Q(t) can be recovered from R(t) via (2.1). We
can see from the second term on the right hand side of (2.5) that customers whose
waiting time τi − ai is longer than their patience time ui do not actually enter the
service.

Denote the total number of customers in the system by

X(t) = Q(t) + Z(t) for all t ≥ 0. (2.6)

The following non-idling constraints must be satisfied at any time t ≥ 0:

Q(t) = (
X(t) − n

)+
, (2.7)

Z(t) = (
X(t) ∧ n

)
, (2.8)

where n, as introduced above, denotes the number of servers in the system.

3 Main results

The main results of this paper contain two parts. The first part is a characterization of
the fluid model, including the existence and uniqueness of the fluid model solution,
and the equilibrium of the fluid model; these results are summarized in Sect. 3.1. The
second part is the convergence of the stochastic processes to the fluid model solution;
this result is stated in Sect. 3.2.

3.1 Fluid model

To study the stochastic model, we introduce a deterministic fluid model. To simplify
notations, let Fc(·) denote the complement of the patience time distribution F(·), i.e.
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Fc(x) = 1 − F(x) for all x ∈ R; the complement of the service time distribution,
denoted by Gc(·), is defined in the same way. For the remaining of the paper, let
Cx = (x,∞). We introduce the following fluid dynamic equations:

R̄(t)(Cx) = λ

∫ t

t− R̄(t)
λ

F c(x + t − s) ds, t ≥ 0, x ∈ R, (3.1)

Z̄(t)(Cx) = Z̄(0)(Cx + t) +
∫ t

0
Fc

(
R̄(s)

λ

)
Gc(x + t − s) dB̄(s),

t ≥ 0, x ∈ (0,∞), (3.2)

where

R̄(s) = R̄(s)(R) and B̄(s) = λs − R̄(s).

Here, all the time dependent quantities are assumed to be right-continuous on [0,∞)

and to have left limits in (0,∞). The integral
∫ t

0 g(s) dB̄(s) is interpreted as the
Lebesgue–Stieltjes integral on the interval (0, t].

Here are some intuitive explanations about the fluid dynamic equations. They are
not meant to serve as rigorous analysis (which will be presented in Sect. 4), but just
to facilitate readers to gain some intuitive understanding. Suppose a unit amount of
“fluid customers” arrives at time s. The proportion of the fluid amount with patience
time larger than x is Fc(x). Observing the system at time t , t − s amount of time
has passed, thus the proportion of the fluid mount with remaining patience time large

than x becomes Fc(x + t − s). The integration in (3.1) starts from t − R̄(t)
t

because
the “oldest” customer in the virtual buffer arrives at that time. For (3.2), note that
the amount of fluid with remaining service time larger than x consists of two parts.
The first part is the initial fluid customers in service, only those whose remaining
service time larger than x + t at time 0 will have remaining service time larger than
x at time t . The second part contains all those who joined the service during time
[0, t]. Since at time s, those who are about to join the service have been waiting for
R̄(s)/λ, F(R̄(s)/λ) fraction of them have already abandoned the system. The rest
Fc(R̄(s)/λ) go ahead to get the service. View the system at time t , t − s amount of
time has passed, so the proportion of the fluid amount with remaining service time
larger than s is Gc(x + t − s). The integration is with respect to dB̄(s) because that
is the rate of customers moving from the virtual buffer to service.

The quantities Q̄(·), Z̄(·) and X̄(·) are defined in the same way as their stochastic
counterparts in (2.1), (2.2), and (2.6). The following non-idling constraints must be
satisfied for all t ≥ 0:

Q̄(t) = (
X̄(t) − 1

)+
, (3.3)

Z̄(t) = (
X̄(t) ∧ 1

)
. (3.4)

The fluid dynamic equations (3.1) and (3.2) and the non-idling constraints (3.3) and
(3.4) define a fluid model, which is denoted by (λ,F,G).

Denote (R̄0, Z̄0) = (R̄(0), Z̄(0)) the initial condition of the fluid model. For the
convenience of notations, also denote Q̄0 = Q̄(0), Z̄0 = Z̄(0) and X̄0 = Q̄0 + Z̄0.
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We need to require that the initial condition satisfy the dynamic equations and the
non-idling constraints, i.e.

R̄0(Cx) = λ

∫ R̄0
λ

0
Fc(x + s) ds, x ∈ R, (3.5)

Q̄0 = (X̄0 − 1)+, (3.6)

Z̄0 = (X̄0 ∧ 1). (3.7)

We also require that

Z̄0
({0}) = 0, (3.8)

which means that nobody with remaining service time 0 occupies a server. We call
any element (R̄0, Z̄0) ∈ M × M+ a valid initial condition if it satisfies (3.5)–(3.8).

We call (R̄(·), Z̄(·)) ∈ D([0,∞),M×M+) a solution to the fluid model (λ,F,G)

with a valid initial condition (R̄0, Z̄0) if it satisfies the fluid dynamic equations (3.1)
and (3.2) and the non-idling constraints (3.3) and (3.4).

Denote by μ the reciprocal of first moment of the service time distribution G(·).
Let

MF = inf
{
x ≥ 0 : F(x) = 1

}
. (3.9)

By the right-continuity of distribution functions, it is clear that F(x) < 1 for all
x < MF and F(x) = 1 for all x ≥ MF .

Theorem 3.1 (Existence and Uniqueness) Assume the service time distribution G(·)
and its mean 1/μ satisfy that

G(·) is continuous, (3.10)

and

0 < μ < ∞. (3.11)

Assume that the patience time distribution F(·) satisfies that

F(·) is Lipschitz continuous. (3.12)

There exists a unique solution to the fluid model (λ,F,G) for any valid initial condi-
tion (R̄0, Z̄0).

The above theorem provides the foundation to further study the fluid model. A key
property is that the fluid model has an equilibrium state. An equilibrium state is de-
fined as follows.

Definition 3.1 An element (R̄∞, Z̄∞) ∈ M × M+ is called an equilibrium state for
the fluid model (λ,F,G) if the solution to the fluid model with a valid initial condi-
tion (R̄∞, Z̄∞) satisfies

(
R̄(t), Z̄(t)

) = (R̄∞, Z̄∞) for all t ≥ 0.
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This definition says that if a fluid model solution starts from an equilibrium state,
it will never change in the future. To present the result about equilibrium state, we
need to introduce some more notation. For the service time distribution function G(·)
on R+, the associated equilibrium distribution is given by

Ge(x) = μ

∫ x

0
Gc(y)dy, for all x ≥ 0.

Theorem 3.2 Assume the conditions in Theorem 3.1. The state (R̄∞, Z̄∞) is an equi-
librium state of the fluid model (λ,F,G) if and only if it satisfies

R̄∞(Cx) = λ

∫ w

0
Fc(x + s) ds, x ∈ R, (3.13)

Z̄∞(Cx) = min(ρ,1)
[
1 − Ge(x)

]
, x ∈ (0,∞), (3.14)

where w is a solution to the equation

F(w) = max

(
ρ − 1

ρ
,0

)
. (3.15)

Remark 3.1 If (3.15) has multiple solutions, then the equilibrium is not unique (any
solution w gives an equilibrium). If the equation has a unique solution (for example
when F(·) is strictly increasing), then the equilibrium state is unique.

The quantity w is interpreted to be the virtual waiting time for an arriving cus-
tomer. If his patience time exceeds w, he will not abandon. Thus, the probability of
his abandonment is given by F(w), which is equal to (ρ − 1)/ρ when ρ > 1; the
latter quantity is the fraction of traffic that has to be discarded due to the overloading.
From (3.13), R̄∞(Cx) = λw for x ≤ −w. Thus, the average number of customers in
the virtual buffer is

R̄∞ = R̄∞(R) = λw,

which is consistent with Little’s law. From (3.14), the average number of busy servers
is

Z̄∞ = Z̄∞
(
(0,∞)

) = min(ρ,1).

If ρ > 1, then one expects all servers to be busy, whereas, if ρ < 1, there will be no
abandonment (on the fluid scaling) so that the fraction of busy servers will be ρ. These
observations and interpretations were first made by Whitt [31], where approximation
formulas based on a conjectured fluid model were also given, and were compared
with extensive simulation results. The approximation formulas derived from our fluid
model is consistent with those formulas in Whitt [31].

3.2 Convergence of stochastic models

We consider a sequence of queueing systems indexed by the number of servers n,
with n → ∞. Each model is defined in the same way as in Sect. 2. The arrival rate of
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each model is assumed be to proportional to n. To distinguish models with different
indices, quantities of the nth model are accompanied with superscript n. Each model
may be defined on a different probability space (Ωn, F n,P

n). Our results concern
the asymptotic behavior of the descriptors under the fluid scaling, which is defined
by

R̄n(t) = 1

n
Rn(t), Z̄ n(t) = 1

n
Z n(t), (3.16)

for all t ≥ 0. The fluid scaling for the arrival process En(·) is defined in the same
way, i.e.

Ēn(t) = 1

n
En(t),

for all t ≥ 0. We assume that

Ēn(·) ⇒ λ · as n → ∞. (3.17)

Since the limit is deterministic, the convergence in distribution in (3.17) is equivalent
to convergence in probability; namely, for each T > 0 and each ε > 0,

lim
n→∞ P

n
(

sup
0≤t≤T

∣∣Ēn(t) − λt
∣∣ > ε

)
= 0.

Denote νn
F and νn

G the probability measures corresponding to the patience time distri-
bution Fn and the service time distribution Gn, respectively. Assume that as n → ∞,

νn
F → νF , νn

G → νG, (3.18)

where νF and νG are some probability measures associated with distribution func-
tions F and G, the convergence is in the Prohorov metric as defined in Sect. 1.1.
Also, the following initial condition will be assumed:

(
R̄n(0), Z̄ n(0)

) ⇒ (R̄0, Z̄0) as n → ∞, (3.19)

where, almost surely, (R̄0, Z̄0) is a valid initial condition and

R̄0 and Z̄0 has no atoms. (3.20)

Theorem 3.3 In addition to the assumptions (3.10)–(3.12) in Theorem 3.1, if the
sequence of many-server queues satisfies (3.17)–(3.20), then

(
R̄n(·), Z̄ n(·)) ⇒ (

R̄(·), Z̄(·)) as n → ∞,

where, almost surely, (R̄(·), Z̄(·)) is the unique solution to the fluid model (λ,F,G)

with initial condition (R̄0, Z̄0).
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Corollary 3.1 Under the same assumption as Theorem 3.3, as n → ∞, the fluid
scaled process X̄n(·) converges weakly to the solution to the following equation:

X̄(t) = ζ0(t) + ρ

∫ t

0
H

((
X̄(t − s) − 1

)+)
dGe(s) +

∫ t

0

(
X̄(t − s) − 1

)+
dG(s).

(3.21)

4 Properties of the fluid model

In this section we analyze the proposed fluid model and establish some basic proper-
ties of the fluid model solution. The proof of Theorem 3.1 for existence and unique-
ness and the proof of Theorem 3.2 for characterization of the equilibrium will be
presented in Sect. 4.1 and Sect. 4.2, respectively.

4.1 Existence and uniqueness of fluid model solutions

We first present some calculus on the fluid dynamic equations (3.1) and (3.2), which
define the fluid model. It follows from (3.1) that

Q̄(t) = R̄(t)(C0) = λ

∫ t

t− R̄(t)
λ

F c(t − s) ds = λ

∫ R̄(t)
λ

0
Fc(s) ds.

Let

Fd(x) =
∫ x

0

[
1 − F(y)

]
dy for all x ≥ 0.

Note that the density of Fd(·) is not scaled by the mean of F(·). Thus, this is not
exactly the equilibrium distribution associated with F(·). In fact, we do not need the
mean

NF =
∫ ∞

0

[
1 − F(y)

]
dy (4.1)

to be finite. Now we have

Q̄(t)

λ
= Fd

(
R̄(t)

λ

)
. (4.2)

It follows from (3.2) that

Z̄(t) = Z̄(t)(C0)

= Z̄0(C0 + t) + λ

∫ t

0
Fc

(
R̄(s)

λ

)
Gc(t − s) ds

−
∫ t

0
Fc

(
R̄(s)

λ

)
Gc(t − s) dR̄(s).
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Note that, by (4.2), dQ̄(s) = Fc(
R̄(s)

λ
) dR̄(s). So

Z̄(t) = Z̄0(C0 + t) + λ

μ

∫ t

0
Fc

(
R̄(s)

λ

)
dGe(t − s) −

∫ t

0
Gc(t − s) dQ̄(s).

Performing change of variable and integration by parts, we have

Z̄(t) = Z̄0(Ct ) + λ

μ

∫ t

0
Fc

(
R̄(t − s)

λ

)
dGe(s)

− Q̄(t)Gc(0) + Q̄(0)Gc(t) +
∫ t

0
Q̄(t − s) dG(s). (4.3)

We wish to represent the term Fc(
R̄(·)
λ

) using Q̄(·). Recall MF and NF , which are
defined in (3.9) and (4.1), respectively. It is clear that Fd(x) is strictly monotone for
x ∈ [0,MF ). Thus, F−1

d (y) is well defined for each y ∈ [0,NF ). We define F−1
d (y) =

MF for all y ≥ NF . Thus, (4.2) implies that

Fc

(
R̄(t)

λ

)
= Fc

(
F−1

d

(
Q̄(t)

λ

))
. (4.4)

Note that Gc(0) = 1 by assumption (3.10). Combining (3.3), (3.4), (4.3), and (4.4),
we obtain

X̄(t) = Z̄0(Ct ) + Q̄0G
c(t)

+ λ

μ

∫ t

0
Fc

(
F−1

d

(
(X̄(t − s) − 1)+

λ

))
dGe(s)

+
∫ t

0

(
X̄(t − s) − 1

)+
dG(s).

Now, introduce

H(x) =
{

Fc(F−1
d ( x

λ
)) if 0 ≤ x < λNF ,

0 if x ≥ λNF ,
(4.5)

and ζ0(·) = Z̄0(C0 + ·) + Q̄0G
c(·). It then follows that

X̄(t) = ζ0(t)+ρ

∫ t

0
H

((
X̄(t −s)−1

)+)
dGe(s)+

∫ t

0

(
X̄(t −s)−1

)+
dG(s). (4.6)

Note that ζ0(·) depends only on the initial condition and H(·) is a function defined
by the arrival rate λ and the patience time distribution F(·). Equation (4.6) serves as
a key to the analysis of the fluid model.

Proof of Theorem 3.1 We first prove the existence. Given a valid initial condition
(R̄0, Z̄0) (i.e. an element in M × M+ that satisfies (3.5)–(3.8)), we now construct a
solution (R̄(·), Z̄(·)) to the fluid model (λ,F,G) with this initial condition.
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It is clear that ζ0(·) satisfies condition (A.3) of Lemma A.2 since the initial con-
dition is valid. By condition (3.12), F(·) is Lipschitz continuous. Let LF denote the
Lipschitz constant. First, consider the case where NF < ∞. Fix any δ ∈ (0, λNF ). By
the definition of H(·) in (4.5), for any x1, x2 ∈ [0, λNF − δ],

∣∣H(x2) − H(x1)
∣∣ ≤ LF

∣∣∣∣F
−1
d

(
x2

λ

)
− F−1

d

(
x1

λ

)∣∣∣∣

≤ LF sup
x∈[0,yδ ]

1

1 − F(y)

1

λ
|x2 − x1|

≤ LF

1

1 − F(yδ)

1

λ
|x2 − x1|,

where yδ = F−1
d (NF − δ/λ). Since Fd(yδ) < NF , F(yδ) < 1. So H(·) is Lipschitz

continuous on [0, λNF − δ]. Next, for the case where NF = ∞, the above argument
remains true if we replace λNF − δ by any M > 0. Thus, the function H(·) satisfies
the condition (A.6) in Lemma A.2. It is also clear that H(·) satisfies the conditions
(A.4)–(A.5). It follows from Lemma A.2 that equation (4.6) has a unique solution
X̄(·). Define Q̄(t) = (X̄(t) − 1)+. We now claim that Q̄(t)/λ ≤ NF for all t ≥ 0.
The claim is automatically true if NF = ∞. Now, let us consider the case where
NF < ∞. Since (R̄0, Z̄0) is a valid initial condition, Q̄(0)/λ ≤ NF . Suppose there
exists t1 > 0 such that Q̄(t1)/λ > NF . Let t0 = sup{s : Q̄(s)/λ ≤ NF , s ≤ t1}. So we
have limt→t0 Q̄(t)/λ ≤ NF , since Q̄(·) has left limit. Let δ = (Q(t1)/λ − NF )/4 and
pick tδ ∈ [t0 − δ, t0] such that Q̄(tδ)/λ ≤ NF + δ. By Lemma A.3,

Q̄(t ′)
λ

− Q̄(t)

λ
≤

∫ t ′

t

F c

(
F−1

d

(
Q̄(s)

λ

))
ds (4.7)

for any t < t ′. This gives

Q̄(t1)

λ
≤ Q̄(tδ)

λ
+

∫ t1

tδ

[
1 − F

(
F−1

d

(
Q̄(s)

λ

))]
ds

≤ NF + δ +
∫ t0

tδ

1ds +
∫ t1

t0

0ds

≤ NF + 2δ <
Q̄(t1)

λ
,

which is a contradiction. This proves the claim. Let

Z̄(t) = min
(
X̄(t),1

)
,

R̄(t) = λF−1
d

(
Q̄(t)

λ

)
,

B̄(t) = λt − R̄(t),
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for all t ≥ 0. We now construct a fluid model solution by letting

R̄(t)(Cx) = λ

∫ t

t− R̄(t)
λ

F c(x + t − s) ds, (4.8)

Z̄(t)(Cx) = Z̄0(Cx + t) +
∫ t

0
Fc

(
R̄(s)

λ

)
Gc(x + t − s) dB̄(s), (4.9)

for all t ≥ 0. According to (4.2), the integral in the above involving dB̄(s) can be
written as

∫ t

0
Fc

(
R̄(s)

λ

)
Gc(x + t − s) dB̄(s)

=
∫ t

0
Fc

(
R̄(s)

λ

)
Gc(x + t − s)λds −

∫ t

0
Fc

(
R̄(s)

λ

)
Gc(x + t − s) dR̄(s)

=
∫ t

0
Fc

(
R̄(s)

λ

)
Gc(x + t − s)λds −

∫ t

0
Gc(x + t − s) dQ̄(s). (4.10)

For any given partition 0 = t0 < t1 < · · · < tK = T , let I+ = {k : Q̄(tk) − Q̄(tk−1) ≥
0} and I− = {k : Q̄(tk) − Q̄(tk−1) < 0}. According to (4.7)

K∑

k=1

∣∣Q̄(tk) − Q̄(tk−1)
∣∣ =

∑

k∈I+

[
Q̄(tk) − Q̄(tk−1)

] −
∑

k∈I−

[
Q̄(tk) − Q̄(tk−1)

]

= 2
∑

k∈I+

[
Q̄(tk) − Q̄(tk−1)

] + Q̄(0) − Q̄(T )

≤ 2λT + Q̄(0) − Q̄(T ).

This implies that Q̄(·) has bounded total variation. So the integral in (4.10) is well de-
fined. Thus, the integral in (4.9) is also well defined. It is clear that the above defined
(R̄(·), Z̄(·)) satisfies the fluid dynamic equations (3.1) and (3.2) and constraints (3.3)
and (3.4). So we conclude that (R̄(·), Z̄(·)) is a fluid model solution.

It now remains to show the uniqueness. Suppose there is another solution to the
fluid model (λ,F,G) with initial condition (R̄0, Z̄0), denoted by (R̄†(·), Z̄ †(·)).
Similarly, denote

R̄†(t) = R̄†(R),

Z̄†(t) = Z̄ †((0,∞)
)
,

for all t ≥ 0. It must satisfy the fluid dynamic equations (3.1) and (3.2) and constraints
(3.3) and (3.4). For all t ≥ 0, let

Q̄†(t) = λFd

(
R̄†(t)

λ

)
.
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According to the algebra at the beginning of Sect. 4.1, X̄†(·) must also satisfy (4.6).
By the uniqueness of the solution to (4.6) in Lemma A.1,

X̄†(t) = X̄(t) for all t ≥ 0.

This implies that R̄†(t) = R̄(t). By the dynamic equations (3.1) and (3.2), we must
have

(
R̄†(t), Z̄ †(t)

) = (
R̄(t), Z̄(t)

)
for all t ≥ 0.

This completes the proof. �

4.2 Equilibrium state of the fluid model solution

In this section we first intuitively explain what an equilibrium should be. Then we
rigorously prove it in Theorem 3.2. To provide some intuition, note that in the equi-
librium, by (3.1), one should have

R̄∞(Cx) = λ

∫ R̄∞/λ

0
Fc(x + s) ds,

for the buffer. This immediately implies that

R̄∞(Cx) = λ

[
Fd

(
x + R̄∞

λ

)
− Fd(x)

]
.

So the rate at which customers leave the buffer due to abandonment is

lim
x→0

R̄∞(C0) − R̄∞(Cx)

x
= λF

(
R̄∞
λ

)
.

In the equilibrium, intuitively, the number of customers in service should not change
and the distribution for the remaining service time should be the equilibrium distri-
bution Ge(·), i.e.

Z̄∞(Cx) = Z̄∞
[
1 − Ge(x)

]
.

The rate at which customers depart from the servers is

lim
x→0

Z̄∞(C0) − Z̄∞(Cx)

x
= Z̄∞μ.

The arrival rate must be equal to the summation of the departure rate from the servers
(due to service completion) and the one from the buffer (due to abandonment), i.e.

λ = λF

(
R̄∞
λ

)
+ Z̄∞μ. (4.11)

It follows directly from (4.2) that

Q̄∞ = λFd

(
R̄∞
λ

)
. (4.12)
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If R̄∞ > 0, then according to (4.12) we have Q̄∞ > 0. Thus Z̄∞ = 1 according to

non-idling constraints. By (4.11), ρ > 1 and R̄∞
λ

is a solution to the equation F(w) =
ρ−1
ρ

. If R̄∞ = 0, then according to (4.11) we have ρ = Z̄∞ ≤ 1. In summary, we have

Q̄∞ = λFd(w),

Z̄∞ = min(ρ,1),

where w is a solution to the equation F(w) = max(
ρ−1
ρ

,0). This is consistent with the
one in [31], which is derived from a conjecture of a fluid model. Now, we rigorously
prove this result.

Proof of Theorem 3.2 If (R̄∞, Z̄∞) is an equilibrium state, then according to (3.1)
and (3.2) and Definition 3.1, it must satisfy

R̄∞(Cx) = λ

∫ t

t− R̄∞
λ

F c(x + t − s) ds, t ≥ 0, (4.13)

Z̄∞(Cx) = Z̄∞(Cx + t) +
∫ t

0
Fc

(
R̄∞
λ

)
Gc(x + t − s) dλs, t ≥ 0. (4.14)

It follows from (4.14) that

Z̄∞(Cx) − Z̄∞(Cx + t) = ρF c

(
R̄∞
λ

)
μ

∫ t

0
Gc(x + t − s) ds

= ρF c

(
R̄∞
λ

)[
Ge(x + t) − Ge(x)

]
, t ≥ 0.

Taking t → ∞, one has

Z̄∞(Cx) = ρF c

(
R̄∞
λ

)
Gc

e(x). (4.15)

Thus Z̄∞ = ρF c( R̄∞
λ

). According to (4.2), we have

Q̄∞ = λFd

(
R̄∞
λ

)
.

First assume that R̄∞ > 0. Then Q̄∞ > 0, and thus Z̄∞ = 1 by the non-idling con-

straints (3.3) and (3.4). Therefore, ρF c( R̄∞
λ

) = 1, which implies that F( R̄∞
λ

) = ρ−1
ρ

and ρ > 1. Now assume that R̄∞ = 0. Then Z̄∞ = ρ, which must be less than or
equal to 1 by the non-idling constraints. Summarizing the cases where ρ > 1 and
ρ ≤ 1, we find that the equilibrium state must satisfy (3.13)–(3.15).

If a state (R̄∞, Z̄∞) satisfies (3.13)–(3.15), then let
(

R̄(t), Z̄(t)
) = (R̄∞, Z̄∞),
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for all t ≥ 0. If ρ ≤ 1, then R̄(·) ≡ 0 and Z̄(·) ≡ ρ; if ρ > 1, then R̄(·) ≡ λw and
Z̄(·) ≡ 1, where w is a solution to (3.15). It is easy to check that (R̄(·), Z̄(·)) is a fluid
model solution in both cases. So by definition, the state (R̄∞, Z̄∞) is a equilibrium
state. �

5 Fluid approximation of the stochastic models

Similar to (2.3), let

Bn(t) = En(t) − Rn(t). (5.1)

As explained in Sect. 2 that Bn(t) is the index (by the order of arrival) of the head-of-
the-line customer in the virtual buffer. The only way customers can leave the virtual
buffer is when there is an available server, and they leave according to the order of
the arrival. So the index Bn(t) can only go up or stay as time t increases. We define
its fluid scaling as B̄n(t) = 1

n
Bn(t). For the convenience of notation we will need in

the future, denote

Ēn(s, t) = Ēn(t) − Ēn(s)

B̄n(s, t) = B̄n(t) − B̄n(s)

for any 0 ≤ s ≤ t .
It follows from (2.4) and (2.5) that the dynamics for the fluid scaled processes can

be written as

R̄n(t)(C) = 1

n

En(t)∑

i=Bn(t)+1

δun
i

(
C + t − an

i

)
, for all C ∈ B(R), (5.2)

Z̄ n(t)(C) = Z̄ n(s)(C + t − s)

+ 1

n

Bn(t)∑

i=Bn(s)+1

δ(un
i ,vn

i )

(
C0 + τn

i − an
i

) × (
C + t − τn

i

)
,

for all C ∈ B
(
(0,∞)

)
, (5.3)

for all 0 ≤ s ≤ t .

5.1 Precompactness

We first establish the following precompactness for the sequence of fluid scaled
stochastic processes {(R̄n(·), Z̄ n(·))}.

Theorem 5.1 Assume (3.17)–(3.20). The sequence of the fluid scaled stochastic pro-
cesses {(R̄n(·), Z̄ n(·))}n∈N is precompact in the space D([0,∞),M × M+); namely,
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for each subsequence {(R̄nk (·), Z̄ nk (·))}nk
with nk → ∞, there exists a further sub-

sequence {(R̄nkj (·), Z̄ nkj (·))}nkj
such that

(
R̄nkj (·), Z̄ nkj (·)) ⇒ (

R̃(·), Z̃(·)) as j → ∞,

for some (R̃(·), Z̃(·)) ∈ D([0,∞),M × M+).

The remaining of this section is devoted to proving the above theorem. According
to [10] that both M and M+ are separable and complete (thus so is the product space
M × M+ as defined in Sect. 1.1) with the Prohorov metric d defined in Sect. 1.1. It
follows from Theorem 3.5.6 in [7] that the space D([0,∞),M × M+) is separable
and complete since so is the space M × M+. By Theorem 3.7.2 in [7], it suffices
to verify (a) the compact containment property, Lemma 5.1 and (b) the oscillation
bound, Lemma 5.4 below.

5.1.1 Compact containment

A set K ⊂ M is relatively compact if supξ∈K ξ(R) < ∞, and there exists a sequence
of nested compact sets Aj ⊂ R such that

⋃
Aj = R and

lim
j→∞ sup

ξ∈K
ξ
(
Ac

j

) = 0,

where Ac
j denotes the complement of Aj ; see [16], Theorem A7.5. The first major

step to prove Theorem 5.1 is to establish the following compact containment property.

Lemma 5.1 Assume (3.17)–(3.20). Fix T > 0. For each η > 0 there exists a compact
set K ⊂ M such that

lim inf
n→∞ P

n
((

R̄n(t), Z̄ n(t)
) ∈ K × K for all t ∈ [0, T ]) ≥ 1 − η.

To prove this result, we first need to establish some bound estimations. It follows
immediately from condition (3.17) that for each ε > 0 there exists an n0 such that
when n > n0,

P
n
(

sup
0≤s<t≤T

∣∣Ēn(s, t) − λ(t − s)
∣∣ < ε

)
≥ 1 − ε. (5.4)

To facilitate some arguments later on, we derive the following result from inequal-
ity (5.4) in the above.

Lemma 5.2 Fix T > 0. There exists a function εE(·), with limn→∞ εE(n) = 0 such
that

P
n
(

sup
0≤s<t≤T

∣∣Ēn(s, t) − λ(t − s)
∣∣ < εE(n)

)
≥ 1 − εE(n),

for each n ≥ 0.
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The derivation of the above lemma from (5.4) follows the same as the proof of
Lemma 5.1 in [33]. We omit the proof for brevity. Based on the above lemma, we
construct the following event:

Ωn
E =

{
sup

t∈[0,T ]
∣∣Ēn(s, t) − λ(t − s)

∣∣ < εE(n)
}
. (5.5)

We see that on this event, the arrival process is regular, i.e. Ēn(s, t) is “close” to
λ(t − s). This event has “large” probability, i.e.

lim
n→∞ P

n
(
Ωn

E

) = 1. (5.6)

Proof of Lemma 5.1 By the convergence of the initial condition (3.19), for any ε > 0,
there exists a relatively compact set K0 ⊂ M such that

lim inf
n→∞ P

n
(

R̄n(0) ∈ K0 and Z̄ n(0) ∈ K0
)
> 1 − ε. (5.7)

Denote the event in the above probability by Ωn
0 . On this event, by the defini-

tion of relatively compact set in the space M, there exists a function κ0(·) with
limx→∞ κ0(x) = 0 such that

R̄n(0)(Cx) ≤ κ0(x), Z̄ n(0)(Cx) ≤ κ0(x), (5.8)

and

R̄n(0)
(
C−

x

) ≤ κ0(x), (5.9)

for all x ≥ 0, where C−
x = (−∞,−x) for any y ∈ R. (Remember that Z̄ n(0) is a

measure on (0,∞), so we do not need to consider its measure of C−
x .) It is clear that

on the event Ωn
E ∩ Ωn

0 , for any t ≤ T and all large n,

R̄n(t)(R) ≤ sup
n

R̄n(0)(R) + 2λT ,

Z̄ n(t)
(
(0,∞)

) ≤ 1,

where the last inequality is due to the fact that Zn(·) ≤ n. Again, by the definition of
relative compact set in M, we have supn R̄n(0)(R) = M0 < ∞. It follows from the
dynamic equations (5.2) and (5.3) that for all x > 0,

R̄n(t)(Cx) ≤ R̄n(0)(Cx) + 1

n

En(t)∑

i=1

δun
i
(Cx),

Z̄ n(t)(Cx) ≤ Z̄ n(0)(Cx) + 1

n

En(t)∑

i=Bn(0)+1

δvn
i
(Cx).

Denote L̄n
1(t) = 1

n

∑En(t)
i=1 δun

i
and L̄n

2(t) = 1
n

∑En(t)
i=Bn(0)+1 δvn

i
. Let us first study these

two terms. Since the probability measure νn
F of un

i ’s converges to νF , and the proba-
bility measure νn

G of vn
i ’s converges to νG (by condition (3.18)), we can define f̄ and
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f̄2 by (B.5) and (B.6). By the definition of Ωn
0 there exists a constant MR,0 such that

|Bn(0)/n| ≤ MR,0 on Ωn
0 . Recall the definition of the event Ωn

GC(M,L) in (B.10).
For the application here, it is enough to set M = MR,0 and L = 2λT + M . On the
event Ωn

E ∩ Ωn
GC(M,L), we have

〈
f̄ , L̄n

1(t)
〉 ≤

〈

f̄ ,
1

n

�2λT n�∑

i=−�Mn�
δun

i

〉

≤ (2λT + M)〈f̄ , νF 〉 + 1,

for all large enough n. Similarly, on the same event we have

〈
f̄ , L̄n

2(t)
〉 ≤

〈

f̄ ,
1

n

�2λT n�∑

i=−�Mn�
δvn

i

〉

≤ (2λT + M)〈f̄ , νG〉 + 1,

for all large enough n. Denote Mb = (2λT + M)max(〈f̄ , νF 〉, 〈f̄ , νG〉) + 1. By
Markov’s inequality, for all x > 0 (again, on the same event and for all large n)

L̄n
1(t)(Cx) < Mb/f̄ (x), L̄n

2(t)(Cx) < Mb/f̄ (x),

where the upper bound vanishes as x → ∞ by (B.7). Unlike the measure Z(t) ∈ M+,
the measure R(t) ∈ M. So we need to consider all the test set C−

x = (−∞,−x) for
x ≥ 0. The following inequality again follows from (5.2):

R̄n(t)
(
C−

x

) ≤ R̄n(0)
(
C−

x + t
) + 1

n

En(t)∑

i=1

δun
i

(
C−

x + t
)
.

Note that if we take x > T , then δun
i
(C−

x + t) = 0. So we have

R̄n(t)
(
C−

x

) ≤ R̄n(0)
(
C−

x + T
) = R̄n(0)

(
C−

x−T

)
, for all t ≤ T . (5.10)

Now, define the set K ⊂ M by

K = {
ξ ∈ M : ξ(R) < 1 + M0 + 2λT ,

ξ(Cx) < κ0(x) + Mb/f̄ (x) for all x > 0,

ξ
(
C−

x

) ≤ κ0(x − T ) for all x ≥ T
}
.

It is clear that K is relatively compact and on the event Ωn
E ∩ Ωn

GC(M,L) ∩ Ωn
0 ,

(
R̄n(t), Z̄ n(t)

) ∈ K × K for all t ∈ [0, T ].
The result of this lemma then follows immediately from (5.6), (5.7), and (B.11). �

5.1.2 Oscillation bound

The second major step to prove precompactness is to obtain the oscillation bound in
Lemma 5.4 below. The oscillation of a càdlàg function ζ(·) (taking values in a metric
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space (E,π)) on a fixed interval [0, T ] is defined as

wT

(
ζ(·), δ) = sup

s,t∈[0,T ],|s−t |<δ

π
[
ζ(s), ζ(t)

]
.

If the metric space is R, we just use the Euclidean metric; if the space is M or M+,
we use the Prohorov metric d defined in Sect. 1.1. For the measure-valued processes
in our model, oscillations mainly result from sudden departures of a large number of
customers. To control the departure process, we show that Z̄ n(·) and R̄n(·) assign
arbitrarily small mass to small intervals.

Lemma 5.3 Assume (3.10), (3.17)–(3.20). Fix T > 0. For each ε, η > 0 there exists
a κ > 0 (depending on ε and η) such that

lim inf
n→∞ P

n
(

sup
t∈[0,T ]

sup
x∈R+

Z̄ n(t)
([x, x + κ]) ≤ ε

)
≥ 1 − η. (5.11)

Proof First, We see that for any ε, η > 0, there exists a κ such that

lim inf
n→∞ P

n
(

sup
x∈R+

Z̄ n(0)
([x, x + κ]) ≤ ε/2

)
≥ 1 − η. (5.12)

This inequality is derived from the initial condition. The derivation is exactly the
same as in the proof of (5.14) in [33], so we omit it here for brevity.

Now we need to extend this result to the interval [0, T ]. Denote the event in (5.12)
by Ωn

0s , and the event in Lemma 5.1 by Ωn
C(K). Fix M = 1 and L = 2λT . Let

Ωn
1 (M,L) = Ωn

0s ∩ Ωn
C(K) ∩ Ωn

E ∩ Ωn
GC(M,L). (5.13)

By (5.12), Lemma 5.1, (5.6), and (B.11), for any fixed M,L > 0,

lim inf
n→∞ P

n
(
Ωn

1 (M,L)
) ≥ 1 − η.

In the remainder of the proof, all random objects are evaluated at a fixed sample path
in Ωn

1 (M,L).
It follows from the fluid scaled stochastic dynamic equation (5.3) that

Z̄ n(t)
([x, x + κ]) ≤ Z̄ n(0)

([x, x + κ] + t
)

+ 1

n

Bn(t)∑

i=Bn(0)+1

δvn
i

([x, x + κ] + t − τn
i

)
,

for each x, κ ∈ R+. By (5.12), the first term on the right hand side of the above
equation is always upper bounded by ε/2. Let S denote the second term on the right
hand side of the preceding equation. Now it only remains to show that S < ε/2.

Let 0 = t0 < t1 < · · · < tJ = t be a partition of the interval [0, t] such that
|tj+1 − tj | < δ for all j = 0, . . . , J −1, where δ and J are to be chosen below. Write S
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as the summation

S =
J−1∑

j=0

1

n

Bn(tj+1)∑

i=Bn(tj )+1

δvn
i

([x, x + κ] + t − τn
i

)
.

Recall that τn
i is the time that the ith job starts service, so on each sub-interval

[tj , tj+1] those i’s to be summed must satisfy tj ≤ τn
i ≤ tj+1. This implies that

t − tj+1 ≤ t − τn
i ≤ t − tj .

Then

S ≤
J−1∑

j=0

1

n

Bn(tj+1)∑

i=Bn(tj )+1

δvn
i

([x + t − tj+1, x + t − tj + κ]).

By (5.1), we have for all j = 0, . . . , J

−R̄n(0) ≤ B̄n(tj ) ≤ Ēn(T ).

Thus,

0 ≤ B̄n(tJ ) − B̄n(t0) ≤ Ēn(T ) + R̄n(0).

By Lemmas 5.1 and 5.2, R̄n(0) < M0 and Ēn(T ) ≤ 2λT on Ωn
C(K) ∩ Ωn

E for some
constant M0. Take M = max(M0,2λT ) and L = M0 + 2λT , it follows from the
Glivenko–Cantelli estimate (B.10) that

1

n

Bn(tj+1)∑

i=Bn(tj )+1

δvn
i

([x + t − tj+1, x + t − tj + κ])

≤ (
B̄n(tj+1) − B̄n(tj )

)
νn
G

([x + t − tj+1, x + t − tj + κ]) + ε

4J
, (5.14)

for each j < J . By condition (3.18), for any ε2 > 0,

d
[
νn
G, νG

]
< ε2,

for all large n. By the definition of Prohorov metric, we have

νn
G

([x + t − tj+1, x + t − tj +κ]) ≤ νG

([x + t − tj+1 − ε2, x + t − tj +κ + ε2]
)+ ε2,

for all large n. Since [x + t − tj+1 − ε2, x + t − tj + κ + ε2] is a close interval with
length less than κ + δ + 2ε2, by condition (3.10) and the fact that νG is a probability
measure, we can choose κ, δ, ε2 small enough such that

νG

([x + t − tj+1 − ε2, x + t − tj + κ + ε2]
) + ε2 ≤ ε

4M
. (5.15)
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Note that by making δ small, we need to choose J ≥ 	t/δ
. It then follows from
(5.14) that

S ≤ ε

4M

J−1∑

j=0

[
B̄n(tj+1) − B̄n(tj )

] + ε

4

≤ ε

4M

[
B̄n(tJ ) − B̄n(t0)

] + ε

4
≤ ε/2.

This completes the proof. �

Lemma 5.4 Assume (3.10), (3.17)–(3.20). Fix T > 0. For each ε, η > 0 there exists
a δ > 0 (depending on ε and η) such that

lim inf
n→∞ P

n
(
wT

((
R̄n, Z̄ n

)
(·), δ) ≤ 3ε

) ≥ 1 − η. (5.16)

Proof Define

Ωn
Reg(ε, κ) =

{
sup

t∈[0,T ]
sup

x∈R+
Z̄ n(t)

([x, x + κ]) ≤ ε
}
.

By (5.6) and Lemma 5.3, for each ε, η > 0 there exists a κ > 0 such that

lim inf
n→∞ P

n
(
Ωn

E ∩ Ωn
Reg(ε, κ)

)
> 1 − η. (5.17)

On the event Ωn
E ∩Ωn

Reg(ε, κ), we have some control over the dynamics of the system.
First, when t − s ≤ min( ε

2λ
, κ), by the definition of Ωn

E and Ωn
Reg(ε, κ), we have

Ēn(s, t) ≤ ε (5.18)

Second, by the dynamic equation (5.2), for any s < t and any set C ∈ B(R),

R̄n(t)(C) − R̄n(s)
(
C3ε

)

≤ −1

n

Bn(t)∑

i=Bn(s)+1

δun
i

(
C3ε + san

i

) + Ēn(s, t)

+ 1

n

En(s)∑

i=Bn(t)+1

[
δun

i

(
C + t − an

i

) − δun
i

(
C3ε + s − an

i

)]
, (5.19)

where Ca is the a-enlargement of the set C as defined in Sect. 1.1. The first term on
the right hand side is clearly non-positive. Note that when t − s ≤ ε, C + t − an

i ⊆
Cε + s − an

i for all i ∈ Z, which implies that the third term in the above inequality is
less than zero. It follows from (5.18) that

R̄n(t)(C) − R̄n(s)
(
Cε

) ≤ ε.
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By Property (ii) on page 72 in [2], we have

d
[

R̄n(t), R̄n(s)
] ≤ ε. (5.20)

Finally, by the dynamic equation (5.3),

Z̄ n(t)(C) ≤ Z̄ n(s)(C + t − s) + B̄n(s, t).

Plug in C = R into (5.19), we have

B̄n(s, t) ≤ ∣
∣R̄n(t)(R) − R̄n(s)(R)

∣
∣ + Ēn(s, t) ≤ 2ε,

by (5.18) and (5.20). Note that when t − s ≤ 2ε, C + t − s ⊆ C2ε , where Ca is the
a-enlargement of the set C as defined in Sect. 1.1. Thus, we have

Z̄ n(t)(C) ≤ Z̄ n(s)
(
C2ε

) + 2ε.

By Property (ii) on page 72 in [2], we have

d
[

Z̄ n(s), Z̄ n(t)
] ≤ 2ε. (5.21)

The result of this lemma follows immediately from (5.17), (5.20), and (5.21). �

5.2 Convergence to the fluid model solution

We have established the precompactness in Theorem 5.1. So every subsequence of
the fluid scaled processes has a further subsequence which converges to some limit.
For simplicity of notations, we index the convergent subsequence again by n. So we
have

(
R̄n(·), Z̄ n(·)) ⇒ (

R̃(·), Z̃(·)) as n → ∞. (5.22)

By the oscillation bound in Lemma 5.4, the limit (R̃(·), Z̃(·)) is almost surely con-
tinuous. We have the following result, which further characterizes the above limit.

Lemma 5.5 Assume (3.10)–(3.12) and (3.17)–(3.20). The limit (R̃(·), Z̃(·)) in (5.22)
is almost surely the solution to the fluid model (λ,F,G) with initial condition
(R̄0, Z̄0).

The rest of this section is devoted to characterizing the limits. To better structure
the proof, we first provide some preliminary estimates based on the dynamic equa-
tions (5.2) and (5.3).

Lemma 5.6 Let {tj }Jj=0 be a partition of the interval [s, t] such that s = t0 < t1 <

· · · < tJ = t . We have for any x ∈ R,

R̄n(t)(Cx) ≤
J−1∑

j=0

1

n

En(tj+1)∑

i=1+En(tj )

δun
i
(Cx + t − tj+1) + ∣∣Ēn(s) − B̄n(t)

∣∣, (5.23)
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R̄n(t)(Cx) ≥
J−1∑

j=0

1

n

En(tj+1)∑

i=1+En(tj )

δun
i
(Cx + t − tj ) − ∣∣Ēn(s) − B̄n(t)

∣∣. (5.24)

On the event where supτ∈[s,t] |Ēn(τ ) − λτ | < ε, then for any x > 0,

Z̄ n(t)(Cx) ≤ Z̄ n(s)(Cx + t − s)

+
J−1∑

j=0

1

n

Bn(tj+1)∑

i=1+Bn(tj )

δun
i

(
C0 + R̄n

L,j − 2ε

λ

)
δvn

i
(Cx + t − tj+1), (5.25)

Z̄ n(t)(Cx) ≥ Z̄ n(s)(Cx + t − s)

+
J−1∑

j=0

1

n

Bn(tj+1)∑

i=1+Bn(tj )

δun
i

(
C0 + R̄n

U,j + 2ε

λ

)
δvn

i
(Cx + t − tj ), (5.26)

where R̄n
L,j = inft∈[tj ,tj+1] R̄n(t) and R̄n

U,j = supt∈[tj ,tj+1] R̄
n(t).

Proof Note that 0 ≤ δun
i
(C) ≤ 1 for any Borel set C and any random variable un

i . So
by the dynamic equation (5.2), we have

∣∣∣∣
∣

R̄n(t)(C) − 1

n

En(t)∑

i=En(s)+1

δun
i

(
C + t − an

i

)
∣∣∣∣
∣
≤ ∣∣Ēn(s) − B̄n(t)

∣∣.

For those i’s such that En(tj ) < i ≤ En(tj+1), we have

tj < an
i ≤ tj+1. (5.27)

This implies that Cx + t − ai ⊆ Cx + t − tj+1. So we have

En(tj+1)∑

i=1+En(tj )

δun
i
(Cx + t − ai) ≤

En(tj+1)∑

i=1+En(tj )

δun
i
(Cx + t − tj+1).

This establishes (5.23). Also, (5.27) implies Cx + t − tj ⊆ Cx + t − ai . So (5.24)
follows in the same way.

For those i’s such that Bn(tj ) < i ≤ Bn(tj+1), we have

tj < τn
i ≤ tj+1.

Note that R̄n(τn
i ) = Ēn(τn

i )− Ēn(an
i ) for each i. So, by the closeness between Ēn(·)

and λ·, we have
∣∣R̄n

(
τn
i

) − λ
(
τn
i − an

i

)∣∣

≤ ∣∣R̄n
(
τn
i

) − Ēn
(
τn
i

) + Ēn
(
an
i

)∣∣ + ∣∣Ēn
(
τn
i

) − Ēn
(
an
i

) − λ
(
τn
i − an

i

)∣∣

≤ 2ε.
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So

R̄n
L,j − 2ε ≤ λ

(
τn
i − an

i

) ≤ R̄n
U,j + 2ε,

for all i’s such that Bn(tj ) < i ≤ Bn(tj+1). Thus,

Bn(tj+1)∑

i=1+Bn(tj )

δun
i

(
C0 + τn

i − an
i

)
δvn

i

(
Cx + t − τn

i

)

≤
Bn(tj+1)∑

i=1+Bn(tj )

δun
i

(
C0 + R̄n

L,j − 2ε

λ

)
δvn

i
(Cx + t − tj+1).

This implies (5.25). Also (5.26) can be proved in the same way. �

Recall the notations L̄n(m, l), L̄n
F (m, l) and L̄n

G(m, l) are defined in (B.1)–(B.3)
in the appendix. Using these notations, Lemma 5.6 can be written as the follows.

Lemma 5.7 Let {tj }Jj=0 be a partition of the interval [s, t] such that s = t0 < t1 <

· · · < tJ = t . We have for any x ∈ R,

R̄n(t)(Cx) ≤
J−1∑

j=0

〈
1(Cx+t−tj+1), L̄n

F

(
En(tj ), Ē

n(tj , tj+1)
)〉 + ∣∣Ēn(s) − B̄n(t)

∣∣,

(5.28)

R̄n(t)(Cx) ≥
J−1∑

j=0

〈
1(Cx+t−tj ), L̄n

F

(
En(tj ), Ē

n(tj , tj+1)
)〉 − ∣∣Ēn(s) − B̄n(t)

∣∣.

(5.29)

If in addition supτ∈[s,t] |Ēn(τ ) − λτ | < ε, then for any x > 0,

Z̄ n(t)(Cx) ≤ Z̄ n(s)(Cx + t − s)

+
J−1∑

j=0

〈
1
(C0+

R̄n
L,j

−2ε

λ
)×(Cx+t−tj+1)

, L̄n
(
Bn(tj ), B̄

n(tj , tj+1)
)〉
, (5.30)

Z̄ n(t)(Cx) ≥ Z̄ n(s)(Cx + t − s)

+
J−1∑

j=0

〈
1
(C0+

R̄n
U,j

+2ε

λ
)×(Cx+t−tj )

, L̄n
(
Bn(tj ), B̄

n(tj , tj+1)
)〉

. (5.31)

Fix a constant T > 0 and let M = 1 and L = 2λT . Denote the random variable

V̄ n
M,L = max−nM<m<nM

sup
l∈[0,L]

sup
x,y∈R

{∣∣L̄n(m, l)(Cx × Cy) − lνn
F (Cx)ν

n
G(Cy)

∣
∣

+ ∣∣L̄n
F (m, l)(Cx) − lνn

F (Cx)
∣∣ + ∣∣L̄n

G(m, l)(Cx) − lνn
G(Cx)

∣∣}. (5.32)
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By Lemma B.1, for any fixed constants M,L > 0,

V̄ n
M,L ⇒ 0 as n → ∞.

By the assumption (3.17), we have

Ēn(·) ⇒ λ · as n → ∞.

Since both the above two limits are deterministic, those convergences are joint
with the convergence of (R̄n(·), Z̄ n(·)). Now, for each n ≥ 1, we can view
(Ēn(·), R̄n(·), Z̄ n(·),VM,L) as a random variable in the space E1, which is the
product space of three D([0,∞),R) spaces and the space R. (L̄n(m, ·), L̄n

F (m, ·),
L̄n

G(m, ·) : m ∈ Z) in the product space E2 of countably many D([0,∞),M) spaces.
It is clear that both E1 and E2 are complete and separable metric spaces. Using the
extension of the Skorohod representation Theorem, Lemma C.1, we assume without
loss of generality that Ēn(·), R̄n(·), Z̄ n(·), V̄ n

M,L, L̄n(m, ·), L̄n
F (m, ·), L̄n

G(m, ·),m ∈
Z, and (R̃(·), Z̃(·)) are defined on a common probability space (Ω̃, F̃ , P̃) such that,
almost surely,

((
R̄n(·), Z̄ n(·)), V̄ n

M,L, Ēn(·)) → ((
R̃(·), Z̃(·)),0, λ·) as n → ∞, (5.33)

and inequalities (5.28)–(5.31) and (5.32) also hold almost surely. Note that the con-
vergence of each function component in the above is in the Skorohod J1 topology.
Since the limit is continuous, the convergence is equivalent to the convergence in the
uniform norm on compact intervals. Thus as n → ∞,

sup
t∈[0,T ]

d
[

R̄n(t), R̃(t)
] → 0, (5.34)

sup
t∈[0,T ]

d
[

Z̄ n(t), Z̃(t)
] → 0, (5.35)

sup
t∈[0,T ]

∣∣Ēn(t) − λt
∣∣ → 0, (5.36)

where d is the Prohorov metric defined in Sect. 1.1. In the same way as on the original
probability space, let

R̄n(·) = 〈
1, R̄n(·)〉, Q̄n(·) = 〈

1(0,∞), R̄n(·)〉,
Z̄n(·) = 〈

1, Z̄ n(·)〉, X̄n(·) = Q̄n(·) + Z̄n(·),

and

B̄n(·) = Ēn(·) − R̄n(·).
According to (5.34) and (5.36), we have

sup
t∈[0,T ]

∣∣B̄n(t) − B̃(t)
∣∣ → 0. (5.37)
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For each n, let Ω̃n,2 be an event of probability one on which the stochastic dy-
namic equations (5.2) and (5.3) and the non-idling constraints (2.7) and (2.8) hold.
Define Ω̃0 = Ω̃1 ∩ (

⋂∞
n=0 Ω̃n

n,2), where Ω̃1 is the event of probability one on which

(5.33) holds. Then Ω̃0 also has probability one. Based on Lemma 5.6 and the above
argument using Skorohod Representation theorem, we can now prove Lemma 5.5.

Proof of Lemma 5.5 For any t ≥ 0, fix a constant T > t . Let us now study
(R̃(·), Z̃(·)) on the time interval [0, T ]. It is enough to show that on the event Ω̃0,
(R̃(t), Z̃(t)) satisfies the fluid model equation (3.1)–(3.2) and the constraints (3.3)–
(3.4). Assume for the remainder of this proof that all random objects are evaluated at
a sample path in the event Ω̃0.

We first verify (3.1). For any ε > 0, consider the difference

R̃(t)(Cx) −
∫ t

t− R̃(t)
λ

F c(x + t − s) dλs

= R̃(t)(Cx) − R̄n(t)
(
Cε

x

) + R̄n(t)
(
Cε

x

) −
∫ t

t− R̃(t)
λ

F c(x + t − s) dλs,

where Cε
x is the ε-enlargement of the set Cx as defined in Sect. 1.1, which is essen-

tially Cx−ε . Let t0 = t − R̃(t)/λ. According to (5.28), we have

R̃(t)(Cx) −
∫ t

t− R̃(t)
λ

F c(x + t − s) dλs

≤ R̃(t)(Cx) − R̄n(t)
(
Cε

x

) + ∣
∣Ēn(t0) − B̄n(t)

∣
∣

×
J−1∑

j=0

〈
1(Cε

x+t−tj+1), L̄n
F

(
En(tj ), Ē

n(tj , tj+1)
)〉

−
∫ t

t0

Fc(x + t − s) dλs, (5.38)

where {tj }Jj=0 is a partition of the interval [t0, t] such that t0 < t1 < · · · < tJ = t and
maxj (tj+1 − tj ) < δ for some δ > 0. By the definition of Prohorov metric and the
convergence in (5.34), the first term on the right hand side of (5.38) is bounded by ε

for all large n. By (5.34) and (5.36)
∣∣B̄n(t) − Ēn(t0)

∣∣ = ∣∣Ēn(t) − R̄n(t) − Ēn(t0)
∣∣

≤ ∣∣Ēn(t) − λt
∣∣ + ∣∣R̄n(t) − R̃(t)

∣∣ + ∣∣Ēn(t0) − λt0
∣∣ < 3ε,

for all large n. So

R̃(t)(Cx) −
∫ t

t− R̃(t)
λ

F c(x + t − s) dλs

≤ 4ε +
J−1∑

j=0

〈
1(Cε

x+t−tj+1), L̄n
F

(
En(tj ), Ē

n(tj , tj+1)
)〉 −

∫ t

t0

Fc(x + t − s) dλs,

(5.39)
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for all large n. Similarly, according to (5.29), we have

R̃(t)(Cx) −
∫ t

t− R̃(t)
λ

F c(x + t − s) dλs

≥ −4ε +
J−1∑

j=0

〈
1(Cε

x+t−tj ), L̄n
F

(
En(tj ), Ē

n(tj , tj+1)
)〉 −

∫ t

t0

Fc(x + t − s) dλs,

(5.40)

for all large n. Note that for each j , we have
〈
1(Cx+t−tj+1), L̄n

F

(
En(tj ), Ē

n(tj , tj+1)
)〉

≤ 〈
1(Cx+t−tj+1), L̄n

F

(
En(tj ), λ(tj+1 − tj ) + 2ε

)〉

≤ [
λ(tj+1 − tj ) + 2ε

]
νn
F

(
Cε

x + t − tj+1
) + ε

≤ [
λ(tj+1 − tj ) + 2ε

][
νF (Cx + t − tj+1) + ε

] + ε

≤ λ(tj+1 − tj )νF (Cx + t − tj+1) + (3 + λδ)ε

for all large n, where the first inequality is due to (5.36), the second one is due to
(5.33) (the component of V̄ n

M,L), the third one is due to (3.18) and the definition of
the Prohorov metric, and the last one is due to algebra. Similarly, we can show that
〈
1(Cx+t−tj ), L̄n

F (En(tj ), Ē
n(tj , tj+1)

〉 ≥ λ(tj+1 − tj )νF (Cx + t − tj ) − (3 + λδ)ε

for all large n. Note that
∑J−1

j=0 λ(tj+1 − tj )F
c(x + t − tj+1) and

∑J−1
j=0 λ(tj+1 −

tj )F
c(x+ t − tj ) serve as the upper and lower Reimann sum of the integral

∫ t

t0
Fc(x+

t − s) dλs, which converge to the integration as n → ∞. So by (5.39) and (5.40), we
have, for all large n,

∣∣∣
∣R̃(t)(Cx) −

∫ t

t− R̃(t)
λ

F c(x + t − s) dλs

∣∣∣
∣ ≤ (3 + λδ)J ε + 5ε.

We conclude that R̃(t)(Cx) − ∫ t

t− R̃(t)
λ

F c(x + t − s) dλs = 0 since ε in the above can

be arbitrary. This verifies (3.1).
Next, we verify (3.2). For any ε > 0, consider the difference

∣∣∣∣Z̃(t)(Cx) − Z̄0(Cx + t) −
∫ t

0
Fc

(
R̃(s)

λ

)
Gc(x + t − s) d

[
λs − R̃(s)

]
∣∣∣∣

≤ ∣∣Z̃(t)(Cx) − Z̄ n(t)
(
Cε

x

)∣∣ + ∣∣Z̃0(Cx + t) − Z̄ n(0)
(
Cε

x + t
)∣∣

+
∣∣∣∣Z̄ n(t)

(
Cε

x

) − Z̄ n(0)
(
Cε

x + t
)

−
∫ t

0
Fc

(
R̃(s)

λ

)
Gc(x + t − s) d

[
λs − R̃(s)

]
∣∣∣∣, (5.41)
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where the above inequality is due to the fluid scaled stochastic dynamic equation
(5.3). Again, by the definition of Prohorov metric and the convergence in (5.35), each
of the first two terms on the right hand side in the above inequality is less than ε for
all large n. Let {tj }Jj=0 be a partition of the interval [0, t] such that 0 = t0 < t1 <

· · · < tJ = t and maxj (tj+1 − tj ) < δ for some δ > 0. Let

R̃U,j = sup
t∈[tj ,tj+1]

R̃(t), R̃L,j = inf
t∈[tj ,tj+1]

R̃(t).

According to the definition of supremum, there exists t ∈ [tj , tj+1] such that R̃U,j ≤
R̃(t) + ε/2. By (5.34), we have R̃(t) ≤ R̄n(t) + ε/2 for all large n. This implies that
R̃U,j ≤ R̄n

U,j + ε. Similarly, we can prove that R̄n
U,j ≤ R̃U,j + ε. The same approach

can be applied to R̃L,j and R̄n
L,j . Thus we have

∣∣R̄n
U,j − R̃U,j

∣∣ ≤ ε,
∣∣R̄n

L,j − R̃L,j

∣∣ ≤ ε,

for all large n. So for each j , we have

〈
1
(C0+

R̄n
L,j

−2ε

λ
)×(Cε

x+t−tj+1)
, L̄n

(
Bn(tj ), B̄

n(tj , tj+1)
)〉

≤ 〈
1
(C0+ R̃L,j −3ε

λ
)×(Cε

x+t−tj+1)
, L̄n

(
Bn(tj ), B̃(tj+1) − B̃(tj ) + 2ε

)〉

≤ [
B̃(tj+1) − B̃(tj ) + 2ε

]
νn
F

(
C0 + R̃L,j − 3ε

λ

)
νn
G

(
Cε

x + t − tj+1
) + ε

≤ [
B̃(tj+1) − B̃(tj ) + 2ε

][
νF

(
C0 + R̃L,j

λ

)
+ 3ε

λ

][
νG(Cx + t − tj+1) + ε

] + ε

for all large n, where the first inequality is due to (5.37), the second one is due to
(5.33) (the component of V̄ n

M,L), the third one is due to (3.18). Let MB be a finite

upper bound of B̃(tJ ) − B̃(t0); the above inequality can be further bounded by

[
B̃(tj+1) − B̃(tj )

]
νF

(
C0 + R̃L,j

λ

)
νG(Cx + t − tj+1) +

(
3

λ
+ 2

)
MBε + 3ε.

Similarly, we can show that

〈
1
(C0+

R̄n
U,j

+2ε

λ
)×(Cx+t−tj )

, L̄n
(
Bn(tj ), B̄

n(tj , tj+1)
)〉

≥ [
B̃(tj+1) − B̃(tj )

]
νF

(
C0 + R̃L,j

λ

)
νG(Cx + t − tj ) −

(
3

λ
+ 2

)
MBε − 3ε.

Note that
∑J−1

j=0 [B̃(tj+1) − B̃(tj )]Fc(
R̃U,j

λ
)Gc(x + t − tj+1) and

∑J−1
j=0 [B̃(tj+1) −

B̃(tj )]Fc(
R̃L,j

λ
)Gc(x + t − tj ) serve as the upper and lower Reimann sum of the inte-

gral
∫ t

t0
Fc(

R̃(s)
λ

)Gc(x + t − s) dB̃(s), which converge to the integration as n → ∞.
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So, by (5.30) and (5.31), we have, for all large n,

∣∣∣∣Z̄ n(t)
(
Cε

x

) − Z̄ n(0)
(
Cε

x + t
) −

∫ t

t0

Fc

(
R̃(s)

λ

)
Gc(x + t − s) dB̃(s)

∣∣∣∣

≤
(

3

λ
+ 2

)
MBε + 3ε + ε.

In summary, the right hand side of (5.41) can be bounded by a finite multiple of ε.
We conclude that the left hand side of (5.41) must be 0 since it does not depend on ε,
which can be arbitrary. This verifies (3.2).

The verification of fluid constrains (3.3) and (3.4) is quite straightforward. Basi-
cally, it is just passing the fluid scaled stochastic constraints

Q̄n(t) = (
X̄n(t) − 1

)+
,

Z̄n(t) = (
X̄n(t) ∧ 1

)
,

to n → ∞. We omit it for brevity. �

6 The special case with exponential distribution

In this section we verify that the fluid model developed in this paper for the general
patience and service time distributions is consistent with the one in [30], that was
obtained in the special case where both distributions are assumed to be exponential.

Our fluid model equations implies the key relationship (4.6). Now, we specialize
in the case with exponential distribution, i.e.

F(t) = Fe(t) = 1 − e−αt , G(t) = Ge(t) = 1 − e−μt , for all t ≥ 0.

Now (4.6) becomes

X̄(t) = ζ0(t) + ρ

∫ t

0

[
1 − α

λ

((
X̄(t − s) − 1

)+)]
μe−μs ds

+
∫ t

0

(
X̄(t − s) − 1

)+
μe−μs ds.

In the case of exponential service time distribution, the remaining service time of
those initially in service and the service times of those initially waiting in queue are
also assumed to be exponentially distributed. So we have

ζ0(t) = Z̄0(C0 + t) + Q̄0e
−μt = X̄0e

−μt ,

where X̄0 = Z̄0 + Q̄0 is the initial number of customers in the system. By some
algebra, the above two equations can be simplified as the follows:

X̄(t) = X̄0e
−μt + ρ

[
1 − e−μt

] + (μ − α)

∫ t

0

(
X̄(t − s) − 1

)+
e−μs ds. (6.1)
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By the change of variable t − s → s, the above integration can be written as

∫ t

0

(
X̄(t − s) − 1

)+
e−μs ds = e−μt

∫ t

0

(
X̄(s) − 1

)+
eμs ds.

Taking the derivative on both sides of (6.1) yields

X̄′(t) = −μX0e
−μt + μρeμt

+ (μ − α)

[
−μe−μt

∫ t

0

(
X̄(s) − 1

)+
eμs ds + e−μt

(
X̄(t) − 1

)+
eμt

]

= −μX0e
−μt − μρ

[
1 − eμt

] + μρ

− μ(μ − α)e−μt

∫ t

0

(
X̄(s) − 1

)+
eμs ds + (μ − α)

(
X̄(t) − 1

)+

= −μX̄(t) + μρ + (μ − α)
(
X̄(t) − 1

)+
.

Using the notation in [30], a− = −min(0, a) for any a ∈ R. Note that a =
min(a,1) + (a − 1)+ = 1 − (a − 1)− + (a − 1)+. So the above equation further
implies

X̄′(t) = μ(ρ − 1) − α
(
X̄(t) − 1

)+ + μ
(
X̄(t) − 1

)−
, for all t ≥ 0.

This equation is consistent with Theorem 2.2 in [30] (μ is assumed to be 1 in that
paper).
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Appendix A: A convolution equation

The main purpose for this appendix is to study the convolution equation

x(t) = ζ(t)+ρ

∫ t

0
H

((
x(t − s)− 1

)+)
dGe(s)+

∫ t

0

(
x(t − s)− 1

)+
dG(s), (A.1)

where Ge is the equilibrium distribution of distribution function G as defined in
Sect. 3.1. We first show that (A.1) has a unique solution under the assumption that
the function H(·) is Lipschitz continuous. The proof follows the application of the
classical contraction mapping theorem.

Lemma A.1 Assume that G(·) is a distribution function with G(0) < 1, ζ(·) ∈
D([0, T ],R), H(·) is a Lipschitz continuous function, and ρ ∈ R. There exists a
unique solution x∗(·) ∈ D([0, T ],R) to (A.1).
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Proof Suppose H(·) is Lipschitz continuous with constant L. The equilibrium distri-
bution has density μ[1 − G(·)], so |Ge(t) − Ge(s)| ≤ μ|t − s| for any s, t ∈ R. Since
G(0) < 1, there exists b > 0 such that

κ := ρL
[
Ge(b) − Ge(0)

] + [
G(b) − G(0)

]
< 1.

According to Theorem 3.5.6 in [7], the space D([0, b],R) (all real valued càdlàg
functions on [0, b], cf. Sect. 1.1) is complete since R is complete. Now consider
the space D([0, b],R) (each function in it is bounded and measurable by Corollar-
ies 12.2.3 and 12.2.4 in [29], respectively) is a subset of the Banach space of bounded,
measurable functions on [0, b], equipped with the sup norm. One can check that this
subset is closed in the Banach space. Thus, the space D([0, b],R) itself, equipped
with the uniform metric υT (defined in Sect. 1.1), is complete.

For any y ∈ D([0, b],R), define Ψ (y) by

Ψ (y)(t) = ζ(t) + ρ

∫ t

0
H

((
y(t − s) − 1

)+)
dGe(s) +

∫ t

0

(
y(t − s) − 1

)+
dG(s),

for any t ∈ [0, b]. By convention, the integration
∫ t

0 y(t − s) dF (s) is interpreted to
be

∫
(0,t] y(t − s) dF (s) (cf. p. 43 in [4]). We prove the existence and uniqueness of

the solution to (A.1) by showing that Ψ is a contraction mapping on D([0, b],R).
According to the proof of Lemma A.1 in [33], the convolution of a càdlàg func-
tion with a distribution function is still a càdlàg function. So Ψ is a mapping from
D([0, b],R) to D([0, b],R). Next, we show that the mapping Ψ is a contraction. For
any y, y′ ∈ D([0, b],R), we have

υb

[
Ψ (y),Ψ

(
y′)] ≤ sup

t∈[0,b]
ρ

∫ t

0
L

∣∣(y(t − s) − 1
)+ − (

y′(u − v) − 1
)+∣∣dGe(s)

+ sup
t∈[0,b]

∫ t

0

∣∣(y(t − s) − 1
)+ − (

y′(t − s) − 1
)+∣∣dG(s)

≤ ρL

∫ b

0
υb

[
y, y′]dGe(s) +

∫ b

0
υb

[
y, y′]dG(s)

≤ κυb

[
y, y′].

Since κ < 1, the mapping Ψ is a contraction. By the contraction mapping theorem
(cf. Theorem 3.2 in [14]), Ψ has a unique fixed point x, i.e. x = ψ(x). This implies
that x ∈ D([0, b],R) is the unique solution to (A.1) on [0, b].

It now remains to extend the existence and uniqueness result from [0, b] to [0, T ].
Denote xb(t) = x(b+ t), ζb(t) = ζ(b+ t)+ρ

∫ b+t

t
H((x(b+ t − s)−1)+) dGe(s)+

∫ b+t

t
(x(b + t − s) − 1)+ dG(s), then we have for t ∈ [0, T − b],

xb(t) = ζb(t) + ρ

∫ t

0
H

((
xb(t − s) − 1

)+)
dGe(s) +

∫ t

0

(
xb(t − s) − 1

)+
dG(s).

(A.2)
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It follows from the previous argument that there is unique solution xb(·) to the above
equation. Thus, we obtain a unique extension of the solution to (A.1) on the interval
[0,2b]. Repeating this approach for N time with N ≥ 	T/b
 gives a unique solution
on the interval [0, T ]. �

For the application of this paper, H(·) sometimes cannot be guaranteed to be Lip-
schitz continuous. Recall the definition of H(·) in (4.5), one can easily see that when
the patience time distribution F(·) has finite support, H(·) will not necessarily be
Lipschitz continuous. A simple example is that when F(x) = 1 − x, the distribution
function for a random variable uniformly distributed on the interval [0,1]. However,
the function H(·) given by (4.5) is non-increasing and is Lipschitz continuous on
any sub-interval within its support (cf. Proof of Theorem 3.1 for detailed discussion).
In the following, we prove the existence and uniqueness of the solution to (A.1) by
leveraging these properties of H(·).

Lemma A.2 Assume that G(·) is a distribution function with mean μ ∈ (0,∞) and
G(0) < 1, ρ = λ/μ with λ ∈ (0,∞), ζ(·) ∈ D([0, T ],R) that satisfies the following
condition:

ζ(t) = g0(t) + (
ζ(0) − 1

)+[
1 − G(t)

]
, (A.3)

where g0(·) is a non-increasing function, and H(·) is a function that satisfies the
following conditions:

H(x) ≥ 0 for all x ≥ 0, (A.4)

H(·) is non-increasing, (A.5)

H(·) is Lipschitz continuous on [0, SH − δ] for any δ > 0 if SH < ∞;
on [0,M] for any M > 0 if SH = ∞, (A.6)

where SH = inf{x ≥ 0 : H(x) = 0}. There exists a unique solution x∗(·) ∈
D([0, T ],R) to (A.1).

This proof applies part of the argument in Lemma A.1 and some transformation of
(A.1) based on the condition (A.3). To better structure the proof, we first show the
following auxiliary result.

Lemma A.3 Assume that G(·) is a distribution function with mean μ ∈ (0,∞) and
G(0) < 1, ρ = λ/μ with λ ∈ (0,∞), ζ(·) ∈ D([0, T ],R) satisfies (A.3) and H(·) is
continuous and satisfies (A.4). Suppose x(·) ∈ D([0, T ],R) is a function (if any) that
satisfies (A.1). Then the function

(
x(t) − 1

)+ − λ

∫ t

0
H

((
x(s) − 1

)+)
ds

is non-increasing.
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Proof To simplify the notation, let Q(t) = (x(t) − 1)+ and

D(t) = Q(t) − λ

∫ t

0
H

(
Q(s)

)
ds (A.7)

for all t ∈ [0, T ]. Since Ge(·) is the equilibrium distribution, we have

x(t) = ζ(t) + ρ

∫ t

0
H

(
Q(t − s)

)
μ

[
1 − G(s)

]
ds +

∫ t

0
Q(t − s) dG(s)

= ζ(t) + λ

∫ t

0
H

(
Q(s)

)
ds − λ

∫ t

0
H

(
Q(s)

)
G(t − s) ds +

∫ t

0
Q(t − s) dG(s).

Applying Fubini’s Theorem (cf. Theorem 8.4 in [20]) to the second to the last integral
in the above, we have

∫ t

0
H

(
Q(s)

)
G(t − s) ds =

∫ t

0

∫ t−s

0
H

(
Q(s)

)
dG(τ)ds

=
∫ t

0

∫ t−τ

0
H

(
Q(s)

)
ds dG(τ).

So we obtain

x(t) − λ

∫ t

0
H

(
Q(s)

)
ds = ζ(t) +

∫ t

0

[
Q(t − s) − λ

∫ t−s

0
H

(
Q(τ)

)
dτ

]
dG(s).

According to the above definition of D(·), we have

(
x(t) ∧ 1

) + D(t) = ζ(t) +
∫ t

0
D(t − s) dG(s). (A.8)

It now remains to use (A.8) to show that D(·) is non-increasing, i.e. for any t, t ′ ∈
[0, T ] with t ≤ t ′, we have D(t) ≥ D(t ′). Since G(0) < 1, there exists a > 0 such
that G(a) < 1. We first show that D(·) is non-increasing on the interval [0, a]. Let

D∗ = sup
{(t,t ′)∈[0,a]×[0,a]:t≤t ′}

D
(
t ′
) − D(t).

Since D(·) is càdlàg, according to Theorem 6.2.2 in the supplement of [29], it is
bounded on the interval [0, a]. Thus, D∗ is finite. We will prove by contradiction that
D∗ ≤ 0, which shows that D(·) is non-increasing on [0, a]. Assume on the contrary
that D∗ > 0. Applying (A.8), we have

D
(
t ′
) − D(t) = (

x(t) ∧ 1
) − (

x
(
t ′
) ∧ 1

) + ζ
(
t ′
) − ζ(t)

+
∫ t ′

0
D

(
t ′ − s

)
dG(s) −

∫ t

0
D(t − s) dG(s)
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= (
x(t) ∧ 1

) − (
x
(
t ′
) ∧ 1

) + ζ
(
t ′
) − ζ(t)

+
∫ t ′

t

D
(
t ′ − s

)
dG(s) +

∫ t

0

[
D

(
t ′ − s

) − D(t − s)
]
dG(s).

It follows from (A.1) and (A.7) that D(0) = (ζ(0)−1)+. This together with condition
(A.3) implies that

ζ
(
t ′
) − ζ(t) = g0

(
t ′
) − g0(t) + D(0)

[
G(t) − G

(
t ′
)]

. (A.9)

So

D
(
t ′
) − D(t) = (

x(t) ∧ 1
) − (

x
(
t ′
) ∧ 1

) + g0
(
t ′
) − g0(t)

+
∫ t ′

t

[
D

(
t ′ − s

) − D(0)
]
dG(s)

+
∫ t

0

[
D

(
t ′ − s

) − D(t − s)
]
dG(s). (A.10)

If x(t ′) < 1, by (A.7),

D
(
t ′
) − D(t) = −λ

∫ t ′

t

H
(
Q(s)

)
ds − Q(t),

which is always non-positive; if x(t ′) ≥ 1, then (x(t) ∧ 1) − (x(t ′) ∧ 1) ≤ 0. So it
follows from (A.10) and g0(·) being non-increasing that

D
(
t ′
) − D(t) ≤

∫ t ′

t

[
D

(
t ′ − s

) − D(0)
]
dG(s) +

∫ t

0

[
D

(
t ′ − s

) − D(t − s)
]
dG(s)

≤
∫ t ′

0
D∗ dG(s) = D∗G

(
t ′
) ≤ D∗G(a),

where the last inequality follows from the assumption that D∗ is non-negative. Sum-
marizing both cases of x(t ′), we have

D
(
t ′
) − D(t) ≤ max

(
0,D∗G(a)

)

for all t, t ′ ∈ [0, a] > 0 with t ≤ t ′. Taking the supremum on both sides over
the set {(t, t ′) ∈ [0, a] × [0, a] : t ≤ t ′} gives D∗ ≥ F(a)D∗. This implies that
[1 −G(a)]D∗ ≤ 0. Since G(a) < 1, it contradicts the assumption that D∗ > 0. So we
must have D∗ ≤ 0, this implies that D(·) is non-increasing on [0, a]. We next extend
this property to the interval [0, T ] using induction. Suppose we can show that D(·) is
non-decreasing on the interval [0, na] for some n ∈ N. Introduce Dna(t) = D(na+ t),
xna(t) = x(na + t) and

ζna(t) = ζ(na + t) +
∫ na

0
D(na − s) dG(t + s). (A.11)
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It is clear that the shifted functions satisfy

(
xna(t) ∧ 1

) + Dna(t) = ζna(t) +
∫ t

0
Dna(t − s) dG(s). (A.12)

To show that D(·) is non-increasing on [na, (n + 1)a] is the same as to show that
Dna(·) is non-increasing on [0, a]. For this purpose, it is enough to verify that ζna(·)
satisfy the condition (A.9). Performing integration by parts on (A.11) gives

ζna(t) = ζ(na + t) + (
ζ(0) − 1

)+[
1 − G(na + t)

] +
∫ na

0
D(na − s) dG(t + s)

= ζ(na + t) + (
ζ(0) − 1

)+[
1 − G(na + t)

]

+ D(0)G(na + t) − D(na)G(t) −
∫ na

0
G(t + s) dD(na − s).

It follows from (A.1) and (A.7) that D(0) = (ζ(0) − 1)+, so we can write ζna(·) as

ζna(t) = hna(t) + Dna(0)
[
1 − G(t)

]
,

where gna(t) = ζ(na + t) + (ζ(0) − 1)+ − Dna(0) − ∫ na

0 G(t + s) dD(na − s).
Since G(·) is non-decreasing and D(·) is non-increasing, the integral − ∫ na

0 G(t +
s) dD(na − s) is non-increasing as a function of t . So we can conclude that gna(·)
is non-increasing, i.e. ζna(·) satisfies condition (A.9). Thus, we extend the non-
increasing interval to [0, (n+ 1)a]. By induction, the function D(·) is non-increasing
on the interval [0, T ]. �

Proof of Lemma A.2 If H(0) = 0, then by conditions (A.4) and (A.5), H ≡ 0. In this
case, H(·) is Lipschitz, thus the result follows from Lemma A.1. For the rest of the
proof, assume that H(0) > 0, thus SH > 0. According to Lemma A.3, any function
x(·) that satisfies (A.1) must also satisfy

(
x
(
t ′
) − 1

)+ − (
x(t) − 1

)+ ≤ λ

∫ t ′

t

H
((

x(s) − 1
)+)

ds ≤ λH(0)
(
t ′ − t

)
(A.13)

for any t < t ′. So we can prove an upper abound for x(·) on the interval [0, T ],
sup

t∈[0,T ]
x(t) ≤ 1 + H(0)T .

If SH = ∞, set M = 1 + H(0)T . Recall the constant b as defined in the proof of
Lemma A.1. We can apply the same argument by restricting the map Ψ , also defined
in the proof of Lemma A.1, on D([0, b], (−∞,M]) instead of D([0, b],R). By con-
dition (A.6), H is Lipschitz continuous on [0,M]. The result is proved by using the
same application of contraction mapping theory as in Lemma A.1. Now we focus on
the case where SH < ∞. Fix a δ ∈ (0, SH /2), and consider the following two cases.

Case 1, ζ(0) < 1 +SH − 2δ. Let b′ = δ/(λH(0)). Since x(0) = ζ(0), according to
(A.13), we have an upper bound,

sup
t∈[0,b′]

x(t) ≤ 1 + SH − δ.
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By condition (A.6), H is Lipschitz continuous on [0, SH − δ]. Again, we can apply
the contraction mapping theorem as in Lemma A.1 with the following adjustment. Let
b1 = min[b, b′] and restrict the mapping Ψ on the space D([0, b1], [0,1+SH −δ]) in-
stead of D([0, b1],R). Thus, we have the existence and uniqueness of the solution on
a small interval [0, b1]. To extend the solution to [kb1, (k + 1)b1], k = 1,2, . . . till we
cover the interval [0, T ], we also apply the same approach as in proving Lemma A.1.
However, we have to stop at k whenever x(kb1) goes above 1 + SH − 2δ. We now
turn to the analysis of the second case.

Case 2, ζ(0) ≥ 1 + SH − 2δ (which is strictly larger than 1 according to the defi-
nition of δ). By right-continuity, we know that there exists b2 > 0 such that

x(t) ≥ 1 for all t ∈ [0, b2].
Same as in the proof of Lemma A.3, denote Q(t) = (x(t) − 1)+ and

D(t) = Q(t) − λ

∫ t

0
H

(
Q(s)

)
ds (A.14)

to simplify the notation. For t ∈ [0, b2], (A.8) obtained in the proof of Lemma A.3
becomes

D(t) = ζ(t) − 1 +
∫ t

0
D(t − s) dG(s).

According to Theorem 2.4 in Chap. V of [1], the above renewal equation has a unique
solution D(·). Since ζ(·) ∈ D([0, b2],R), D(·) ∈ D([0, b2],R). It now remains to
prove that (A.14) with a known D(·) has a unique solution. Now let −Q0(·) ≡ 0 and
define

−Qk+1(t) = D(t) − 2Qk(t) + λ

∫ t

0
H

(
Qk(s)

)
ds, k = 0,1,2, . . . ,

Specialize k = 0 in the above and plug in (A.14), we have

Q0(t) − Q1(t) = D(t) − 0 + λ

∫ t

0
H(0) ds

= Q(t) − λ

∫ t

0
H

(
Q(s)

)
ds + λ

∫ t

0
H(0) ds

≥ 0 + λ

∫ t

0

[
H(0) − H

(
Q(s)

)]
ds ≥ 0,

where the last inequality is due to that (A.5) and Q(t) ≥ 0. So we have −Q0(t) ≤
−Q1(t) for all t ≥ 0. Note that for all k ≥ 1,

−Qk+1(t) − (−Qk(t)
) = 2

[−Qk(t) − (−Qk−1(t)
)]

+ λ

∫ t

0

[
H

(
Qk(s)

) − H
(
Qk−1(s)

)]
ds.

Note that H(x) = H(−(−x)) and by condition (A.5), H(−·) is non-decreasing.
Thus, we can prove by induction that −Qk(t) ≤ −Qk+1(t) for all k = 0,1,2, . . . .
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We have to use the trick −Qk just because the function H is non-increasing. Define

−Q(t) = lim
k→∞−Qk(t), for all t ≥ 0.

It now remains to verify that Q(t) satisfies equation (A.14). This follows immediately
from the monotone convergence theorem (Theorem 4.3.2 in [6]):

∫ t

0
H

(
Qk(s)

)
ds →

∫ t

0
H

(
Q(s)

)
ds as k → ∞.

So we have resolved case 2. With the help of case 2, we can further extend the solution
to a point where the solution x(·) reaches 1. Starting from there, we can apply case 1
to extend the solution to an extra small interval with length b1. With the process
continuing, we can cover the interval [0, T ]. �

Appendix B: Glivenko–Cantelli estimates

An important preliminary result is the following estimate due to Glivenko–Cantelli.
It is used in Sect. 5. It is convenient to state it as a general result, since the Glivenko–
Cantelli estimate requires weaker conditions and gives stronger results than those in
this paper.

For each n, let {un
i }i∈Z be a sequence of i.i.d. random variables with probability

measure νn
F (·), let {un

i }i∈Z be a sequence of i.i.d. random variables with probability
measure νn

G(·). For any n ∈ N, m ∈ Z and l ∈ R+, define

L̄n
F (m, l) = 1

n

m+�nl�∑

i=m+1

δun
i
, (B.1)

L̄n
G(m, l) = 1

n

m+�nl�∑

i=m+1

δvn
i
, (B.2)

L̄n(m, l) = 1

n

m+�nl�∑

i=m+1

δ(un
i ,vn

i ), (B.3)

where δx denotes the Dirac measure of point x on R and δ(x,y) denotes the Dirac
measure of point (x, y) on R × R. So L̄n

F (m, l) and L̄n
G(m, l) are measures on R and

L̄n(m, l) is a measure on R × R.
Denote Cx = (x,∞), for all x ∈ R. We define two classes of testing functions by

V = {
1Cx (·) : x ∈ R

}
,

V2 = {
1Cx×Cy (·, ·) : x, y ∈ R

}
.

It is clear that V is a set of functions on R and V2 is a set of functions on R×R. Define
an envelop function for V as follows. Since νn

F → νF , by Skorohod representation
theorem, there exist random variables Xn (with law νn

F ) and X (with law νF ), such
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that Xn → X almost surely as r → ∞. Thus there exists a random variable X∗ such
that almost surely,

X∗ = sup
n

Xn.

Let ν∗
F be the law of X∗. Since L2(ν

∗
F ) (the space of square integrable functions with

respect to the measure ν∗
F ) contains continuous unbounded functions, there exists a

continuous unbounded function fνF
: R+ → R that is increasing, satisfies fνF

≥ 1
and 〈f 2

νF
, ν∗

F 〉 < ∞. This implies that

〈
f 2

νF
, νF

〉 = E
[
f 2

νF
(X)

] ≤ E
[
f 2

νF

(
X∗)] = 〈

f 2
νF

, ν∗
F

〉
< ∞. (B.4)

Similarly, based on the weak convergence νn
G → νG, we can construct a function

fνG
that is increasing, satisfies fνG

≥ 1 and 〈f 2
νG

, νG〉 < ∞. Now, define function
f̄ : R+ → R by

f̄ (x) = min
(
fνF

(x), fνG
(x)

)
(B.5)

and function f̄2 : R+ × R+ → R by

f̄2(x, y) = min
(
fνF

(x), fνG
(y)

)
(B.6)

for all x, y ∈ R+. Note that we have to following properties:

f̄ is increasing and unbounded, (B.7)

f ≤ f̄ for all f ∈ V , (B.8)

f ≤ f̄2 for all f ∈ V2. (B.9)

So we call f̄ and f̄2 the envelop function for V and V2, respectively. Finally, let
V̄ = {f̄ } ∪ V and V̄2 = {f̄2} ∪ V2.

Lemma B.1 Assume that

νn
F → νF , νn

G → νG as n → ∞.

Fix constants M,L > 0. For all ε, η > 0,

lim sup
n→∞

P
n
(

max−nM<m<nM
sup

l∈[0,L]
sup
f ∈V̄

∣∣〈f, L̄n
F (m, l)

〉 − l
〈
f, νn

F

〉∣∣ > ε
)

< η,

lim sup
n→∞

P
n
(

max−nM<m<nM
sup

l∈[0,L]
sup
f ∈V̄

∣∣〈f, L̄n
G(m, l)

〉 − l
〈
f, νn

G

〉∣∣ > ε
)

< η,

lim sup
n→∞

P
n
(

max−nM<m<nM
sup

l∈[0,L]
sup

f ∈V̄2

∣∣〈f, L̄n(m, l)
〉 − l

〈
f,

(
νn
F , νn

G

)〉∣∣ > ε
)

< η.

These kinds of result have been widely used in the study of measure valued pro-
cesses, see [10, 12, 33]. The proof of the first two inequalities in the above lemma fol-
lows exactly the same way as the one for Lemma B.1 in [33], and the proof of the third
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inequality in the above lemma follows exactly the same as the one for Lemma 5.1 in
[12]. We omit the proof for brevity. By the same reasoning as for Lemma 5.2, there
exists a function εGC(·), which vanishes at infinity such that the ε and η in the above
lemma can be replaced by the function εGC(n) for each index n. Based on this, we
construct the following event:

Ωn
GC(M,L)

=
{

max−nM<m<nM
sup

l∈[0,L]
sup
f ∈V̄

∣∣〈f, L̄n
F (m, l)

〉 − l
〈
f, νn

F

〉∣∣ ≤ εGC(n)
}

∩
{

max−nM<m<nM
sup

l∈[0,L]
sup
f ∈V̄

∣∣〈f, L̄n
G(m, l)

〉 − l
〈
f, νn

G

〉∣∣ ≤ εGC(n)
}

∩
{

max−nM<m<nM
sup

l∈[0,L]
sup

f ∈V̄2

∣
∣〈f, L̄n(m, l)

〉 − l
〈
f,

(
νn
F , νn

G

)〉∣∣ ≤ εGC(n)
}
. (B.10)

It is clear that for any fixed M,L > 0,

lim
n→∞ P

n
(
Ωn

GC(M,L)
) = 1. (B.11)

Intuitively, on the event Ωn
GC(M,L) (whose probability goes to 1 as n → ∞ for

any fixed constants M,L), the measures L̄n
F (m, l), L̄n

G(m, l) and L̄n(m, l) are very
“close” to lνn

F , lνn
G and l(νn

F , νn
G), respectively.

Appendix C: An extension of Skorohod representation theorem

In this section we present a slight extension, Lemma C.1 below, of the Skorohod
Representation Theorem (cf. Theorem 3.2.2 in [29]). The proof of Lemma C.1 is
built on the proof of Theorem 3.2.2 provided in the supplement of [29], with slight
extension to deal with the product of two metric spaces.

Let (E1,π1) and (E2,π2) be two complete and separable metric spaces. Let
(E1 × E2,π) denote the product space of them, with the product metric π obtained
by the maximum metric.

Lemma C.1 Consider a sequence of random variables {(Xn,Yn), n ≥ 1} in the prod-
uct space E1 × E2. If Xn ⇒ X, then there exist other random elements of E1 × E2,
{(X̃n, Ỹn), n ≥ 1}, and X̃, defined on a common underlying probability space, such
that

(X̃n, Ỹn)
d= (Xn,Yn), n ≥ 1, X̃

d= X

and almost surely,

X̃n → X̃ as n → ∞.

Proof In order to present the proof, we first need some preliminaries. A nested family
of countably partitions of a set A is a collection of subsets Ai1,...,ik indexed by k-
tuples of positive integers such that {Ai : i ≥ 1} is a partition of A and {Ai1,...,ik+1 :
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ik+1 ≥ 1} is a partition of Ai1,...,ik for all k ≥ 1 and (i1, . . . , ik) ∈ N
k+. Let P1 denote

the probability measure on the space where X lives on. Since the space (E1,π1) is
separable, according to Lemma 1.9 in the supplement of [29], there exists a nested
family of countably partitions {E1

i1,...,ik
} of (E1,π1) that satisfies

rad
(
E1

i1,...,ik

)
< 2−k, (C.1)

P1
(
∂E1

i1,...,ik

) = 0, (C.2)

where rad(A) denotes the radius of the set A in a metric space, and ∂(A) denote the
boundary of the set A. Since the space (E2,π2) is separable, by the same lemma,
there exists a nested sequence of countably partitions {E2

i′1,...,i′k′
} of (E2,π2) that sat-

isfies

rad
(
E2

i′1,...,i′k′
)
< 2−k′

. (C.3)

Note that for space (E2,π2), we only need a weaker version of Lemma 1.9 in the
supplement of [29].

The first step is to use this nested sequence of countably partitions to construct
random variables {(X̃n, Ỹn), n ≥ 1} with the same distribution for each n. For n ≥ 1,
we first construct sub-intervals In

i1,...,ik
⊆ [0,1) corresponding to the marginal proba-

bility of Xn. Let In
1 = [0,P

n(E1
1 × E2)) and

In
i =

[
i−1∑

j=1

P
n
(
E1

j × E2
)
,

i∑

j=1

P
n
(
E1

j × E2
)
)

, i > 1,

where P
n is the probability measure on the space where (Xn,Yn) lives. Let

{In
i1,...,ik+1

: ik+1 ≥ 1} be a countable partition of sub-intervals of In
i1,...,ik

. If In
i1,...,ik

=
[an, bn), then

In
i1,...,ik+1

=
[

an +
ik+1−1∑

j=1

P
n
(
E1

i1,...,ik,j
× E2

)
, an +

ik+1∑

j=1

P
n
(
E1

i1,...,ik,j
× E2

)
)

.

The length of each sub-interval In
i1,...,ik

is the probability P
n(E1

i1,...,ik
× E2). We then

construct further sub-intervals In
i1,...,ik;i′1,...,i′k′

⊆ In
i1,...,ik

corresponding to (Xn,Yn). If

In
i1,...,ik

= [an, bn), then let In
i1,...,ik;1 = [an, an + P

n(E1
i1,...,ik

× E2
1)) and

In
i1,...,ik;i′ =

[

an +
i′−1∑

j ′=1

P
n
(
E1

i1,...,ik
× E2

j ′
)
, an +

i′∑

j ′=1

P
n
(
E1

i1,...,ik
× E2

j ′
)
)

, i′ > 1.

Let {In
i1,...,ik;i′1,...,i′k′+1

: i′
k′+1 ≥ 1} be countable partition of In

i1,...,ik;i′1,...,i′k′
. If

In
i1,...,ik;i′1,...,i′k′

= [an, bn), then
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In
i1,...,ik;i′1,...,i′k′+1

=
[

an +
i′
k′+1

−1
∑

j ′=1

P
n
(
E1

i1,...,ik
× E2

i′1,...,i′k,j ′
)
, an +

i′
k′+1∑

j ′=1

P
n
(
E1

i1,...,ik
× E2

i′1,...,i′k,j ′
)
)

.

The length of each sub-interval In
i1,...,ik;i′1,...,i′k′

is the probability P
n(E1

i1,...,ik
×

E2
i′1,...,i′k′

). Now from each non-empty subset E1
i1,...,ik

× E2
i′1,...,i′k

we choose one point

(xi1,...,ik , yi′1,...,i′k ). For each n ≥ 1 and k ≥ 1, we define functions (xk
n, yk

n) : [0,1) →
E1 × E2 by letting xk

n(w) = xi1,...,ik and yk
n(w) = yi′1,...,i′k for ω ∈ In

i1,...,ik;i′1,...,i′k . By

the nested partition property and inequalities C.1 and C.3,

π
((

xk
n(ω), xk

n(ω)
)
,
(
x

k+j
n (ω), x

k+j
n (ω)

))
< 2−k for all j, k, n

and ω ∈ [0,1). Since (E1 × E2,π) is a complete metric space, the above implies that
there is (xn(ω), yn(ω)) ∈ E1 × E2 such that

π
((

xk
n(ω), xk

n(ω)
)
,
(
xn(ω), xn(ω)

)) → 0 as k → ∞.

We let (X̃n, Ỹn) = (xn, yn) on [0,1) for n ≥ 0.
The next step is to construct X̃ and show that X̃n → X̃ almost surely. For each

n ≥ 1, let P
n
1 denote the marginal probability of Xn. It is clear that In

i1,...,ik
is the

probability P
n
1(E1

i1,...,ik
). By (C.2), we have P

n
1(E1

i1,...,ik
) → P1(E

1
i1,...,ik

), as n → ∞.
Consequently, the length of the interval In

i1,...,ik
converges to the length of the interval

Ii1,...,ik , which is defined in a similar way as for In
i1,...,ik

by letting

Ii1,...,ik+1 =
[

an +
ik+1−1∑

j=1

P1(Ei1,...,ik,j ), an +
ik+1∑

j=1

P1(Ei1,...,ik,j )

)

,

if Ii1,...,ik = [an, bn). Now from each non-empty subset Ei1,...,ik we choose one point
xi1,...,ik . For each k ≥ 1, we define functions xk : [0,1) → E1 by letting xk(ω) =
xi1,...,ik for ω ∈ In

i1,...,ik
. By the nested partition property and inequalities C.1,

π1
(
xk(ω), xk+j (ω)

)
< 2−k for all j, k

and ω ∈ [0,1). Since (E1,π1) is a complete metric space, the above implies that there
is x(ω) ∈ E1 such that

π1
(
xk(ω), x(ω)

) → 0 as k → ∞.

We let X̃ = x on [0,1). Since

π1
(
X̃n(ω), X̃(ω)

) ≤ π1
(
X̃n(ω), X̃k

n(ω)
) + π1

(
X̃k

n(ω), X̃k(ω)
) + π1

(
X̃k(ω), X̃(ω)

)

≤ 3 × 2−k,
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for all ω in the interior of Ii1,...,ik ,

lim
n→∞π1

(
X̃n(ω), X̃(ω)

) ≤ 3 × 2−k.

Since k is arbitrary, we must have X̃n(ω) → X̃(ω) as n → ∞ for all but at most
countably many ω ∈ [0,1).

It remains to show that (X̃n, Ỹn) has the probability laws P
n. Let P̃ denote the

Lebesgue measure on [0,1). It suffices to show that P̃((X̃n, Ỹn) ∈ A) = P
n(A) for

each A such that P
n(∂A) = 0. Let A be such a set. Let Ak be the union of the sets

E1
i1,...,ik

× E2
i′1,...,i′k

such that E1
i1,...,ik

× E2
i′1,...,i′k

⊆ A and let A′k be the union of the

sets E1
i1,...,ik

× E2
i′1,...,i′k

such that E1
i1,...,ik

× E2
i′1,...,i′k

∩ A �= ∅. Then Ak ⊆ A ⊆ A′k

and, by the construction above,

P̃
(
(X̃n, Ỹn) ∈ Ak

) = P
n
(
Ak

)
and P̃

(
(X̃n, Ỹn) ∈ A′k) = P

n
(
A′k).

Now let Ck = {s ∈ E1 ×E2 : π(s, ∂A) ≤ 2−k}. Then A′k −Ak ↓ ∂A as k → ∞. Since
P

n(∂A) = 0 by assumption, P
n(Ck) ↓ 0 as k → ∞. Hence

P̃
(
(X̃n, Ỹn) ∈ A

) = lim
k→∞ P̃

(
(X̃n, Ỹn) ∈ Ak

) = lim
k→∞ P

n
(
Ak

) = P
n(A).

In the same way, we can show that X̃ has probability law P1. �
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