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Abstract

The paper studies approximations and control of a processor sharing (PS) server where
the service rate depends on the number of jobs occupying the server. The control of such a
system is implemented by imposing a limit on the number of jobs that can share the server
concurrently, with the rest of the jobs waiting in a first-in-first-out (FIFO) buffer. A desirable
control scheme should strike the right balance between efficiency (operating at a high service
rate) and parallelism (preventing small jobs from getting stuck behind large ones).

We employ the framework of heavy-traffic diffusion analysis to devise control heuristics for
such a queueing system. While typical studies of diffusion control of state-dependent queueing
systems begin with a given asymptotic scaling and an exogenously defined drift function, our
main contribution is a method to engineer a drift function starting from the discrete (pre-limit)
state-dependent PS server with the aim of obtaining a control policy for the latter. We establish
steady-state distribution of the resulting diffusion, and use it to obtain insightful and closed-form
approximations for the original system under a static concurrency control policy.

Finally, we extend our study to control policies that dynamically adjust the concurrency
level and provide a novel numerical algorithm tailored to solve the associated diffusion control
problem. Numerical experiments demonstrate the accuracy of our approximation for choosing
optimal or near-optimal static and dynamic concurrency control heuristics.

1 Introduction

Consider an emergency room where doctors, nurses, and diagnostic equipment make up a shared
resource for admitted patients. It has been empirically observed that the service rate of such
service systems is state-dependent (e.g., [5]). Human operators tend to speed up service when
there is congestion. As another example, consider a typical web server or an online transaction
processing system. In such resource sharing systems, as the number of tasks (also called active
threads) concurrently sharing the server increases, the server throughput initially increases due to
more efficient utilization of resources. However, as the server switches from one task to another, it
needs to make room for the new task’s data in its cache memory by evicting an older task’s data
(only to fetch it again later). Without a limit on the number of concurrent tasks, this contention for
the limited memory can lead to a phenomenon called thrashing which causes the system throughput
to drop drastically (e.g., [2, 6, 11, 12, 23, 40]).
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The resource sharing system examples we have described above fall into the category of the so-called
State-dependent Limited Processor Sharing (Sd-LPS) systems. To specify an Sd-LPS system, we
begin with a processor sharing (PS) server whose service rate varies as a function of the number of
jobs at the server. For example,

µ(1) = 1, µ(2) = 1.5, µ(3) = 1.25, µ(4) = 1, µ(5) = 0.75, . . . (1)

When there are n jobs at the PS server, each job gets served at a rate of µ(n)
n jobs/second. To

ensure efficient operation, we impose a limit on the maximum number of jobs that can be served
in parallel. We call this the concurrency limit, K. Arriving jobs that find the server busy with
K jobs wait in a first-come-first-served (FCFS) buffer. A static concurrency control policy is one
where the concurrency limit is independent of the state. If the concurrency level can vary with the
system state (e.g., the queue length of the FCFS buffer), we call it a dynamic concurrency control
policy.

To understand the tradeoff involved in choosing the optimal concurrency level, suppose there are
3 jobs in the system described above. Even though the server is capable of serving at an aggregate
rate of 1.5 jobs/second by limiting the concurrency level to 2, we may choose to increase the
concurrency level to 3 and operate below peak capacity. Why might we want to do that? It is
well known that if the job size distribution has high variability, then pure PS outperforms FCFS
scheduling by allowing small jobs to overtake large ones. Therefore, it may be beneficial to increase
the concurrency level beyond the peak efficiency even if some capacity will be lost. Similarly, for
job size distributions with low variability, it may be beneficial to operate at K = 1. Thus Sd-LPS
systems are not “work-conserving” queueing systems.

Contributions

Naturally, our goal is to choose the ‘best’ concurrency control policy. In this work we aim to
develop a diffusion approximation framework for Sd-LPS queues, and to utilize the proposed diffu-
sion approximation to find concurrency control policies that minimize the mean sojourn time. This
immediately leads to the question: Given that we want to control the state-dependent PS server
(exemplified by (1)), what is a ‘meaningful’ asymptotic scaling to arrive at a diffusion approxima-
tion?

While there are some works on heavy-traffic asymptotics for queues with state-dependent rates,
they either (i) assume a sequence of systems with exogenously given limiting drift functions to be
given whereas we begin with a discrete PS server of the kind shown in (1) and engineer the limiting
drift function, or (ii) are limited to models where the server can only serve one job at a time
whereas multiple jobs are processed in parallel by the PS server; or (iii) only analyze a Jackson
network type of system and do not solve a diffusion control problem. The present paper fills these
gaps in the literature.

Our main contributions are as follows:

1. We propose a method to “reverse-engineer” a sequence of Sd-LPS queueing systems starting
with a discrete state-dependent PS server that yields a limiting state-dependent drift function.
The crucial part is that the effect of the entire service rate curve shows up in the limiting
diffusion process. All prior literaure on diffusion analysis of state-dependent queues assumes
that the drift function is given exogeneously.

2. We propose an approximation for the distribution of the number of jobs in the Sd-LPS
system for a static concurrency limit under a GI arrival process and GI job sizes. This
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approximation is used to choose a near-optimal static concurrency limit to minimize any cost
that is a function of the number of jobs in the system.

3. We extend our framework by proposing a more general scaling for developing dynamic (state-
dependent) control policies and present a numerical algorithm tailored to solving the resulting
diffusion control problem. Our simulation experiments show that the dynamic policies based
on diffusion control perform remarkably close to the true optimal dynamic policies (for input
distributions where the true optimal policy can be computed numerically).

Related work on control of LPS systems

The literature on LPS-type systems has mostly focused on the constant rate LPS queue where the
server speed is independent of the state. Yamazaki and Sakasegawa [42] show qualitatively the
effect of increasing the concurrency level on the mean sojourn time for NWU (New-Worse-than-
Used) and Erlang job size distributions. Avi-Itzhak and Halfin [4] derive an approximation for the
mean sojourn time for the constant rate LPS queue with M/GI/ input process, while Zhang and
Zwart [45] derive one for GI/GI/ input. Nair et al. [34] expose the power of LPS scheduling by
analyzing the tail of sojourn time under light-tailed and heavy-tailed job size distributions. They
prove that with an appropriate choice of the concurrency level as a function of the load, LPS queues
can achieve robustness to the distribution of job sizes (their tail to be precise).

For Sd-LPS queues, Rege and Sengupta [38] derive expressions for the moments and distribution
of the sojourn time under M/M/ input. Gupta and Harchol-Balter [18] propose an approximation
for the mean sojourn time for GI/GI/ input by approximating the interarrival times and job size
distribution by the tractable degenerate hyperexponential distribution. They also propose heuristic
dynamic admission control policies under M/GI/ input.

In this paper, we propose the first diffusion approximation for Sd-LPS queues with a GI/GI input
and a static concurrency level. In addition, we propose the first heuristic dynamic admission control
policies for Sd-LPS queues.

Related work on control of queueing systems

There is a considerable literature on the control of the arrival and service rates of queueing systems,
but the majority of this work focuses on control of M/M/1 or M/M/s systems via Markov decision
process formulation, e.g., [1, 3, 16, 31]. Ward and Kumar [39] look at the diffusion control formula-
tion for admission control in a GI/GI/1 with impatient customers. Our model differs significantly
from those in the literature: in our model, the space of actions is the number of jobs admitted
to the PS server and is therefore state-dependent.The state-dependence of the action space means
that the value function may not even be monotonic in the state. We establish this result for our
problem and present a simple criterion under which monotonicity holds for general control problems
with state-dependent action spaces (see proof of Proposition 3). In addition, the rather arbitrary
nature of the service rate curve precludes elegant structural results for the optimal value function
which leads us to propose novel and efficient numerical algorithms for solving the resulting diffusion
control problem.

Related work on heavy-traffic analysis of systems with state-dependent rates

Our heavy-traffic scaling is most closely related to the recent work of Lee and Puhalskii [29],
who analyze a queueing network of FCFS queues in the critically loaded regime and under non-
Markovian arrival and service processes. Yamada [41] also analyzes Markovian state-dependent
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queueing networks under a similar scaling of state-dependent service and arrival rates. Whereas
[29, 41] assume an exogenously given limiting drift function, we propose a method to calculate it
from the finite queueing system which is the object of the control problem. Further, the scheduling
policy we consider is Processor Sharing. Other works on analysis of heavy-traffic asymptotics of
state-dependent Markovian queues include Krichagina [26], Mandelbaum and Pats [32], Janssen et
al. [24].

Outline

In Section 2 we present details of the Sd-LPS model, introduce the notation used in the paper,
and describe our approach towards arriving at the asymptotic regime for diffusion analysis. In
Section 3, we present our results on diffusion approximation for the Sd-LPS queue under a static
concurrency control policy. We defer the proofs of convergence to the appendix. In Section 4 we
turn to dynamic concurrency control policies for the Sd-LPS queue by setting up a diffusion control
problem, and present a novel numerical algorithm to solve the diffusion control problem. We make
our concluding remarks in Section 5.

2 Model and Diffusion Scaling

2.1 Stochastic model and Notation

We begin with a description of the Sd-LPS system for which we want to find the optimal control.
Let X(t) denote the total number of jobs in the system at time t. The control of such a system is
implemented by imposing a concurrency limit K. Only Z(t) = X(t) ∧ K jobs are in service and
server capacity of µ(Z(t)) is shared equally among the jobs. The remaining Q(t) = (X(t) −K)+

jobs wait in a FCFS queue. A job, once in service, stays in service until completion. The rate of
the server µ(Z(t)) is understood to be the speed at which it drains the workload. So the cumulative
service amount a job in service can receive from time s to t is

S(s, t) =

∫ t

s
ψ(Z(τ))dτ, (2)

where

ψ(z) =

{
µ(z)
z , if z ≥ 0,

0, if z = 0.
(3)

Without loss of generality, we assume that there is no intrinsic limit on the number of jobs the
server can serve as we can set the service rate to 0 to model such a limit. Note that for the
regular state-independent system whose service rate µ(·) is a constant, say 1, µ(z)

z in the above
will simply become 1/z. The state-dependent service rate makes the system non-work-conserving,
which brings a fundamental challenge to their study. For a single server system with constant
service rate, any non-idling policy is work-conserving, meaning that workload will be drained at
constant speed as long as there is any workload in the system. Since workload arrives according to
a renewal process, work-conserving systems can be approximated by reflected Brownian motions
with a constant drift in heavy traffic regimes, e.g, [10]. Existing studies of PS, e.g., [17] and LPS,
e.g., [44] systems crucially rely on the fact that the system is work-conserving, which implies that
the workload process is equivalent to that of a simple G/G/1 queue. However, this is not the case
for our Sd-LPS model.

The number of job arrivals in time [0, t] is denoted by Λ(t). We assume that Λ(·) is a renewal process
with rate λ, and c2

a denotes the squared coefficient of variation (SCV) for the i.i.d. inter-arrival
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times. The system is allowed to be non-empty initially. We index jobs by i = −X(0) + 1,−X(0) +
2, . . . , 0, 1, . . .. The first X(0) jobs are initially in the system, with jobs i = −X(0) + 1, . . . ,−Q(0)
in service and jobs i = −Q(0) + 1, . . . , 0 waiting in the queue. Arriving jobs are indexed by
i = 1, 2, . . .. The size of the ith job is denoted by vi. We assume job sizes are i.i.d. random
variables with mean size m (in the chosen unit of measuring work) and SCV c2

s. Jobs leave the
system once the cumulative amount of service they have received from the server exceeds their job
sizes.

In this study, we are interested in how the system performance (e.g., expected number of jobs in
steady state) depends on the state-dependent service rate function µ(·), the parameters (λ, c2

a,m, c
2
s)

of the stochastic primitives, and the concurrency level K, which is a decision variable we can control
and optimize.

Measure-valued state descriptor

Analyzing the stochastic processes underlying the Sd-LPS model with generally distributed service
times requires tracking of more information about the system state than just the number of jobs.
Following the framework in [43, 44], we introduce a measure-valued state descriptor to describe the
full state of the system. At any time t and for any Borel set A ⊂ (0,∞), let Q(t)(A) denote the
total number of jobs in the buffer whose job size belongs to A and Z(t)(A) denote the total number
of jobs in service whose residual job size belongs to set A. Thus, Q(·) and Z(·) are measure-valued
stochastic processes. Let δa denote the Dirac measure of point a on R and A+ y

.
= {a+ y : a ∈ A}.

By introducing the measure-valued processes, we can characterize the evolution of the system via
the following stochastic dynamic equations:

Q(t)(A) =

Λ(t)∑
i=B(t)+1

δvi(A), (4)

Z(t)(A) = Z(0)(A+ S(0, t)) +

B(t)∑
i=B(0)+1

δvi(A+ S(τi, t)), (5)

where τi is the time when the ith job starts to receive service and

B(t) = Λ(t)−Q(t), (6)

which can be intuitively interpreted as the index of the last job to enter service by time t. The
number of jobs in the FCFS queue, Q(t), and in service, Z(t), can be represented using the measure-
valued descriptors as follows:

Q(t) = 〈1,Q(t)〉, Z(t) = 〈1,Z(t)〉.
where 〈f, ν〉 denotes the integral of a Borel measurable function f : R+ → R with respect to a
measure ν. Let W (t) denote the workload of the system at time t which is defined as the sum
of the sizes of all jobs in queue and the remaining sizes of all jobs in service. Due to the varying
service rate of the server, the dynamics of the workload process is represented by

W (t) = W (0) +

Λ(t)∑
i=1

vi −
∫ t

0
µ(Z(s))1{W (s)>0}ds. (7)

Again, we can express the workload W (t) in terms of the measure-valued descriptors:

W (t) = 〈χ,Q(t) + Z(t)〉, (8)

where χ denotes the identity function on R.
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2.2 Proposed Asymptotic Regime for Diffusion Approximation of Sd-LPS sys-
tems

We refer to the system introduced in Section 2.1 as our original system. We now propose an
asymptotic regime where a sequence of Sd-LPS systems, parametrized by r ∈ Z+, will be studied
under an appropriate scaling. The objective is to a obtain a meaningful approximation of the
original system with the goal of choosing the ‘best’ concurrency control policy. This leads to the
question:

What is the appropriate scaling to analyze the Sd-LPS queue? That is, what asymptotic
regime captures the entire service-rate curve of the original Sd-LPS system, and thus
can be used to find a near-optimal concurrency limit?

As we mentioned earlier, the scaling we develop is very close to the scaling proposed by Yamada
[41] and Lee et al. [29]. To motivate why this is the appropriate scaling for Sd-LPS systems we
begin by examining two special cases of Sd-LPS systems and the motivation behind asymptotic
scaling used to study them: (i) multiserver systems, and (ii) the constant rate LPS queue.

The G/GI/k multiserver system AG/GI/k multiserver system with a service rate of µ jobs/second
per server and a central buffer can be viewed as an Sd-LPS system with µ(n) = nµ and a
concurrency limit of K = k. One of the most common modern asymptotic regimes in which
G/GI/k systems are studied is the Halfin-Whitt regime (also called square-root staffing rule,
or the quality-and-efficiency-driven regime) starting with [20] and more recently [37], [14].
Here one fixes µ and creates a sequence of multiserver systems parametrized by r, where the
number of servers grows according to k(r) = rk while the mean arrival rate λ(r) increases so

that k(r)µ−λ(r)√
k(r)

→ β. The key insight that motivates the Halfin-Whitt regime is that in the

limiting system the probability that an arrival gets blocked converges to a non-degenerate
limit (bounded away from 0 and 1). In that sense, the behavior one desires from a well-
designed system that there is not too much or too little blocking survives the asymptotic
scaling.

State-independent (constant rate) LPS queue In the state-independent LPS queue, the ser-
vice rate of the server is a constant µ irrespective of the number of jobs at the server, and
there is a fixed concurrency limit k. Recently, Zhang et al. [44] have proposed and analyzed a
diffusion approximation for the LPS system where a sequence of LPS systems (parametrized
by r) is devised so that the service rate remains fixed at µ, the concurrency limit increases
according to k(r) = rk and the arrival rate increases so that k(r)(µ−λ(r))→ θ, a constant. As
in the Halfin-Whitt regime for the multiserver systems, under the proposed scaling for LPS
systems the probability that an arrival finds all slots at the PS server occupied converges to a
limit bounded away from 0 and 1. In addition, the queue length scaled by 1

k(r)
also converges

to a non-degenerate distribution, unlike Halfin-Whitt where the queue lengths are smaller
and must be scaled by 1√

k(r)
.

It is not obvious how either of these scalings can be extended to the Sd-LPS system, but we borrow
the philosophy that under a good scaling, the limiting system should in some sense be a faithful
proxy for the original system. As an example of a regime that is not quite faithful enough, consider
the following: We scale the concurrency limit as k(r) = rk, leave the mean arrival rate λ unchanged,
and ‘stretch’ the service rate curve so that for the rth Sd-LPS system, µ(r)(rx) = µ̂(x) where µ̂(·)
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is a continuous interpolation of µ(·). The limiting system here would correspond to a fluid limit
where the steady state ‘gets stuck’ around x∗, where µ̂(x∗) = λ, and the rest of the service rate
curve plays almost no part. This fluid regime cannot be used to devise a control policy for the
original Sd-LPS system.

Instead, we propose an approach where we fix a desired limiting behavior of the sequence of Sd-
LPS systems, and then reverse engineer the service rate curves which guarantee this behavior in
the asymptotic limit. A suitable choice of the desired limiting behavior ensures that the effect of
the entire service rate curve is preserved during the asymptotic analysis.

Desiderata for the Sd-LPS asymptotic scaling: We construct a sequence of Sd-LPS systems
parametrized by r ∈ Z+ such that the rth system has a concurrency level of

k(r) = rK. (9)

Further, the sequence of service rate curves µ(r)(·) is constructed so that under a Poisson arrival
process with rate λ and i.i.d. Exponentially distributed job sizes with mean size m (i.e., under
M/M/ input), the distribution of the scaled number of jobs in the system (scaled by 1

k(r)
) converges

to that of the original Sd-LPS system under the same M/M/ input and concurrency level K.

Engineering µ(r) to satisfy the desiderata: Since we start by fixing the concurrency levels for
the sequence of Sd-LPS systems, the only design flexibility we have to satisfy the scaling axioms
is the choice of state-dependent service rate curves. Let us denote the steady-state distribution of
the number of jobs in the rth Sd-LPS system under M/M/ input and service rate curve µ(r) by
F (r). Our goal is to find the sequence µ(r)(·) so that

lim
r→∞

F (r)(drxe) = F̂ (x) ∀x ∈ [0,∞) (10)

for some distribution function F̂ (·). This gives us our first way of deriving the scaling: Fix F̂ (·)
to be a continuous, differentiable, strictly increasing interpolation of the steady-state distribution
of the number of jobs for the original system under M/M/ input and reverse-engineer the sequence
of service rate functions µ(r)(i). The requisite service rate functions satisfy

lim
r→∞

r
(
λm− µ(r)(drxe

)
= λm

d log f(x)

dx
∀x ∈ [0,∞). (11)

where f(x) = d
dx F̂ (x). To see why, consider the rth Sd-LPS system operating under M/M/ input.

Let π(r)(i) be the probability mass function for the steady-state number of jobs in the rth system.
Flow-balance equations imply

π(r)(drx+ 1e)
π(r)(drxe)

=
λm

µ(r)(drxe)
.

Since, by design, we want rπ(r)(drxe) to converge to the density function f(x), we should have:

λm

µ(r)(drxe)
≈
f
(
x+ 1

r

)
f(x)

≈ 1 +
1

r

f ′(x)

f(x)
.

Equivalently, r(λm− µ(r)(drxe)→ λmd log f(x)
dx .

Of course, by reverse-engineering the scaling, we guarantee ourselves a non-degenerate limit that is
interesting in that it captures the effect of the entire µ(·) function. Further, it turns out we never
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really need to compute the service rate functions µ(r)(·)! In Section 3, we will show that we can
directly express the limiting steady-state quantities in terms of the distribution F̂ (·), which can be
easily obtained from that of the original system.

Since the method described above requires the distribution F (·) (and its smooth interpolation
F̂ (·)) for the original Sd-LPS system under a given static concurrency limit of K, it can only used
to approximate the performance for static concurrency limits, and not to design dynamic control
policies. To address this, we propose a second way of deriving the scaling, that still guarantees
(10):

Begin with µ̂(·) : R+
0 → R+

0 satisfying:

1. µ̂(·) agrees with µ(·) at integer arguments: µ̂(i) = µ(i) for i = {1, 2, . . .},

2. µ̂(·) is continuous and differentiable.

The sequence of service rate functions {µ(r)(·)} is chosen to satisfy

lim
r→∞

r
(
λm− µ(r)(drxe)

)
= λm log

λm

µ̂(x)
∀x ∈ [0,∞). (12)

To motivate the second proposal, note that if λm
µ(r)(r·x)

≈ 1− θ(x)
λmr ≈ e

− θ(x)
λmr , then

π(r)(ry)

π(r)(rx)
≈ e−

1
λm

∫ y
x θ(u)du → π(y)

π(x)
=

y∏
i=x+1

λm

µ(i)
.

Or,

− 1

λm

∫ y

x
θ(u)du ≈ log

π(r)(ry)

π(r)(rx)
≈ log

π(y)

π(x)
=

y∑
i=x+1

log
λm

µ(i)
.

Comparing the first and last expressions above gives us an approximation for θ(u) in terms of a
continuous extension µ̂ of µ: r(λm− µ(r)(drxe)→ −λm log λm

µ̂(x) .

For either way of arriving at the diffusion scaling, we see that r(λ−µ(r)(drx)e) converges to a non-
degenerate drift function −θ(x). In the first case the θ(x) function is reverse-engineered by fixing
a limiting distribution and is more appropriate for approximating performance of static control
policies. In the second case it is obtained more directly using a continuous extension of µ(i), and is
more appropriate for computing dynamic control policies. In both cases there is limited flexibility
in extending a discrete function to a continuous smooth function.

Comparison with existing diffusion scalings It is a useful exercise to compare how our pro-
posed scaling compares with the conventional asymptotic scalings for the two examples of Sd-LPS
systems we pointed at the beginning of this section: the G/GI/k queue, and the constant rate LPS
queue.

The Halfin-Whitt scaling for a G/GI/k queue posits constructing a sequence of systems each
of which is also a homogeneous multiserver system such that under M/M/ input the blocking
probability of the sequence converges to a non-degenerate limit (for example, to the blocking
probability of the finite system being approximated). If we use our proposed scaling to approximate
a multiserver system, the sequence of Sd-LPS systems would not be a homogeneous multiserver
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system. Indeed, r(λm− µ(r)(rx)) grows as log(x) for small x instead of linearly in x as in Halfin-
Whitt. Which is better? Our answer is that it depends on the purpose of the asymptotic analysis.
If the goal is to find a staffing level for a reasonably large system (e.g., where it would take at least
tens of servers to serve the demand), then the Halfin-Whitt scaling captures the essential features.
However, if the goal is admission/concurrency control for a multiserver system with a given number
of servers that is not too large, then by capturing the entire distribution of number of jobs, not
just the blocking probability, our proposed scaling could be more useful.

For the constant rate LPS system, our asymptotic scaling matches the diffusion scaling of Zhang
et al. [44], and thus can be seen as an extension of their scaling to Sd-LPS.

3 Diffusion approximation for the Sd-LPS queue with a static
concurrency level

The goal of this section is to provide approximations for the steady-state performance of the Sd-
LPS queue with a static concurrency level under the proposed scaling (11). In Section 3.1 we first
summarize the results of this section by giving an approximation for the mean number of jobs in
an Sd-LPS system under a static concurrency level (equation (13)), and providing some simulation
results which show the utility of the approximation for choosing a near-optimal concurrency level.
In Section 3.2, we prove process-level limits for diffusion-scaled workload and head count processes.
In Section 3.3, we justify using the steady state of the limiting processes as an approximation for the
limit of the steady state of the diffusion-scaled processes by establishing the required interchange
of limits. We also present closed-form formulae for these steady-state distributions. All the proofs
for this section can be found in the appendix.

3.1 An approximation and simulation results

Let N denote the steady-state number of jobs in the Sd-LPS system for a given static concurrency
level K. Our main result of this section yields the following simple approximation formula for
the expectation of N as a function of the concurrency level and other system parameters (see
Proposition 2 for the formal statement)

E[N ] ≈
∑∞

n=0(n ∧K)π(n)
c2s+1

c2s+c
2
a∑∞

n=0 π(n)
c2s+1

c2s+c
2
a

+

(
c2
s + 1

2

) ∑∞
n=0(n−K)+π(n)

c2s+1

c2s+c
2
a∑∞

n=0 π(n)
c2s+1

c2s+c
2
a

, (13)

where π(n) denotes the steady-state probability of there being n jobs in the Sd-LPS system under
M/M/ input (that is, Poisson arrivals with mean rate λ and i.i.d. Exponentially distributed job
sizes with mean size m).

Figure 1 shows a hypothetical service rate function for a PS server. The service rate has the func-
tional form µ(i) = 1.25 − i2

150 , and is monotonically decreasing in the concurrency level. Figure 2
shows the simulation results for the steady-state mean number of jobs as a function of the concur-
rency level K. The arrival process is Poisson with mean arrival rate shown below the figures. We
simulated three distributions, each with mean m = 1 and SCV c2

s = 19. The solid curve shows the
diffusion approximation (13) for the mean number of jobs. For each value of λ and each distribu-
tion, the optimal concurrency level obtained via approximation (13) matches the one obtained from
simulating the LPS system. As expected, a higher traffic intensity shifts the optimal concurrent
level towards the efficient level K∗ = 1. Note that while the proposed diffusion approximation
accurately captures the shape of E[N ] versus the concurrency level curve and thus provides good
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Figure 1: State-dependent service rate function used for simulation results

guidance for concurrency control, the actual numerical values for E[N ] are not always very accurate
for all values of K.
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(b) λ = 0.8
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(c) λ = 0.9

Figure 2: Simulation results for mean number of jobs in the system versus the concurrency level for the service rate
function shown in Figure 1 for various job size distributions, all with mean m = 1 and SCV c2s = 19. The arrival process
is Poisson with indicated mean arrival rate λ. Also shown is the diffusion approximation from equation (13). The optimal
concurrency level for each curve is shown with a circle. (The confidence intervals are narrow enough that we have omitted
them here, see Figure 5 in Appendix A for the plot with 95% confidence intervals.)

3.2 Diffusion analysis of Sd-LPS system

We now present the analysis of the Sd-LPS system under the asymptotic regime described in
(11). For generality and notational convenience, we present all the analysis in terms of the general
drift function θ(x), and then translate the result into a form involving f(x) (Proposition 2) for
convenience.

Consider the sequence of Sd-LPS systems indexed by r. We append a superscript (r) to all the
quantities associated with the rth system. The concurrency level k(r) is specified as (9).

Assume that the arrival process Λ(r)(·) satisfies

Λ(r)(r2t)− r2λt

r
⇒Ma(t), as r →∞, (14)

where Ma(·) is a Brownian motion with zero drift and variance c2
a. Further, we assume that the

sizes of arriving jobs follow distribution G which satisfies

G is a continuous distribution function with mean m. (15)
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Introduce the drift function

θ(r)(x) =

{
r
(
µ(r)(drxe)− λm

)
x > 0,

0 x = 0.

The above definition is only for technical convenience, since otherwise µ(r)(0) would be undefined.
However, this does not matter since the server idles when there are no jobs in the system. The
heavy traffic condition is specified by

θ(r)(x)
u.o.c−→ θ(x) as n→∞, (16)

for some locally Lipschitz continuous function θ(·) on (0,∞) satisfying

θ(K) > 0. (17)

The notation
u.o.c−→ means uniform convergence on compact sets, which is only required for technical

reasons. Condition (17) ensures that the system is stable (see the proof of Theorem 2). As a quick
remark, we make a connection with the traditional single server system where the server speed is
constant, say µ(r)(·) ≡ 1, and the drift is created by constructing a sequence of λ(r) which converges
to λ at the rate of 1/r. The heavy traffic condition for this constant rate LPS system then becomes

r
(

1− λ(r)m
)
→ θ > 0, as r →∞.

We are interested in the asymptotic behavior of the diffusion-scaled processes for the rth system,
defined as

X̂(r)(t) =
1

r
X(r)(r2t), Ŵ (r)(t) =

1

r
W (r)(r2t). (18)

The diffusion scaling for other stochastic processes Q(r), Z(r), Z(r), Q(r) and B(r) is defined in
the same way. To obtain the diffusion limit of the head count process X̂(r) and workload process
Ŵ (r), we need to carefully analyze the measure-valued processes introduced. The detailed analysis
is presented in Appendix C.

Since we need to work with the measure-valued process, let ν denote the probability measure
associated with the probability distribution function G, and νe denote the probability measure
associated with the equilibrium distribution Ge of G. That is, Ge(x) = 1

m

∫ x
0 [1 −G(y)]dy and the

mean of Ge is

me =
1 + c2

s

2
m.

Let M denote the space of all non-negative finite Borel measures on [0,∞). We need the following
regularity assumptions on the initial state to rigorously prove the diffusion approximation results.
Assume there exists (ξ∗, µ∗) ∈M×M such that

(Q̂(r)(0), Ẑ(r)(0))⇒ (ξ∗, µ∗), (19)

〈χ1+p, Q̂(r)(0) + Ẑ(r)(0)〉 ⇒ 〈χ1+p, ξ∗ + µ∗〉 for some p > 0, (20)

as r →∞, and

(ξ∗, µ∗) =

(
w∗ ∧Kme

me
ν,

(w∗ −Kme)
+

m
νe

)
, (21)
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where w∗ = 〈χ, ξ∗ + µ∗〉. The above regularity assumptions (19)–(21) basically require that the
sequence of initial states is well behaved. These assumptions, together with the heavy traffic
assumptions (14)–(16), are made throughout the rest of this paper.

The first result we present is an asymptotic relationship, called State Space Collapse (SSC), between
the workload process and the head count process. Define a map ∆K(·) : R+ → R+ by

∆K(w) =
w ∧Kme

me
+

(w −Kme)
+

m
. (22)

The SSC result states that the total number of jobs in the system X̂(r) can be asymptotically
represented using the workload Ŵ (r) via the map ∆K , which is a bijective map meaning that
workload can also be represented using the total number of jobs. SSC is described as follows:

Proposition 1 (State Space Collapse) For the sequence of Sd-LPS systems parametrized by
r ∈ Z+ and satisfying initial conditions (19)-(21), as r →∞,

sup
t∈[0,T ]

∣∣(X̂(r)(t) ∧K)me + (X̂(r)(t)−K)+m− Ŵ (r)(t)
∣∣⇒ 0. (23)

Note that
∆−1
K (x) = (x ∧K)me + (x−K)+m

is the inverse of the map ∆K(·). A full version of the SSC, which demonstrates a bijective map
between the workload Ŵ (r) and the measure-valued status (Q̂(r), Ẑ(r)), is presented and proved in
Appendix C. Roughly speaking, SSC reveals that the residual sizes of jobs in service follow the
equilibrium distribution Ge. The simpler SSC of Proposition 1 can be derived from the full version
proved in Appendix C. For the purpose of performance analysis and for optimal control in this
paper, we only need the simple version of SSC.

The next step is the analysis of the workload process defined in (7). The challenge here is that
the evolution of workload depends on the number of jobs in service due to the state-dependent
service rate. The simple SSC result allows us to overcome this difficulty. The following theorem
establishes the diffusion limit of the workload process Ŵ (r)(t) and the number of jobs X̂(r) as
reflected Brownian motion (RBM) with state-dependent drifts.

Theorem 1 (Weak convergence to RBMs with state-dependent drift) For the sequence of
Sd-LPS systems parametrized by r ∈ Z+ satisfying (19)-(21), as r →∞,

Ŵ (r) ⇒W ∗, (24)

where W ∗ is an RBM with initial value W ∗(0) = w∗, drift −θ (∆K(W ∗(t)) ∧K) and variance
σ2 = λm2(c2

a + c2
s). Moreover, as r →∞,

X̂(r) ⇒ X∗ = ∆K(W ∗). (25)

The proof of Theorem 1 is presented in Appendix C. Theorem 1 states that the workload process
of the sequence of Sd-LPS systems converges to a reflected Brownian motion with state dependent
drift and state-independent dispersion, from which the process for the number of jobs in system can
be obtained using the state-space collapse map ∆K . In the following Section 3.3, we will identify
the steady-state distribution of the limiting RBM and a closed-form formula for the steady state
mean number of jobs which will then lead us to the still more tractable approximation (13).
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3.3 Steady State of the Diffusion Limit

The entire goal of heavy traffic analysis is to obtain a tractable process, an RBM with state-
dependent drift, as an approximation of the complicated stochastic process underlying the original
model. That is, the steady state of the limiting RBM can be computed. The following Proposition
gives the requisite steady-state distribution of workload and number of jobs in the system (the
proof appears in Appendix B):

Proposition 2 Let W ∗ and X∗ be the workload and number of jobs for the limiting Sd-LPS system
(as defined in Theorem 1). Let the drift function θ(x) be given by −θ(x) = λmd log f(x)

dx .

The steady-state distributions of W ∗ and X∗ are given by

Pr[W ∗(∞) ≤ w] = α

∫ w
me

0
f(x)

c2s+1

c2s+c
2
a dx, (26)

Pr[X∗(∞) ≤ x] =

α
∫ x

0 f(u)
c2s+1

c2s+c
2
a du x ≤ K,

α
∫K+(x−K) m

me
0 f(u)

c2s+1

c2s+c
2
a du x > K,

(27)

where α is the normalization constant. The mean of the limiting scaled number of jobs is given by

E[X∗(∞)] =

∫∞
x=0(x ∧K)f(x)

c2s+1

c2s+c
2
a dx∫∞

x=0 f (x)
c2s+1

c2s+c
2
a dx

+
c2
s + 1

2
·
∫∞
x=0(x−K)+f(x)

c2s+1

c2s+c
2
a dx∫∞

x=0 f (x)
c2s+1

c2s+c
2
a dx

. (28)

The approximation (13) at the beginning of this section is obtained from (28) by further using the
probability mass function, π(·), for the number of jobs corresponding to the original Sd-LPS system
in place of the density function f(·).
Finally, we close the loop by translating the convergence at the process level to convergence of
steady-state distributions in the following theorem (proof in Appendix B). This justifies the formulae
in Proposition 2 as an approximation for the steady state of the original Sd-LPS system. The quality
of the approximation is demonstrated in the numerical experiment presented at the beginning of
this section (see Figure 2).

Theorem 2 (Convergence of steady-state distributions) For all large enough r, the stochas-
tic process X̂(r) has a steady state, denoted by X̂(r)(∞). Moreover,

Ŵ (r)(∞)⇒W ∗(∞),

X̂(r)(∞)⇒ X∗(∞),

where W ∗(∞) and X∗(∞) are characterized in (26) and (27).

4 Dynamic concurrency control for the Sd-LPS queue

In Section 3, we established approximations for the steady-state number of jobs and workload in an
Sd-LPS system operating under a static concurrency level. Our numerical experiments showed that
the optimal static level based on the approximations yields near-optimal performance for the original
Sd-LPS system. In this section we go further by developing policies which dynamically adjust the
concurrency level based on developing and solving an appropriate diffusion control problem.
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In Section 4.1 we define a diffusion control problem and set up the HJB optimality conditions.
In Section 4.2 we describe how the parameters for the diffusion control problem (the drift as a
function of the control) are instantiated starting from dynamic control problem for a discrete state-
dependent PS server, and how the optimal policy for the diffusion control problem is translated back
into a heuristic control policy for the original discrete state space Sd-LPS server. To demonstrate
the efficacy of our approach, we present numerical experiments comparing the performance of the
proposed diffusion limit based control policy against the true optimal dynamic control policy for a
special non-trivial input process for which the true optimal policy can be computed numerically.
Finally, in Section 4.3 we describe a numerical algorithm tailored to solve the diffusion control
problem posed in Section 4.1. Our algorithm iteratively refines its estimate of the average cost of
the optimal policy using Newton-Raphson root finding method.

4.1 A diffusion control problem and HJB equation

Consider the problem of controlling a Reflected Brownian Motion W (t) ∈ R+ with state and control
independent dispersion σ2 := λm2(c2

s + c2
a), and control-dependent drift −θ(U(t)) where U(t) ∈ R+

is the control exerted at time t. We will restrict to stationary control policies U(t) = k(W (t)),
where the state-dependent control function k : R+ → R+ is restricted to lie in the following set:

K =

{
k : R+ → R+|k(w) ≤ w/me; k is Lipschitz continuous;

∫ ∞
v=0

e−
∫ v
0 θ(k(w))dwdv <∞

}
. (29)

For intuition, the state W (t) maps to the workload in the limiting Sd-LPS system, and k(W )
maps to the concurrency level as a function of the workload. Thus, the restriction k(w) ≤ w/me

(or equivalently w ≥ k(w) ·me is reminiscent of state space collapse which states that the mean
residual size of jobs at the server is me.

The instantaneous cost rate for policy k ∈ K and state w is given by the mapping ∆k : R+ → R+

∆k(w) =
w ∧ k(w)me

me
+

(w − k(w)me)
+

m
(30)

which, again, reminiscent of the state space collapse result (Proposition 1) gives the number of jobs
in the limiting system under control k(w) and workload w.

The last condition in (29) ensures that a stationary distribution for the diffusion-scaled workload
under k(w) exists. Indeed, we assume that the drift function θ(·) satisfies

sup
x∈[0,M ]

θ(x) > 0, (31)

for some M < ∞. That is, intuitively, a service rate for the PS server strictly larger than the
arrival rate is achievable at a finite concurrency limit and hence at a finite workload. In fact, we
will make a stronger assumption. Define

θ̂
.
= sup

x∈R+

θ(x) ; k̂
.
= arg max

k
{θ(k)}.

Here k̂ denotes the most efficient control (concurrency level) for drift function θ(·), which we will
assume to be finite and unique.

Let Vγ(w) denote the discounted total cost (with discount rate γ) for the diffusion W under a
control policy k(·) when the workload starts in state w:

Vγ(w) = Ew
[ ∫ ∞

0
e−γt∆k(W (t))dt

]
. (32)
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Consider a small δ > 0. According to Itō calculus

Vγ(w) = ∆k(w) + (1− γδ)E [Vγ (W (δ))] + o(δ)

= ∆k(w) + (1− γδ)E
[
Vγ(w) + V ′γ(w)(W (δ)− w) +

V ′′γ (w)

2
(W (δ)− w)2 + o(δ)

]
+ o(δ)

= ∆k(w) + (1− γδ)
[
Vγ(w) + V ′γ(w)θ(k(w))δ +

V ′′γ (w)

2
σ2δ

]
+ o(δ).

We thus have the following relation for the discounted value function Vγ :

γVγ(w) = ∆k(w)− θ(k(w))V ′γ(w) +
σ2

2
V ′′γ (w). (33)

Letting γ → 0, define

v = lim
γ→0

γVγ(w) , and G(w) = lim
γ→0

V ′γ(w),

where v is the average cost of policy k(·), and the value function gradient G(w) solves the following
ordinary differential equation (ODE):

v = ∆k(w)− θ(k(w))G(w) +
σ2

2
G′(w). (34)

Above, we have provided a heuristic derivation to arrive at the average cost optimal control problem
as a limit of the discounted cost problem. For a formal treatment of the relation between discounted
and average cost problems (i.e., by defining discounted relative cost functions hγ(w) = Vγ(w) −
Vγ(w̃) for some positive recurrent state w̃, taking limit h(w) = limγ↓0 hγ(w) and v = limγ↓0 γVγ(w̃)),
we refer readers to [13].

The following Proposition and Remark state two useful facts about the value function gradient
G(w) which will be useful in the development of our numerical algorithm for solving the optimal
control.

Proposition 3 The discounted value function Vγ(w) is non-decreasing in w for all γ, and hence
G(w) ≥ 0.

Remark 1 For a given control policy k(w), equation (34) is a first order ODE for G(w). However,
to solve G(·) we also need to know the average cost v. This is to be expected since we started from
a second order ODE where we would need two boundary conditions to completely specify Vγ. In our
case, one boundary condition is easy to get hold of: since we have a reflecting boundary at w = 0,
we must have (see, for example, [33, page VIII]):

V ′γ(0) = 0 (35)

and therefore, also G(0) = 0.

Returning to equation (33), let V ∗γ denote the value function for the optimal policy. Then Bellman’s
principle of optimality becomes:

γV ∗γ (w) = min
k∈[0,w/me]

{
∆k(w)− θ(k)V ∗γ

′(w) +
σ2

2
V ∗γ
′′(w)

}
. (36)
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Figure 3: A hypothetical drift function θ(x) and the optimal diffusion control policies for two choices of workload
parameters c2a, c

2
s.

If we let γ → 0, then

v∗ = min
k∈[0,w/me]

{
∆k(w)− θ(k)G∗(w) +

σ2

2
G∗′(w)

}
, ∀w ∈ R+, (37)

where again, as remarked earlier, we have the boundary condition G∗(0) = 0, leaving v∗ the only
unknown.

For an illustration of what an optimal dynamic policy might look like, see Figure 3. The first figure
shows an illustrative example of the θ(x) function for the PS server. As can be seen, the PS server
is most efficient when there are k̂ = 5 jobs at the server, and the speed drops on either side of this
point. The second figure shows the optimal dynamic policy (translated from k(w) to k(n), that is,
as a function of the number of jobs in the system, for clarity) when c2

s = c2
a = 10. This corresponds

to a workload that has significant variability, and the optimal policy increases the concurrency level
to approximately 9 when the number of jobs in the system is small but scales it back when there is a
long queue. The third figure shows the policy for c2

s = c2
a = 0.3. This is a low variability workload,

and as the number of jobs in the system increases, initially the PS server acts as an FCFS server
and thus compromises speed to keep the concurrency level small. At n ≈ 0.5, the system switches
to a controlled PS behavior by gradually increasing the concurrency level to increase service rate.
At n ≈ 1.2 the system switches to a pure PS behavior admitting everyone in queue, and finally at
n = 3 it switches back to a controlled PS behavior, gradually increasing the concurrency level to
k̂ = 5 as queue becomes longer.

Though many diffusion control problems addressed in the literature have a nice structure allowing
a closed-form solution, e.g., [21, 22], the problem (37) is intrinsically difficult mainly due to the
generality of the service rate curve. Thus we seek numerical algorithms, which presents another
challenge. For diffusion control problems where a closed-form solution can be found, one of the
boundary conditions is imposed by setting the coefficient of the exponential term in the solution of
the second order ODE to zero. This captures the physical constraint that the optimal value function
should asymptotically grow at a polynomial rate and not exponentially. However, this trick cannot
be applied when searching for a numerical solution. This obstacle led us to develop the algorithm
in Section 4.3. While the majority of numerical algorithms for solving diffusion control problems
rely on the Markov chain method where time and space are discretized and a probability transition
matrix is engineered to satisfy local consistency requirements (e.g., [28]), we directly work with the
ODE in (37).
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4.2 From discrete Sd-LPS server to diffusion control and back

Recall that our goal is to develop a dynamic concurrency control policy for a discrete Sd-LPS server
with mean arrival rate λ, service rate function µ = {µ(1), µ(2), . . .}, i.i.d. service requirements with
mean m and squared coefficient of variation c2

s, i.i.d. interarrival times with squared coefficient of
variation c2

a. The following steps outline how we instantiate the diffusion control problem and how
we translate the resulting policy k(·) into a heuristic dynamic control policy for the original Sd-LPS
server.

1. Create a drift function θ(·) from the service rate curve µ(·) of the original state-dependent
Processor Sharing server:

θ(x)
.
= −λm log

λm

µ̂(x)
,

where µ̂ is any continuous and differentiable extension of µ.

2. Solve the diffusion control problem (37) to obtain the policy k∗(w) which gives the concurrency
level as a function of the workload.

3. Find n(w) = k∗(w) + w−me·k∗(w)
m as the number of jobs in the system as a function of the

workload, and compute k̃(n) = k(w−1(n)). For certain drift functions and dispersion σ, n(w)
is not strictly increasing and hence w−1(n) is not unique. In such cases we truncate n(w) to
the domain in which in which it is strictly increasing, and set k̃(n) = k̂ everywhere else.

4. Let ǩ(n) be the given by rounding k̃(n) to the nearest integer. The control algorithm is
implemented by taking action to reach the concurrency level ǩ(N(t)). In controling the
original system we only take actions upon job arrivals and departures, do not preempt jobs
once they enter service, and do not increase the concurrency level by more than one in any
arrival/departure event. The precise policy is given as follows:

• Define Z(t−) and Q(t−) to be the number of jobs at the server and in the buffer, respec-
tively, before the arrival/departure event at time t.

• On arrival at t: If ǩ(Z(t−)+Q(t−)+1) ≥ (Z(t−)+1) then admit one job to the server
at t, otherwise do nothing.

• On departure at t: Admit min
{(
ǩ(Z(t−) +Q(t−)− 1)− Z(t−) + 1

)+
, 2
}

jobs at t.

Simulation Results

Figure 4 shows experimental results comparing the performance of the dynamic policies produced
using the proposed diffusion scaling against the performance of the naive fluid heuristic that always
chooses the most efficient MPL available. To gain some insights into when the dynamic heuristic
is near optimal, and substantially better than the naive fluid heuristic, we simulate five different
service rate curves. To be able to compare the performance of the heuristics against the optimal
performance, we focus on a special class of input processes: Poisson arrivals and a degenerate
Hyperexponential job size distribution (a mix of a point mass at 0 and an Exponential distribution).
This allows us to compute optimal dynamic policies using the algorithm proposed by [18].

The dynamic policy for the diffusion control problem was computed using a Binary search variant
of the Newton-Raphson method (Algorithm 1, Section 4.3) to an additive error of 10−3. We used
MATLAB’s ode45 function to solve the differential equations involved. The performance of the
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Figure 4: Simulation results comparing the performance of the diffusion heuristic based dynamic concurrency control
policy for Poisson arrivals with rate λ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and degenerate hyperexponential (H∗) distribution
with m = 1 and SCV c2s. Each entry in the top table is the ratio of the simulated mean sojourn time of the diffusion based
heuristic policy to the mean sojourn time of a near-optimal policy computed via policy iteration (We find the optimal policy
within fluid continuation policies where the MPL is chosen to be the most efficient MPL k̂ beyond queue length Q = 150
and we stop policy iteration when the new average cost is at least 0.9999 times the old average cost. The 1∗ indicates
that the diffusion heuristic outperformed this ‘optimal’ policy). The bottom table shows the ratio of the policy that always
chooses the most efficient feasible MPL (hence the ‘fluid’ heuristic) to the optimal. The 95% confidence intervals for all
entries are smaller than ±0.008.

diffusion control policy was evaluated via simulation, the performance of the fluid and the optimal
policy are evaluated numerically via Matrix analytic methods.

The main takeaways are:

• From the bottom table, which compares the benefit of the optimal dynamic policy versus the
fluid heuristic, we see that as in the case of the static concurrency control, the gain of the
optimal dynamic policy over the fluid dynamic heuristic is larger if the arrival rate is smaller,
and if c2

s is larger.

• The benefit of optimal dynamic control over fluid policy is more prominent when the service
rate curve is decreasing, and is larger if the MPL curve falls less steeply. In the first three
cases in Figure 4, the mean sojourn time under the fluid heuristic is as much as 32%, 85%,
and 154% larger than the optimal.

• The top table comparing the performance of the diffusion based heuristic versus the optima
dynamic control shows that the heuristic is near optimal when the service rate curve is
monotonically decreasing. The mean sojourn time are at most 4% larger than the optimal.

• If the service rate curve initially increases and then decreases as in the fourth example, the
diffusion based heuristic again gives near optimal policy (at most 4% loss), but the fluid
heuristic is also good enough (at most 5.3% loss) for the cases shown. As mentioned earlier,
for larger c2

s, or for curves where the initial increase in service rate is less steep, and where
the most efficient MPL is smaller, the gain of diffusion heuristic over fluid heuristic will be
larger.
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• If the service rate curve initially decreases and then increases as in the fifth case, then the
diffusion policy is not always near optimal. However, we believe the loss is due to the manner
in which we translate the diffusion control to a control for the original system.

Further Remarks on diffusion control formulation

The reader might wonder, why the diffusion control problem was formulated with the workload as
the state variable instead of the headcount process when the workload may not be observable in the
true discrete Sd-LPS system but the head count is. There are two reasons for choosing workload
over the head count process: (i) the variance of head count process is state-dependent making the
computation more complicated, while it is a constant for workload process, and (ii) headcount does
not carry enough information since two different states (Q1, Z1) and (Q2, Z2) along the state-space
collapse trajectory may have the same head count but different workloads. Therefore the control
is not uniquely obtained as a function of the number of jobs in the system.

Finally, to motivate the diffusion control problem, we state the following conjecture on the process
level convergence of dynamic control for Sd-LPS systems:

Conjecture 1 (Diffusion limits under a dynamic policy) Consider a sequence of Sd-LPS servers
parameterized by r ∈ Z+ (each with mean arrival rate λ) with service rate curves µ(r) satisfying the
limit:

lim
r→∞

r
(
λm− µ(r) (drxe)

)
= −θ(x).

Further, let the dynamic policies k(r) satisfy:

k(r)(W (r)(t)) =
⌈
rk
(
W (r)(t)/r

)⌉
(38)

for some k ∈ K, as r →∞. Let the initial workload satisfy Ŵ (r)(0) = 0. Then,

Ŵ (r) ⇒W ∗, (39)

where W ∗ is an RBM with initial value W ∗(0) = 0, drift −θ (k(W ∗(t))) and variance σ2 = λm2(c2
a+

c2
s). Moreover, as r →∞,

X̂(r) ⇒ X∗ = ∆k(W
∗). (40)

In other words, we conjecture that the state space collapse result still holds and the state-dependent
concurrency level function k(·) only plays a role in modifying the drift of the diffusion limit of the
workload. The key to proving this conjecture is to extend the state space collapse result to allow a
dynamic concurrency level and analyze the underlying fluid model (as in [44]). Due to the technical
intricacies involved, proving the conjecture is beyond the scope of this paper. Instead, we focus
on utilizing the conjectured diffusion limit to identify a near-optimal policy for the original LPS
system.

4.3 Newton-Raphson method for solving diffusion control problem

Before giving the algorithm, we discuss the main intuition and ideas behind it. Let us assume that
an oracle reveals to us the average cost v∗ of the optimal policy. This, together with the boundary
condition G∗(0) = 0, would allow us to numerically solve for the optimal control by evolving G∗(·)
forward: Assuming we have solved G∗(w) for w ∈ [0, x], we first find

k∗(x) = arg min
k∈[0,x/me]

{
k
(

1− me

m

)
− θ(k)G∗(x)

}
(41)
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and then
σ2

2
G∗′(x) = v∗ −

[ x
m

+ k∗(x)
(

1− me

m

)
− θ(k∗(x))G∗(x)

]
allows us to evolve G∗(w) forward in a small enough interval (x, x+ δx]. The trouble is that when
we do not have the correct guess v∗, we need to be able to detect whether our guess is above or
below v∗. This is indeed possible (see [19]).

In this section, we will instead search for the optimal policy within a class of suboptimal policies
called fluid continuation policies.

Definition 1 The set of fluid continuation policies with fluid continuation point W is defined as

FW =

{
k ∈ K : k(w) = kf (w)

.
= arg max

x≤w/me
{θ(x)}, w ≥W

}
. (42)

That is, beyond the fluid continuation workload point W , the control is chosen to be the most
efficient service rate available. Denote the cost of the optimal (minimum cost) policy in FW by
vf (W ). Let W (v) = min{W ≥ 0 : v = vf (W )}.
All policies in FW are stable due to condition (31). In fact, the policy kf ∈ F0 is optimal when
c2
s = 1 since in this case me = m, and (41) simplifies to

k∗(w) = arg min
k∈[0,w/me]

θ(k)G∗(w) = arg min
k∈[0,w/me]

θ(k).

The next proposition shows that we do not need a very large fluid continuation point for finding
an approximately optimal policy.

Proposition 4 Let v∗ ≤ v ≤ vf (0). Then v is the average cost of an optimal fluid continuation
policy kv with continuation point W (v). That is:

kv(w) =

{
arg mink∈[0,w/me]

{
k
(
1− me

m

)
− θ(k)Gv(w)

}
w ≤W (v),

kf (w) w > W (v),
(43)

where Gv is the value function gradient for policy kv and satisfies the ODE

v =
w

m
+ kv(w)

(
1− me

m

)
− θ(kv(w))Gv(w) +

σ2

2
G′v(w). (44)

Further, W (v) = O
(

log 1
v−v∗

)
.

The advantage of the class of feasible policies described by (43) is that for any v, the function
Gv(w) for w ≥ max{k̂me,W (v)} is easily computed. Let us call this the fluid continuation of the
value function gradient and denote it by Gv(w). Then, it can be shown that:

Gv(w) =
w

mθ̂
+

(
k̂
(

1− me

m

)
+

σ2

2mθ̂
− v
)

1

θ̂
, w ≥ max{W (v), k̂me}. (45)

To find an approximately optimal solution for the diffusion control problem (37), we first fix a large
enough value of W (W ≥ k̂me) and seek the optimal policy and the optimal average cost in FW .
As mentioned later, we can use a standard doubling trick to settle on a ‘large enough’ W . Next, we
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will guess an average cost value v and devise a test to compare v with vf (W ). For this, we evolve
ODE (37) backwards with the (terminal) boundary condition

Gv(W ) =
W

mθ̂
+

(
k̂
(

1− me

m

)
+

σ2

2mθ̂
− v
)

1

θ̂
. (46)

If indeed v = vf (W ) then we must have Gv(0) = 0, and the sign of Gv(0) can tell us if v < vf (W )
or v > vf (W ). However, since we know Gvf (W )(0) = 0, we can go further and cast the problem of
finding vf (W ) as solving for the root of the equation Gv(0) = 0 (in v) using the Newton-Raphson
method.

Let us assume that our current guess for vf (W ) is vn. To generate the next guess vn+1 via the
Newton-Raphson method, we need the derivative of Gv(0) at v = vn. With some abuse of notation,
define

gv(w)
.
=
dGv(w)

dv
.

(What we really mean by the above is that gv(w)
.
= ∂G(v,w)

∂v , where G(v, w) = Gv(w).) As we will
show in the proof of Proposition 5 (see step 2 of the proof), Gv(w) is Lipschitz continuous and
decreasing in v for all w and therefore gv(w) exists almost everywhere, and further it is bounded
away from 0.

With W ≥ k̂me representing the point at which we switch to the fluid policy kf , we can write
Gv(w) as the following integral: for w ≤W ,

Gvn(w) = Gvn(W ) +
2

σ2

∫ w

W

[
vn − min

k∈[0,u/me]
{∆k(u)− θ(k)Gvn(u)}

]
du, (47)

where Gvn(W ) is given by (46). Differentiating (47) with respect to vn yields

gvn(w) = −1

θ̂
+

2

σ2

∫ w

W
[1 + θ(kvn(u))gvn(u)] du.

Since the policy kvn() also depends on vn, to arrive at the last equality, we have used the envelope

theorem: If k∗(v) = arg mink φ(k, v) and φ∗(v) = φ(k∗(v), v), then dφ∗(v)
dv = ∂φ(k∗(v),v)

∂v (where ∂φ(k,v)
∂v

is the partial derivative with respect to v). Therefore, very similar to Gvn , gvn satisfies the following
ODE

1 = −θ(kvn(w))gvn(w) +
σ2

2
g′vn(w) (48)

with the terminal condition gvn(W ) = −1
θ̂
. The updated guess for average cost is then

vn+1 = vn −
Gvn(0)

gvn(0)
. (49)

It turns out that vn+1 is exactly the average cost of the policy, call it kvn(w), that is implicitly
generated when solving for Gvn and gvn . This is because for a fixed policy k(w) = kvn(w), Gv is
linear in v from (47). Therefore the sequence of average cost iterates produced by the algorithm
are in fact the average costs of a sequence of feasible policies. The next proposition formally states
the result on convergence of the Newton-Raphson average cost iteration algorithm.
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Proposition 5 Let v1, v2, . . . denote the average cost iterates generated by the Newton-Raphson
method (49). Let

dθ
.
= sup

k
θ(k)− inf

k
θ(k) <∞.

The sequence {vn} monotonically decreases to vf (W ), which is the average cost of the optimal
diffusion control policy in the set FW of fluid continuation policies with fluid continuation point
W .

Since close to the root, the error roughly squares in each iteration for Newton-Raphson method, it
takes O(log log 1

ε ) iterations to reach an ε-optimal policy within FW . To find the ε-optimal policy
among all policies, we can keep doubling the value of W until the error between successive iterates
is sufficiently small. By our earlier result, we need a W = O(log 1

ε ) to arrive at an ε-optimal
policy. Since each iteration of the Newton-Raphson method takes O(W ) time, the overall time
complexity of the algorithm to find an ε-optimal policy is O

(
log 1

ε log log 1
ε

)
. The step-by-step

procedure is described in Algorithm 1. In the description, we have omitted iterating over values
of W , the fluid continuation point, to focus on the core of the algorithm. The average cost of the
fluid policy is chosen as the initial guess for average cost v0 which is computed using a single step
of Newton-Raphson iteration (shown in the initialize block).

Algorithm 1 Average cost iteration (Newton-Raphson method)

define k̂
.
= arg maxk θ(k); θ̂

.
= θ(k̂)

require W ≥ k̂me . (Fluid continuation point)
initialize . (Compute initial guess for average cost vf (0), see Defn. 1)

solve functions Gf (w) and gf (w) for w ∈ [0, k̂me]:

Gf (k̂me) =
(
k̂(1−me/m) + σ2

2mθ̂

)
1
θ̂

+ 1
mθ̂
· k̂me . (Terminal condition for Gf )

gf (k̂me) = −1
θ̂

. (Terminal condition for gf )

kf (w) = arg maxk∈[0,w/me] θ(k) . (Fluid optimal policy)

0 = w
m + kf (w)(1− me

m )− θ(kf (w))Gf (w) + σ2

2 G
′
f (w) . (ODE for Gf )

1 = −θ(kf (w))gf (w) + σ2

2 g
′
f (w) . (ODE for gf )

end solve
v0 ← vf (0) = −Gf (0)

gf (0)

end initialize
repeat

solve policy kvn(w), functions Gvn(w) and gvn(w) for w ∈ [0,W ]:

Gvn(W ) =
(
k̂(1−me/m)− vn + σ2

2mθ̂

)
1
θ̂

+ 1
mθ̂
·W . (Terminal condition for Gvn)

gvn(W ) = −1
θ̂

. (Terminal condition for gvn)

kvn(w) = arg mink∈[0,w/me]

{
k
(
1− me

m

)
− θ(k)Gvn(w)

}
vn = w

m + kvn(w)(1− me
m )− θ(kvn(w))Gvn(w) + σ2

2 G
′
vn(w) . (ODE for Gvn)

1 = −θ(kvn(w))gvn(w) + σ2

2 g
′
vn(w) . (ODE for gvn)

end solve
update vn+1 ← vn − Gvn (0)

gvn (0) . (Newton-Raphson update)

until |Gvn(0)| ≤ ε
return Cost vn+1; Policy kvn(w)

Comparison with the policy iteration algorithm: Puterman and Brumelle [36] prove that the
policy iteration algorithm for discrete-time Markov decision processes is equivalent to the Newton-
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Raphson algorithm for finding the fixed point of the dynamic programming operator performed
in the value function space. Puterman [35] presents a policy iteration algorithm for control of a
diffusion process in a bounded region in <n for finite horizon total cost optimization. In comparison
with [35], one difference between our approach is that we carry out the Newton-Raphson algorithm
in the space of average cost. A second difference is that the policy iteration algorithm alternates
between policy evaluation and policy improvement steps while our algorithm can be viewed as one
where we have folded the policy evaluation and policy improvement into one step.

5 Concluding Remarks

The primary goal of the present paper was to propose a diffusion scaling to aid the analysis and
control of State-dependent Limited Processor Sharing (LPS) systems. Our philosophy while design-
ing the scaling was to fix a limiting distribution for the steady-state number of jobs in the system,
and then reverse-engineer the sequence of service rate curves that yields this limit. By choosing
the limiting distribution as the one of the original state-dependent system under an M/M/ input,
our scaling thus ensures that the effect of the entire service rate curve emerges in the diffusion
approximation, which then leads to the choice of a near-optimal static and dynamic concurrency
limit policies.

One task that we did not address in the paper is proving Conjecture 1 on convergence of the
workload process to a limiting diffusion under dynamic control policies. However, a perhaps more
important gap is that we have only shown numerical evidence of near-optimality of proposed control
policies. The experiments in Figure 2 show that our approximations for the performance (steady-
state mean number of jobs) are not always accurate even though they capture the shape to yield a
good heuristic. Formalizing these observations would contribute to our understanding of when and
what diffusion approximations are more suitable for devising control policies.
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A Addenda to Experiments

4 5 6

Concurrency level

3

3.5

4

4.5

E
[N

]

Diff. approx.

Weibull

Lognormal

Pareto 1.1

(a) λ = 0.7

3 4 5

Concurrency level

6.5

7

7.5

8

8.5

9

9.5

E
[N

]
Diff. approx.

Weibull

Lognormal

Pareto 1.1

(b) λ = 0.8

2 3 4

Concurrency level

14

15

16

17

18

19

20

E
[N

]

Diff. approx.

Weibull

Lognormal

Pareto 1.1

(c) λ = 0.9

Figure 5: Simulation results with steady-state mean number of jobs in the system and 95% confi-
dence intervals for Figure 2. The y-axis shows mean number of jobs in the system and the x-axis
shows the concurrency level for the service rate function shown in Figure 1 for various job size dis-
tributions. Also shown is the diffusion approximation from equation (13). The confidence intervals
highlight that the optimal concurrency levels (shown with circles) are indeed the unique optimal
with at least 90% confidence.

B Diffusion and Steady State Analysis for the Workload Processes

Following from the dynamic equation (7), the diffusion-scaled workload is

Ŵ (r)(t) = Ŵ (r)(0) +
1

r

Λ(r)(r2t)∑
i=1

v
(r)
i −

1

r

∫ r2t

0
µ(r)(Z(r)(s))1{W (r)(s)>0}ds (50)

Now, introduce the notations

K̄(r)(t, x) =
1

r2

dr2te∑
i=1

1{v(r)i ≤x}
, (51)

K̂(r)(t, x) = r[K̄(r)(t, x)− tG(x)]. (52)
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The second term on the right-hand side of (50) can be written as

r

∫ t

0

∫ ∞
0

xdK̄(r)(
1

r2
Λ(r)(r2s), x)

=

∫ t

0

∫ ∞
0

xdK̂(r)(
1

r2
Λ(r)(r2s), x) +

1

r

∫ t

0

∫ ∞
0

xdG(x)dΛ(r)(r2s)

=

∫ t

0

∫ ∞
0

xdK̂(r)(
1

r2
Λ(r)(r2s), x) +m

∫ t

0
d

1

r
[Λ(r)(r2s)− λr2s] + λrmt.

The last term on the right-hand side of (50) can be written as

− r
∫ t

0
µ(r)(rẐ(r)(s))1{W (r)(r2s)>0}ds

=

∫ t

0
r[λm− µ(r)(rẐ(r)(s))]ds+ r

∫ t

0
1{Ŵ (r)(s)=0}ds− λrmt

=

∫ t

0
r[λm− µ(r)(r∆(Ŵ (r)(s)) ∧ k(r))]ds+

∫ t

0
r[µ(r)(rẐ(r)(s))− µ(r)(r∆(Ŵ (r)(s)) ∧ k(r))]ds

+ r

∫ t

0
1{Ŵ (r)(s)=0}ds− λrmt

=

∫ t

0
θ(r)

(
∆(Ŵ (r)(s)) ∧ k

(r)

r

)
− θ

(
∆(Ŵ (r)(s)) ∧ k

(r)

r

)
ds+ r

∫ t

0
1{Ŵ (r)(s)=0}ds− λrmt

+

∫ t

0
r[µ(r)(rẐ(r)(s))− µ(r)(r∆(Ŵ (r)(s)) ∧ k(r))]ds+

∫ t

0
θ

(
∆(Ŵ (r)(s)) ∧ k

(r)

r

)
ds

In summary, we can write the workload process as

Ŵ (r)(t) = Ŵ (r)(0) + M̂ (r)
s (t) + M̂ (r)

a (t) + Ĝ
(r)
1 (t) + Ĝ

(r)
2 (t)

+

∫ t

0
θ

(
∆(Ŵ (r)(s)) ∧ k

(r)

r

)
ds+ r

∫ t

0
1{Ŵ (r)(s)=0}ds,

(53)

where

M̂ (r)
s (t) =

∫ t

0

∫ ∞
0

xdK̂(r)(
1

r2
Λ(r)(r2s), x), (54)

M̂ (r)
a (t) = m

∫ t

0
d

1

r
[Λ(r)(r2s)− λr2s], (55)

Ĝ
(r)
1 (t) =

∫ t

0
r[µ(r)(rẐ(r)(s))− µ(r)(r∆(Ŵ (r)(s)) ∧ k(r))]ds, (56)

Ĝ
(r)
2 (t) =

∫ t

0
θ(r)

(
∆(Ŵ (r)(s) ∧ k

(r)

r
)

)
− θ

(
∆(Ŵ (r)(s)) ∧ k

(r)

r

)
ds. (57)

The following lemma is an extension of the classical one-dimensional Skorohod problem. The proof
can be found in [30].
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Lemma 1 Suppose g is a Lipschitz continuous function. For any x ∈ D(R+), there exists a unique
pair (y, z) ∈ D2(R+) satisfying

z(t) =

∫ t

0
g(z(s))ds+ x(t) + y(t), (58)

z(t) ≥ 0, for all t ≥ 0, (59)

y(0) = 0 and y is non-decreasing, (60)∫ t

0
z(s)dy(s) = 0. (61)

More over, denote z = ψ(x). The mapping ψ : D(R+) → D(R+) is continuous in the uniform
topology on compact set.

Proof of Theorem 1: We first study the first four terms on the right-hand side of equation
(53). For the initial condition Ŵ (r)(0), its convergence to some random variable w0 is part of the
assumption (20) on the initial state.

According to Lemma 3.8 in [27],∫ t

0

∫ ∞
0

xdK̂(r)(
1

r2
Λ(r)(r2s), x)⇒

√
λmcsMs(t), as r →∞,

where Ms(t) is a standard Brownian motion (with zero drift and variance 1).

It follows from the assumption (14) that

M̂ (r)
a (t) = mΛ̂(r)(t)⇒

√
λmcaMa(t), as r →∞.

We now study the terms Ĝ
(r)
1 and Ĝ

(r)
2 . By the stochastic bound (Lemma 2) proved in Section C, for

any ε > 0, there exists C such that P (Ωr) ≥ 1−ε, where Ωr =
{

supt∈[0,T ] max
(
Ẑ(r)(s),∆Ŵ (r)(s)

)
≤ C

}
(noting that we naturally have Ẑ(r)(·) ≤ k(r)/r). According to condition (16), for any sample path
in the event Ωr, we have

Ĝ
(r)
1 (t)⇒ 0, Ĝ

(r)
2 (t)⇒ 0, as r →∞.

Let Ŷ (r)(t) = r
∫ t

0 1{Ŵ (r)(s)=0}ds. It is easy to see that∫ t

0
Ŵ (r)(s)dŶ (r)(s) = 0. (62)

Thus (Ŵ (r), Ŷ (r)) is the solution to the reflection mapping in Lemma 1. So

Ŵ (r) = ψ
(
Ŵ (r)(0) + M̂ (r)

s + M̂ (r)
a + Ĝ

(r)
1 + Ĝ

(r)
2

)
.

By the continuous mapping theorem, Ŵ (r) ⇒W ∗, whereW ∗ = ψ(w0+
√
λmcsMs(t)+

√
λmcaMa(t)).

In other words, the limit W ∗ satisfies

W ∗(t) = w0 +
√
λmcsMs(t) +

√
λmcaMa(t)− θ(∆(W ∗))(t) + Y ∗(t), (63)
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with Y ∗(0) = 0 and being non-decreasing and∫ t

0
W ∗(s)dY ∗(s) = 0. (64)

Thus, we have shown that the diffusion limit of the workload process is an RBM with state-
dependent drift −θ(∆K(W ∗(t)) ∧K) and variance λm2(c2

s + c2
a). The proof of (25) follows imme-

diately from the continuous mapping theorem.

Proof of Proposition 2: A standard result (see [25, Chapter 15]) gives the stationary distribution
of a one-dimensional RBM, W , with state-dependent drift −β(·) and state-dependent variance s(·)
to be

Pr[W (∞) ≤ w] = α

∫ w

0
e
−

∫ u
0

β(v)+ 1
2 s
′(v)

1
2 s(v)

dv
du = α

∫ w

0

1

s(u)
e
−

∫ u
0

β(v)
1
2 s(v)

dv
du, (65)

where α is a normalization constant.

We start from (65) and substitute state-dependent variance and drift as

s(w) = λm2(c2
a + c2

s)

β(w) =


θ(w/me) = −λm d log f(x)

dx

∣∣∣
x= w

me

w ≤ K ·me

θ(K) = −λm d log f(x)
dx

∣∣∣
x=K

w > K ·me

To obtain a further simplification, we use our assumption that d log f(x)
dx is a constant for x ≥ K,

and therefore

β(w) = −λm d log f(x)

dx

∣∣∣∣
x= w

me

, ∀ w ∈ [0,∞)

We then get

Pr[W ∗(∞) ≤ w] =
α′

λm2(c2
a + c2

s)

∫ w

0
e

2

λm2(c2a+c
2
s)

∫ u
0 λmd log f(v/me)

du

=
α′

λm2(c2
a + c2

s)

∫ w

0
e

2λmme
λm2(c2a+c

2
s)

∫ u/me
0 d log f(z)

du

=
α′′

λm2(c2
a + c2

s)

∫ w

0
e

1+c2s
c2a+c

2
s

log f(u/me)
du

=
α′′

λm2(c2
a + c2

s)

∫ w

0
f

(
u

me

) 1+c2s
c2a+c

2
s
du

= α

∫ w
me

0
f(u)

1+c2s
c2a+c

2
s du

which proves (26).
From (25) and the continuous mapping theorem

X∗(∞) =
W ∗(∞) ∧Kme

me
+

(W ∗(∞)−Kme)
+

m
. (66)

29



It now follows that

Pr[X∗(∞) ≤ x] =

{
Pr[W ∗(∞) ≤ xme] x ≤ K
Pr[W ∗(∞) ≤ Kme + (x−K)m] x > K

which, together with (26), gives (27).
To find E[X∗(∞)], we will find it convenient to start with (26) and rewrite it as

Pr

[
W ∗(∞)

me
≤ z
]

= α

∫ z

0
f(x)

c2s+1

c2s+c
2
a dx. (67)

Therefore, f(x)
c2s+1

c2s+c
2
a is the density of W ∗(∞)

me
. Now we again use the map (66) to write

E[X∗(∞)] = E

[
W ∗(∞)

me
∧K

]
+
me

m
E

[(
W ∗(∞)

me
−K

)+
]

=

∫∞
0 (x ∧K)f(x)

c2s+1

c2s+c
2
a dx∫∞

0 f(x)
c2s+1

c2s+c
2
a dx

+
c2
s + 1

2

∫∞
0 (x−K)+f(x)

c2s+1

c2s+c
2
a dx∫∞

0 f(x)
c2s+1

c2s+c
2
a dx

,

which proves (28).

Proof of Theorem 2: This theorem essentially establishes the interchange of the steady state and
heavy traffic limits for the constructed sequence of Sd-LPS models. Proving such an interchange
usually involves quite a complicated analysis of a well-constructed Lyapunov function (see, for
example, [15] and [9]). Taking advantage of the existing studies, we use a coupling argument to
prove the interchange for our model. The proofs for both the workload and queue length essentially
follow the same argument. We only focus on the queue length in this proof.

For each r, we construct an auxiliary system which takes exactly the same arrival stream as the
rth Sd-LPS system and the same initial condition. Denote

µ
(r)
† = µ(r)(k(r)).

When the number of jobs in the auxiliary system is more than k(r), the server works at rate µ
(r)
† .

When the number of jobs drops below k(r), the server works at speed 0 (in other words it completely
shuts down). Without loss of generality, we assume that the initial number of jobs is larger than

k(r). Let Q(r)(t) and Q
(r)
† (t) denote the number of jobs in the queue in the Sd-LPS and auxiliary

systems, respectively. It is clear that

Q(r)(t) < Q
(r)
† (t). (68)

Due to parallel processing, overtaking can happen in each system, i.e., the jth arriving job may
leave the system earlier than the ith arriving job even if j > i. However, due to the coupling, the
ith arriving job in the auxiliary system can never enter service earlier than the corresponding job
in the Sd-LPS system.

By condition (17), µ
(r)
† > λm for all large enough r. So both Q(r) and Q

(r)
† are stationary. Let π(r)

denote the stationary probability measure of the diffusion-scaled process Q̂(r). Similarly, Let π
(r)
†
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denote the stationary probability measure of the diffusion-scaled queue length Q̂
(r)
† in the coupled

system. The key step to showing that X(r)(∞)⇒ X∗(∞) as r →∞ is to show that the family of
probability measures {π(r)}r∈N is tight. (Since X̂(r)(t) ≤ Q̂(r)(t) + k(r)/r, studying only the queue
length suffices.) Readers can refer to the proof of Theorem 8 in [15] for a standard argument of
how to prove the convergence using tightness. We now focus on proving the tightness of probability
measures {π(r)}r∈N.

We can model the rth auxiliary system as if it has k(r) identical servers. All the servers either work

or stop in perfect synchronization. Denote by S
(r)
†,i (·), i = 1, . . . , k(r), independent renewal processes

with inter-renewal time following distribution G(·/k(r)), where G is the distribution of job sizes. In
other words, the inter-renewal time has mean mk(r) and SCV c2

s. The queueing dynamics of the
rth auxiliary system can be written as

Q
(r)
† (t) = Q

(r)
† (0) + Λ(r)(t)−

k(r)∑
i=1

S
(r)
†,i (B

(r)
† (t)),

where B
(r)
† (t) is the cumulative busy time for each of the servers. Applying the diffusion scaling,

we have

Q̂
(r)
† (t) = Q̂

(r)
† (0) + Λ̂(r)(t)−

k(r)∑
i=1

Ŝ
(r)
†,i (

1

r2
B

(r)
† (r2t)) + r(λ− µ(r)

† /m)t+
µ

(r)
†
rm

(r2t−B(r)(r2t)), (69)

where

Λ̂(r)(t) =
1

r

(
Λ(r)(r2t)− λr2t

)
,

Ŝ
(r)
†,i (t) =

1

r

S(r)
†,i (r2t)−

µ
(r)
† r2

mk(r)
t

 .

Note that r2t − B(r)(r2t) increases only when Q̂
(r)
† (t) = 0, so (69) is the same as the Skorohod

mapping for the G/G/1 queue except that the service process is the superposition of k(r) renewal
processes with a much lower speed (roughly 1/k(r) ≈ 1/r) rather than a single renewal process. It
follows from Lemma 3.5 in [8] that the centerlized renewal arrival satisfies

E
[

sup
0≤s≤t

|Λ̂(r)(s)|2
]
< Ca(1 + t),

for some constants Ca and all large enough r. The analysis centerlized service processes requires
slight modification of the proof of Lemma 3.5 in [8], where (3.31) and (3.32) can be enhanced as
follows: The right-hand side of the second inequality in (3.20), which is C∗(1 + t), can be replaced

by 2
r + C2

r2
+ 3C2t. Since our renewal process S

(r)
†,i has speed 1/k(r) rather than 1, by time change,

we can replace the time t by t
k(r)

. So

E
[

sup
0≤s≤t

|Ŝ(r)
†,i (s)|2

]
<

2

r
+
C2

r2
+ 3C2

t

k(r)
≤ 3

r
+ 6KC2

t

r

for some constants C2 and all large enough r. Consequently,

E sup
0≤s≤t

(
|Λ̂(r)(s)|2 +

k(r)∑
i=1

|Ŝ(r)
†,i (s)|2

)
< Ca(1 + t) + 3 + 6KC2t < C(1 + t),
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for some constant C and all large enough r. Thus, we have verified that the centerlized renewal
arrival and service processes in the queueing dynamic equation (69) satisfies condition (A8.p) in
[9] for p = 2. Note that the dynamic equation (69) is essentially the same as the one in [9] except
that we do not have routing processes. So following exactly the same argument, in fact slightly
simpler due to the missing of routing processes, Theorem 3.3 in [9] holds for our problem. This

implies Theorem 3.2 in [9], i.e., supr
∫∞

0 wπ
(r)
† (dw) < ∞. By the coupling construction (68), we

have
∫∞

0 xπ(r)(dx) <
∫∞

0 xπ
(r)
† (dx). This implies tightness of {π(r)}r∈N.

C State Space Collapse for the Sd-LPS system

We introduce a strengthened version of the mapping ∆K as the follows. Let ∆K,ν : R+ →M×M
be the lifting map associated with the probability measure ν and constant K given by

∆K,νw =
((w −Kβe)+

β
ν,
w ∧Kβe

βe
νe

)
for w ∈ R+.

We aim to prove the following full version of the SSC

Theorem 3 (Full State Space Collapse) Under the conditions (14)–(16) and (19)–(21), for
any T > 0,

sup
t∈[0,T ]

d[(Q̂(r)(t), Ẑ(r)(t)),∆K,νŴ
(r)(t)]⇒ 0 as r →∞.

It is clear that Theorem 3 implies Proposition 1. The rest of this section is devoted to the proof of
the SSC.

C.1 Tightness of Shifted Fluid-Scaled Processes

The key to proving SSC, which was originally developed by [7], is to “chop” the diffusion-scaled
processes into pieces.
Shifted Fluid Scaling Introduce,

Q̄(r,l)(t) =
1

r
Q(r)(rl + rt), Z̄(r,l)(t) =

1

r
Z(r)(rl + rt), (70)

for all m ∈ N and t ≥ 0. To see the relationship between these two scalings, consider the diffusion-
scaled process on the interval [0, T ], which corresponds to the interval [0, r2T ] for the unscaled
process. Fix a constant L > 1, the interval will be covered by brT c+ 1 overlapping intervals

[rl, rl + rL] l = 0, 1, · · · , brT c.

For each t ∈ [0, T ], there exists an l ∈ {0, · · · , brT c} and s ∈ [0, L] (which may not be unique) such
that r2t = rl + rs. Thus

Q̂(r)(t) = Q̄(r,l)(s), Ẑ(r)(t) = Z̄(r,l)(s). (71)

This will serve as a key relationship between fluid and diffusion-scaled processes.

The quantities Q(r)(·), Z(r)(·), X(r)(·), W (r)(·) are essentially functions of (Q(r)(·),Z(r)(·)), so the
scaling for these quantities is defined as the functions of the corresponding scaling for (Q(r)(·),Z(r)(·)).
For example

W̄ (r,l)(t) = 〈χ, Q̄(r,l)(t) + Z̄(r,l)(t)〉 =
1

r
W (r)(rl + rt).
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We define the shifted fluid scaling for the arrival process as

Λ̄(r,l)(t) =
1

r
Λ(r)(rl + rt),

for all t ≥ 0. By (6), the shifted fluid scaling for B(r)(·) is

B̄(r,l)(t) = Ē(r,l)(t)− Q̄(r,l)(t),

for all t ≥ 0. A shifted fluid-scaled version of the stochastic dynamic equations (4) and (5) can be
written as, for any A ⊂ (0,∞), 0 ≤ s ≤ t,

Q̄(r,l)(t)(A) = Q̄(r,l)(s)(A) +
1

r

rĒ(r,l)(t)∑
i=rĒ(r,l)(s)+1

δvi(A)

− 1

r

rB̄(r,l)(t)∑
i=rB̄(r,l)(s)+1

δvi(A),

(72)

Z̄(r,l)(t)(A) = Z̄(r,l)(s)(A+ S(r)(rl + rs, rl + rt))

+
1

r

rB̄(r,l)(t)∑
i=rB̄(r,l)(s)+1

δ
v
(r)
i

(A+ S(r)(τ
(r)
i , rl + rt)).

(73)

We point out that the cumulative service process S(r) is never scaled because it tracks the amount
of service received by each individual customer. However, via some algebra we can see that

S(r)(rl + rs, rl + rt) =

∫ rl+rt

rl+rs

µ(r)(Z(r)(τ))

Z(r)(τ)
dτ =

∫ t

s

µ(r)(rZ̄(r,l)(τ))

Z̄(r,l)(τ)
dτ. (74)

This gives two interesting observations. First, the shifted fluid scaling is essentially fluid scaling,
meaning the shifted fluid-scaled processes should be close to some fluid model solutions. Second,
the corresponding fluid model is essentially the same as the fluid model in [44] since by (16),

µ(r)(rZ̄(r,l)(τ)) = 1 +O+(
1

r
),

where O+(1/r) means the quantity is positive and of the same order as 1/r when r →∞. So

S(r)(rl + rs, rl + rt) =

∫ t

s

1

Z̄(r,l)(τ)
dτ +O+(

1

r
). (75)

Intuitively, Z̄(r,l) is close to some fluid limit denoted by Z̃ as r becomes very large (in the mathe-
matical sense of convergence in probability), then

S(r)(rl + rs, rl + rt)⇒
∫ t

s

1

Z̃(τ)
dτ. (76)

So we can conclude that the underlying fluid is the same as the one for the regular LPS system.
Thus, we can use existing properties developed in [44]. We hope to make the argument rigorous
and concise in the follows.
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Stochastic Boundedness
The tightness property, which guarantees that the shifted fluid-scaled process {Q̄(r,l), Z̄(r,l)} has a
convergent subsequence, can be proved in a similar way as in [44]. There are two key differences.
First is the service process as pointed out before. Second is that [44] heavily relies on the known
result on the diffusion of the workload (see Proposition 2.1). However, we do not have such a
diffusion limit of workload a priori. Instead, we try to prove such a diffusion limit by SSC. Looking
into the details of the machinery in [44], what essentially is needed for the workload process is some
kind of stochastic bound, which we prove in the following lemma.

Lemma 2 (An Upper Bound of the Workload) For any η > 0 there exists a constant M
such that

P

(
max
l≤rT

sup
t∈[0,L]

W̄ (r,l)(t) < M

)
> 1− η. (77)

Proof: Using the relationship between the shifted fluid scaling and diffusion scaling, we essentially
need to prove that

P

(
sup
t∈[0,L]

Ŵ (r)(t) < M

)
> 1− η.

Recall the representation (53) for the diffusion-scaled workload processes. Let θ = infx∈[0,K] θ(x),

which is finite due to condition (16), so the process Ŵ
(r)
1 satisfying

Ŵ
(r)
1 (t) = Ŵ (r)(0)− θt+ M̂ (r)

s (t) + M̂ (r)
a (t) + Ĝ

(r)
1 (t) + Ĝ

(r)
2 (t) + r

∫ t

0
1{Ŵ (r)

1 (s)=0}ds

is an upperbound of Ŵ (r) due to the definition of θ and condition (17). By Lemma 1, Ŵ
(r)
1 converges

to a driftless RBM, which is stochastically bounded. This implies the result.

Such a stochastic bound of the workload process helps to establish some useful bound estimates for
the stochastic processes underlying the Sd-LPS model.

Lemma 3 (Further Bound Estimations) For any η > 0, there exists a constant M > 0 and a
probability event Ωr

B(M) for each index r such that

lim inf
r→∞

P (Ωr
B(M)) ≥ 1− η, (78)

and on the event Ωr
B(M), we have

max
l≤brT c

sup
t∈[0,L]

Q̄(r,l)(t) ≤M, (79)

max
l≤brT c

sup
t∈[0,L]

〈χ1+p, Q̄(r,l)(t) + Z̄(r,l)(t)〉 ≤M. (80)

Proof: The result (79) holds due to Lemma 4.2 in [44], which only utilizes the regularity of the
arrival process (14) and the stochastic bound (77) for the workload process proved in Lemma 2.
For (80), the first half, maxl≤brT c supt∈[0,L]〈χ1+p, Q̄(r,l)(t)〉 ≤M , also follows the same reasoning as
Lemma 4.3 in [44]. Essentially, any results for the “queue” part follows the same argument in [44].
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The challenge with the state-dependent service rate lies in the analysis of the server. It follows
from the shifted fluid-scaled dynamic equation (73) that for any Borel set A ⊂ (0,∞),

1

r
Z(r)(rl + rt)(A) =

1

r
Z(r)(0)(A+ S(r)(0, rl + rt))

+

m−1∑
j=0

1

r

B(r)(r(l−j))∑
i=B(r)(r(l−j−1))+1

δvi(A+ S(r)(τ
(r)
i , rl + rt))

+
1

r

B(r)(rl+rt)∑
i=B(r)(rl)+1

δvi(A+ S(r)(τ
(r)
i , rl + rt)).

Given 0 ≤ j ≤ m− 1, for those i’s with B(r)(r(l − j − 1)) < i ≤ B(r)(r(l − j)) we have

τ
(r)
i ∈ [r(l − j − 1), r(l − j)].

For the sake of simplicity, let us assume that Z(r)(s) > 0 for all s ∈ [0, rl + rt]. If this does not
hold, we can use a technical trick presented in the proof of Lemma 4.3 in [44] to deal with it. Here
we show the main difference coming from the state-dependent service rate. By (75) and the fact
that Z(r) ≤ k(r), we have a lower bound on the cumulative service amount

S(r)(rs, rt) ≥
∫ rt

rs

1

Z(r)(s)
ds ≥ r(t− s)

k(r)
. (81)

Thus,

S(r)(τ
(r)
i , rl + rt) ≥ S(r)(r(l − j), rl) ≥ rj

k(r)
≥ j

2K
,

for all large r where the last inequality is due to (9). For those i’s such that τ
(r)
i is larger than

B(r)(rl), we use the trivial lower bound S(r)(τ
(r)
i , rl + rt) ≥ 0. Also take the trivial lower bound

that S(r)(0, rl + rt) ≥ 0. Then we have the following inequality on the (1 + p)th moment:

〈χ1+p,
1

r
Z(r)(rl + rt)〉 ≤ 〈χ1+p,

1

r
Z(r)(0)〉

+

m−1∑
j=0

〈
(
(χ− j

2K
)+
)1+p

,
1

r

B(r)(r(l−j))∑
i=B(r)(r(l−j−1))+1

δvi〉

+ 〈χ1+p,
1

r

B(r)(rl+rt)∑
i=B(r)(rl)+1

δvi〉.

(82)

This is the same as (4.22) in [44]. The estimation of the first term on the right-hand side in the
above follows directly from the initial condition (20). The analysis of the second and third terms
follows the same way as in [44].

To prove that a family of measure-valued processes is tight, there are three properties to verify,
namely Compact Containment, Asymptotic Regularity and Oscillation Bound. For brevity, we will
not repeat the exact mathematical statements and their proofs. For the LPS system, these three
properties were proved in Lemmas 4.4–4.6 in [44]. We just point out that the proof for the above
mentioned three properties for the Sd-LPS system relies on (a) the bound estimate in Lemma 3;
and (b) the fact that (75) implies the lower bound of the cumulative service process (81). The proof
of Lemma 3 has demonstrated point (b) clearly, we therefore omit a repeat of the argument used
in [44]. So we reach the conclusion:
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Proposition 6 (Tightness of Shifted Fluid-scaled Processes) The family of shifted fluid-scaled
processes {(Q̄(r,l), Z̄(r,l)}l≤rT,r∈N is tight.

Loosely speaking, tightness means that any subsequence from the family of shifted fluid-scaled
processes has a convergent subsequence. This is formally stated in Theorem 4.1 in [44].

C.2 Bramson’s Framework for SSC

With all the above preparation, we can now prove Theorem 3. Note that Sd-LPS and LPS (studied
in [44]) essentially use the same measure-valued framework. The difference lies in the cumulative
service process as we explained when deriving (75) and the workload process as we studied in
Lemma 2. After obtaining the tightness in Proposition 6, we can apply the framework invented by
Bramson [7] in the same way as how Section 5 in [44] applies it to the LPS.

To avoid repeating all details, we only provide a sketch of the proof with the intention of making
it easier to read. To prove the SSC in Theorem 3, we just need to restrict on the event Ωr

B(M),
which has probability 1− ε by Lemma 3. The goal is to show that on this event, each ε > 0, there
exists an r0 such that when r > r0,

sup
t∈[0,T ]

d[(Q̂(r)(t), Ẑ(r)(t)),∆K,νŴ
(r)(t)] < ε. (83)

We fix r > r0 and a sample path in Ωr
B(M) for the rest of the discussion.

Note that (83) is about diffusion. In order to study this, we utilize the relationship (71) between
diffusion scaling and shifted fluid scaling. For any constant L > L∗ + 1 (with L∗ to be specified
later), note that

[0, r2T ] ⊂ [0, rL∗] ∪
brT c⋃
m=0

[r(m+ L∗), r(m+ L)].

By the definition of diffusion and shifted fluid scaling, to show (83) it suffices to show

max
m≤brT c

sup
s∈[L∗,L]

d[(Q̄(r,l)(s), Z̄(r,l)(s)),∆K,νW̄
(r,l)(s)] < ε, (84)

sup
s∈[0,L∗]

d[(Q̄(r,0)(s), Z̄(r,0)(s)),∆K,νW̄
(r,0)(s)] < ε. (85)

The high level-logic is as the follows: the shifted fluid-scaled processes are “close” to the fluid model
solution, and the fluid model solution converges to some invariant which exhibits SSC (Theorem 3.1
in [44]). Thus SSS can be proved for (84) and (85).

By Theorem 3.1 in [44], there exists an L∗ > 0 such that when s > L∗,

d[(Q̃(s), Z̃(s)),∆K,νW̃ (s)] < ε/3, (86)

where (Q̃(·), Z̃(·)) denote the fluid limit which exhibits SSC. Thus, (84) follows from triangular
inequality by inserting the above fluid limit. Note that (85) follows from the same idea of triangular
inequality, but rely on the initial conditions (19)–(21) specified in Theorem 3.
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D Analysis of Algorithm for Finding Optimal Control

Recall some notation and definitions used in this section.

k̂ = arg max
k

θ(k)

θ̂ = θ(k̂)

∆k(w) =
w

m
+ k

(
1− me

m

)
dθ = sup

k
θ(k)− inf

k
θ(k)

kf (w) = arg max
k∈[0,w/me]

θ(kf )

Throughout this section, we assume that dθ is finite, and therefore θ(k) is bounded from above and
below.

D.1 Some Auxiliary Results

We first provide some auxiliary results (Lemmas 4 and 5) which will be useful in proving the results
in Section 4.

Lemma 4 Consider the solution of the following ODE, parameterized by v and W :

Terminal condition:

Gv,W (w) = αw + βv + γ . . . w ≥ max{W, k̂me}

ODE:

v =
w

m
+ kf (w)

(
1− me

m

)
− θ(kf (w))Gv,W (w) +

σ2

2
G′v,W (w) . . . w ∈ [W, k̂me]

v = min
k∈[0,w/me]

{
w

m
+ k

(
1− me

m

)
− θ(k)Gv,W (w) +

σ2

2
G′v,W (w)

}
. . . w ∈ [0,W ]

Then Gv,W (w) is continuous in both v and W for all w.

Proof: Let (va,Wa) and (vb,Wb) denote two parameter settings, and for succinctness, denote
the corresponding solutions to the ODE as Ga and Gb, respectively. We will consider the case
Wa,Wb ≥ k̂me as other cases are analogous.

Let Wa ≤Wb.

At w = Wb, we have

|Ga(Wb)−Gb(Wb)| = β|va − vb|. (87)

For w ∈ [Wa,Wb], we have

Ga(w) = αw + βva + γ, (88)

G′b(w) =
2

σ2

(
vb + θ(kb(w))Gb(w)− w

m
+ kb

(
1− me

m

))
, (89)

37



which gives

2

σ2

(
vb −

Wb

m ∧me
− dθGb(w)

)
≤ G′b(w) ≤ 2

σ2

(
vb −

Wa

m ∨me
+ dθGb(w)

)
. (90)

Since the derivatives are bounded, Gb(w) is bounded in the interval [Wa,Wb]. LetD = supw∈[Wa,Wb]
|Gb(w)|.

Then,

|Ga(w)−Gb(w)| ≤ |Ga(w)−Ga(Wa)|+ |Ga(Wb)−Gb(Wb)|+ |Gb(w)−Gb(Wb)| (91)

≤ α|Wa − w|+ β|va − vb|+ (Wb − w)
2

σ2

(
vb +

Wb

m ∧me
+ dθD

)
(92)

≤ α|Wb −Wa|+ β|va − vb|+ (Wb −Wa)
2

σ2

(
vb +

Wb

m ∧me
+ dθD

)
, (93)

which goes to 0 as |va − vb|+ |Wa −Wb| → 0.

For w ∈ [0,Wa], by Lemma 6,

|G′a(w)−G′b(w)| ≤ 2

σ2
|va − vb|+

2

σ2

∣∣∣∣ min
ka∈[0,w/me]

(kb(1−me/m)− θ(ka)Ga(w))

− min
kb∈[0,w/me]

(kb(1−me/m)− θ(kb)Gb(w))

∣∣∣∣
≤ 2

σ2
|va − vb|+

2dθ
σ2
|Ga(w)−Gb(w)|. (94)

Applying Gronwall’s inequality, for all w ∈ [0,Wa]

|Ga(w)−Gb(w)| ≤ |Ga(Wa)−Gb(Wa)|e
2dθ
σ2

(Wa−w) +
|va − vb|

dθ

(
e

2dθ
σ2

(Wa−w) − 1

)
,

which, together with (93), implies that for all w ∈ [0,Wa]

|Ga(w)−Gb(w)| ≤ |va − vb|

|β|e 2dθ
σ2

(Wa−w) +
e

2dθ
σ2

(Wa−w) − 1

dθ


+ |Wb −Wa|

(
α+

2

σ2

(
vb +

Wb

m ∧me
+ dθD

))
e

2dθ
σ2

(Wa−w),

which goes to 0 as |va − vb|+ |Wa −Wb| → 0.

Lemma 5 Consider Gv,W defined in Lemma 4 for a given W ≥ k̂me and β ≤ 0. Then Gv,W (w)
is strictly monotonic and Lipschitz continuous in v for all w.

Proof: Fix W ≥ k̂me, and consider va > vb. Let Ga and Gb denote the solutions of the ODE
defined in Lemma 4 for va and vb, respectively. We will show that Ga(w) < Gb(w) for all w ≥ 0.
We rely on the following two facts:

1. Terminal condition:
Gb(w)−Ga(w) = −β(va − vb) w ≥W
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2. Bounds on G′b(w)−G′a(w) for w ∈ [0,W ]:

G′b(w)−G′a(w) = − 2

σ2

[
(va − vb)− min

k∈[0,w/me]
(∆k(w)− θ(k)Ga(w))− min

k∈[0,w/me]
(∆k(w)− θ(k)Gb(w))

]
where recall that ∆k(w) = w

m + k
(
1− me

m

)
. Under the assumption Ga(w) ≤ Gb(w), from

Lemma 6:

− 2

σ
[(va − vb) + dθ(Gb(w)−Ga(w))] ≤ G′b(w)−G′a(w) ≤ − 2

σ2
[(va − vb)− dθ (Gb(w)−Ga(w))]

(95)

Combining these two facts, we get for any w ∈ [0,W ]

(va − vb)
[
−β +

1

dθ

(
1− e−

2dθW

σ2

)]
≤ Gb(w)−Ga(w) ≤ (va − vb)

[
−β +

1

dθ

(
e

2dθW

σ2 − 1

)]
(96)

Lemma 6 Let x1 = arg minx∈[u,v] f1(x) and x2 = arg minx∈[u,v] f2(x). Then,

|f1(x1)− f2(x2)| ≤ sup
x∈[u,v]

|f1(x)− f2(x)|

Proof: Proof Since f1(x1) ≤ f1(x2) and f2(x2) ≤ f2(x1),

f1(x1)− f2(x1) ≤ f1(x1)− f2(x2) ≤ f1(x2)− f2(x2)

and therefore, |f1(x1)− f2(x2)| ≤ supx∈[u,v] |f1(x)− f2(x)|.

D.2 Proofs of Results in Section 4

Proof of Proposition 3: We should point out that the monotonicity of the value function is
not immediate because under the optimal policy k∗(·), the state-dependent cost function ∆k∗(w)
need not be monotonic in w. If it were, a simple sample path coupling argument could be used to
deduce the monotonicity of the discounted value function by considering initial workloads w1 ≤ w2.

Let k∗γ(·) be the optimal policy minimizing expected discounted cost, and Vγ(w) be the correspond-
ing value function. Consider w1 ≤ w2. We will create an alternate control policy π1 when the
initial workload is w1, and denote the corresponding expected discounted cost by ṽ1. We will then
show that ṽ1 ≤ Vγ(w2) (in fact, our construction involves stochastic coupling and implies that
the discounted reward starting with w1 and using π1 is stochastically smaller than the discounted
reward starting with w2 and using k∗γ(·)).
Construction of π1: We simulate two independent systems in parallel: system 1 with initial workload
W1(0) = w1 under control policy π1 (which we will describe shortly); and system 2 with initial
workload W2(0) = w2 under the optimal control policy k∗γ(w). The control at time t under π1 is
chosen to be

kπ1(t) = arg min
k∈[0,W1(t)/me]

W1(t)

m
+ k(1−me/m)

for t ∈ [0, τ ], where τ
.
= min{s ≥ 0 : W1(s) = W2(s)} is the coupling time of the two systems. That

is, τ is the first time the workloads of the two coupled processes W1 and W2 coincide. For t ≥ τ ,
kπ1(t) = k∗γ(W1(t)).
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It is easy to see that since W1 and W2 have continuous sample paths, W1(t) ≤ W2(t) for t ≤ τ .
Due to the choice of kπ1 , this further implies that

min
k∈[0,W1(t)/me]

(
W1(t)

m
+ k

(
1− me

m

))
= min

{
W1(t)

m
,
W1(t)

me

}
≤ min

{
W2(t)

m
,
W2(t)

me

}
≤ W2(t)

m
+ k∗γ(W2(t))

(
1− me

m

)
.

For t ≥ τ , W1(t) is stochastically equal to W2(t). Therefore, the discounted cost of π1 (with initial
workload w1) is stochastically smaller than the discounted cost of k∗γ (with initial workload w2).
This implies ṽ1 ≤ Vγ(w2), but Vγ(w1) ≤ ṽ1 (since Vγ(w1) is the optimal expected discounted cost).
Therefore, Vγ(w1) ≤ Vγ(w2) when w1 ≤ w2.

Since (Vγ(w2)− Vγ(w1)) ≥ 0 for all γ, this also holds as γ ↓ 0.

Note : The only facts we relied on to argue monotonicity were (i) continuity of sample paths,
and (ii) the cost of the cheapest action available in each state is monotonic in w. These appear to
be weaker than the conditions typically used in the literature where the set of available actions is
assumed to be independent of the state. Further, the cost is assumed to be non-decreasing in the
state variable for each action.
We now provide the proofs of Proposition 4 and 5 for the analysis of our algorithms.

Proof of Proposition 4: It is easy to see that if the average cost of the optimal diffusion
control formulation for the Sd-LPS system with a fluid continuation workload W is v and the value
function gradient is Gv(0), then (43) defines the optimal control, and (44) defines the ODE for Gv
with initial condition Gv(0) = 0 (since the process reflects at w = 0, see [33]). We now show that
for any v satisfyin v∗ < v ≤ vf (0), it is the average cost of some optimal fluid continuation policy.

We first observe that for each 0 ≤ W < ∞, there is a unique v such that v = vf (W ). Further,
vf (W ) is continuous in W . To see this consider an arbitrary pair W, v and solve the following ODE{

v =
{
w
m + k

(
1− me

m

)
− θ(kf (w))Gv,W (w)

}
+ σ2

2 G
′
v,W (w) w ∈ [W,max{W, k̂me}]

v = mink∈[0,w/me]

{
w
m + k

(
1− me

m

)
− θ(k)Gv,W (w)

}
+ σ2

2 G
′
v,W (w) w ≤ min{W, k̂me}

(97)
backwards with terminal condition

Gv,W (max{W, k̂me}) =

(
k̂(1−me/m) +

σ2

2mθ̂

)
1

θ̂
+

max{W, k̂me}
mθ̂

.

Note that this is the same ODE as (44) but we may not have Gv,W (0) = 0). Lemma 5 then shows
that Gv,W (0) is strictly monotonic and continuous in v. Therefore, for each W , there exists a
unique v∗(W ) such that Gv∗(W ),W (0) = 0 for the ODE and terminal conditions above. Further,
Lipschitz continuity and Lemma 4 imply that the map v∗(W ) is continuous. From the foregoing
discussion, we see that v∗(W ) denotes the cost of the optimal finite buffer policy with finite buffer
W , which we call vf (W ).

Next, it is easy to see that for W1 ≤W2, vf (W1) ≥ vf (W2). Combined with v∗ = vf (∞), this gives
us that for each v∗ < v ≤ vf (0), there is a unique W such that v = vf (W ).

40



we will next argue that W (v) = O
(

log 1
v∗−v

)
(and hence also finite). We will instead prove the

following equivalent result: let v∗W denote the average cost of the optimal fluid continuation policy
with fluid continuation point W . Then (v∗− v∗W ) = O(e−βW ) as W →∞ for some constant β > 0.

Intuitively, the service rate of the optimal control must asymptotically approach θ̂ as the backlog
builds up, and hence the distribution of the workload (and therefore number of jobs in the system)
should decay at an exponential rate. Therefore, the loss from truncating the optimal control at
workload W and using the fluid continuation policy should also be O(e−βW ) for some constant
β > 0.

The proof will proceed in a few steps:
Step 1: Define

T (W )
.
=

∫ W

0
θ(k∗(w))dw,

where k∗(·) is the optimal control. Then as W → ∞, T (W ) = Θ(W ). That is, the integral of the
drift over the interval [0,W ] for the optimal control k∗(·) must asymptotically grow linearly in W .

Proof: We begin by rewriting the HJB equation for G∗(w)

σ2

2
(G∗)′(w) = v∗ − min

k∈[0,w/me]
(∆k(w)− θ(k)G∗(w))

≤ v∗ − w

m ∨me
+ θ(k∗(w))G∗(w).

Take the integration∫ W

w=0

σ2

2
(G∗)′(w)dw ≤W · v∗ − W 2

2(m ∨me)
+

(
α+

W

mθ̂

)∫ W

0
θ(k∗(w))dw.

This implies

σ2

2
(G∗(W )−G∗(0)) ≤W · v∗ − W 2

2(m ∨me)
+

(
α+

W

mθ̂

)
T (W ).

The left-hand side of the above inequality is at least 0 since G∗(W ) ≥ 0 and G∗(0) = 0. The
first term on the right-hand side grows linearly in W . The second term grows as Θ(W 2). If
T (W ) = o(W ) then the right-hand side becomes negative for W large enough – a contradiction.
Therefore, T (W ) must grow at least linearly. By our assumptions, θ(w) ≤ θ̂ < ∞. Therefore,
T (W ) = Θ(W ).
Step 2: Denote the distribution function of the workload under control k∗ by F , the preceding
step implies

F (W ) = O(e−βW )

for some positive constant β > 0. That is, the density of workload under the optimal control falls
exponentially.

Proof: The density function is given by

f(W ) = κe
−

∫W
0

θ(k∗(w))

σ2/2 dw

= κe
−T (W )

σ2/2 ,
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where κ is the normalization constant. Since T (W ) = Θ(W ) by the preceding step, F (W ) =
O(e−βW ) for some β > 0.
Step 3: Consider the following control policy, parameterized by continuattion point W where we
will assume W ≥ k̂me:

k̃W (w) =

{
k∗(w) w ≤W,
kf (w) = k̂ w > W.

That is, we create a fluid continuation control with prefix k∗(w) for w ≤ W . This results in a
suboptimal control in the set FW . If we denote the average cost of this control as ṽW , and the
average cost of the optimal fluid continuation policy in FW as vf (W ), then

v∗ ≤ vf (W ) ≤ ṽW .

However, since the workload density decays exponentially under control k∗(·) and θ(k̂) > 0, (ṽW −
v∗) = O(e−βW ), and hence (vf (W )− v∗) = O(e−βW ).

Proof of Proposition 5: Recall the Newton-Raphson algorithm from Algorithm 1: We first pick
a large enough value of workload W ≥ k̂me (which is not changed during subsequent iterations).
The goal of the Newton-Raphson algorithm then is to find the average cost of the optimal dynamic
policy under the restriction that the control for w ≥W is the fluid control k̂. With vn as our guess
in the nth iteration, we backwards evolve the ODEs:

vn = min
k∈[0,w/me]

[w
m

+ k
(

1− me

m

)
− θ(k)Gvn(w)

]
+
σ2

2
G′vn(w) (98)

1 = −θ(kvn(w))gvn(w) +
σ2

2
g′vn(w) (99)

for w ∈ [0,W ] with (terminal) boundary conditions:

Gvn(W ) =

(
k̂
(

1− me

m

)
− vn +

σ2

2θ̂

)
1

θ̂
+

1

mθ̂
W (100)

gvn(W ) = −1

θ̂
(101)

Here kvn(w) denotes the policy obtained while solving the ODE for Gvn .

The updated guess for the (n+ 1)st iteration is

vn+1 = vn −
Gvn(0)

gvn(0)
.

We develop our proof of the proposition in several steps.

Step 1 : vn ≥ vf (W ) for n ≥ 1

Proof: Let G̃v(w) (parameterized by v, w) be given by the ODE

v =
w

m
+ kvn(w)

(
1− me

m

)
− θ(kvn(w))G̃v(w) +

σ2

2
G̃′v(w)

for w ∈ [0,W ] with boundary condition

G̃v(W ) =

(
k̂
(

1− me

m

)
− v +

σ2

2θ̂

)
1

θ̂
+

1

mθ̂
W
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This is essentially the same ODE as (98) but with the min operator replaced by the fixed policy
kvn . The first observation is that G̃v(0) is a linear function of v, and G̃vn(w) = Gvn(w) for all
w ∈ [0,W ]. Further, denoting

g̃v(w) =
d

dv
G̃v(w)

it is easy to see that g̃v(w) = gvn(w) . Therefore,

vn+1 = vn −
Gvn(0)

gvn(0)
= vn −

G̃vn(0)

g̃vn(0)

Since G̃v(w) is a linear function in v for all w, the Newton-Raphson update for G̃v(0) directly yields
that value of v for which G̃v(0) = 0. But this must be the average cost of policy kvn . Therefore,
vn+1 is in fact the average cost of policy kvn . Since kvn is a feasible policy in the set FW , its average
cost must be no less than vf (W ) and hence all the iterates {v1, v2, . . .} produced are larger than
vf (W ).

Step 2: The iterates for average cost {v1, v2, . . .} form a strictly decreasing sequence.

Proof: For this, we will show that Gv(0) is monotonically decreasing and Lipschitz continuous
in v with derivative bounded away from 0. This would imply that for v > vf (W ), Gv(0) < 0, as
well as gv(0) < 0, and hence v1 > v2 > . . . > vf (W ).

Consider va > vb, and let Ga, ga, ka and Gb, gb, kb represent the solution of (98)-(101) and the
optimal controls for va and vb, respectively. Our goal is to show Ga(w) < Gb(w) for all w ≥ 0. We
rely on the following two facts:

1. Terminal condition:

Gb(w)−Ga(w) =
a− b
θ̂

w ≥W

2. Bounds on G′b(w)−G′a(w) for w ∈ [0,W ]: 1

G′b(w)−G′a(w) = − 2

σ2

[
(va − vb)− min

k∈[0,w/me]
(∆k(w)− θ(k)Ga(w))− min

k∈[0,w/me]
(∆k(w)− θ(k)Gb(w))

]
where recall that ∆k(w) = w

m+k
(
1− me

m

)
. By the assumption Ga(w) ≤ Gb(w) and Lemma 6,

− 2

σ
[(va − vb) + dθ(Gb(w)−Ga(w))] ≤ G′b(w)−G′a(w) ≤ − 2

σ2
[(va − vb)− dθ (Gb(w)−Ga(w))] .

Combining these two facts, we get

(va − vb)
[

1

θ̂
+

1

dθ

(
1− e−

2dθW

σ2

)]
≤ Gb(0)−Ga(0) ≤ (va − vb)

[
1

θ̂
+

1

dθ

(
e

2dθW

σ2 − 1

)]
. (102)

Thus we have proved that Gv(0) is monotonically decreasing in v and therefore the Newton-Raphson
iterates will form a monotonically decreasing sequence. Further, Gv(w) is Lipschitz continuous in
v for all w, and therefore its derivative with respect to v exists almost everywhere, and according
to the first inequality of (102) this derivative is bounded away from 0.

1We use primes to denote derivatives with respect to w. Derivatives with respect to v are denoted with ∂
∂v

notation.
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The properties proved so far are sufficient to prove that the Newton-Raphson algorithm converges
to the optimal vf (W ), and the convergence rate is at least linear. It is also true that the second
derivative of Gv(0) with respect to v is finite in some neighborhood of vf (W ), and hence the
Newton-Raphson iterates converge quadratically to vf (W ) – but we omit this argument.
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