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Abstract We investigate steady state properties of limited processor sharing queues
in heavy traffic. Our analysis builds on previously obtained process limit theorems,
and requires the interchange of steady state and heavy traffic limits, which are estab-
lished by a coupling argument. The limit theorems yield explicit approximations of
the steady state queue length and response time distribution in heavy traffic, of which
the quality is supported by simulation experiments.
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1 Introduction

We consider the limited processor sharing (LPS) queue which is a generalization of
the processor sharing (PS) queue. As inferred by the name, we limit the number of
jobs that can share the server at any time by K ≥ 1, instead of letting all the jobs
share the server. The server is shared equally by those jobs in service, i.e. at any time
each job in service is processed at a rate that is the reciprocal of the number of jobs in
service. An arriving job will immediately enter the server and start receiving service
if there are less than K jobs in the server when it arrives; otherwise it will wait in the
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buffer. When the number of jobs in the server drops from K to K − 1, the server will
immediately admit the longest waiting job from the buffer if there is any. A job will
leave the system immediately after the server has fulfilled its service requirement.
This is quite a general model since letting K = ∞ makes the system a PS queue and
taking K = 1 reduces the system to a first-come-first-serve (FCFS) queue.

The PS model has been widely used in the analysis of computer systems, network
servers and data transmission over the Internet. The PS discipline can be viewed
as an idealization of time-sharing protocols in computer systems, as described in
[17] and [20]. The advantage is that a big job will not block the whole system as
in a FCFS queue. However, allowing too many jobs to time-share at once can lead
to significant overhead (due to switching), hence reduce overall performance. This
point has already been observed in early papers on operating systems [4, 6], as well
as in more recent studies on Web server design [7, 16], and databases [15, 21]. So
in several applications, a sharing limit is normally imposed, which results in the LPS
model.

Despite its wide range of applications, there are only a few studies on the LPS
queue. Avi-Itzhak and Halfin [2] propose an approximation for the mean response
time assuming Poisson arrivals. A computational analysis based on matrix geometric
methods is performed in Zhang and Lipsky [23, 24]. Some stochastic ordering results
are derived in Nuyens and van der Weij [19]. Recently, Zhang, Dai and Zwart [25, 26]
studied the stochastic processes underlying the LPS queue in the heavy traffic regime,
an asymptotic regime where the traffic intensity converges to 1. The study was carried
in a general setting, allowing the inter-arrival and service times to have general distri-
butions. Since the exact performance analysis of the LPS queue seems not tractable,
we are interested in obtaining approximations for the performance characteristics of
the system.

To give a proper description of the system dynamics, it is necessary to use a
measure-valued state descriptor: we need finite Borel measures on R+ = (0,∞) to
describe the system. At any time t ≥ 0, we record all the remaining service times us-
ing a measure Z(t). For any Borel set B ⊂ R+, Z(t)(B) indicates the number of jobs
in server with remaining service time belonging to B at that time. Similarly, we use a
measure Q(t) to describe the state at the buffer. At time t ≥ 0, Q(t)(B) indicates the
number of jobs in buffer with job size belonging to B . The descriptor (Q(·), Z(·))
contains a wealth of information; almost all the usual performance processes (such as
workload and queue length) can be recovered from it. More details will be discussed
when we give a detailed model description in Sect. 2. In fact, the framework of using
measure-valued process has been successfully applied to study models where multi-
ple jobs are processed at the same time at the process level. Existing works include
Gromoll, Puha and Williams [12], Gromoll and Kruk [11] and Gromoll, Robert and
Zwart [13] etc. Zhang, Dai and Zwart [25] use the framework to obtain the diffu-
sion limit of the LPS queue, i.e. the limit of a sequence of diffusion scaled processes
(Q̂r (·), Ẑ r (·)) (the scaling is defined in (3.1)) as r → ∞.

In this paper, we use the measure-valued framework to study the steady state limit
of the LPS queue. The measure-valued process is still regenerative, and will converge
weakly as t → ∞ to a steady state. However, no explicit solution for the stationary
distribution seems available. On the other hand, the diffusion limit established in
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Fig. 1 The interchange of heavy traffic and steady state limits

Zhang, Dai and Zwart [25], which is denoted by (Q∗(·), Z ∗(·)) is tractable and its
steady state limit (Q∗(∞), Z ∗(∞)) is, as we show in this paper, rather explicit, cf.
(4.2).

The first contribution of the current paper is to establish the interchange of heavy
traffic and steady state limit as depicted in Fig. 1. The main idea is to couple the
measure-valued process for the LPS queue with its corresponding stationary version.
This helps to obtain a version of the classical coupling inequality, cf. (4.6). The in-
terchange can be established after we prove the uniform convergence of the upper
bound for the coupling inequality in Lemma 4.1. It should be pointed out that the
framework of using coupling to establish interchange of the heavy traffic and steady
state limit works for all single buffer single server systems in work conserving dis-
ciplines. In particular, for the classical PS queue our technique works as well, and
allows one to recover Grishechkin’s [9] steady state approximation from Gromoll’s
[10] process limit theorem. The main point is that, although we are dealing with a
measure-valued process, the limit interchange problem is relatively tractable since
the workload process is explicitly known. For networks, the interchange is more in-
volved, cf. Budhiraja and Lee [5] and Gamarnik and Zeevi [8]. The idea of inter-
changing limits is also applied in other models, cf. Maulik and Zwart [18].

The validity of the interchange, established in Theorem 4.1, provides the necessary
theoretical support for using the tractable limit (Q∗(∞), Z ∗(∞)) as approximation
of the steady state of a given LPS queue. Section 5 in this paper demonstrates how
to analyze performance quantities such as queue size, delay probability and response
times. As implication of Theorem 4.1, Corollaries 5.2 and 5.3 analyze the perfor-
mance quantities such as queue size, delay probability and response time. Along the
way, Proposition 5.1 states a process limit for the time-dependent virtual response
time process. Note that the analysis of (virtual) response times in heavy traffic is
non-trivial, as in the standard PS queue [11].

From a practical perspective, the main insights of this paper are the approximation
formulas (6.1)–(6.4) for queue size, delay probability and response times. In particu-
lar, our results show that the following two-moment approximation of the queue size
E[X] is accurate in heavy traffic:

E[X] ≈ c2
a + c2

s

1 + c2
s

ρ

1 − ρ
(1 − dp) + c2

a + c2
s

2

ρ

1 − ρ
dp, (1.1)
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dp ≈ ρ

1+c2
s

c2
a+c2

s
K

. (1.2)

In the above display, c2
a and c2

s are squared coefficients of variation for the inter-
arrival time and service time, ρ is the traffic intensity and dp is the probability that
a customer cannot enter service immediately upon arrival. Interestingly, our approx-
imation is consistent with that of Avi-Itzhak and Halfin [2] if the arrival process is
Poisson.

The paper is organized as follows: In Sect. 2, we present the mathematical model
and study the steady state limit of the LPS queue. A brief review of heavy traffic limit
theorems that will be used in this paper is given in Sect. 3. Section 4 establishes the
validity of interchanging the heavy traffic and steady state limit of the LPS queue.
The interchange provides the foundation for performance analysis in Sect. 5. Finally,
based on the previous analysis, we obtain some approximation formulas for various
performance quantities in Sect. 6, where some simulation results are also presented
to show the quality of the approximation formulas.

2 The LPS queue and its steady state limit

We consider a G/G/1 queue operating under the LPS policy, with the sharing limit
equal to K . Let Q(t), Z(t), and X(t) denote the number of jobs in the buffer, number
of jobs in service, and the total number of jobs in the system at time t , respectively.
Thus,

X(t) = Q(t) + Z(t), t ≥ 0.

The system is allowed to be non-empty initially, i.e. X(0) > 0. We index jobs by
i = −X(0) + 1,−X(0) + 2, . . . ,0,1, . . . . The first X(0) jobs are initially in the sys-
tem, with jobs i = −X(0) + 1, . . . ,−Q(0) in service and jobs i = −Q(0) + 1, . . . ,0
waiting in the buffer. Jobs arrived after time 0 are indexed by i = 1,2, . . . . Let E(t)

denote the number of jobs that arrive to the system during time interval (0, t], for all
t ≥ 0. According to the policy, a job may have to wait for a certain amount of time
after arrival to get service. Let wi denote the waiting time, and Ui denote the arrival
time of the ith job for all i > −X(0). By convention, Ui = 0 for i ≤ 0, and wi = 0
for i ≤ −Q(0). The quantity

τi = Ui + wi, i > −X(0),

can be viewed as the time that the ith job starts service. We use vi to denote the
job size of the ith job for all i > −Q(0). We assume that E(·) is a renewal process
and {vi}∞i=−∞ is a sequence of i.i.d. random variables with distribution F , and the
sequence is independent of the arrival process E(·). For jobs with index −X(0) <

i ≤ −Q(0), i.e. the first Z(0) jobs that are initially in service, we use ṽi to denote the
job sizes of these jobs. They are not assumed to be i.i.d. We call {E(·), {vi}∞i=1} the
stochastic primitives of the system, and {Z(0),Q(0), {vi}0

i=−∞, {ṽi}0
i=−∞} the initial

conditions of the system.
As in [25, 26], we introduce a measure-valued state descriptor (Q(·), Z(·)), which

is rich enough to describe the evolution of the system with given initial conditions and
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stochastic primitives. For any Borel set A ⊂ R+, Q(t)(A) denotes the total number
of jobs in buffer whose job size belongs to A; and Z(t)(A) denotes the total number
of jobs in service whose residual job size belongs to set A. Denote M the space of
all non-negative finite Borel measures on [0,∞). For any ν1, ν2 ∈ M, let d[ν1, ν2]
denote the Prohorov metric between the two measures (cf. p. 72, [3]). For any Borel
measurable function f : R+ → R, the integration of this function with respect to
any measure ν0 ∈ M is denoted by 〈f, ν0〉. It is clear that we have the following
relationship:

Q(t) = 〈
1, Q(t)

〉
, Z(t) = 〈

1, Z(t)
〉
.

Let λ be the rate of the arrival process E(·). Denote ν the probability measure of
the service time (i.e. ν is the probability measure associated with the distribution F , it
is clear that ν ∈ M). The traffic intensity of the LPS queue is defined as ρ = λ〈χ,ν〉.

Define the cumulative service amount up to time t by

S(t) =
∫ t

0
ψ

(
Z(τ)

)
dτ, (2.1)

where ψ(x) = 1/x if x > 0 and ψ(x) = 0 if x = 0. A job will have received a cumu-
lative amount of processing time

S(s, t) =
∫ t

s

ψ
(
Z(τ)

)
dτ

during time interval [s, t] if it is in service in this time period. Let

B(t) = E(t) − Q(t). (2.2)

Note that at time t ≥ 0, B(t) is the index of the last job who has entered into service
by time t . Thus

B(s, t) = B(t) − B(s) (2.3)

represents the number of jobs which have left the buffer and entered the server during
time interval (s, t]. Using the notation introduced in this section, the state descriptor
can be written as

Q(t)(A) =
E(t)∑

i=B(t)+1

δvi
(A), (2.4)

Z(t)(A) =
−Q(0)∑

i=−X(0)+1

δṽi

(
A + S(t)

) +
B(t)∑

i=−Q(0)+1

δvi

(
A + S(τi, t)

)
, (2.5)

for any Borel set A ⊂ R+, where δa(A) denotes the Dirac measure of point a on R

and A + y = {a + y : a ∈ A}. Due to the LPS policy, the sharing limit K must be
enforced at any time t ,

Q(t) = (
X(t) − K

)+
, (2.6)
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Z(t) = (
X(t) ∧ K

)
. (2.7)

We call (2.4) and (2.5) the stochastic dynamic equations and (2.6) and (2.7) the policy
constraints.

It is clear that the measure-valued process (Q(·), Z(·)) is a regenerative process.
Using the measure-valued descriptor, we can recover the workload W(t) at time t > 0
by

W(t) = 〈
χ, Q(t) + Z(t)

〉
, (2.8)

where χ denotes the identity function on R. Let R0 = 0 and define the regenerative
points Rn, n ≥ 1, as the following:

Rn = inf
{
t > Rn−1 : W(t−) = 0 and W(t) > 0

}
. (2.9)

The regeneration points are those time epochs that the workload jumps from 0. It is
clear that the jump happens because of the new arrival. By (2.8), (Q(t), Z(t)) = (0,0)

if and only if W(t) = 0 for any t ≥ 0. So the process starts from empty at time Rn

with a new job just arriving at Rn. Thus, the evolution of the process from time Rn

onwards does not depend on any information of the process before that time.
Note that the workload process of a single buffer single server system is the same

for all non-idling policies. It is well known that the workload process (for any non-
idling policy) is a delayed regenerative process if W(0) > 0, and the above definition
of Rn is one way to define the regenerative points. By Proposition 3.1 in Chap. X of
[1], the mean of the regenerative cycles Yi ’s (Yi = Ri − Ri−1) with i > 1 is finite if
ρ < 1. By Proposition 3.2 in Chap. X of [1], the distribution of them is non-lattice if
the service time distribution F is non-lattice.

In summary, the process (Q(·), Z(·)) can be modeled as a delayed regenerative
process. Denote E0(·) = E(·|(Q(0), Z(0)) = (0, δv1),U1 = 0), that is, the expecta-
tion operator given that the first job arrives to an empty system at time 0. We write
Y = Y1 for the length of the first cycle. Let M × M denote the Cartesian product.
There are a number of ways to define the metric on the product space. For conve-
nience, we define the metric to be the maximum of the Prohorov metric between
each component, so that the product space is still a Polish space. Now, we define a
distribution π on the product space by

π(A) = 1

E0Y
E0

∫ Y

0
1{(Q(s),Z (s))∈A} ds,

for any Borel set A ∈ M × M. The following result about the steady state distribution
of the LPS queue follows directly from Theorem 1.2 in Chap. X of [1].

Proposition 2.1 (Stochastic stability of LPS) Suppose that the traffic intensity ρ < 1
and the service time distribution F is non-lattice. The above defined distribution π is
the unique stationary distribution for the measure-valued process (Q(·), Z(·)). The
distribution of (Q(t), Z(t)) converges to π as t → ∞.

The above theorem establishes the convergence of the regenerative process to
the steady state limit, which has the stationary distribution π . In fact, there exists
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a stationary version (Qπ (·), Zπ (·)) of the regenerative process (see [22]) such that
the marginal distribution at any time t ≥ 0 is π . The stationarity of the process
(Qπ (·), Zπ (·)) will help to obtain a coupling inequality in Sect. 4.

3 Process level limit theorems

Process level limit theorems for the LPS queue are developed in [25]. Some of the
results there will be used throughout this paper. For completeness and reader’s conve-
nience, we briefly summarize the necessary definitions, results and notations in this
section.

We consider a family of limited processor sharing queues indexed by r , where
r increases to ∞ through a sequence in (0,∞). Each queueing model is defined
in the same way as in Sect. 2, and each of them is defined on a probability space
(
, F ,P). To distinguish models with different indices, quantities of the r th model
are accompanied by superscript r .

Our results concern the asymptotic behavior of the descriptor under the diffusion
scaling, which is defined by

(
Q̂r (t), Ẑ r (t)

) =
(

1

r
Qr

(
r2t

)
,

1

r
Z r

(
r2t

))
for all t ≥ 0, (3.1)

in the heavy traffic regime. Similarly as in Sect. 2, define the traffic intensity of the
r th system by ρr = λr 〈χ,νr 〉, where λr and νr denote the arrival rate and service
time measure of the r th system, respectively. The heavy traffic regime is a parameter
regime specified by the following conditions:

lim
r→∞ r

(
1 − ρr

) = θ, (3.2)

lim
r→∞Kr/r = K, (3.3)

for some positive constants θ,K . To establish the heavy traffic limit, we also need
the following regularity conditions, which are quite general and standard. We assume
that the arrival processes satisfy

Er(r2·) − λrr2·
r

⇒ E∗(·) as r → ∞, (3.4)

where

lim
r→∞λr = λ > 0, (3.5)

and E∗(·) is a Brownian motion with drift 0 and variance λc2
a . And the measures of

job sizes satisfy that, as r → ∞,

d
[
νr , ν

] → 0, (3.6)
〈
χ2+2p, νr

〉 → 〈
χ2+2p, ν

〉
for some p > 0, (3.7)
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where the probability measure ν satisfies

ν has no atoms. (3.8)

Let β = 〈χ,ν〉 be the mean and c2
s = 〈χ2,ν〉−β2

β2 be the squared coefficient of variation
(SCV) of the job size distribution ν. Also, the following initial condition will be
assumed:

(
Q̂r (0), Ẑ r (0)

) ⇒ (
ξ∗,μ∗), (3.9)

〈
χ1+p, Q̂r (0) + Ẑ r (0)

〉 ⇒ 〈
χ1+p, ξ∗ + μ∗〉, (3.10)

as r → ∞, where p is the same as in (3.7), (ξ∗,μ∗) ∈ I and

μ∗ has no atoms, (3.11)

where I denotes the set of all (ξ,μ) ∈ M × M that satisfies

ξ = (〈1, ξ + μ〉 − K
)+

ν,

〈1,μ〉 = 〈1, ξ + μ〉 ∧ K.

Roughly speaking, all initial states must be consistent with the limited sharing policy
and their initial waiting jobs have the same service time distribution as arriving jobs.

The following proposition is a well-known heavy traffic approximation for the
workload process of a single queue operated under a non-idling policy, including the
LPS policy. Readers are referred to [10] for a proof.

Proposition 3.1 Assume (3.2), (3.4)–(3.7), (3.9) and (3.10). The sequence of diffu-
sion scaled workload processes

Ŵ r (·) ⇒ W ∗(·) as r → ∞,

where W ∗(·) is a reflected Brownian motion with drift −θ , variance β(c2
a + c2

s ) and
initial value w∗ = 〈χ, ξ∗ + μ∗〉.

For the heavy traffic limit of the measure-valued process, we need the following
definition of the lifting map �K,ν : R+ → M × M.

Definition 3.1 Denote βe = 〈χ,νe〉, where νe is the equilibrium measure of ν, i.e.
νe([0, x]) = 1

β

∫ x

0 ν((y,∞)) dy for all x ≥ 0. Let �K,ν : R+ → M × M be the lifting
map (associated with the probability measure ν and constant K) given by

�K,νw =
(

(w − Kβe)
+

β
ν,

w ∧ Kβe

βe

νe

)
for w ∈ R+.

Theorem 3.1 Assume (3.2)–(3.11). If the limit (ξ∗,μ∗) in (3.9) satisfies

(
ξ∗,μ∗) = �K,νw

∗, (3.12)
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then the sequence of diffusion scaled state descriptors

(
Q̂r (·), Ẑ r (·)) ⇒ �K,νW

∗(·) as r → ∞,

where W ∗(·) is the reflected Brownian motion in Proposition 3.1.

4 Validity of heavy traffic steady state approximations

As we have seen in Theorem 3.1, the heavy traffic limiting process (Q∗(·), Z ∗(·)) is
the image of the workload process W ∗(·) under the continuous mapping �K,ν . The
limit is in the sense of weak convergence of probability measures, so the limiting
process may not be in the same probability space where each process with index r is
defined. Denote (
∗, F ∗,P

∗) the probability space where the weak limit is defined. It
is well known that the marginal distribution W ∗(t) of the reflected Brownian motion
W ∗(·) converges weakly to that of the steady state random variable W ∗(∞), which
has the stationary distribution

P
∗(W ∗(∞) > x

) = exp

( −2θx

β(c2
a + c2

s )

)
. (4.1)

By the continuous mapping theorem, the measure-valued process (Q∗(·), Z ∗(·)) con-
verges weakly to �K,νW

∗(∞). Denote the distribution of �K,νW
∗(∞) by π∗. For

any open set B ∈ M × M,

π∗(B) = P
∗(�K,νW

∗(∞) ∈ B
) = P

∗(W ∗(∞) ∈ �−1
K,νB

)
. (4.2)

On the other hand, for each r , since the traffic intensity ρr < 1 and the service
time distribution is non-lattice, the diffusion scaled process (Q̂r (·), Ẑ r (·)) is a re-
generative process. By Proposition 2.1, (Q̂r (t), Ẑ r (t)) converges to the steady state
(Q̂r (∞), Ẑ r (∞)) which has distribution π̂ r as t → ∞.

Now, the question is: Does the stationary distribution π̂ r converge to π∗, which
is obtained by first taking heavy traffic limit and then steady state limit? We have the
following theorem, which validates the interchange of steady state limit and heavy
traffic limit.

Theorem 4.1 Assume (3.2)–(3.12). The sequence {π̂ r } converges weakly to π∗.

The major steps of proving the above theorem are, first, obtaining inequality (4.6)
via coupling, and second, establishing the uniform convergence on the right-hand
side of (4.6) (i.e. the uniform bound of the coupling time) in Lemma 4.1. The proof
of Theorem 4.1 will be presented at the end of this section.

Following the discussion in Sect. 2, we can construct a stationary version of the
regenerative process (Q̂r

π̂ r (·), Ẑ r
π̂ r (·)) such that at any time t ≥ 0, it has distribution

π̂ r , i.e.

P
((

Q̂r
π̂ r (t), Ẑ r

π̂ r (t)
) ∈ B

) = π̂ r (B), (4.3)
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for any open set B ∈ M × M. Let Ŵ r
π̂r (·) = 〈χ, Q̂r

π̂ r (·) + Ẑ r
π̂ r (·)〉 denote the corre-

sponding workload process.
Let us now couple the stationary process (Q̂r

π̂ r (·), Ẑ r
π̂ r (·)) with the correspond-

ing process (Q̂r
0(·), Ẑ r

0(·)) which starts with a zero initial condition. In other words,

both (Q̂r
π̂ r (·), Ẑ r

π̂ r (·)) and (Q̂r
0(·), Ẑ r

0(·)) are driven by the same stochastic primitives

(Êr (·), {vr
i }i≥1). The only difference is the initial condition. Note that the stationar-

ity assumption forces the renewal arrival process to be a stationary delayed renewal
process. Define

t̂ rc = inf
{
t ≥ 0 : (Q̂r

π̂ r (t), Ẑ r
π̂ r (t)

) = (0,0)
}
. (4.4)

Note that the workload of (Q̂r
0(·), Ẑ r

0(·)) starts at 0, which is less than or equal to

Ŵ r
π̂r (0). Since the LPS policy is work conserving, and both processes have the same

stochastic primitives, for any t ≥ 0

(
Q̂r

π̂ r (t), Ẑ r
π̂ r (t)

) = (0,0) implies
(

Q̂r
0(t), Ẑ r

0(t)
) = (0,0). (4.5)

Since both systems are driven by the same arrival process, (Q̂r
π̂ r (t), Ẑ r

π̂ r (t)) and

(Q̂r
0(t), Ẑ r

0(t)) are identical for all t ≥ tc. It then follows from Corollary 2.2 in
Chap. VII of [1] that

∣∣P
((

Q̂r
0(t), Ẑ r

0(t)
) ∈ B

) − π̂ r (B)
∣∣ ≤ P

(
t̂ rc > t

)
for all t ≥ 0. (4.6)

We now show that the probability P(t̂ rc > t) converges to 0 as t → ∞ uniformly in r .

Lemma 4.1 If (3.2)–(3.8) hold, then

sup
r

P
(
t̂ rc > t

) → 0 as t → ∞. (4.7)

Proof Let Ĉr (t) = 1
r

∑Er(r2t)
i=1 vr

i − rt for all t ≥ 0. The summation in the above
denotes the total amount of arrived work (under diffusion scaling) by time t , the
second term −rt denotes the amount of work the server has finished by time t without
idling. So the first time the process (Q̂r

π̂ r (·), Ẑ r
π̂ r (·)) reaches zero is the first time that

Ŵ r
π̂r (0) + Ĉr (t) = 0. By the definition of t̂ rc in (4.4),

t̂ rc = inf
{
t ≥ 0 : Ĉr (t) = −Ŵ r

π̂r (0)
}
.

So for any M > 0,

P
(
t̂ rc > t

) = P
(
Ĉr (s) > −Ŵ r

π̂r (0), for all s ≤ t
)

≤ P
(
Ĉr (t) > −Ŵ r

π̂r (0)
)

≤ P
(
Ĉr (t) > −Ŵ r

π̂r (0),−Ŵ r
π̂r (0) ≥ −M

) + P
(−Ŵ r

π̂r (0) < −M
)

≤ P
(
Ĉr (t) > −M

) + P
(
Ŵ r

π̂r (0) > M
)
.
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Since the regenerative process (Q̂r
π̂ r (·), Ẑ r

π̂ r (·)) is stationary, the corresponding

workload process Ŵ r
π̂r (·) is also stationary. By Corollary 7.5 in Chap. X of [1], the

stationary distribution of the workload converges weakly to an exponential distribu-
tion as r → ∞. This implies that for any ε > 0, there exists M ′ > 0 such that

sup
r

P
(
Ŵ r

π̂r (0) > M
)
< ε for all M ≥ M ′. (4.8)

From now on, we fix a constant M ∈ [M ′,∞). Note that the process Ĉr (·) converges
weakly to a Brownian motion B(·) with drift −θ and variance β(c2

a + c2
s ). This im-

plies that

lim
r

P
(
Ĉr (t) > −M

) = P
(
B(t) > −M

)
,

which goes to zero as t → ∞. So for any constant M , there exists t (M) such that

lim sup
r

P
(
Ĉr (t) > −M

)
< ε/2, for all t ≥ t (M).

This means that there exists r0 > 0 such that for all r ≥ r0,

P
(
Ĉr (t) > −M

)
< ε, for all t ≥ t (M).

For each r < r0, we can choose tr (M) large enough (depending on r) such that

P
(
Ĉr (t) > −M

)
< ε, for all t ≥ tr (M).

Since there are only finitely many of those r’s that are less than r0, let t0(M) =
maxr<r0 tr (M). We now have that

sup
r

P
(
Ĉr (t) > −M

)
< ε, for all t ≥ max

(
t (M), t0(M)

)
. (4.9)

The lemma follows immediately from (4.8) and (4.9). �

Proof of Theorem 4.1 For any closed set B ∈ M × M, we have

π̂ r (B) − π∗(B) ≤ ∣∣π̂ r (B) − P
((

Q̂r
0(t), Ẑ r

0(t)
) ∈ B

)∣∣

+ P
((

Q̂r
0(t), Ẑ r

0(t)
) ∈ B

) − P
∗((Q∗(t), Z ∗(t)

) ∈ B
)

+ P
∗((Q∗(t), Z ∗(t)

) ∈ B
) − π∗(B). (4.10)

By the coupling inequality, the first term on the right-hand side of (4.10) is bounded
by

sup
r

P
(
t̂ rc > t

)
,

which vanishes as t → ∞, as proved in Lemma 4.1. According to the definition of
π∗ and Portmanteau Theorem (cf. Theorem 2.1 in [3]), the lim sup of the third term
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on the right-hand side of (4.10) equals 0 as t → ∞. So for any ε > 0, there exists a
t1 > 0 (may be very large, but still finite) such that

sup
r

P
(
t̂ rc > t1

)
< ε,

P
∗((Q∗(t1), Z ∗(t1)

) ∈ B
) − π∗(B) < ε.

For this fixed t1, by Theorem 3.1 and Portmanteau Theorem, we have that

lim sup
r

P
((

Q̂r
0(t1), Ẑ r

0(t1)
) ∈ B

) ≤ P
∗((Q∗(t1), Z ∗(t1)

) ∈ B
)
.

So there exists r0 such that when r ≥ r0,

P
((

Q̂r
0(t1), Ẑ r

0(t1)
) ∈ B

) − P
∗((Q∗(t1), Z ∗(t1)

) ∈ B
)
< ε.

So we have that for any ε > 0, there exists r0 such that when r ≥ r0,

π̂ r (B) − π∗(B) < 3ε.

This implies that lim supr π̂ r (B) ≤ π∗(B) for any closed set B . The result of the
theorem follows from Portmanteau Theorem. �

5 Performance evaluation

So far, we have obtained results for the measure-valued description of the LPS queue.
We now establish some more concrete results on the queue size, delay probability and
response time.

5.1 Queue length and delay probability

The following result on the diffusion limit for the queue size process follows imme-
diately from Theorem 3.1. The proof can be found in [25].

Corollary 5.1 (Piecewise reflected Brownian motion) Assume (3.2)–(3.10). The se-
quence of diffusion scaled total job size processes X̂r (·) = 〈1, Q̂r (·) + Ẑ r (·)〉 con-
verges in distribution as r → ∞ to X∗(·), where

X∗(t) = (W ∗(t) − Kβe)
+

β
+ W ∗(t) ∧ Kβe

βe

for t ≥ 0,

and W ∗(·) is the reflected Brownian motion as in Proposition 3.1.

In other words, X∗(·) is a reflected Brownian motion with drift −θ
β

and variance
c2
a+c2

s

β
when it is above K , and with drift −θ

βe
and variance β(c2

a+c2
s )

β2
e

when it is below K .
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Define the map f : R+ → R+ by f (w) = 1
β
(w − Kβe)

+ + 1
βe

(w ∧ Kβe) for all
w ∈ R+. It is clear that f (·) is a continuous mapping with inverse

f −1(x) =
{

βex x ≤ K,

βeK + β(x − K) x > K.

By the continuous mapping theorem, X∗(t) converges weakly to the steady state
X∗(∞) = f (W ∗(∞)) as t → ∞, and P(X∗(∞) > x) = P(W ∗(∞) > f −1(x)). By

the definition of the equilibrium distribution, it is easy to see that βe

β
= 1+c2

s

2 . Since
the stationary distribution of the reflected Brownian motion W ∗(·) is explicitly known
as in (4.1), it is easy to compute the distribution of X∗(∞),

P
(
X∗(∞) > x

) =

⎧
⎪⎨

⎪⎩

exp(− (1+c2
s )θ

c2
a+c2

s
x) x ≤ K,

exp(− (1+c2
s )θ

c2
a+c2

s
K − 2θ

c2
a+c2

s
(x − K)) x > K.

(5.1)

Let

d∗
p(∞) = P

(
X∗(∞) > K

) = exp

(
− 1 + c2

s

c2
a + c2

s

θK

)
(5.2)

be the steady state probability that the limiting queue size X∗(·) is above the sharing
level K . As we see, the steady state limit of the heavy traffic limit is so tractable that
the stationary distribution can be explicitly written down. Since we have established
the interchange of steady state limit and heavy traffic limit, the following result is a
direct implication of Theorem 4.1 and the continuous mapping theorem.

Corollary 5.2 If (3.2)–(3.12) hold, then

X̂r (∞) ⇒ X∗(∞),

d̂r
p(∞) → d∗

p(∞),

as r → ∞, where d̂r
p(∞) = P(X̂r (∞) > Kr/r) is the steady state delay probability

for the r th system.

5.2 Response time

Let R(t, v) denote the total time (including both waiting and service times) a job will
stay in the system if it arrives at time t and with job size v. Since at a time t , there
may not be an arrival or the arrival may not have job size v, the quantity R(t, v) is
often referred as the virtual response time. It contains two parts,

R(t, v) = RB(t) + RZ(t, v), (5.3)

where RB(t) is the time that this virtual job spends on waiting in buffer (which does
not depend on its job size) and RZ(t, v) is the service time of this virtual job. Let
WB(·) = 〈χ, Q(·)〉 and WZ(·) = 〈χ, Z(·)〉 denote the workload in buffer and the
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workload in server, respectively. From the time t in which this virtual job enters
the system until it is about to enter service at t + RB(t), the server never idles. So
the workload the server processes during this time period is equal to RB(t). Since the
LPS policy is work conserving, we must have that

WB(t) + WZ(t) = RB(t) + WZ

(
t + RB(t)

)
. (5.4)

It is clear that the service time of this virtual job should satisfy

S
(
t + RB(t), t + RB(t) + RZ(t, v)

) = v. (5.5)

We now study the heavy traffic limit of the diffusion scaled virtual response time
R̂r (t, v) = 1

r
Rr(r2t, v).

Proposition 5.1 (Heavy traffic limit for virtual response time process) Assume (3.2)–
(3.12). For any fixed v ≥ 0, the diffusion scaled virtual waiting time (R̂r

B(·), R̂r
Z(·, v))

converges weakly to (R∗
B(·),R∗

Z(·, v)), where

R∗
B(t) = β

(
X∗(t) − K

)+
, R∗

Z(t, v) = v
(
X∗(t) ∧ K

)
, t ≥ 0. (5.6)

Proof Since Ŵ r
B(·) = 〈χ, Q̂r (·)〉 and Ŵ r

Z(·) = 〈χ, Ẑ r (·)〉, by Theorem 3.1 and the
continuous mapping theorem,

(
Ŵ r

B(·), Ŵ r
Z(·)) ⇒ ((

W ∗(·) − Kβe

)+
,
(
W ∗(·) ∧ Kβe

))
, (5.7)

as r → ∞. The diffusion scaled version of (5.4) can be written as

Ŵ r
B(t) + Ŵ r

Z(t) = R̂r
B(t) + Ŵ r

Z

(
t + 1

r
R̂r

B(t)

)
. (5.8)

It is clear that R̂r
B(t) ≤ Ŵ r (t), which converges to a reflected Brownian motion as

r → ∞. So on any finite interval [0, T ], for any ε > 0 there exists M > 0 such that

lim sup
r→∞

P

(
sup

t∈[0,T ]
R̂r

B(t) > M
)

< ε.

Since Ŵ r
Z(·) converges to W ∗(·) ∧ Kβe , which is almost surely continuous, we have

that

sup
t∈[0,T ]

∣∣∣∣Ŵ
r
Z

(
t + 1

r
M

)
− Ŵ r

Z(t)

∣∣∣∣ ⇒ 0 as r → ∞.

So for any ε > 0,

lim sup
r→∞

P

(
sup

t∈[0,T ]

∣∣∣∣Ŵ
r
Z

(
t + 1

r
R̂r

B(t)

)
− Ŵ r

Z(t)

∣∣∣∣ > ε

)
< ε.

It then follows from (5.8) that

sup
t∈[0,T ]

∣∣R̂r
B(t) − Ŵ r

B(t)
∣∣ ⇒ 0 as r → ∞. (5.9)
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The diffusion scaled version of (5.5) can be written as

Sr
(
r2t + rR̂r

B(t), r2t + rR̂r
B(t) + rR̂r

Z(t, v)
) = v. (5.10)

Due to the sharing level Kr , the processing time of a job with size v has bound

R̂r
Z(t, v) ≤ Kr

r
v,

which is less than Kv + 1 for all large enough r . By Theorem 3.1, the server size
Ẑr (·) converges weakly to (X∗(·) ∧ Kβe) as r → ∞. Again, the limiting process is
almost surely continuous. So

sup
t∈[0,T ]

sup
s≤(Kv+1)/r

∣∣∣∣Ẑ
r

(
t + 1

r
R̂r

B(t) + s

)
− Ẑr (t)

∣∣∣∣ ⇒ 0 as r → ∞.

In other words, the server size will not oscillate much during the whole service time.
Thus

lim sup
r→∞

P

(
sup

t∈[0,T ]
sup

x≤Kv+1

∣∣Sr
(
r2t + rR̂r

B(t), r2t + rR̂r
B(t) + rx

)
Ẑr (t) − x

∣∣ > ε
)

< ε.

It then follows from (5.10) that, for any v ≥ 0,

sup
t∈[0,T ]

∣∣R̂r
Z(t, v) − Ẑr (t)v

∣∣ ⇒ 0 as r → ∞. (5.11)

By Corollary 5.1, as r → ∞,

Ẑr (·) ⇒ (
X∗(·) ∧ K

)
,

where X∗(·) = (W ∗(·)−Kβe)
+

β
+ W ∗(·)∧Kβe

βe
. In fact, this convergence is also a direct

application of Theorem 3.1 and the continuous mapping theorem. So the convergence
of Ẑr (·) holds jointly with the convergence in (5.7). In particular,

(
Ŵ r

B(·), Ẑr (·)) ⇒ (
β
(
X∗(·) − K

)+
,
(
X∗(·) ∧ K

))
as r → ∞. (5.12)

So the joint convergence of R̂r
B(·) and R̂r

Z(·, v) follows immediately from (5.9),
(5.11) and the above convergence. �

From this proposition, we see that the limiting response times are piecewise linear
and continuous functions of the limiting queue size process. It follows from (5.1) and
the continuous mapping theorem that the steady state distributions of the response
times are

P
(
R∗

B(∞) > x
) = exp

(
− (1 + c2

s )θ

c2
a + c2

s

K − 2θ

c2
a + c2

s

x

β

)
, x ≥ 0, (5.13)

P
(
R∗

Z(∞, v) > x
) = exp

(
− (1 + c2

s )θ

c2
a + c2

s

(
x

v
∧ K

))
, x ≥ 0, (5.14)
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P
(
R∗(∞, v) > x

) =

⎧
⎪⎨

⎪⎩

exp(− (1+c2
s )θ

c2
a+c2

s

x
v
), 0 ≤ x ≤ Kv,

exp(− (1+c2
s )θ

c2
a+c2

s
K − 2θ

c2
a+c2

s

x−Kv
β

), x ≥ Kv.
(5.15)

Similarly as in Sect. 5.1, we can obtain the result below as a corollary of Theorem 4.1.
The difference is that the linear and continuous relationship (5.6) only holds for the
heavy traffic limit, not for each r th system, so we cannot apply the continuous map-
ping theorem. However, the coupling inequality (4.6) holds for the response times as
well as the measure-valued process. (The reason is that if two queues are the same,
then the virtual response times will also be the same.) So the following result can
be proved following the same approach as in the proof of Theorem 4.1. We omit the
proof for brevity.

Corollary 5.3 Assume (3.2)–(3.12). For any v ≥ 0,

(
R̂r

B(∞), R̂r
Z(∞, v)

) ⇒ (
R∗

B(∞),R∗
Z(∞, v)

)
,

as r → ∞.

6 Approximations

In this section, we apply our limit theorems to obtain approximations for the steady
state queue length and response time.

6.1 Queue size

Since we have validated the heavy traffic steady state approximation, we can use the
steady state random variable X∗(∞) to approximate the steady state of the diffusion
scaled r th system X̂r (∞). It follows from (5.1) that

E
(
X∗(∞)

) = c2
a + c2

s

1 + c2
s

1

θ

(
1 − d∗

p(∞)
) + c2

a + c2
s

2

1

θ
d∗
p(∞),

where d∗
p(∞) is given in (5.2). According to the heavy traffic conditions (3.2) and

(3.3), 1
r

can be approximately written as 1−ρr

ρr θ
and θK can be approximately written

as 1−ρr

ρr Kr . So we obtain the following approximation for E(Xr(∞)):

E
(
Xr(∞)

) ≈ c2
a + c2

s

1 + c2
s

ρr

1 − ρr

(
1 − dr

p(∞)
) + c2

a + c2
s

2

ρr

1 − ρr
dr
p(∞),

where the delay probability dr
p(∞) could be taken as exp(− 1+c2

s

c2
a+c2

s

1−ρr

ρr Kr). Since
1−ρr

ρr ∼ − lnρr , we prefer to use the asymptotically equivalent description dr
p(∞) =

(ρr)

1+c2
s

c2
a+c2

s
Kr

.
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Fig. 2 A comparison of the approximation formulas with simulation estimates of steady state response
times of the M/G/1 LPS queue. The sharing level K = 15, service time distribution is log-normal with
c2
s = 9 and traffic intensities range from 0.05 to 0.95

In practice, only one system with certain sharing level K and traffic intensity ρ < 1
will be given. So we can drop the index r and obtain the following approximation
formula:

E[X] ≈ c2
a + c2

s

1 + c2
s

ρ

1 − ρ
(1 − dp) + c2

a + c2
s

2

ρ

1 − ρ
dp, (6.1)

dp ≈ ρ

1+c2
s

c2
a+c2

s
K

. (6.2)

The resulting approximation (6.1) reduces to Kingman’s formula for the FCFS queue
when the sharing level K = 1, and the formula in [9] for the PS queue when the
sharing level K = ∞. Although the approximation formulas are derived from heavy
traffic theorems, they are actually explicit if the arrival process is Poisson and either
K = 1 or K = ∞. In addition, the quality of the approximations is actually reasonable
for all traffic intensities, cf. Fig. 2.

The approximation formulas are derived in the context of the G/G/1 LPS queue,
and use the first two moments of inter-arrival time and service time distributions.
Table 1 demonstrates the quality of our approximations for various combinations
of inter-arrival time and service time distributions. As suggested by the formulas,
no matter how we change the combination of distributions, the approximation will
be the same as long as the coefficients of variation c2

a and c2
s (for inter-arrival and

service times, respectively) are fixed. This is also reflected by the numerical results
in Table 1.

6.2 Response time

As for the response time, we can use the steady state R∗
B(∞) and R∗

Z(∞, v) to ap-
proximate the steady state of the diffusion scaled response time of the r th system,
i.e. R̂r

B(∞) and R̂r
Z(∞, v). By (5.13) and (5.14), the following expectations can be

easily computed:

E
[
R∗

B(∞)
] = c2

a + c2
s

2

1

θ
d∗
p(∞)β,
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Table 1 G/G/1 LPS queue. The sharing limit K = 20, traffic intensity ρ = 0.9. The squared coefficient
of variation of inter-arrival time and service time distribution is fixed at c2

a = 4 and c2
s = 8 respectively.

Here and later on, we choose to look at the 95% confidence interval. a ± δ means the confidence interval
is (a − δ, a + δ)

Arr. dist. Serv. dist. E[X] dp

HyperExp2p HyperExp2p 20.5378 ± 0.3148 0.2519 ± 0.0022

Log-normal 20.6243 ± 0.2753 0.2798 ± 0.0019

Hyper2star 20.5642 ± 0.1619 0.2066 ± 0.0014

Log-normal HyperExp2p 19.6028 ± 0.2957 0.2334 ± 0.0020

Log-normal 19.3615 ± 0.1894 0.2562 ± 0.0017

Hyper2star 19.5913 ± 0.2435 0.1981 ± 0.0018

Hyper2star HyperExp2p 20.9429 ± 0.3561 0.2676 ± 0.0027

Log-normal 21.1600 ± 0.2136 0.2972 ± 0.0015

Hyper2star 20.8725 ± 0.2505 0.2089 ± 0.0018

Approximation formulas 20.6474 0.2059

HyperExp2p is the hyper-exponential distribution with 2 phases. A Hyper2star random variable has prob-
ability p to be 0 and probability (1 − p) to be an exponential distribution

E
[
R∗

Z(∞, v)
] = c2

a + c2
s

1 + c2
s

1

θ

(
1 − d∗

p(∞)
)
v.

Now, we approximate 1
r

using 1−ρr

θ
. This way of approximating 1

r
is equivalent in

the limit to using 1−ρr

ρr θ
based on the heavy traffic condition (3.2). The main reason for

the difference is to make the approximations of waiting time and buffer queue size
consistent with Little’s law. So we obtain the following approximation formulas for
a given system:

E[RB ] ≈ c2
a + c2

s

2

1

1 − ρ
dpβ, (6.3)

E
[
RZ(v)

] ≈ c2
a + c2

s

1 + c2
s

1

1 − ρ
(1 − dp)v, (6.4)

where dp is the same as in (6.2).
Table 2 shows the quality of approximations (6.3) and (6.4) for the M/G/1 LPS

queue with various service time distributions. Again, our approximations use up to
the second moment of the service time distribution, so the simulation gives the simi-
lar performance for different distributions with the same squared coefficient of varia-
tion c2

s .
Let RZ be the unconditional steady state service time, then

E[RZ] ≈ c2
a + c2

s

1 + c2
s

1

1 − ρ
(1 − dp)β.
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Table 2 M/G/1 LPS queue.
The sharing limit K = 30, traffic
intensity ρ = 0.95. The squared
coefficient of variation of
service time is fixed at c2

s = 19

Distribution E[RB ] E[RZ(v)/v]

HyperExp2p 42.1670 ± 2.0085 15.7579 ± 0.0871

Log-normal 37.2947 ± 1.6338 15.9390 ± 0.0942

Hyper2Star 41.0397 ± 1.6116 15.6039 ± 0.0851

Bimodal 41.8724 ± 1.3550 15.6162 ± 0.0958

Approximations 42.9278 15.7072

Table 3 G/M/1 and M/G/1 LPS queues. The sharing limit K = 10, traffic intensity ρ = 0.9

Perf. meas. M/G/1 G/M/1

Simulation Approx. Simulation Approx.

dp 0.3437 ± 0.0025 0.3478 0.2436 ± 0.0026 0.2580

E(X) 8.2459 ± 0.0569 8.2155 6.8441 ± 0.0555 7.0000

E(RB) 2.6591 ± 0.0466 2.6151 1.8629 ± 0.0426 2.0070

E(RZ) 6.4958 ± 0.0146 6.5132 5.6779 ± 0.0171 5.7708

The service time distribution for M/G/1 is Erlang with 2 phases (E2), mean is 1 and c2
s = 1/2. The

inter-arrival time distribution for G/M/1 is E2 with mean 1/0.9 and c2
a = 1/(2 × 0.9)

So we obtain an approximation of the unconditional response time

E[R] ≈ c2
a + c2

s

2

β

1 − ρ
dp + c2

a + c2
s

1 + c2
s

β

1 − ρ
(1 − dp). (6.5)

Finally, we show in Table 3 a comparison of all our performance approximations
with simulations of the M/G/1 and the G/M/1 LPS queues. All the numerical re-
sults show that the two-moment approximations are reasonably fit, with the exception
of log-normal service times (in Table 2). This is in accordance with other numerical
studies on the quality of two-moment approximations, see for example [14].
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