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1. Introduction. Consider a system with a single server and an infinite capacity buffer. The server can
serve up to K ≥ 1 jobs simultaneously, distributing its attention to each of them: At any time, each job in the
server is processed at a rate that is the reciprocal of the number of jobs in the server. An arriving job will
immediately enter the server and start receiving service if there are less than K jobs in the server when it arrives;
otherwise, it will wait in the buffer. A job will leave the system immediately after the server has fulfilled its
service requirement. When the number of jobs in the server drops from K to K−1, the server will immediately
admit the longest-waiting job from the buffer if there is any. We assume that jobs arrive according to a general
arrival process, and that the job sizes are independent of each other and identically distributed.
We call this system the limited processor-sharing queue or LPS queue. Note that letting K =� makes the

system a processor-sharing (PS) queue and taking K = 1 reduces the system to a first in, first out FIFO queue.
There is ample motivation to study this generalization. The PS discipline can be viewed as an idealization of the
time-sharing protocol in computer systems, as described in Kleinrock [22] and Ritchie and Thompson [27]. The
advantage is that a big job will not block the whole system as in a first-come-first-serve (FCFS) queue. However,
allowing too many jobs to time share at once can lead to significant overhead (because of switching) and hence
reduce overall performance. This point has already been observed in early studies of operating systems papers
(Denning et al. [8], Blake [4]) as well as in more recent Web server design papers (Elnikety et al. [10], Kamra
et al. [20]) and database implementation papers (Heiss and Wagner [16], Schroeder et al. [28]). So, in the
modeling of many computer and communication systems, a sharing limit is normally imposed, which results in
an LPS model.
There are only a few papers available that focus on performance analysis for LPS queues. An approximation

for the mean response time is proposed in Avi-Itzhak and Halfin [1]. A computational analysis based on matrix
geometric methods is performed in Zhang and Lipsky [31, 32]. Some stochastic ordering results are derived in
Nuyens and van der Weij [24]. No rigorous analysis for general job-size distributions seems to be available.
Because the model we consider is a generalization of the G/GI/1 PS queue and exact performance analysis
of that model seems not tractable, our research focuses on obtaining limit theorems, in particular, fluid and
diffusion approximations.
This paper, which characterizes the law of large number limits, constitutes the first of three major steps in our

study of LPS queues. It paves the way to the study of diffusion limits in Zhang et al. [34]. The diffusion limits
have nice properties and are tractable enough to obtain analytical results in the steady state. Such analytical
results allow one to gain insightful approximations for various performance quantities of an LPS queue in steady
state. Approximation formulas for various performance quantities are established in Zhang and Zwart [33].
In addition to providing the foundation for performance analysis, the fluid model in this paper is of independent
interest.
Our study is carried out in a general setting, allowing the interarrival time and job sizes to have general

distributions. Because the job-size distribution is general and multiple jobs can be in service the same time, it
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is important to keep track of each of the remaining job sizes. For this purpose, we record all the remaining job
sizes of all jobs in service using a measure ��t� at any time t. For any Borel set B⊂�+, ��t��B� indicates the
number of jobs in server with remaining job size belonging to B at that time. Similarly, we use a measure ��t�
to describe the state of the buffer, and ��t��B� indicates the number of jobs in buffer with job size belonging
to B. The descriptor ���·�	��·��, which takes values in the space of two dimensional vectors of Borel measures,
contains a wealth of information. All the usual performance processes can be recovered from it. In fact, the
measure-valued descriptor contains all the information needed to describe the dynamics of the LPS system. More
details will be discussed when we give a detailed model description in §2.1. We design a set of system dynamic
Equations (7) and (8) involving the descriptor for the server ��·� and for the buffer ��·�. These equations are
powerful enough to capture the complex dynamics and yet simple enough to perform rigorous analysis.
The framework of using measure-valued process has been successfully applied to study models where multiple

jobs are processed at the same time. Existing works include Gromoll et al. [14], Puha and Williams [25], and
Gromoll [12]; these papers use measure-valued descriptor for the study of PS queues that are not overloaded.
Overloaded PS queues are studied in Puha et al. [26] and Jean-Marie and Robert [18]. More recently, the frame-
work of using measure-valued processes is further developed by Gromoll and Kruk [13] and Gromoll et al. [15]
in the study of PS queues with deadlines and impatience. Doytchinov et al. [9] applied a similar framework to
study the earliest-deadline-first discipline. However, in most of these works, buffers are not modeled because
a job immediately starts service on arrival. The only exception is Doytchinov et al. [9]; in their model, only
one job is processed at a time and the buffer dynamics is described by a measure-valued process. As it will be
explained in the next two paragraphs, the existence of the buffer (because of the sharing limit) creates a big
challenge in our study of fluid models and the corresponding fluid limits.
To study such a complicated system, we first introduce a corresponding measure-valued fluid model. For

this fluid model, we establish several fundamental properties such as existence and uniqueness of fluid model
solutions. A difficulty in our study is that the fluid model involves a complicated functional equation (after some
mathematical derivations including a time change) in our analysis:

x�u�= h�u�+
∫ u

0
�x�u− v�−K�+ dF �v�+�

∫ u

0
�x�u− v�∧K�dFe�v�	

where � is the traffic intensity, h is a function determined by the initial condition, F is the job-size distribution
and Fe is the equilibrium distribution of F (cf. see §2.1 for background and notation). In the special case of the
standard PS queue, K =� and this equation reduces to a standard renewal equation. Existence and uniqueness
of the solution to a renewal equation is already known. In our case, K is finite, necessitating new methods.
We next show that the above-mentioned fluid model arises as the limit of appropriately scaled systems of LPS

queues. Our analysis applies to a variety of regimes such as lightly loaded, critically loaded, and overloaded
systems. When establishing convergence of a sequence of LPS queues to its fluid limit, precompactness must
be proved, which turns out to be significantly more complicated than in a PS system with K =�. To put these
difficulties into perspective, let B�t� be the cumulative number of jobs that have entered service in �0	 t�. The
stochastic process B= �B�t�	 t ≥ 0� records the timing of jobs entering the server. For future reference, we call B
the endogenous arrival process, the dynamics of which are much more complicated than those of the exogenous
arrival process. When the system size is below K, the process B behaves like the exogenous arrival process, and
when the system size is above K, the process B behaves like the departure process from the server. One of the
major technical difficulties in our analysis is to show that the endogenous arrival process B is in some sense
“regular.” In PS queue, the process B is identical to the exogenous arrival process, whose regularity is assumed.
The regularity of the endogenous arrival process also arises in recent work of Kaspi and Ramanan [21] on

multiserver queues, although our proof method is not related to theirs. Both our paper and that of Kaspi and
Ramanan [21] require the assumption that the service-time distribution is continuous (although we do not need
any assumption beyond continuity, as in Kaspi and Ramanan [21]). Note that the LPS queue is similar to the
FCFS system with K servers. The difference is that the service rate in many a server queue is equal to one
while it fluctuates in an LPS queue. On the other hand, the many-server queue is not workload conserving but
the LPS queue is.
This paper is organized as follows. In §2, we give a detailed description of the LPS queue and its fluid

analogue. The main results of this paper are presented in §3. Section 4 investigates properties of the fluid model.
Convergence of a scaled sequence of systems is considered in §§5 and 6. Precompactness is established in §5
and §6 shows that every limit point is a fluid model solution.
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1.1. Notation. The following notation will be used throughout. Let �, �, and � denote the set of natural
numbers, integers, and real numbers, respectively. Let �+ = �0	��. For a	b ∈�, write a+ for the positive part
of a, �a� for the integer part, 
a� for �a�+ 1, a∨ b for the maximum, and a∧ b for the minimum.
Let M1 and M2 denote the set of all nonnegative finite Borel measures on �0	�� and �0	��, respectively.

To simplify the notation, let us take the convention that for any Borel set A⊂ �, ��A∩ �−�	0��= 0 for any
� ∈M1 and ��A∩ �−�	0��= 0 for any � ∈M2. Also, by this convention, M2 is embedded as a subspace of M1.
For �1, �2 ∈M1, the Prohorov metric is defined to be

d��1	 �2�= inf�� > 0� �1�A�≤ �2�A
��+ � and �2�A�≤ �1�A

��+ � for all closed Borel set A⊂�+�	

where A� = �b ∈ �+� infa∈A �a− b�< ��. This is the metric that induces the topology of weak convergence of
finite Borel measures. (See §6 in Billingsley [3].) For any Borel measurable function g� �+ →�, the integration
of this function with respect to the measure � ∈M1 is denoted by �g	 ��.
Let M1 ×M2 denote the Cartesian product. There are a number of ways to define the metric on the prod-

uct space. For convenience, we define the metric to be the maximum of the Prohorov metric between each
component. With a little abuse of notation, we still use d to denote this metric.
Let �E	�� be a general metric space. We consider the space D of all right-continuous E-valued functions

with finite left limits defined either on a finite interval �0	 T � or the infinite interval �0	��. We refer to the space
as D��0	 T �	E� or D��0	��	E�, depending on the function domain. The space D is also known as the space of
càdlàg functions. For g�·�	 g′�·� ∈D��0	 T �	E�, the uniform metric is defined as

!T �g	 g
′�= sup

0≤t≤T
��g�t�	 g′�t��" (1)

However, a more useful metric that we will use is the following Skorohod J1 metric:

$T �g	 g
′�= inf

f∈&T

��f ��T ∨ !T �g	 g
′ � f ��	 (2)

where g � f �t� = g�f �t�� for t ≥ 0 and &T is the set of strictly increasing and continuous mapping of �0	 T �
onto itself and

�f ��T = sup
0≤s<t≤T

∣∣∣∣log f �t�− f �s�

t− s

∣∣∣∣"
If g�·� and g′�·� are in the space D��0	��	E�, the Skorohod J1 metric is defined as

$�g	 g′�=
∫ �

0
e−T �$T �g	 g

′�∧ 1�dT " (3)

By saying convergence in the space D, we mean the convergence under the Skorohod J1 topology, which is the
topology induced by the Skorohod J1 metric (Ethier and Kurtz [11]).
We use “→” to denote the convergence in a general metric space �E	�� and use “⇒” to denote the conver-

gence in distribution of random variables taking value in the metric space �E	��.

2. The LPS queue and dynamic equations. In this section, we first give a detailed description of the
stochastic process associated with the LPS queue, and then define a corresponding fluid model that serves as an
important tool to study the stochastic process.

2.1. Stochastic model. We consider a G/GI/1 queue operated under the limited processor-sharing policy
with the sharing limit equal to K. We use Q�t�, Z�t�, and X�t� to denote the number of jobs in the buffer,
number of jobs in service, and the total number of jobs in the system at time t, respectively. Thus,

X�t�=Q�t�+Z�t� for t ≥ 0"
The system is allowed to be nonempty initially, i.e., X�0� > 0. We index jobs by i = −X�0� + 1	−X�0� +
2	 , , , 	0	1	 , , , " The first X�0� jobs are initially in the system, with jobs i=−X�0�+1	 , , , 	−Q�0� in service
and jobs i=−Q�0�+ 1	 , , , 	0 waiting in the buffer. Jobs arrived after time 0 are indexed by i= 1	2, , , " Let
E�t� denote the number of jobs that arrive to the system during time interval �0	 t� for all t ≥ 0. According to
the policy, a job may have to wait for a certain amount of time after arrival to get service. Let wi denote the
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waiting time and Ui denote the arrival time of the ith job for all i >−X�0�. By convention, Ui = 0 for i < 0
and wi = 0 for i≤−Q�0�. Let

0i =Ui +wi	 i >−X�0�"

The quantity 0i can be viewed as the time that the ith job starts service. We use vi to denote the job size of
the ith job for all i > −Q�0�. We assume that �vi�

�
i=−� is a sequence of i.i.d. random variables with distri-

bution F . For jobs with index −X�0� < i ≤ −Q�0�, i.e., the first Z�0� jobs that are initially in service, we
use ṽi to denote the job sizes of these jobs. We call �E�·�	 �vi��i=1� the stochastic primitives of the system and
�Z�0�	Q�0�	 �vi�

0
i=−�	 �ṽi�

0
i=−�� the initial conditions of the system.

Next, we introduce a measure-valued state descriptor ���·�	��·��, which describes the evolution of the system
with given initial conditions and stochastic primitives. Let ��·� and ��·� beM1-valued andM2-valued stochastic
processes, respectively. For any Borel set A ⊂ �0	��, ��t��A� denotes the total number of jobs in buffer
whose job size belongs to A, and for any Borel set A⊂ �0	��, ��t��A� denotes the total number of jobs in
service whose residual job size belongs to set A. Note that here we distinguish the spaces for buffer and server
descriptors. The reason is that we allow jobs with size zero to arrive and wait in the buffer. However, a job in
service will immediately leave the system once its remaining service time becomes zero. So no job in service
can have zero remaining service time. It is clear that we have the following relationship:

Q�t�= �1	��t��	 Z�t�= �1	��t��"
Define the cumulative service amount up to time t by

S�t�=
∫ t

0
2�Z�0��d0	 (4)

where 2�x�= 1/x if x > 0 and 2�x�= 0 if x= 0. A job will have received a cumulative amount of processing
time

S�s	 t�=
∫ t

s
2�Z�0��d0

during time interval �s	 t� if it is in service in this time period. Let

B�t�=E�t�−Q�t�" (5)

Note that at time t ≥ 0, B�t� is the index of the last job that has entered into service by time t. Thus
B�s	 t�= B�t�−B�s� (6)

represents the number of jobs that have entered the server during time interval �s	 t�. Using the notation intro-
duced in this section, the state descriptor can be written as

��t��A′�=
E�t�∑

i=B�t�+1
3vi �A

′�	 (7)

��t��A�=
−Q�0�∑

i=−X�0�+1
3ṽi �A+ S�t��+

B�t�∑
i=−Q�0�+1

3vi �A+ S�0i	 t�� (8)

for any Borel sets A′ ⊆ �0	�� and A⊆ �0	�� and t ≥ 0, where 3a denotes the Dirac measure of point a on �
and A+ y = �a+ y� a ∈A�. Because of the LPS policy, the sharing limit K must be enforced at any time t,

Q�t�= �X�t�−K�+	 (9)

Z�t�= �X�t�∧K�" (10)

We call (7) and (8) the stochastic dynamic equations and (9) and (10) the policy constraints.
Another performance process that we are interested in is D�t�, the number of jobs that have left the system

in �0	 t�. It can be written as
D�t�=X�0�+E�t�−X�t�" (11)

For t ≥ 0, the workload of the system W�t� is defined to be the amount of time that the server remains busy
if no more arrivals are allowed into the system at time t. Using state descriptor ��	��, we can recover the
workload W�t� at time t > 0 by

W�t�= �7	��t�+��t��	 (12)

where 7 denotes the identity function on �.
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2.2. Fluid model. In this section, we propose a fluid analogue of the LPS system. Given a measure-valued
process � ���·�	 ���·�� ∈D��0	��	M1×M2�, for t ≥ 0, let

�Q�t�= �1	 ���t��	 (13)

�Z�t�= �1	 ���t��	 (14)

�X�t�= �Q�t�+ �Z�t�	 (15)

�B�t�= 8t− �Q�t�	 (16)

�D�t�= 8t+ �X�0�− �X�t�	 (17)

where 8 is a positive constant that is interpreted as the arrival rate. These quantities are the fluid analogues of
Q�t�	Z�t�	B�t�	D�t�, and X�t� in the stochastic model. Let � be the probability measure associated with the
job-size distribution F . We call � the job-size measure. Denote 9= �7	�� the mean of the job size, and define

�= 89

to be the traffic intensity of the LPS queue. Define the fluid cumulative service amount up to time t by

S̄�t�=
∫ t

0
:�� �Z�0��d0	 (18)

where :��x�= 1/x for all x, �> 0 and

:��0�=


� � ∈ �0	1�	

0 � ∈ �1	��"
(19)

For 0≤ s ≤ t, denote

S̄�s	 t�=
∫ t

s
:�� �Z�0��d0" (20)

This is how the fluid cumulative service amount is defined, and it turns out that this definition serves the purpose
of studying the fluid model very well. Here, we give some intuitive explanation of why using the function :�

instead of 2 in (4). In the corresponding stochastic process, when there is no job in the system, the server idles,
implying 2�0�= 0. In the fluid model with �≤ 1, intuitively, the amount of fluid in service �Z�·� will stay at zero
once it reaches zero. Because fluids flow in at a constant rate 8, the server, instead of idling, actually finishes
service immediately when an infinitesimal amount of fluid enters service. Thus, very naturally, :��0�=� when
�≤ 1. However, when � > 1, intuitively, the queue size should grow if starts at zero. To rule out the solution
z�·�≡ 0, we define :��0�= 0. Note that the definitions of fluid model solutions for the standard PS queue also
depend on the load (cf. Gromoll et al. [14], Puha et al. [26]).
An element �<	=� ∈M1×M2 is called a valid initial condition if

< = ��1	 <+=�−K�+�	

�1	=� = �1	 <+=�∧K"

Roughly speaking, validity of an initial state means that the initial state is consistent with the limited sharing
policy and initial waiting jobs have the same service distribution as arriving jobs. Denote � the set of all valid
initial conditions.
We now introduce the following fluid dynamic equations, which are analogous to (7) and (8). For all t ≥ 0

and Ay = �y	�� with y ≥ 0,
���t��Ay�= <�Ay�+ � �Q�t�− �Q�0����Ay�	 (21)

���t��Ay�==�Ay + S̄�t��+
∫ t

0
��Ay + S̄�s	 t��d �B�s�	 (22)

where �Q�·�, �Z�·�, �X�·�, �B�·�, and S̄�·� are defined in (13)–(20). They are subject to the following constraints:
�B�·� is nondecreasing, (23)

�Q�·�= � �X�·�−K�+	 (24)

�Z�·�= � �X�·�∧K�" (25)

The above equations define a fluid model, which we denote by the triple �K	8	��.
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Definition 2.1. � ���·�	 ���·�� ∈ D��0	��	M1 ×M2� is a solution to the fluid model �K	8	�� with a valid
initial state �<	=� if it satisfies the fluid dynamic Equations (21) and (22), subject to the constraints (23)–(25).
Similar to the stochastic model, the fluid workload �W�t� at any time t > 0 is defined as

�W�t�= �7	 ���t�+ ���t��" (26)

3. Main results. This section presents the main results of this paper. Our first set of results is concerned
with several key properties of fluid model solutions such as existence, uniqueness, and stability. Our second set
of results shows that the fluid model arises as the limit of an appropriately scaled sequence of stochastic LPS
systems.

3.1. Properties of fluid model solutions. We first state several key properties of our fluid model solution.
The following theorem establishes the existence and uniqueness of the fluid model solution.

Theorem 3.1. Assume that the job-size measure � satisfies

�7	��<�	 (27)

���0��= 0" (28)

There exists a unique solution � ���·�	 ���·�� to the fluid model �K	8	�� with initial condition �<	=� ∈� .

We have the following workload-conserving property for any fluid model solution.

Proposition 3.1. Assume that the job-size measure � satisfies (27) and (28). The fluid workload �W�·� of
any solution � ���·�	 ���·�� to the fluid model �K	8	�� with initial condition �<	=� ∈� satisfies

�W�t�= ��7	<+=�+ ��− 1�t�+ for all t ≥ 0"
We now turn to stability properties of our fluid model. Although the results are intuitively clear, the stability

properties of fluid model solutions require formal proof in the measure-valued setup. The following definitions
are analogous to the standard fluid model as in Dai [6, 7].
Definition 3.1. A fluid model �8	K	�� is weakly stable if any fluid model solution � ���·�	 ���·�� with initial

condition �<	=�= �0	0� satisfies � ���t�	 ���t��= �0	0� for all t ≥ 0.
A fluid model �8	K	�� is stable if for any initial condition �<	=� ∈ � satisfying 0<w = �7	<+=�<�,

there exists a finite time 3 (only depending on w) such that any fluid model solution � ���·�	 ���·�� with this initial
condition satisfies � ���t�	 ���t��= �0	0� for all t ≥ 3.

Theorem 3.2. Assume that the job-size measure � satisfies (27) and (28). A fluid model �8	K	�� is weakly
stable if the traffic intensity �≤ 1; it is stable if the traffic intensity �< 1.
We prove Theorem 3.1, Proposition 3.1, and Theorem 3.2 in §4.

3.2. Fluid model as fluid limit. The main motivation to study the fluid model is that it serves as the weak
law of large number limits of the stochastic process described in §2.1. Consider a sequence of limited processor-
sharing queues indexed by r , where r increases to � through a sequence in �0	��. Each model is defined in the
same way as in §2.1. To distinguish models with different indices, quantities of the r th model are accompanied
by superscript r . Each model may be defined on a different probability space �?r	� r 	� r �. Our results concern
the asymptotic behavior of the descriptor under the fluid scaling, which is defined by

��r �t�= 1
r
�r �rt�	 ��r �t�= 1

r
�r �rt� (29)

for all t ≥ 0. We are also interested in fluid-scaled versions of other quantities like the workload and queue
length processes. Note that �Qr�·�, �Zr�·�, and �Wr�·� are actually functions of � ��r �·�	 ��r �·��, so the scaling for
these quantities is defined as the functions of the corresponding scaling for � ��r �·�	 ��r �·��, i.e.,

�Qr�t�= �1	 ��r �t�� = 1
r
Qr�rt�	 (30)

�Zr�t�= �1	 ��r �t�� = 1
r
Zr�rt�	 (31)

�Wr�t�= �7	 ��r �t�+ ��r �t�� = 1
r
W r�rt� (32)
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for all t ≥ 0. Similarly, we define the fluid scaling for cumulative service amount Sr�s	 t� to be

�Sr�s	 t�=
∫ t

s
2� �Zr�0��d0 (33)

for 0≤ s ≤ t. The fluid scaling for the external arrival process is defined as

�Er�t�= 1
r
Er�rt�" (34)

It follows from (5) and (11) that the scaling for �Br�·� and �Dr�·� should be defined by
�Br�t�= 1

r
Br�rt�	 �Dr�t�= 1

r
Dr�rt� (35)

for all t ≥ 0.
To establish results on convergence of the above sequence of stochastic processes, we need the following

conditions that are quite general and standard. We assume that the arrival processes satisfy

�Er�·� ⇒ 8 · as r →�	 (36)

where 8 is a positive constant. The job-size measures �r satisfy that as r →�
d��r 	 ��→ 0	 (37)

�71+p	 �r�→ �71+p	 ��<� for some p > 0	 (38)

where � satisfies
� has no atoms" (39)

The law of large number scaling speeds up the processes r times, so we need to scale the sharing limit
accordingly:

lim
r→�K

r/r →K > 0" (40)

Also, the following initial condition will be assumed:

� ��r �0�	 ��r �0�� ⇒ �<∗	=∗�	 (41)

�71+p	 ��r �0�+ ��r �0�� ⇒ �71+p	 <∗ +=∗�	 (42)

where p is the same as in (38) and �<∗	=∗� is a deterministic element in � and

=∗ has no atoms" (43)

The following proposition is a well-known result for a single server queue operating under a nonidling service
discipline. Readers are referred to §5 in Gromoll et al. [14] for a proof.

Proposition 3.2. Assume the sequence of LPS queues satisfies (36)–(42). As r →�, we have
�Wr�·� ⇒ �W�·�	

where �W�t�= ��7	<∗ +=∗�+ �1−��t�+ for all t ≥ 0.
Because the LPS is also a nonidling service discipline, the above limit of the workload process still holds for

our model.
However, the limiting of the job-size process and many other performance processes as introduced above is

far from clear. Our main result establishes the fluid limit of the measure-valued processes (Theorem 3.3) from
which the fluid limit of many interesting performance processes follows directly (Corollary 3.1).

Theorem 3.3. If the sequence of limited processor-sharing queues satisfies (36)–(43), then

� ��r �·�	 ��r �·�� ⇒ � ���·�	 ���·�� as r →�	

where � ���·�	 ���·�� is the unique solution to the fluid model �K	8	�� with initial condition �<∗	=∗�.

Because all performance measures can be recovered from the descriptor � ��r �·�	 ��r �·�� through continuous
mappings, we have the following corollary.

Corollary 3.1. Assume the sequence of limited processor queues satisfies (36)–(43). As r →�, we have
� �Qr�·�	 �Zr�·�	 �Br�·�	 �Dr�·�� ⇒ � �Q�·�	 �Z�·�	 �B�·�	 �D�·��	

where �Q�·�, �Z�·�, �B�·�, �D�·� are as defined in (13)–(17).
Corollary 3.1 follows immediately from Theorem 3.3. We omit the proof for brevity. We will prove Theo-

rem 3.3 in §6.
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4. Properties of fluid model solutions. Note that the fluid amount of jobs in service �Z�t�= ���t��A0� for
all t ≥ 0. (Recall that Ay = �y	�� for all y ≥ 0.) By (22) in Definition 2.1, we have

�Z�t�==�AS̄�t��+
∫ t

0
�1− F �S̄�s	 t���d �B�s�" (44)

To further analyze the fluid model, we need to distinguish between different cases. We first consider the case
where the initial condition is nonzero. In this case, there exists a nontrivial interval on which the server size
never reaches zero. Thus, we can do a time change to obtain the Equation (50), which is the key equation in
our analysis. Through this analysis, we can characterize the fluid model solution on a small interval. We then
use the “restarting” lemma (Lemma 4.2) to extend the result to a larger interval. After that case, we consider
the case where the initial condition is zero and traffic intensity �≤ 1. Basically, we show that the fluid model
solution will stay at zero. Finally, we study the case with zero initial condition and �> 1. Briefly speaking, the
fluid model solution will grow “linearly” in this case.

4.1. Starting with a nonzero valid initial condition. If the valid initial condition �<	=� != �0	0�, then
Z�0�= �1	=�> 0. Let

t∗ = inf�s > 0� �Z�s�= 0�" (45)

Because �Z�0� > 0, by right continuity of �Z�·� we have t∗ > 0. The following algebra will be performed on the
interval �0	 t∗�, where the function S̄�·� as defined in (18) has an inverse, which is denoted by �T �·�. By the
implicit function theorem,

�T ′�v�= �Z��T �v��" (46)

Performing the change of variables u= S̄�t� and v= S̄�s� to (44), we get

�Z��T �u��==�Au�+8
∫ u

0
�1− F �u− v�� �Z��T �v��dv−

∫ u

0
�1− F �u− v��d �Q��T �v��"

Through the change of variable v← u− v and integration by parts, we obtain

�Z��T �u�� = =�Au�+89
∫ u

0

�Z��T �u− v��dFe�v�− �1− F �0�� �Q��T �u��

+ �1− F �u�� �Q�0�+
∫ u

0

�Q��T �u− v��dF �v�	

where Fe is the equilibrium distribution of F that can be written as Fe�x�= �1/9�
∫ x

0 �1−F �y��dy. By condition
(28), F �0�= 0. Now, we obtain the key relationship

�Q��T �u��+ �Z��T �u��= <�Au�+=�Au�+
∫ u

0

�Q��T �u− v��dF �v�+�
∫ u

0

�Z��T �u− v��dFe�v� (47)

for all 0≤ u< u∗ = S̄�t∗�. To simplify notation, denote

h�u�= <�Au�+=�Au�	 (48)

x�u�= q�u�+ z�u�	 (49)

where q�u�= �Q��T �u�� and z�u�= �Z��T �u��. By (24) and (25), the above equation can be written as

x�u�= h�u�+
∫ u

0
�x�u− v�−K�+ dF �v�+�

∫ u

0
�x�u− v�∧K�dFe�v�" (50)

This functional equation would simplify to a renewal equation if K =� or K = 0. (It should be pointed out
that the special cases K =� and K = 0 correspond to PS queue and FIFO queue, respectively. The fluid model
is proved to be the limit of a sequence of fluid-scaled processes under several conditions including (40), i.e.,
K = limr→�Kr/r . In the PS queue, each Kr = �, so K = �; in the FIFO queue, each Kr = 1, so K = 0.
The latter represents the fact that for FIFO queue, the profile of server is washed away in fluid scaling. In
fact, although the fluid model in earlier works on the PS queue (Gromoll et al. [14], Gromoll [12]) or related
models (Gromoll and Kruk [13], Gromoll et al. [15]) is defined in a different way, the mathematical analysis
is essentially focused on Equation (50) with K =�, which is a renewal equation. However, when 0<K <�,
Equation (50) is no longer a renewal equation.
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We provide a general tool to study the integral Equation (50) in Appendix A. The tool represents one of our
major technical contributions of this paper. Lemma A.1 in Appendix A requires even weaker conditions than
we need, which will be useful for future purposes. In our setting, condition (28) and the definition of h�·� in
(48) imply that all the conditions needed in Lemma A.1 are satisfied. Building on Lemma A.1, we establish the
existence and uniqueness of fluid model solutions on a small interval through Lemma 4.1.

Lemma 4.1. Assume (27) and (28). For any nonzero initial condition �<	=� ∈� , there exists a t′ > 0 such
that the fluid model �K	8	�� has a unique solution � ���·�	 ���·�� on �0	 t′� satisfying the initial condition and

� ���t�	 ���t�� != �0	0� for all t ∈ �0	 t′�"

Proof. Lemma A.1 establishes the uniqueness and existence of solution to (50) on the interval �0	 a�, where
a is positive and does not depend on initial condition. Let

a′ = inf�u≤ a� x�u�= 0�" (51)

We have that a′ > 0 because x�·� is right continuous and the initial condition is nonzero. Now, let
�T �u�=

∫ u

0
�x�v�∧K�dv"

It is clear that �T �·� is differentiable and strictly increasing on �0	 a′�. Let S̄�t� denote its inverse function, which
is still differentiable and strictly increasing on �0	 a′�. Now, define

�X�t�= x�S̄�t��

and �Q�t�= � �X�t�−K�+, �Z�t�= �X�t�∧K. Because x�·� is càdlàg and �T �·� is continuous, it is clear that �X�·�
is càdlàg. By the implicit function theorem,

S̄ ′�t�= 1

T ′�S̄�t��
= 1

�X�t�∧K
= 1

�Z�t� "

Because x�·� is a solution to (50) on the interval �0	 a′�, �X�·� is a solution to (47) (and thus to (44)) on the
interval �0	 t′�, where

t′ = �T �a′�" (52)

Let �B�t�= 8t− �Q�t� for all t ∈ �0	 t′�. Because �<	=� is a valid initial condition,

<��0	 u��= ��1	 <+=�−K�+F �u� and �1	=� = �1	 <+=�∧K"

Because = != 0, let G�·�==��0	 ·��/�1	=�, which is a distribution function. By the definition of h�·� in (48), we
have that h�u�= �h�0�∧K��1−G�u��+ �h�0�−K�+�1−F �u��. Thus, it satisfies the conditions in Lemma A.2.
So, by Lemma A.2, �B��T �u�� is nondecreasing on the interval �0	 a′�. Thus, �B�t� is nondecreasing on the interval
�0	 t′� because �T �u� is strictly increasing on �0	 a′�. Define

���t��Ay�= �Q�t��1− F �y��	

���t��Ay�==�Ay + S̄�t��+
∫ t

0
��Ay + S̄�s	 t��d �B�s�	

where S̄�s	 t� is defined in (20). This only defines � ���·�	 ���·�� for Borel sets of the form �y	��. By Dynkin’s �-8
theorem (cf. Theorem 3.2 in Billingsley [2]), it defines the measure for all Borel sets in �0	��. It is clear by
the first equation that �Q�t�= �1	 ���t��. Plug A0 in both sides of the second equation above to get

�1	 ���t�� = ���t��A0�

= =�AS̄�t��+
∫ t

0
�1− F �S̄�s	 t���d �B�s�

= �Z�t�	
where the last equality is because of (44). So � ���·�	 ���·�� satisfies the definition of a fluid model solution,
implying the existence. The measure � ���·�	 ���·�� will never be zero on �0	 t′� because of (51) and (52).
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To prove uniqueness, assume there is another solution � ��†�·�	 ��†�·�� for the same initial condition. By Defi-
nition 2.1, it must satisfy (21)–(25). Let

t† = inf�t ≥ 0� �X†�t� > 0�"

We know that t† > 0 by right continuity of �X†�t� and the nonzero initial condition. Thus, S̄†�·� has inverse �T †�·�
on �0	 t†�. Let

x†�u�= �X†��T †�u�� for 0≤ u≤ S̄†�t†�"

By (21)–(25), x†�·� must satisfy (50) on �0	 S̄†�t†��. Because of the the uniqueness of solutions to (50),

x†�u�= x�u� for u≤min�S̄†�t†�	 a′�"

We first claim that S̄†�t†�≥ a′. Otherwise, S̄†�t†� < a′ ≤ a. By (51),

�X†�t†�= x†�S̄†�t†��= x�S̄†�t†�� > 0	

which contradicts the definition of t†. Thus, x†�·� and x�·� agree on the interval �0	 a′�, which implies that
d

du
�T �u�= x�u�∧K = x†�u�∧K = d

du
�T †�u�"

Because both �T �u� and �T †�u� are absolutely continuous, �T †�u�= �T �u� for all u≤ a′. This means that �X†�t�=
�X�t� and S̄†�t�= S̄�t� for all t ≤ t′. By (21) and (22), � ��†�t�	 ��†�t��= � ���t�	 ���t�� for all t ≤ t′. Uniqueness
is proved. �

Thus far, we have established the existence and uniqueness of fluid model solution on a nontrivial interval
�0	 t′�. The following “restarting” lemma helps to extend the result in Lemma 4.1 to a larger interval.

Lemma 4.2. Assume (27) and (28). Let � ��1�·�	 ��1�·�� be a solution to the fluid model �K	8	�� on the inter-
val �0	 t1� for some t1 > 0. If � ��2�·�	 ��2�·�� is a solution to the fluid model with initial condition � ��1�t1�	 ��1�t1��
on the interval �0	 t2� for some t2 > 0, then � ���·�	 ���·�� is a fluid model solution on �0	 t1+ t2�, where

� ���t�	 ���t��=


� ��1�t�	 ��1�t�� if t ∈ �0	 t1�	

� ��2�t1+ t�	 ��2�t1+ t�� if t ∈ �t1	 t1+ t2�"

Proof. The proof of Lemma 4.2 is very straightforward. It is clear that � ���·�	 ���·�� satisfies the fluid
dynamic equations on the interval �0	 t1�. For any t ∈ �t1	 t1+ t2�, plugging t1 and t1+ �t− t1� into (21) and (22)
and then taking the summation gives

���t��Ay�= ���0��Ay�+ � �Q�t�− �Q�0����Ay�	

���t��Ay�= ���0��Ay + S̄�t�− S̄�0��+
∫ t

0
��Ay + S̄�t�− S̄�s��d�8s− �Q�s��

for all Ay = �y	��, y ≥ 0. Thus, � ���·�	 ���·�� satisfies the fluid dynamic equations on the interval �0	 t1 + t2�.
Clearly, it also satisfies all the constraints (23)–(25). �

Lemma 4.3. Assume (27) and (28). There exists a unique solution � ���·�	 ���·�� to the fluid model �K	8	��
satisfying the nonzero initial condition �<	=� ∈� on the interval �0	 t∗�, where either t∗ <� or t∗ =�. In the
case when t∗ <�, the existence and uniqueness can be extended to �0	 t∗� with � ���t∗�	 ���t∗��= �0	0�. In both
cases,

� ���t�	 ���t�� != �0	0� for all t ∈ �0	 t∗�"

Proof. Lemma 4.1 establishes the existence and uniqueness on a small interval �0	 t′1�, where

t′1 = �T �a′1�	 (53)

a′1 = sup�u≤ b� x�u� > 0� (54)

according to (51) and (52) in the proof of Lemma 4.1, and the constant b is the same as in Lemma A.1 and only
depends on � and F . We put the subscript one on the quantities corresponding to the first piece. Lemma 4.1 also
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says that � ���·�	 ���·�� != �0	0� on the interval �0	 t′1�. If � ���t′1�	 ���t′1��= �0	0�, then let t∗ = t′1 and the proof is
done and we stop. If � ���t′1�	 ���t′1�� != �0	0�, then by (54),

a′1 = b" (55)

Viewing � ���t′1�	 ���t′1�� as an initial condition, by Lemma 4.1, there exists a unique fluid model solution
� ��1�·�	 ��1�·�� on the interval �0	 t′2�, and similar to (53) and (54),

t′2 = �T2�a′2�	
a′2 = sup�u≤ b� x1�u� > 0�	

where �T1�·� is the corresponding time change based on � ��1�·�	 ��1�·�� (defined in the same way as �T �·� for the
process � ���·�	 ���·��) and x1�·� is the solution to (50) with h�·� generated by the initial condition � ���t′1�	 ���t′1��
via (48). Again, according to Lemma 4.1, � ��1�·�	 ��1�·�� != �0	0� on the interval �0	 t′2�. By Lemma 4.2, we
obtain a fluid model solution on the interval �0	 t′1+ t′2� by defining � ���t�	 ���t��= �� ��1�t− t′1�	 ��1�t− t′1��� for
all t ∈ �t′1	 t

′
1+ t′2�. If � ���t′1+ t′2�	 ���t′1+ t′2��= �0	0�, then let t∗ = t′1+ t′2 and the proof is complete. Otherwise,

we have

a′2 = b

and we can continue the procedure.
If this procedure never stops, then we get a sequence �t′i 	 a

′
i�
�
i=1 with a

′
i = b for all i. Setting

t∗ =
�∑
i=1

t′i 	

we have established the existence of a fluid model solution on the interval �0	 t∗�; the solution never reaches
zero before t∗. If

∑�
i=1 t

′
i =�, the proof is complete because the whole interval �0	�� is covered. Otherwise,

for each 0≤ s < t∗, there exists an is such that
∑�

i=is
t′i ≥ s. Thus,

lim
t→t∗

S̄�s	 t� >
�∑
i=is

a′i =
�∑
i=is

b=�"

By the fluid dynamic Equation (22), limt→t∗ ���t� = 0. The constraints (24) and (25) imply limt→t∗ ���t� = 0.
Thus, we can extend the existence of the fluid model solution to the interval �0	 t∗� with � ���t∗�	 ���t∗��= �0	0�.
We have now established the existence of fluid model solution. To prove the uniqueness, note that the interval
�0	 t∗� is covered by

⋃�
j=0�

∑j
i=0 t

′
i 	
∑j+1

i=0 t
′
i � (here, we take t0 = 0 for notational convenience). The uniqueness of

the solution on the interval �0	 t′1� follows directly from Lemma 4.1. The uniqueness on the interval �t
′
1	 t

′
1+ t′2�

can be proved using the same argument in Lemma 4.1 by viewing � ���t′1�	 ���t′1�) as the initial condition and
� ���t′1 + ·�	 ���t′1 + ·�) as the corresponding fluid model solution on the interval �0	 t′2�. Continuing with this
procedure establishes the uniqueness. This completes the proof. �

The following lemma establishes the workload-conserving property for any fluid model solution before it
reaches zero.

Lemma 4.4. Assume (27) and (28). For the fluid model solution in Lemma 4.3, we have the following
workload-conserving property on �0	 t∗�:

�7	 ���t��+ �7	 ���t�� = �7	<�+ �7	=�+ ��− 1�t" (56)

Proof. By (21) and (22), we have

�7	 ���t�� =
∫ �

0

���t��Ay�dy = �Q�t�9	

�7	 ���t�� =
∫ �

0
=�Ay + S̄�t��dy+

∫ �

0

∫ t

0
��Ay + S̄�s	 t��d�8s− �Q�s��dy" (57)
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Let #F be the distribution function associated with the probability measure �1/�1	=��=, so that =�Ay� =�Z�0��1 − #F �y��. Because the cumulative service amount S̄�·� has an inverse on the interval �0	 t∗�, we can
perform the change of variable u= S̄�t� and t = �T �u� for all t < t∗. The first term in (57) becomes

�Z�0�
∫ �

0
�1− #F �y��dy+ �Z�0�

∫ �

0
� #F �y�− #F �y+ u��dy

= �7	=�+ �Z�0�
∫ u

0
−�1− #F �v��dv

= �7	=�−
∫ u

0

���0��Av�dv (58)

and, by applying Fubini’s theorem, the second term in (57) becomes

∫ u

0

∫ �

0
��Ay + u− v�dy d�8�T �v�− �Q��T �v���

= 9
∫ u

0

∫ �

0

1− F �y+ u− v�

9
dy d�8�T �v�− �Q��T �v���

= 9
∫ u

0
�1− Fe�u− v��d�8�T �v�− �Q��T �v���

= 89�T �u�−9� �Q��T �u��− �Q�0��−9
∫ u

0
Fe�u− v�d�8�T �v�− �Q��T �v���" (59)

To deal with the last term in the above, perform the change of variable u= S̄�t� and t = �T �u� for (44). Note
that �T ′�u�= �Z��T �u��= �Z�t�, Thus, we have

�T ′�u� = =�Au�+9
∫ u

0

1− F �u− v�

9
d�8�T �v�− �Q��T �v���

= =�Au�+9
∫ u

0
F ′
e �u− v�d�8�T �v�− �Q��T �v���"

Integrating both sides of the above equation yields

�T �u�=
∫ u

0
=�Av�dv+9

∫ u

0
Fe�u− v�d�8�T �v�− �Q��T �v���" (60)

The proof is completed by combining (58), (59), and (60) and substituting �T �u� with t. �

4.2. Starting with zero initial condition when � ≤ 1. Intuitively, the fluid model solution should stay at
zero forever in this case. We rigorously prove this result in the following lemma.

Lemma 4.5. When �≤ 1, � ���·�	 ���·��≡ �0	0� is the unique solution to the fluid model �8	K	�� with initial
condition �<	=�= �0	0�.

Proof. Note that � ���·�	 ���·��≡ 0 implies �Z�·�≡ 0. By (20), we have S̄�s	 t�=� for all t > s ≥ 0. Because
� is a measure on �, there is no mass at infinity by definition so ��Ay + S̄�s	 t��= 0 for all y ≥ 0. This implies
that the integral on the right-hand side of (22) is zero, so � ���·�	 ���·��≡ 0 satisfies Equation (22). It is clear that
fluid dynamic Equation (21) and constraints (23) through (25) are satisfied, so � ���·�	 ���·��≡ 0 is a fluid model
solution.
We now prove that it is the only solution. If �0	0� is the unique fluid model solution on the interval �0	K/8�,

then, by Lemma 4.2, we can extend the uniqueness to �K/8	2K/8� and so on to �0	��. Otherwise, there is
another solution on �0	K/8�, which is denoted by � ��†�·�	 ��†�·��. By (21) and (22), for any fluid model solution
� ��†�·�	 ��†�·�� starting at �0	0�, we have

�X†�t� = ��†��0	���+ ��†��0	���

≤ Q†�t�+
∫ t

0
1d�8s− �Q†�s��≤ 8t"
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Thus, �Q†�·�≡ 0 on the interval �0	K/8� by (24) and by (22), the workload process satisfies for all t ≥ 0,
�W†�t� =

∫ �

0

∫ t

0
��Ay + S̄†�s	 t��d8s dy

= 8
∫ t

0

∫ �

0
��Ay + S̄†�s	 t��dy ds	

where the second equality is because of Fubini’s theorem. Because∫ �

0
��Ay + S̄†�s	 t��dy ≤

∫ �

0
��Ay�dy <�	

�W†�·� is continuous on �0	K/8�. Note that
�W†�0�= 0 (61)

but it is different from �0	0�, so there must be a t1 ∈ �0	K/8� such that � ��†�t1�	 ��†�t1�� != �0	0�, which implies
that

�W†�t1� > 0" (62)

Let t0 = sup0≤t<t1
� �W†�t�= 0�, then 0≤ t0 < t1 by (61) and (62) and continuity of �W†�·�. Again, by continuity

of �W†�·�, there exists a t3 ∈ �t0	 t1� such that �W†�t3� = 3 < �W†�t1� for some 3 > 0. On the interval �t3	 t1�,
� ��†�·�	 ��†�·�� never reaches zero. Thus, by Lemmas 4.2 and 4.4,

�W†�t3 + t�= �W†�t3�+ �1−��t for t ∈ �0	 t1− t3�"

This implies that �W†�t1�≤ �W†�t3�, which is a contradiction. �

4.3. Starting with zero initial condition when �> 1. In Jean-Marie and Robert [18] and Puha et al. [26],
a very nice approach has been developed for overloaded PS queue with zero initial condition. We can apply the
same approach to the LPS queue without much adjustment because the fluid models of the LPS queue and PS
queue behave the same until the time that total job size becomes larger than K.
Intuitively, the fluid model solution should grow as time goes by. Let us first assume that the fluid queue

length process �X�·� grows linearly on a small interval, i.e.,
�Q�t�= �1	 ���t�� = 0	
�Z�t�= �1	 ���t�� =mt	 (63)

for all t ∈ �0	K/m�, where m> 0 is to be determined. The following analysis is taken from Puha et al. [26].
By (25),

S̄�s	 t�=
∫ t

s

1
m0

d0 = 1
m
log

t

s
	 0< s < t ≤K/m" (64)

Plug (63) and (64) into (44) to get

mt = 8
∫ t

0

[
1− F

(
1
m
log

t

s

)]
ds for all t ≤ K

m
"

Perform the change of variable v= �1/m� log�t/s� to obtain

1
89

mt =mt
∫ �

0
e−mv 1− F �v�

9
dv for all t ≤ K

m
"

By the definition of Fe and �, we must have ∫ �

0
e−mv dFe�v�=

1
�
" (65)

Note that the left-hand side is the Laplace transform of the distribution Fe. As a function of m ∈ �0	��, it is
strictly decreasing and maps onto �0	1�. Because �> 1 in this case, (65) has a unique solution, which we denote
by m∗

�. Now, let

���t��Ay�= 0	
���t��Ay�= 8

∫ t

0

[
1− F

(
y+ 1

m∗
�

log
t

s

)]
ds (66)
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for all t ∈ �0	K/m∗
�� and y ≥ 0. It is clear that � ���·�	 ���·�� is a fluid model solution on the interval �0	K/m∗

��. By
Lemma 4.2, � ���K/m∗

� + ·�	 ���K/m∗
� + ·�� can be viewed as the fluid model solution with initial condition

� ���K/m∗
��	 ���K/m∗

���, which exists on �0	��. Thus, we have found a fluid model solution with zero initial
condition.
Similarly, as in the case �≤ 1, the difficulty is to prove uniqueness. Puha et al. [26] has established existence

and uniqueness of fluid model solutions for overloaded PS queue with zero initial condition. We can borrow the
result for the reason that the total fluid amount of jobs of any fluid model solution starting at zero is bounded
by 8t at any time t ≥ 0, as explained in the proof of Lemma 4.5. The sharing limit K is never reached on the
interval �0	K/8�, so the model is the same as a standard PS queue. In fact, the fluid dynamic Equation (22)
is what is needed in Theorem 4.2 and Lemma 4.10, which implies uniqueness on the interval �0	K/8�. The
uniqueness can be extended to �K/8	�� by Lemma 4.2 because �X�K/8� > 0. Thus, we have the following
result.

Lemma 4.6. Assume (27) and (28). When � > 1, there exists a unique solution to the fluid model �K	8	��
with initial condition �0	0�.

We are now in a position to sum up all the above cases and prove all results on the fluid model.
Proof of Theorem 3.1. If the initial condition �<	=� = �0	0�, then the result is established by Lemmas

4.5 and 4.6. If �<	=� != �0	0�, then, by Lemma 4.3, either we have existence and uniqueness on the interval
�0	�� and the proof is done or the result holds on a finite interval �0	 t∗� with � ���t∗�	 ���t∗�� = �0	0�. The
result is then established by applying Lemmas 4.2 and 4.5. �

Proof of Proposition 3.1. If �<	=� != �0	0� and � ≤ 1, then it follows from Lemma 4.5 that �W�t� =
�0+ ��− 1�t�+. If �<	=�= �0	0� and � > 1, for any t ∈ �0	K/m∗

��, take the integration of both sides of (66)
with respect to y to get

�W�t�= �7	 ���t�� = 8
∫ �

0

∫ t

0

[
1− F

(
y+ 1

m∗
�

log
t

s

)]
ds dy"

Performing the change of variable v = �1/m∗
�� log�t/s� and applying Fubini’s theorem, we obtain �W�t�= 0+

��−1�t. If �<	=� != �0	0�, then the workload-conserving property holds before the fluid model solution reaches
zero. Note that the fluid model solution reaches zero if and only if the workload reaches zero. So, when �≥ 1,
�W�t�=w+��−1�t > 0 for all t > 0 and the result holds on �0	��. When �< 1, �W�tw�= 0 for tw =w/�1−��.
By weak stability, �W�t�= 0 for all t ≥ tw. �

Proof of Theorem 3.2. Weak stability is already proved in Lemma 4.5. Because the descriptor � ���t�	 ���t��
equals �0	0� if and only if �W�t�= 0, the stability follows immediately from Proposition 3.1. �

5. Precompactness. The objective of this section is to show the precompactness property (Theorem 5.1)
for the fluid-scaled processes � ��r �·�	 ��r �·�� defined in §3.2.
Consider the r th system. A fluid-scaled version of stochastic dynamic Equations (7) and (8) can be written as

��r �t��A′�= 1
r

r �Er �t�∑
i=r �Br �t�+1

3vri �A
′�	

��r �t��A�= 1
r

−r �Qr �0�∑
i=−r �Xr �0�+1

3ṽri �A+ �Sr�t��+ 1
r

r �Br �t�∑
i=−r �Qr �0�+1

3vri �A+ �Sr�0i	 t��

for t ≥ 0 and any Borel sets A′ ⊆ �0	�� and A⊆ �0	��. Thus, by the above equations, we have for 0≤ s ≤ t

��r �t��A′�= ��r �s��A′�+ 1
r

r �Er �t�∑
i=r �Er �s�+1

3vri �A
′�− 1

r

r �Br �t�∑
i=r �Br �s�+1

3vri �A
′�	 (67)

��r �t��A�= ��r �s��A+ �Sr�s	 t��+ 1
r

r �Br �t�∑
i=r �Br �s�+1

3vri �A+ �Sr�0i	 t��" (68)

The dynamics of the system is determined by the above equations. Equation (67) says that the status of the
buffer at time t equals the status at time s plus what has arrived to the buffer and minus what has left from
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the buffer during time interval �s	 t�. Those jobs that left the buffer enter service, and the service process has
been taken care of by shifting the set A by the cumulative service amount Sr�0i	 t� that the ith job receives.
This corresponds to the second term on the right-hand side of (68). This plus the status at time s shifted by
accumulative service amount Sr�s	 t� is equal to the status of the server at time t, as indicated in (68). To
simplify the notation in this section, for all 0≤ s ≤ t, denote

�Er�s	 t�= �Er�t�− �Er�s�	 �Br�s	 t�= �Br�t�− �Br�s�"

Note that ��r �t� ∈M2 on each sample path for each r > 0 and t > 0. Because of the convention that M2 can be
embedded in M1 (cf. §1.1), we view ��r �t� as an element in M1 when it is convenient. In particular, ��r �t��A�
is well-defined for each Borel set A⊂ �0	��.
The compact containment property is derived in §5.1. Section 5.2 serves as a preparation for the oscillation

bound. The oscillation bound is then proved in §5.3, followed by the precompactness result (Theorem 5.1). The
framework of the proofs is similar to that of Gromoll and Kruk [13] and Gromoll et al. [15].

5.1. Compact containment. The main objective of this section is to establish the compact containment
property in Lemma 5.4, which is the first main step to prove precompactness. First, let us establish a bound for
the arrival processes.
Fix T > 0. It follows immediately from condition (36) that for each �, �′ > 0, there exists an r0 such that

when r > r0,

� r

(
sup

0≤s<t≤T
� �Er�s	 t�−8�t− s��< �′

)
≥ 1− �" (69)

To facilitate some arguments later on, we derive the following result from the above inequality.

Lemma 5.1. Fix T > 0. There exists a function �E�·�, which vanishes at infinity such that

� r

(
sup

0≤s<t≤T
� �Er�s	 t�−8�t− s��< �E�r�

)
≥ 1− �E�r�

for each r ≥ 0.
Proof. For each index r , let

Hr = �3 > 0� (69) is true for �′ = �= 3�"

Clearly Hr is not empty because 1 ∈Hr . Let �E�r�= infHr for each r ≥ 0. Assume that �E�r� does not vanish
at infinity. There exists a 3> 0 and a subsequence �rn�

�
n=1, which increases to infinity such that

�E�rn�≥ 3 for all n≥ 0" (70)

However, for �′ = �= 3/2, there exists an r3 such that when rn ≥ r3, (69) must hold. This contradicts (70). �

Denote

?r
E =

{
sup

t∈�0	 T �
� �Er�t�−8t�< �E�r�

}
"

We have that
lim
r→��

r �?r
E�= 1" (71)

It is clear from the policy constraint (10) that for all t ≥ 0,
�Zr�t�≤Kr/r <K+ 1	 (72)

where the last inequality holds for all large r because Kr/r →K. Lemma 5.2 establishes a bound for the buffer
size �Qr�·�.
Lemma 5.2. Assume (36) and (41). Fix T > 0. For each G > 0, there exists a constant M1 > 0 such that

lim inf
r→� � r

(
sup

t∈�0	 T �
�Qr�t� <M1

)
≥ 1−G"
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Proof. Plugging A= �0	�� in (67) and letting s = 0, we get
�Qr�t�≤ �Qr�0�+ �Er�t�" (73)

By condition (41), there exists a constant M ′ such that

lim inf
r→� � r � �Qr�0� <M ′�≥ 1−G"

By (71) and (73), we have that

lim inf
r→� � r

(
sup

t∈�0	 T �
�Qr�t� <M ′ +8T + 1

)
≥ 1−G"

Lemma 5.2 is proved by letting M1 =M ′ +8T + 1. �

Lemma 5.3. Assume (36)–(42). Fix T > 0. For any G > 0, there exists a constant M2 > 0 such that

lim inf
r→� � r

(
sup

t∈�0	 T �
�71+p	 ��r �t�+ ��r �t��<M2

)
> 1−G	

where the positive constant p is the same as in conditions (38) and (42).

Proof. By condition (42),

lim inf
r→� � r ��71+p	 ��r �0��< �71+p	 <∗ +=∗�+ 1�= 1"

Denote the event in the above by ?r
0. By Lemma 5.2, for any G > 0, there exists a constant M1 > 0 such that

lim inf
r→� � r

(
sup

t∈�0	 T �
�Qr�t� <M1

)
> 1−G"

Denote the event in the above by ?r
1�M1�. Note that on the event ?

r
1�M1�∩?r

E ,

�71+p	 ��r �t�+ ��r �t�� ≤ �71+p	 ��r �0��+ 1
r

�8rT+r�E�r��∑
i=−rM1

�71+p	 3vri � (74)

for any t ∈ �0	 T �. By condition (38), �71+p	 �r� <� and �71+p	 �� <�. Because we only need to consider
large enough r such that �E�r� < 1, by Lemma A.2 in Gromoll et al. [14],

lim inf
r→� � r

(
1
r

�8rT+r�E�r��∑
i=−rM1

�71+p	 3vri �< �8T +M1+ 1��71+p	 ��+ 1
)
= 1"

Denote the above event by ?r
p�M1�. Then, by (71), we have

lim inf
r→� � r �?r

E ∩?r
0 ∩?r

1�M1�∩?r
p�M1�� > 1−G" (75)

Lemma 5.3 is proved by letting M2 = �71+p	 <∗ +=∗�+ �8T +M1+ 1��71+p	 ��+ 2. �

Denote

?r
B�M�=

{
sup

t∈�0	 T �
�Qr�t� <M and sup

t∈�0	 T �
�Zr�t� <M

}
∩
{
sup

t∈�0	 T �
�71+p	 ��r �t�+ ��r �t��<M

}
"

By (72) and Lemmas 5.2 and 5.3, for any G > 0, there exists a constant M >K+ 1 such that
lim inf
r→� � r �?r

B�M�� > 1−G" (76)

A set K ⊂ M1 is relatively compact if sup<∈K <��+� <� and if there exists a sequence of nested compact
sets Jn ⊂�+ such that ∪Jn =�+ and

lim
n→� sup<∈K

<�J c
n �= 0	

where J c
n denotes the complement of Jn; see Kallenberg [19], Theorem A7.5. Denote

K�M�= �< ∈M1� <��+� <M and <��n	���≤M/n for all n ∈�+�"

Clearly, K�M� is a relatively compact set for any constant M > 0.
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Lemma 5.4. On the event ?r
B�M�,

��r �t� ∈K�M� and ��r �t� ∈K�M� for all t ∈ �0	 T �

Proof. Note that both supt∈�0	 T � ��r �t���0	��� and supt∈�0	 T � ��r �t���0	��� are bounded by M according to
the definition of ?r

B�M�. By Markov’s inequality, for any t ≥ 0,

��r �t���n	���≤ �71+p	 ��r �t��
n1+p

	

which is bounded by M/n1+p by the definition of ?r
B�M�. The same argument applies for ��r �t�. �

5.2. Asymptotic regularity. The second major step to prove precompactness is to obtain the oscillation
bound in §5.3. Oscillations mainly result from sudden departures of a large number of jobs. To control the
departure process, we show that ��r �·� assigns arbitrarily small mass to small intervals. Similar results have
been proved for PS queues and related models: see Gromoll and Kruk [13] and Gromoll et al. [15]. In our
model, the process of jobs entering the server is �Br�t�= �Er�t�− �Qr�t� instead of �Er�t�, which creates additional
difficulties.
Note the Glivenko-Cantelli estimate in Lemma B.1. By the same argument as in Lemma 5.1, for fixed M ,

T > 0, there exists a function �GC�·�, which vanishes at infinity such that the probability inequality in Lemma B.1
holds with � and �′ replaced by this function. In other words, denote

?r
GC�M�=

{
max

−rM<n<r�M+28T �
sup

l∈�0	2M+28T �
sup
f∈ �	

��f 	 �Gr�n	 l��− l�f 	 �r��< �GC�r�

}
	

where

�Gr�n	 l�= 1
r

n+�rl�∑
i=n+1

3vri

and �	 is a set of functions of the form 1�x	�� and 1�x	�� for all x ∈ �+ with an envelope function f̄ (see
Appendix B).
We have

lim
r→��

r �?r
GC�M��= 1" (77)

The Glivenko-Cantelli estimate helps prove the following result.

Lemma 5.5. Assume (36)–(43). Fix T > 0. For each �	G > 0, there exists a K > 0 (depending on � and G)
such that

lim inf
r→� � r

(
sup

t∈�0	 T �
sup
x∈�+

��r �t���x	 x+K��≤ �

)
≥ 1−G" (78)

Proof. We first show that for any �	G > 0, there exists a K such that

lim inf
r→� � r

(
sup
x∈�+

��r �0���x	 x+K��≤ �/2
)
≥ 1−G/2" (79)

It follows from the initial condition (41) that ��r �0�⇒=∗ as r →�. Because =∗ is a finite Borel measure, there
exists an M > 0 such that

=∗��M	��� < �/4"

By (43), the distribution function associated with the measure =∗ is continuous and is thus uniformly continuous
on the finite interval �0	2M�. Hence, there exists a K ∈ �0	M� such that

sup
x∈�0	M�

=∗��x	 x+K�� < �/4"

The above two inequalities imply
sup
x∈�+

=∗��x	 x+K�� < �/4"
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Let N = 
M/K�. Denote In = �nK	 �n+ 2�K� for n = 0	1	 , , , 	N − 1, and IN = �M	��. Note that for every
x ∈ �0	��, there exists an n≤N such that �x	 x+K�⊂ In. To prove (79), it suffices to show

lim inf
r→� � r

(
sup
n≤N

��r �0��In�≤ �/2
)
≥ 1−G/2" (80)

Denote A= �= ∈M2� maxn≤N =�In� < �/2�. It is clear that =∗ ∈A. Now, let us prove that the set A is open
in the space M2 equipped with the Prohorov metric. Let �=k� ⊂ M2 be a sequence in the Polish space M2,
satisfying =k → = for some = ∈ A. Because each In is closed, by the Portmanteau theorem (Theorem 2.1 in
Billingsley [3] adapted to finite measures; see also Gromoll et al. [15]),

lim sup
k→�

=k�In�≤=�In� < �/2 for all n≤N"

Hence, =k ∈A for all sufficiently large k, which implies that A is open in M. Thus, a second application of the
Portmanteau theorem yields

lim inf
r→� � r � �Zr�0� ∈A�≥ ��=∗ ∈A�= 1	

which implies (80).
Now, we need to extend this result to the interval �0	 T �. Denote the event in (79) by ?r

1. Let

?r
2�M�=?r

1 ∩?r
E ∩?r

B�M�∩?r
GC�M�"

By (71), (76), and (77), there exists an M > 0 such that

lim inf
r→� � r �?r

2�M��≥ 1−G"

In the remainder of the proof, all random objects are evaluated at a fixed sample path in ?r
2�M�.

For any r > 0, t ∈ �0	 T �, we define the random time

t0 = sup��s ≤ t� �1	 ��r �s��< �/4�∪ �0��"

If t0 = 0, then by (79), for each x ∈�+,

��r �0���x	 x+K�+ �Sr�t��≤ �/2"

If t0 ∈ �0	 t�, then for each 3 > 0, there exists an s such that t0− 3 < s < t0 and �Zr�s���+� < �/4. Because we
are only concerned with small � (which should be small enough such that �Zr�s� < �/4<Kr/r), �Qr�s�= 0 by
the policy constraint (10). Note that (5) implies

�Br�s′	 t�≤ �Er�s′	 t�+ �Qr�s′� for all s′ ≤ t" (81)

Because we are on the event ?r
E , for any �1 > 0, we have �Br�s	 t0�≤ 83+ �1 for all large enough r . For any

Borel set A, by the fluid-scaled system dynamic Equation (68),

��r �t0��A�≤ ��r �s���+�+ �Br�s	 t0�≤ �/4+83+ �1	

which can be made smaller than �/2 by choosing �1, 3 suitably small.
The fluid-scaled stochastic dynamic equation over the interval �t0	 t� can be written as

��r �t���x	 x+K��= ��r �t0���x	 x+K�+ �Sr�t0	 t��+
1
r

r �Br �t�∑
i=r �Br �t0�+1

3vri ��x	 x+K�+ �Sr�0i	 t��

for each x ∈ �+. By the choice of t0, the first term on the right-hand side of the above equation is always
upper bounded by �/2. Let I denote the second term on the right-hand side of the above equation. Now, it only
remains to show that I < �/2.
Let t0	 t1	 , , , 	 tN = t be a partition of the interval �t0	 t� such that �tj+1 − tj � < 3 for all j = 0	 , , , 	N − 1,

where 3 and N are to be chosen below. Write I as the summation

I =
N−1∑
j=0

1
r

r �Br �tj+1�∑
i=r �Br �tj �+1

3vri ��x	 x+K�+ �Sr�0i	 t��"
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Recall that 0ri is the time that the ith job starts service, so on each subinterval �tj 	 tj+1�, the i’s to be summed
must satisfy tj ≤ 0ri ≤ tj+1. This implies that

�Sr�tj+1	 t�≤ �Sr�0i	 t�≤ �Sr�tj 	 t�"

By the definition of t0, we have �Zr�s�≥ �/4 for all s ∈ �t0	 t�. Thus,

�Sr�tj 	 tj+1�≤
43
�
"

Let

Cj =
[
x+ �Sr�tj+1	 t�	 x+ �Sr�tj+1	 t�+K+ 43

�

]
"

Then,

I ≤
N−1∑
j=0

1
r

r �Br �tj+1�∑
i=r �Br �tj �+1

3vri �Cj�"

Because we are on the event ?r
E ∩?r

B�M�, by (81), we have for all j = 0	 , , , 	N − 1:
−rM ≤ r �Br�tj�≤ r�8T + �1+M�≤ 28rT + rM	

�Br�tj 	 tj+1�≤ 8T + �1+M ≤ 28T +M"

Because we are on the event ?r
GC�M�,

∣∣∣∣1r
r �Br �tj+1�∑

i=r �Br �tj �+1
3vri �Cj�− � �Br�tj+1�− �Br�tj���

r�Cj�

∣∣∣∣< �1"

Thus,

I ≤
N−1∑
j=0

� �Br�tj+1�− �Br�tj���
r �Cj�+N�1"

By (37), for all �2 > 0,
d��r 	 ��≤ �2

for all large enough r . Note that Cj is a closed Borel set. By the definition of Prohorov metric, we have

�r�Cj�≤ ��C
�2
j �+ �2

for all large enough r . Because C�2
j is a closed interval with length K+ 43/�+ 2�2, by (39), we can choose K,

3, �2 small enough such that
��C

�2
j � <

�

4�28T +M�
"

Thus, we conclude that

I ≤
(
�2+

�

4�28T +M�

) N−1∑
j=0

� �Br�tj+1�− �Br�tj��+N�1

≤
(
�2+

�

4�28T +M�

)
� �Br�t�− �Br�t0��+N�1

≤ �2�28T +M�+ �/4+N�1	

where the last inequality is because we are on the event ?r
E ∩?r

B�M�. Finally, by choosing �1, �2 small enough,
we obtain that I < �/2. �

In addition to the asymptotic regularity for the server ��r �·�, we also have the same property for the buffer
��r �·�. The proof is much easier.
Lemma 5.6. Assume (36)–(43). Fix T > 0. For each �, G > 0, there exists a K> 0 (depending on � and G)

such that

lim inf
r→� � r

(
sup

t∈�0	 T �
sup
x∈�+

��r �t���x	 x+K��≤ �

)
≥ 1−G" (82)
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Proof. Let
?r
3�M�=?r

E ∩?r
B�M�∩?r

GC�M�"

By (71), (76), and (77), there exists an M > 0 such that

lim inf
r→� � r �?r

3�M��≥ 1−G"

In the remainder of the proof, all random objects are evaluated at a fixed sample path in ?r
3�M�.

Because we are on the event ?r
E ∩?r

B�M�, � �Br�·�� and �Er�·� are bounded above by M + 28T . Because we
are on the event ?r

GC�M�, for any t ∈ �0	 T � and �1 > 0,

� ��r �t���x	 x+K��− � �Er�t�− �Br�t���r��x	 x+K���

=
∣∣∣∣1r

r �Er �t�∑
i=r �Br �t�+1

3vri ��x	 x+K��− � �Er�t�− �Br�t���r��x	 x+K��

∣∣∣∣
≤ �1

for all large r . Thus,

��r �t���x	 x+K�� ≤ � �Er�t�− �Br�t���r��x	 x+K��+ �1

≤ 2M�r��x	 x+K��+ �1

for all large r . By (37), for any �2 > 0,
d��r 	 ��≤ �2

for all large enough r . By the definition of Prohorov metric, we have

�r��x	 x+K��≤ ���x− �2	 x+K+ �2��+ �2

for all large enough r . By (39), we can choose K, �2 small enough such that

���x− �2	 x+K+ �2�� < �1"

Thus, we conclude that for any t ∈ �0	 T �,

��r �t��x	 x+K�≤ 2M��1+ �2�+ �1"

The proof is completed by choosing �1 and �2 to be less than �/8M . �

5.3. Oscillation bound. In this section, we use the regularity result in Lemma 5.5 to obtain the oscillation
bound in Lemma 5.7. The proof technique of Lemma 5.7 is a simplification of that for Lemma 4.14 in Gromoll
and Kruk [13]. Consider a càdlàg function O�·� on a fixed interval �0	 T � taking values in a metric space �E	��.
For T ≥ 0 and 3> 0, define the modulus of continuity to be

wT �O�·�	 3�= sup
s	 t∈�0	 T �	 �s−t�<3

��O�s�	 O�t��"

If the metric space is �, we just use the Euclidean metric; if the space isM1×M2, we use the Prohorov metric d
defined in §1.

Lemma 5.7. Assume (36)–(43). Fix T > 0. For each �, G > 0, there exists a 3> 0 such that

lim inf
r→� � r �max�wT � ��r �·�	 3�	wT � ��r �·�	 3��≤ ��≥ 1−G" (83)

Proof. For any K, � > 0, define

?r
Reg�K	 ��=

{
sup

t∈�0	 T �
sup
x∈�+

��r �t���x	 x+K��≤ �/5
}
"

By (71) and Lemma 5.5, for each � > 0 and G > 0, there exists a K> 0 such that

lim inf
r→� � r �?r

E ∩?r
Reg�K	 ��� > 1−G"

In the remainder of the proof, we set

3=min��/58	K�/5	 �2/25�
and all random quantities with index r are evaluated at a fixed sample path P ∈?r

E ∩?r
Reg�K	 ��. For 0≤ s ≤

t ≤ T with t− s < 3, consider the following two cases.
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Case 1. If inf0∈�s	 t� �Xr�0� < �/5, let

t0 = inf�0 ∈ �s	 t�� �Xr�0�≤ �/5�"

By right continuity, �Xr�t0� ≤ �/5. We only need consider large enough r such that �/5 is smaller than Kr/r
(which converges to K > 0 as r → � by condition (40)). On the interval �s	 t0�, �Zr�·� is larger than �/5,
implying �Sr�s	 t0�≤ �t0− s�/��/5�≤ �t− s�/��/5�. Thus, we have

��r �s�

(
A0+

�t− s�
�/5

)
≤ ��r �s��A0+ �Sr�s	 t0��≤ ��r �t0��A0�≤ �Xr�t0�≤ �/5	 (84)

where A0 = �0	�� and the second inequality is because of (68). Note that 3≤ K�/5 implies that �t− s�/��/5� <
K. Thus,

�Zr�s�= ��r �s��A0�≤ ��r �s�

(
A0+

�t− s�
�/5

)
+ ��r �s���0	 K��≤ 2�/5	

where the last inequality follows from (84) and the definition of ?r
Reg�K	 ��. Thus, we have

��r �s�= 0	 d� ��r �s�	0�≤ 2�/5"
On the other hand, we have

�Xr�t�≤ �Xr�s�+ �Er�s	 t� for all s ≤ t"

Because we are on the event ?r
E and we can choose r large enough such that �E�r� < �/5, we have

�Er�s	 t�≤ 83+ �/5≤ 2�/5	 (85)

where the last inequality is because of the choice of 3. Thus, �Xr�t� ≤ �Xr�t0�+ 2�/5= 3�/5. Again, we only
need to consider large enough r such that �/5+ 2�/5<Kr/r , which gives us

��r �t�= 0	 d� ��r �t�	0�≤ 3�/5"
In summary, we have that when �t− s� ≤ 3,

d� ��r �s�	 ��r �t��= 0	 d� ��r �s�	 ��r �t��≤ 3�/5+ 2�/5= �"

Case 2. If inf0∈�s	 t� �Xr�0�≥ �/5, then inf0∈�s	 t� �Zr�0�≥ �/5. Therefore,

�Sr�s	 t�≤ t− s

�/5
≤ 3

�/5
≤min�K	 �/5� (86)

by the choice of 3. The number of jobs that enter the server during time interval �s	 t� is

�Br�s	 t�≤ �Er�s	 t�+ ��r �s���0	 �Sr�s	 t���≤ 3�/5 (87)

by (85), the choice of 3, and the definition of ?r
Reg. By the dynamic Equation (67), we have

� ��r �s��A�− ��r �t��A�� ≤max� �Er�s	 t�	 �Br�s	 t��≤ 3�/5
for any Borel set A. Thus,

d� ��r �s�	 ��r �t��≤ 3�/5"
By the dynamic Equation (68),

��r �t��A�≤ ��r �s��A+ �Sr�s	 t��+ �Br�s	 t�"

By (86), A+ �Sr�s	 t�⊂A3�/5, where Aa is the a-enlargement of the set A as defined in §1.1. Thus, by (87),

��r �t��A�≤ ��r �s��A3�/5�+ 3�/5 for any Borel set A"

By Property (ii) in Billingsley [3, p. 72], we have d� ��r �s�	 ��r �t��≤ 3�/5. �
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For any sequences �Ki� and �3i� of positive numbers, consider the following set{
sup

t∈�0	 T �
sup
x∈�+

��r �t���x	 x+Kj��≤
1
j

}
∩
{
sup

t∈�0	 T �
sup
x∈�+

��r �t���x	 x+Kj��≤
1
j

}

∩
{
max�wT � ��r �·�	 3j�	wT � ��r �·�	 3j��≤

1
j

}
"

Denote the two sequences �Kj� and �3j� by 
 . To emphasize the dependency on 
 and j , denote the above
event by ?r

R�
 	 j�. By Lemmas 5.5, 5.6, and 5.7, for any G > 0, there exists an 
 such that

lim inf
r→� � r �?r

R�
 	 j��≥ 1− G/2
2j

for each j ∈�"

For any finite number n ∈�, by the above inequality, we have

lim inf
r→� � r

( n⋂
j=1

?r
R�
 	 j�

)
≥ 1−G/2"

Let r�n� denote the smallest number such that

� r

( n⋂
j=1

?r
R�
 	 j�

)
≥ 1−G	 for all r ≥ r�n�" (88)

It is clear that r�·� is a function defined on �+ and it is nondecreasing (because
⋂n

j=1?
r
R�
 	 j�⊂⋂n′

j=1?
r
R�
 	 j�

for any n< n′). Let
n�r�= sup��n ∈�+� r�n�≤ r�∪ �0��"

(From the definition, we see that n�r� is allowed to be infinite, for example, when the function r�·� has an upper
bound.) In fact, n�·� can be viewed as the “inverse” of r�·�. It is clear that n�·� is an nondecreasing. We claim
that limr→� n�r�=�. The reason is as follows: For any n0 > 0, there exists r0 = r�n0� such that n�r�≥ n0 for
all r ≥ r0. Now, define

?r
R�
 �=

n�r�⋂
j=1

?r
R�
 	 j�"

Note that ?r
R�
 � is not empty for all large enough r (because n�r� > 1 for all large enough r) and, in this case,

� r �?r
R�
 ��≥ 1−G"

Thus, we conclude that
lim inf
r→� � r �?r

R�
 ��≥ 1−G" (89)

Now, denote
?r�M	
 �=?r

E ∩?r
B�M�∩?r

GC�M�∩?r
R�
 �"

For any r , the r th system is defined on the probability space �?r	� r 	� r �. The stochastic processes �r �·� and
�r �·� are actually measurable functions on ?r . From now on, we will explicitly write some statements down
in the form of �r �P	 ·� and �r �P	 ·� to indicate that they are evaluated at the sample path P ∈?r . We are now
ready to present the precompactness result.

Theorem 5.1. Assume (36)–(43). Fix T > 0. For all G > 0, the exists a constant M > 0 and an 
 such that

lim inf
r→� � r �?r�M	
 ��≥ 1−G" (90)

Any sequence of functions �� ��rn �Prn	 ·�	 ��rn �Prn	 ·���n∈� with Prn ∈ ?rn�M	
 � for each n ∈ � and �rn�n∈�
increasing to infinity has a subsequence �� ��rni �Prni 	 ·�	 ��rni �Prni 	 ·���i∈� such that

sup
t∈�0	 T �

d�� ��rni �Prni 	 t�	 ��rni �Prni 	 t��	 � #��t�	 %��t���→ 0 as i→�

for some process � #��·�	 %��·��, which is continuous.
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Proof. The probability inequality follows immediately from (71), (76), (77), and (89).
The spaceM1×M2 endowed with the metric d (defined in §1.1) is complete. Lemma 5.4 verifies condition (a)

in Theorem 3.6.3 of Ethier and Kurtz [11]. For any � > 0, there exists a j0 such that 1/j < � for all j ≥ j0.
Because we are on the event ?r

R�
 �, we have that when 3≤ 3j0 and r is large enough such that n�r� > j0,

max�wT ��
r �Pr	 ·�	 3�	wT ��

r �Pr	 ·�	 3�� < � (91)

for any Pr ∈?r�M	
 �. This verifies condition (b) in Theorem 3.6.3 of Ethier and Kurtz [11]. Thus, the sequence
�� ��rn �Prn	 ·�	 ��rn �Prn	 ·���n∈� is precompact in the space D��0	 T �	M1 ×M2� endowed with the Skorohod J1
topology. In other words, there is a convergent subsequence. The limit of this subsequence is continuous by
the oscillation bound (91). Thus, convergence in the Skorohod J1 topology is the same as convergence in the
uniform metric defined in §1.1. �

6. Functional law of large number limit. Let �T �M	
 � denote the set of limits of all convergent subse-
quences of the sequences in Theorem 5.1. It is clear that �T �M	
 � is a nonempty subset of elements in the
space D��0	 T �	M1×M2�. We have the following result (Theorem 6.1) about the set �T �M	
 �. The proof of
Theorem 3.3, which builds on this result, will be provided at the end of the section.

Theorem 6.1. �T �M	
 � contains only one element, which is the unique fluid model solution � ���·�	 ���·��
with initial condition �<∗	=∗� restricted on the interval �0	 T �.

To better structure the proof, we first present three auxiliary lemmas (Lemmas 6.1, 6.2, and 6.3), which
characterize any fixed element � #��·�	 %��·�� in the set �T �M	
 �. By the definition of �T �M	
 �, for any
� #��·�	 %��·�� ∈�T �M	
 �, there exists a sequence �rn� that goes to � and Prn ∈?rn�M	
 � for each rn such
that

sup
t∈�0	 T �

d�� ��rn �Prn	 t�	 ��rn �Prn	 t��	 � #��t�	 %��t���→ 0 as n→�"

With a slight abuse of notation, we drop the parameter Prn for simplicity in the proofs of all the following three
lemmas. We then have

lim
n→� supt∈�0	 T �

d� ��rn �t�	 #��t��= 0	 (92)

lim
n→� supt∈�0	 T �

d� ��rn �t�	 %��t��= 0" (93)

Lemma 6.1. Assume (36)–(43). For any point � #��·�	 %��·�� ∈�T �M	
 �, both #��t� and %��t� are atom-free
for all t ∈ �0	 T �.

Proof. For any y ≥ 0 and K1 > 0, because �y − K1	 y + 2K1� is the K1-enlargement (cf. §1.1) of the set
�y	 y+K1�, by (92) and the definition of Prohorov metric, we have

#��t���y	 y+K1��≤ ��rn �t���y−K1	 y+ 2K1��+K1

for all large n. Because we are on the event ?rn�M	
 �, in particular ?rn
R �
 �, for any � > 0, we can choose K1

small enough such that
��rn �t���y−K1	 y+ 2K1�� < �/2

for all large n. When making K1 small, we can also choose K1 < �/2. This gives that

#��t���y	 y+K1�� < �"

This proves that #��t� is atom-free for any t ∈ �0	 T �. The proof for %��t� follows in exactly the same way. �

Lemma 6.2. Assume (36)–(43). Fix any point � #��·�	 %��·�� ∈ �T �M	
 � and constants a	b ∈ �0	 T � with
a< b. If

inf
t∈�a	 b�

#Z�t� > 0	 (94)

then � #��a�	 %��a�� ∈� and � #��a+·�	 %��a+·�� is the solution to the fluid model �K	8	�� with initial condition
� #��a�	 %��a�� on the interval �0	 b− a�.
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Proof. Define #Q�·�, #Z�·�, #B�·�, and #S�·	 ·� in the same way as (13)–(20). Then, (92) and (93) imply that
lim
n→� supt∈�0	 T �

� �Qrn�t�− #Q�t�� = 0	 (95)

lim
n→� supt∈�0	 T �

� �Zrn�t�− #Z�t�� = 0	 (96)

lim
n→� supt∈�0	 T �

� �Brn�t�− #B�t�� = 0" (97)

By (94) and (96),

sup
a≤t≤b

∣∣∣∣ 1
�Zrn�t�

− 1
#Z�t�

∣∣∣∣→ 0 as n→�"

Thus, for each � > 0, there exists an n0 > 0 such that

sup
a≤s<t≤b

�S̄rn �s	 t�− #S�s	 t��< �	 for all n> n0" (98)

Because for all rn, � ��rn �·�	 ��rn �·�� satisfies the LPS policy constraints (9) and (10) and Krn/rn →K as n→�,
the limit � #��·�	 %��·�� also satisfies (24) and (25). It is then clear that � #��a�	 %��a�� is a valid initial condition.
By the same argument, � #��·�	 %��·�� also satisfies (23). Now, it only remains to show that � #��a+ ·�	 %��a+ ·��
satisfies the fluid dynamic Equations (21) and (22) on the interval �0	 b− a�.
By (67), for any Borel set A⊂�+ and t ≥ 0,

��rn �a+ t��A�= ��rn �a��A�+ I
rn
0 �A�− I

rn
1 �A�	 (99)

where

I
rn
0 �A�=

1
rn

rnĒ
rn �a+t�∑

i=rnĒ
rn �a�+1

3vrni �A�	

I
rn
1 �A�=

1
rn

rn �Brn �a+t�∑
i=rn �Brn �a�+1

3vrni �A�"

To verify (21), consider the following difference for any y ≥ 0 (recall that Ay = �y	��),

� #��a+ t��Ay�− � #��a��Ay�+ � #Q�a+ t�− #Q�a����Ay���
≤ � #��a+ t��Ay�− ��rn �a+ t��Ay��

+ � ��rn �a+ t��Ay�− � ��rn �a��Ay�+ I
rn
0 �Ay�− I

rn
1 �Ay���

+ �� ��rn �a��Ay�+ I
rn
0 �Ay�− I

rn
1 �Ay��− � #��a��Ay�+ � #Q�a+ t�− #Q�a����Ay���

≤ � #��a+ t��Ay�− ��rn �a+ t��Ay�� + � #��a��Ay�− ��rn �a��Ay��
+ �� #Q�a+ t� #Q�a����Ay�− I

rn
0 �Ay�+ I

rn
1 �Ay��	 (100)

where the first inequality is because of triangle inequality and the second one is because of (99) and another
application of triangle inequality. According to Lemma 6.1, the set Ay is a #��a+ t�-continuity set (i.e., a set
whose boundary has zero mass under the measure). By Property (iii) of Billingsley [3, p. 72], the convergence
of ��rn �a + t� to #��a + t� in the Prohorov metric implies weak convergence. By Portmanteau theorem (cf.
Theorem 2.1 in Billingsley [3]), weak convergence implies ��rn �a + t��A� → #��a + t��A� for all #��a + t�-
continuity set A. This implies that each of the first two terms on the right-hand side of (99) can be bounded by
� for all large n. Now, let us study the third term. Let #E�·�= #B�·�+ #Q�·�, so #E�·� is the limit of �Er�·�. (In fact,
#E�·�= 8· as proved in §5.1. However, it is not needed here.) By triangle inequality, we have that

�� #Q�a+ t�− #Q�a����Ay�− I
rn
0 �Ay�+ I

rn
1 �Ay��

= �� #E�a+ t�− #E�a����Ay�− I
rn
0 �Ay�− � #B�a+ t�− #B�a����Ay�+ I

rn
1 �Ay��

≤ �� #E�a+ t�− #E�a����Ay�− I
rn
0 �Ay�� + � #B�a+ t�− #B�a����Ay�− I

rn
1 �Ay��"
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Note that

�� #E�a+ t�− #E�a����Ay�− I
rn
0 �Ay��

≤ � #E�a+ t�− #E�a�����Ay�− �rn�Ay�� + �� #E�a+ t�− #E�a���rn�Ay�− I
rn
0 �Ay��"

Again, because � is atom-free (by condition (39)), Ay is a �-continuity set. Thus, ���Ay�− �rn�Ay�� ≤ � for all
large n. Because we restrict our sample path to be in the event ?rn�M	
 � and hence in ?rn

E ∩?
rn
B �M� for each

n, the limits #E�·� and #B�·� have an upper bound M + 28T and a lower bound −M on the interval �0	 T �. Thus,
the first term in the above can be bounded by �M + 28T �� for all large n. Note that

�� #E�a+ t�− #E�a���rn�Ay�− I
rn
0 �Ay��

≤ �Ērn�a+ t�− #E�a+ t�� + �Ērn�a�− #E�a��

+
∣∣∣∣ 1rn

rn #E�a+t�∑
i=rn #E�a�+1

3vrni �Ay�− � #E�a+ t�− #E�a���rn�Ay�

∣∣∣∣"

Because #E�·� is the limit of Ērn�·�, each of the first two terms is bounded by � for all large n. Because we
restrict our sample path to be in the event ?rn�M	
 � and hence in ?rn

GC�M� for all n, the last term in the above
can be bounded above by � for all large n. Thus, we conclude that

�� #E�a+ t�− #E�a����Ay�− I
rn
0 �Ay�� ≤ �M + 28T + 3��

for all large n. Using exactly the same argument, we can show that

�� #B�a+ t�− #B�a����Ay�− I
rn
1 �Ay�� ≤ �M + 28T + 3��

for all large n. In summary, the right side of (100) is bounded by �2M + 48T + 8�� for all large n. Because
� > 0 is arbitrary, the left side of (100) must be 0 and, thus, the fluid dynamic Equation (21) is verified.
By (68), for all Borel set A⊂�+ and t ≥ 0,

��rn �a+ t��A�= ��rn �a��A+ S̄rn �a	a+ t��+ I
rn
2 �A�	 (101)

where

I
rn
2 �A�=

1
rn

rn �Brn �a+t�∑
i=rn �Brn �a�+1

3vri �A+ S̄rn �0
rn
i 	 a+ t��"

To verify (22), consider the difference
∣∣∣∣� %��a+ t��Ay�− %��a��Ay + #S�a	a+ t���−

∫ a+t

a
��Ay + #S�0	a+ t��d #B�0�

∣∣∣∣
≤ �� %��a+ t��Ay�− %��a��Ay + #S�a	a+ t���

− � ��rn �a+ t��Ay�− ��rn �a��Ay + S̄rn �a	a+ t����
+ �� ��rn �a+ t��Ay�− ��rn �a��Ay + S̄rn �a	a+ t���− I

rn
2 �Ay��

+
∣∣∣∣
∫ a+t

a
��Ay + #S�0	a+ t��d #B�0�− I

rn
2 �Ay�

∣∣∣∣
≤ � %��a+ t��Ay�− ��rn �a+ t��Ay��

+ � %��a��Ay + #S�a	a+ t��− ��rn �a��Ay + S̄rn �a	a+ t���

+
∣∣∣∣
∫ a+t

a
��Ay + #S�0	a+ t��d #B�0�− I

rn
2 �Ay�

∣∣∣∣	 (102)

where the first inequality is because of triangle inequality, and the second one is because of (101) and another
application of triangle inequality. By Lemma 6.1, the measure %��t+ a� is also atom-free. Following the same
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argument as the one for #��a�, the first term on the right-hand side in (102) is bounded by � for all large n. For
any y ≥ 0 and K> 0,

%��a���y+ #S�a	a+ t�	���− ��rn �a���y+ S̄rn �a	a+ t�	���

≤ %��a���y+ #S�a	a+ t�	���− ��rn �a���y+ #S�a	a+ t�+K	���

≤ %��a���y+ #S�a	a+ t�	���− ��rn �a���y+ #S�a	a+ t�−K	���

+ ��rn �a���y+ #S�a	a+ t�−K	y+ #S�a	a+ t�+K��

≤ K+ ��rn �a���y+ #S�a	a+ t�−K	y+ #S�a	a+ t�+K��

for all large n, where the first inequality is because of (98), the second inequality is because of algebra, and the
last inequality is because of (93) and the definition of Prohorov metric. Because we restrict our sample path to
be in the event ?rn�M	
 � and hence in ?rn

R �
 � for all n, we can choose K small enough (less than �) to make
the second term on the right-hand side of the above less than �. Thus, we have

%��a���y+ #S�a	a+ t�	���− ��rn �a���y+ S̄rn �a	a+ t�	���≤ 2�"
On the other side, for any y ≥ 0 and K> 0,

��rn �a���y+ S̄rn �a	a+ t�	���− %��a���y+ #S�a	a+ t�	���

≤ ��rn �a���y+ #S�a	a+ t�−K	���− %��a���y+ #S�a	a+ t�	���

≤ ��rn �a���y+ #S�a	a+ t�−K	y+ #S�a	a+ t�+K��

+ ��rn �a���y+ #S�a	a+ t�+K	���− %��a���y+ #S�a	a+ t�	���

for all large n, where the first inequality is because of (98) and the second inequality is because of algebra. By
the same argument, we can show that

��rn �a���y+ S̄rn �a	a+ t�	���− %��a���y+ #S�a	a+ t�	���≤ 2�"
This implies that the second term on the right-hand side of (102) is bounded by 2�. To control the third term,
define

I
rn
2 �A�=

N−1∑
j=0

I
rn
2	 j �A�	

where 0= t0 < · · ·< tN−1 = t is a partition of the interval �0	 t� with 3=maxj �tj+1− tj � and

I
rn
2	 j �A�=

1
rn

rn �Brn �a+tj+1�∑
i=rn �Brn �a+tj �+1

3vri �A+ S̄rn �0
rn
i 	 a+ t��"

Recall that 0rni is the time that the ith job starts service in the rnth system, so on each subinterval �a+ tj 	 a+ tj+1�
those i’s to be summed must satisfy a+ tj ≤ 0

rn
i ≤ a+ tj+1. This implies that

S̄rn �a+ tj+1	 a+ t�≤ S̄rn �0
rn
i 	 a+ t�≤ S̄rn �a+ tj 	 a+ t�"

By the uniform convergence (98), we have for all large n,

y− �+ #S�a+ tj+1	 a+ t�≤ y+ S̄rn �0
rn
i 	 a+ t�≤ y+ �+ #S�a+ tj 	 a+ t�"

Because we are on the event ?rn�M	
 � (which is defined at the end of §5), for � > 0, there exists an n1 such
that for all n> n1 and j = 0	 , , , 	N − 1,

I
rn
2	 j �Ay� ≥ �Brn�a+ tj 	 a+ tj+1��

rn�Ay + �+ #S�a+ tj 	 a+ t��− �	

≥ #B�a+ tj 	 a+ tj+1��
rn�Ay + �+ #S�a+ tj 	 a+ t��− 2�	

≥ #B�a+ tj 	 a+ tj+1���Ay + #S�a+ tj 	 a+ t��− �2M + 28T + 2��	
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where the above three inequalities are because of the fact that we are on the event ?r
GC�M�, (97) and to the

definition of Prohorov metric, respectively. Note that the above 2M + 28T comes from #B�s	 t�= #B�t�− #B�s� <
2M + 28T because #B�·� has lower bounded −M and upper bound �M + 28T � (again, because we are on the
event ?rn

B �M�). By the same reason, for all n> n1 and j = 0	 , , , 	N − 1,
I
rn
2	 j �Ay�≤ #B�a+ tj 	 a+ tj+1���Ay + #S�a+ tj+1	 a+ t��+ �2M + 28T + 2��"

Denoting

IL	3�Ay�=
N−1∑
j=0

#B�a+ tj 	 a+ tj+1���Ay + #S�a+ tj 	 a+ t��	

IU	3�Ay�=
N−1∑
j=0

#B�a+ tj 	 a+ tj+1���Ay + #S�a+ tj+1	 a+ t��	

we have that
IL	3�Ay�−N�2M + 28T + 2��≤ I

rn
2 �Ay�≤ IU	3�Ay�+N�2M + 28T + 2��" (103)

It is clear that IL	3�Ay� and IU	3�Ay� are the Riemann lower sum and upper sum of the integration∫ a+t

a
��Ay + #S�0	a+ t��d #B�0�, respectively. This means that for all 3 small enough,

IL	3�Ay�≤
∫ a+t

a
��Ay + #S�0	a+ t��d #B�0�≤ IU	3�Ay�" (104)

It then follows from (103) and (104) that∣∣∣∣
∫ a+t

a
��Ay + #S�0	a+ t��d #B�0�− I

rn
2 �Ay�

∣∣∣∣≤ �IU	3�Ay�− IL	3�Ay��+ 2N�2M + 28T + 2��" (105)

For any �1 > 0, we first choose 3 small enough (therefore, N is chosen) to make the first term in the upper
bound of (105) less than �1/2, and then choose � small enough to make the second term in the upper bound of
(105) less than �1/2. Thus, the third term on the right-hand side of (102) is bounded by �1. In summary, the
right-hand side of (102) is bounded by 3�+ �1 for all large n. Because �	 �1 > 0 can be arbitrarily small, the
left-hand side of (102) must be zero. Thus, (22) is satisfied. �

Lemma 6.3. Assume (36)–(43). Fix a point � #��·�	 %��·�� ∈ �T �M	
 � and a constant t0 ∈ �0	 T �. If
� #��t0�	 %��t0��= �0	0�, then

� #��t�	 %��t��= �0	0�	 for all t ∈ �t0	 T � (106)

when �≤ 1;
inf

t∈�t1	 T �
#Z�t� > 0	 for all t1 ∈ �t0	 T � (107)

when �> 1. If � #��t0�	 %��t0�� != �0	0� and �> 1, then

inf
t∈�t0	 T �

#Z�t� > 0" (108)

Proof. The assumption � #��t0�	 %��t0��= �0	0� implies that

��rn �t0�→ 0 as n→�" (109)

Note that for any constant a> 0, the workload at time t0 satisfies

�Wrn�t0� = �7	 ��rn �t0��
= �71�0	 a�	 ��rn �t0��+ �71�a	��	 ��rn �t0��

≤ a�1	 ��rn �t0��+
1
ap

�71+p	 ��rn �t0��"

By the definition of ?rn
B �M�, �71+p	 ��rn �t0�� < M . For any � > 0, we first choose a large enough such that

M/ap < �/2. By (109), we can then choose n large enough such that a�1	 ��rn �t0�� ≤ �/2. This implies that

�Wrn�t0�= �7	 ��rn �t0��→ 0 as n→�"
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By Proposition 3.2,
�Wrn�·�→ �W�·�	

where �W�t�= �w∗ − �1−��t�+ for t ≥ 0. This means that �W�t0�= 0.
If �≤ 1, then �W�t�= 0 for all t ≥ t0. This means that for each t ≥ t0, �Wrn�t�→ 0 as n→�. For any K> 0,

we have the following inequality:

�Zrn�t�≤ ��rn �t��0	 K�+ �Wrn�t�

K
"

Because we are on the event ?rn
R �
 � (which is defined at the end of §5), we can choose K small enough such

that

�Zrn�t�≤ �+ �Wrn�t�

K
	

where the second term on the right-hand side in the above can be made smaller than � by taking n large enough.
This implies that #Z�t�= 0, which means � #��t�	 %��t��= �0	0�.
If �> 1, then for any t ∈ �t1	 T �, we have

�W�t�≥ ��− 1��t1− t0�
S= T1"

Because on the event ?r
B�M� (which is defined in §5.1), �71+p	 ��rn �t��<M for all t ∈ �0	 T �, for any � > 0,

there exists a c0 > 0 such that

�71�c0	��	 ��rn �t��< � for all t ∈ �0	 T � and n≥ 0"
This implies that for all t ∈ �0	 T �,

�Wrn�t� = �71�0	 c0�	 ��rn �t��+ �71�c0	��	 ��rn �t��
≤ c0 �Zrn�t�+ �" (110)

Taking � = T1/2, we have that �Zrn�t� ≥ T1/�2c0� for all t ∈ �t1	 T �. Letting n→�, #Z�t� ≥ T1/�2c0� for all
t ∈ �t1	 T �.
The assumption � #��t0�	 %��t0�� != �0	0� implies that #Z�t0� > 0. If �> 1, then for any t ∈ �t0	 T �, we have

�W�t�= �W�t0�+ ��− 1��t− t0�≥ �W�t0�
S= T0 > 0"

Note that (110) holds on the interval �0	 T �, we apply it to the interval �t0	 T �. Taking � = T0/2, we have that�Zrn�t�≥ T0/�2c0� for all t ∈ �t0	 T �. Letting n→�, #Z�t�≥ T1/�2c0� for all t ∈ �t0	 T �. �

Proof of Theorem 6.1. Case 1, �> 1. By Lemmas 6.2 and 6.3 for any 0< t1 ≤ t, we have that

#��t��Ay�= #Q�t1���Ay�+ � #Q�t�− #Q�t1����Ay�	 (111)

%��t��Ay�= %��t1��Ay + #S�t1	 t��+
∫ t

t1

��Ay + #S�s	 t��d �B�s� (112)

for all y ≥ 0. Because � #��·�	 %��·�� is continuous, we have that
� #��t1�	 %��t1��→ �<∗	=∗� as t1→ 0" (113)

Thus, letting t1→ 0, (111) becomes

#��t��Ay�= <∗�Ay�+ � #Q�t�− #Q�0����Ay�"

Note that ∫ t1

0
��Ay + #S�s	 t��d �B�s�≤ � #B�t1�− #B�0��= 8t1− � #Q�t1�− #Q�0��	

which converges to 0 as t1 → 0. If =∗ != 0, then #Z�0� > 0. Lemma 6.3 implies that inf s∈�0	 t� #Z�s� > 0. This
implies that

#S�t1	 t�→ #S�t� as t1→ 0" (114)
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By (113), %��t1�→=∗ (in the Prohorov metric) as t1→ 0. It follows from (114) that

%��t1��Ay + #S�t1	 t��→=∗�Ay + #S�t�� as t1→ 0"

If =∗ = 0,
%��t1��Ay + #S�t1	 t��→ 0 as t1→ 0"

In both cases, letting t1→ 0, (112) becomes

%��t��Ay�==∗�Ay + #S�t��+
∫ t

0
��Ay + #S�s	 t��d �B�s�"

We conclude that � #��·�	 %��·�� is the fluid model solution with initial condition �<∗	=∗�.
Case 2, � ≤ 1. Let t0 = inf�t ≥ 0� %��t� = 0�. By Lemma 6.2, for all t ∈ �0	 t0�, � #��t�	 %��t�� satisfies the

fluid dynamic Equations (21) and (22) with initial condition �<∗	=∗�. By the continuity of � #��·�	 %��·�� and
Lemma 6.3, � #��t�	 %��t��= �0	0� for all t ∈ �t0	 T �. Thus, � #��·�	 %��·�� is the fluid model solution with initial
condition �<∗	=∗�. �

Proof of Theorem 3.3. It is enough to show that for any G, � > 0,

lim inf
r→� � r �$�� ��r �·�	 ��r �·��	 � ���·�	 ���·��� < ��≥ 1−G	

where $ is the Skorohod metric defined in §1.1. Fix a constant T > 0 such that
∫ �
T
e−tdt < �/2. By Theorems 5.1

and 6.1, we have that

lim inf
r→� � r

(
$T �� ��r �·�	 ��r �·��	 � ���·�	 ���·��� < �

2�1− e−T �

)
≥ 1−G"

The result follows immediately from (3). �

Appendix A. A convolution equation.

Lemma A.1. Suppose F �0� < 1, � > 0 and h�·� is a càdlàg function. There exists a b > 0 (only depending
on � and F ) such that the two-side convolution Equation (50) has a unique solution x�·� on �0	 b�, which is
càdlàg.

Proof. The space D��0	 b�	�� (all real-valued càdlàg functions on �0	 b�, cf. §1.1) is a subset of the Banach
space of bounded, measurable functions on �0	 b�, equipped with the sup norm. One can check that this subset
is closed in the Banach space. Thus, the space D��0	 b�	�� itself, equipped with the uniform metric !b (defined
in §1.1), is complete.
Because F �0� < 1, there exists b > 0 such that

K �= �Fe�b�+ F �b� < 1"

For any y ∈D��0	 b�	��, define U�y� by

U�y��u�= h�u�+�
∫ u

0
�y�u− v�∧K�dFe�v�+

∫ u

0
�y�u− v�−K�+ dF �v�

for any u ∈ �0	 b�. By convention, the integration
∫ u

0 y�u− v�dF �v� is interpreted to be
∫
�0	 u� y�u− v�dF �v� (cf.

Chung [5, p. 43]).
First, we show that U is a mapping from D��0	 b�	�� to D��0	 b�	��. Because the function h is a càdlàg

function, essentially we only need to show that the convolution z�u�= ∫ u

0 y�u− v�dF �v� is a càdlàg function
for any càdlàg function y and distribution function F . By Theorem 12"2"2 in Whitt [30], there exists a sequence
of piecewise constant càdlàg functions yn such that !b�yn	 y�→ 0 as n→�. By piecewise constant càdlàg, we
mean a function of the form

J−1∑
j=0

cj1�aj 	 bj � + cJ1�aJ 	 b�	

where cj ∈ �, aj	 bj ∈ �0	 b� with aj < bj for all j = 0	 , , , 	 J − 1 and aJ < b. Note that the convolution of
indicator function 1�aj 	 bj �, ∫ u

0
1�aj 	 bj ��u− v�dF �v�	
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equals 0 if u< aj , equals F �u−aj�− F �0� if u ∈ �aj	 bj�, and equals F �u−aj�− F �u− bj� if u≥ bj . Because
F is càdlàg, the convolution of 1�ai	 bj � is also càdlàg. Similarly, the convolution of indicator function 1�aJ 	 b�,

∫ u

0
1�aJ 	 b��u− v�dF �v�	

equals 0 if u < aJ and equals F �u− aJ �− F �0� if u ∈ �aJ 	 b�. Again, this convolution is a càdlàg function.
It is now easy to see that zn�u� =

∫ u

0 yn�u− v�dF �v� is a càdlàg function for each n because it is a linear
combination of càdlàg functions. For any n, we have that

!b�zn	 z� ≤ sup
u∈�0	 b�

∫ u

0
�yn�u− v�− y�u− v��dF �v�

≤
∫ u

0
!b�yn	 y�dF �v�≤ F �u�!b�yn	 y�"

Thus, !b�yn	 y�→ 0 implies that !b�zn	 z�→ 0. Because the space D��0	 b�	�� is complete under the uniform
metric, the limit z is a càdlàg function.
Next, we show that the mapping U is a contraction. For any y	 y′ ∈D��0	 b�	��, we have that

!b�U�y�	U�y′�� ≤ sup
u∈�0	 b�

�
∫ u

0
��y�u− v�∧K�− �y′�u− v�∧K��dFe�v�

+ sup
u∈�0	 b�

∫ u

0
��y�u− v�−K�+ − �y′�u− v�−K�+�dF �v�

≤ �
∫ u

0
!b�y	 y

′� dFe�v�+
∫ u

0
!b�y	 y

′� dF �v�

≤ K!b�y	 y
′�"

Because K< 1, the mapping U is a contraction.
By the contraction mapping theorem (cf. Theorem 3.2 in Hunter and Nachtergaele [17]), U has a unique fixed

point x, i.e., x= 2�x�. This implies that x is the unique solution to Equation (50). �

Lemma A.2. Assume the same condition as in Lemma A.1. Let x�·� ∈D��0	 a�	�� be the solution to Equa-
tion (50) on some interval �0	 a� with F �a� < 1 . If h�·� satisfies the following condition

h�u�= �h�0�∧K��1−G�u��+ �h�0�−K�+�1− F �u��	 (A1)

where h�0�≥ 0, F �·� is the same probability distribution function as in (50), and G�·� is a probability distribution
function, then the function

8
∫ u

0
�x�v�∧K�dv− �x�u�−K�+

is nondecreasing in u on the interval �0	 a�.

Proof. To simplify the notation, let q�u�= �x�u�−K�+, z�u�= x�u�∧K and

b�u�= 8
∫ u

0
z�v�dv− q�u� (A2)

for all u ∈ �0	 a�. We need to show that b�·� is an nondecreasing function on the interval �0	 a�. It follows from
the definition of Fe�·� that �

∫ u

0 z�u−v�dFe�v�= 8
∫ u

0 z�v�dv−8
∫ u

0 z�v�F �u−v�dv. Plugging it into (50) gives

x�u�= h�u�+8
∫ u

0
z�v�dv+

∫ u

0
q�u− v�dF �v�−8

∫ u

0
z�v�F �u− v�dv"

Applying Fubini’s Theorem (cf. Theorem 8.4 in Lang [23]) to the last integral in the above, we have

8
∫ u

0
z�v�F �u− v�dv = 8

∫ u

0

∫ u−v

0
z�v�dF �x�dv

= 8
∫ u

0

∫ u−x

0
z�v�dvdF �x�"
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Thus, we obtain

x�u�−8
∫ u

0
z�v�dv= h�u�+

∫ u

0

[
q�u− v�−8

∫ u−v

0
z�x�dx

]
dF �v�"

According to the definition of b�·� in (A2), we have

b�u�= z�u�−h�u�+
∫ u

0
b�u− v�dF �v�" (A3)

It now remains to use (A2) and (A3) to argue that b�·� is nondecreasing on the interval �0	 a�, i.e., for any
u	u′ ∈ �0	 a� > 0 with u≤ u′, we have b�u�≤ b�u′�. Applying (A3), we have

b�u′�− b�u� = z�u′�− z�u�− �h�u′�−h�u��+
∫ u′

0
b�u′ − v�dF �v�+

∫ u

0
b�u− v�dF �v�

= z�u′�− z�u�− �h�u′�−h�u��+
∫ u′

u
b�u′ − v�dF �v�+

∫ u

0
�b�u′ − v�− b�u− v��dF �v�"

Note that by condition (A1), we have

−�h�u′�−h�u�� = −�h�0�∧K��G�u�−G�u′��− �h�0�−K�+�F �u�− F �u′��

= �h�0�∧K��G�u′�−G�u��− b�0��F �u′�− F �u��	

where the last equation is because of (50) and (A2). Thus,

b�u′�− b�u� = z�u′�− z�u�+ �h�0�∧K��G�u′�−G�u��

+
∫ u′

u
�b�u′ − v�− b�0��dF �v�+

∫ u

0
�b�u′ − v�− b�u− v��dF �v�" (A4)

Because b ∈ D��0	 a�	��, according to Theorem 6.2.2 in the supplement of Whitt [30], it is bounded on the
interval �0	 a�. Let

b∗ = inf
��u	u′�∈�0	 a�×�0	 a�� u≤u′�

b�u′�− b�u�"

If z�u′� <K, then q�u′�= 0. Thus, by (A2),

b�u′�− b�u�= 8
∫ u′

u
z�v�dv+ q�u�	

which is always nonnegative; if z�u′�=K, then z�u′�− z�u�≥ 0. It follows from (A4) that

b�u′�− b�u� ≥
∫ u′

u
�b�u′ − v�− b�0��dF �v�+

∫ u

0
�b�u′ − v�− b�u− v��dF �v�

≥
∫ u′

0
b∗ dF �v�= b∗F �u′�"

Summarizing both cases, we have
b�u′�− b�u�≥min�0	 b∗F �u′��

for all u	u′ ∈ �0	 a� > 0 with u ≤ u′. Suppose that b∗ < 0. Taking the infimum on both sides over the set
��u	u′� ∈ �0	 a�× �0	 a�� u≤ u′� gives b∗ ≥ F �a�b∗. This implies that �1− F �a��b∗ ≥ 0. Because F �a� < 1, it
contradicts to that b∗ < 0. Thus, we must have b∗ ≥ 0, which implies that b�·� is nondecreasing on �0	 a�. �

Appendix B. Glivenko-Cantelli estimate. The Glivenko-Cantelli estimate, cf. Lemma B.1 here, was used
in several places in this paper. A very similar result was proved in Lemma 5.1 (Gromoll et al. [15]). The
differences only stay at the technical level. For completeness, the proof which follows the one in Gromoll
et al. [15] is provided here.
For any r , consider the sequence of i.i.d random variables �vri �

�
i=−� with law �r . In our setting, those vri ’s

with i ≥ 1 correspond to the service requirement of the arriving jobs in the r th system and those with i ≤ 0
correspond to the service requirement of initial jobs in the r th system. Assume that

�r → � as r →�"
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For any n ∈� and l ∈�+, define

�Gr�n	 l�= 1
r

n+�rl�∑
i=n+1

3vri " (B1)

Let � = ��y	��� y ∈�+�∪ ��y	��� y ∈�+� and

	 = �1C� C ∈��"

The Skorohod representation theorem implies the existence of �+-valued random variables Y r ∼ �r and Y ∼ �
such that Y r → Y almost surely. Thus, there exists an �+-valued random variable �Y such that

�Y = sup
r∈�+

Y r	 almost surely" (B2)

Let �̄ be the law of �Y . The space L2��̄� of all Borel measurable functions f � �+ → � equipped with the
L2��̄�-norm �f ��̄	2 = ��f �2	 �̄� contains a continuous, increasing, and unbounded function f̄ such that f̄ ≥ 1 and

Ɛ�f̄ � �Y �2�= �f̄ 2	 �̄�<�" (B3)

Because 1C ≤ f̄ for all C ∈ �, we call f̄ an envelope function for 	 . Finally, denote �	 = 	 ∪ �f̄ �. The
objective of this section is to obtain the following Glivenko-Cantelli Estimate for �Gr�n	 l�.

Lemma B.1. Assume that d��r 	 ��→ 0 as r →�, where � is a probability measure. Fix constants M0, M1,
L> 0. For all �	G > 0,

lim sup
r→�

� r

(
max

−rM0<n<rM1
sup

l∈�0	L�
sup
f∈ �	

��f 	 �Gr�n	 l��− l�f 	 �r��> �

)
<G" (B4)

To prove the result, we introduce some notions from empirical process theory. Our primary references are
Gromoll et al. [15] and van der Vaart and Wellner [29]. A collection � of subsets of �+ shatters an n-point
subset �x1	 , , , 	 xn�⊂ �+ if the collection �� ∩ �x1	 , , , 	 xn�� C ∈ �� has cardinality 2n. In this case, we say
that � picks out all subsets of �x1	 , , , 	 xn�. The Vapnik-Červonenkis index (VC-index) of � is

V� =min�n� � shatters no n-point subset�	
where the minimum of the empty set equals infinity. The collection � is a Vapnik-Červonenkis class �VC-class�
if it has finite VC-index. In our case, � = ��x	�� and �x	��� x ∈ �+�" It is easy to see that � shatters no
two-point subset, so it has VC-index bounded above by two. Thus, � is a VC-class.
VC-classes satisfy a very useful entropy bound. Let Y be the set of all Borel probability measures Z on �+.

For all Z ∈ Y , denote L1�Z� the space of all Borel measurable functions f � �+ →� equipped with L1�Z�-norm

�f �Z	1 = ��f �	 Z�"
For any f ∈ L1�Z�, let BZ�f 	 ��= �g ∈	 � �g− f �Z	1 < �� denote the L1�Z�-ball in L1�Z�, centered at f with
radius �. For a family of functions 	 , N��		 	L1�Z�� is the smallest number of balls BZ�f 	 �� needed to
cover 	 . Because 	 is the set of index functions over a VC-class �,

sup
Z∈Y
logN���f̄ �Z	1		 	L1�Z�� <�[ (B5)

see Theorem 2.6.4 in van der Vaart and Wellner [29].
Proof of Lemma B.1. Define

�Gr�l�= 1
r

�−rM0�+�rl�∑
i=�−rM0�+1

3vri "

By (B1), it suffices to show that

lim sup
r→�

� r

(
sup

l∈�0	L′�
sup
f∈ �	

��f 	 �Gr�l��− l�f 	 �r��> �/2
)
<G	 (B6)

where L′ = L+M0+M1.
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We now apply Theorem 2.8.1 in van der Vaart and Wellner [29] to show (B6). Observe that for all n ∈� and
�e1	 , , , 	 en� ∈�n, the function

�x1	 , , , 	 xn�→ sup
f∈ �	

n∑
i=1

eif �xi�

is measurable on the completion of ���+	�	 �r�n, for all r ∈ �+. Thus, �	 is a �r -measurable class for all
r ∈ �+; see Definition 2"3"3 in van der Vaart and Wellner [29]. Moreover, �	 is uniformly bounded above by
the envelope function f̄ and

lim
M→�

sup
r∈�+

�f̄ 1�f̄ >M�	 �
r� = 0 (B7)

by Markov’s inequality, (B2), and (B3). Last, �	 satisfies the finite entropy bound (B5) because
N��	 �	 	L1�Z�� ≤ N��		 	L1�Z��+ 1 and because � is a VC-class. These three observations imply that the
assumptions of Theorem 2.8.1 in van der Vaart and Wellner [29] are satisfied. Consequently, �	 is Glivenko-
Cantelli, uniformly in r . That is, for every 3> 0, there exists an n3 such that

lim sup
r→�

� r

(
sup
m≥n3

sup
f∈ �	

∣∣∣∣ 1m
−�rM0�+m∑
−�rM0�+1

f �vri �−�f 	 �r�
∣∣∣∣>3

)
<3" (B8)

Note that the probability on the left-hand side of (B6) can be upper bounded by

� r

(
sup

l∈�0	L′�
sup
f∈ �	

�rl�
r

∣∣∣∣ 1�rl�
−�rM0�+�rl�∑
−�rM0�+1

f �vri �−�f 	 �r�
∣∣∣∣> �/4

)
+� r

(
1
r
sup
f∈ �	

�f 	 �r�> �

4

)
"

By (B2) and (B3), the second term in the above vanishes as r →�. The first term can be upper bounded by

� r

(
n3

r
sup

m∈�0	 n3�
sup
f∈ �	

∣∣∣∣ 1m
−�rM0�+m∑
−�rM0�+1

f �vri �−�f 	 �r�
∣∣∣∣> �/4

)

+� r

(
L′ sup

m∈�n3	L′r�
sup
f∈ �	

∣∣∣∣ 1m
−�rM0�+m∑
−�rM0�+1

f �vri �−�f 	 �r�
∣∣∣∣> �/4

)
" (B9)

To see this, one can replace m by �rl� and divide the interval �0	L′� into �0	 n3/r� and �n3/r	L
′�. Denote

X�f �= sup
m∈�0	 n3�

∣∣∣∣ 1m
−�rM0�+m∑
−�rM0�+1

f �vri �−�f 	 �r�
∣∣∣∣"

When f ∈ 	 , it is clear that X�f � ≤ 2. By (B2) and (B3), X�f̄ � is a random variable with finite mean and
variance. Thus, there exists a constant M3 such that

� r

(
sup
f∈ �	

X�f � >M3

)
<G/2"

The first term in (B9) is bounded by G/2 for all r ≥ 4M3n3/�. According to (B8), the lim sup of the second
term in (B9) will be bounded by G/2 if we choose 3=min��/�4L′�	G/2�. �

Acknowledgements. This research is supported in part by National Science Foundation Grants CMMI-
0727400 and CNS-0718701 and by an IBM Faculty Award. The authors thank two anonymous referees for
significantly improving the paper.

References

[1] Avi-Itzhak, B., S. Halfin. 1988. Expected response times in a non-symmetric time sharing queue with a limited number of service
positions. Proc. 12th Internat. Teletraffic Congress, Torino, Italy.

[2] Billingsley, P. 1995. Probability and Measure, 3rd ed. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons
Inc., New York.

[3] Billingsley, P. 1999. Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics.
John Wiley & Sons Inc., New York.

[4] Blake, R. 1982. Optimal control of thrashing. Proc. ACM SIGMETRICS Conf. Measurements Modeling Comput. Systems, Seattle.
[5] Chung, K. L. 2001. A Course in Probability Theory, 3rd ed. Academic Press Inc., San Diego.



Zhang, Dai, and Zwart: Law of Large Number Limits of LPS Queues
970 Mathematics of Operations Research 34(4), pp. 937–970, © 2009 INFORMS

[6] Dai, J. G. 1995a. On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models. Ann. Appl.
Probab. 5(1) 49–77.

[7] Dai, J. G. 1995b. Stability of open multiclass queueing networks via fluid models. Proc. IMA Workshop Stochastic Networks, Springer-
Verlag, New York.

[8] Denning, P. J., K. C. Kahn, J. Leroudier, D. Potier, R. Suri. 1976. Optimal multiprogramming. Acta Informatica 7 197–216.
[9] Doytchinov, B., J. Lehoczky, S. Shreve. 2001. Real-time queues in heavy traffic with earliest-deadline-first queue discipline. Ann. Appl.

Probab. 11(2) 332–378.
[10] Elnikety, S., E. Nahum, J. Tracy, W. Zwaenepoel. 2004. A method for transparent admission control and request scheduling in

e-commerce websites. World Wide Web Conf., New York.
[11] Ethier, S. N., T. G. Kurtz. 1986. Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathe-

matical Statistics. John Wiley & Sons Inc., New York.
[12] Gromoll, H. C. 2004. Diffusion approximation for a processor sharing queue in heavy traffic. Ann. Appl. Probab. 14(2) 555–611.
[13] Gromoll, H. C., Ł. Kruk. 2007. Heavy traffic limit for a processor sharing queue with soft deadlines. Ann. Appl. Probab. 17(3)

1049–1101.
[14] Gromoll, H. C., A. L. Puha, R. J. Williams. 2002. The fluid limit of a heavily loaded processor sharing queue. Ann. Appl. Probab.

12(3) 797–859.
[15] Gromoll, H. C., P. Robert, B. Zwart. 2008. Fluid limits for processor sharing queues with impatience. Math. Oper. Res. 33(2) 375–402.
[16] Heiss, H.-U., R. Wagner. 1991. Adaptive load control in transaction processing systems. Proc. 17th Internat. Conf. Large Data Bases,

Barcelona, Spain.
[17] Hunter, J. K., B. Nachtergaele. 2001. Applied Analysis. World Scientific Publishing Co. Inc., River Edge, NJ.
[18] Jean-Marie, A., P. Robert. 1994. On the transient behavior of the processor sharing queue. Queueing Systems Theory Appl. 17(1–2)

129–136.
[19] Kallenberg, O. 1986. Random Measures, 4th ed. Akademie-Verlag, Berlin.
[20] Kamra, A., V. Misra, E. M. Nahum. 2004. Yaksha: A self-tuning controller for managing the performance of 3-tiered web sites. 12th

IEEE Internat. Workshop Quality Service, Montréal.
[21] Kaspi, H., K. Ramanan. 2007. Law of large numbers limits for many-server queues. Working paper.
[22] Kleinrock, L. 1976. Queueing Systems. Vol. II, Computer Applications. Wiley-Interscience, New York.
[23] Lang, S. 1983. Real Analysis, 2nd ed. Addison-Wesley Publishing Company Advanced Book Program, Reading, MA.
[24] Nuyens, M., W. van der Weij. 2007. The limited processor sharing queue. Technical report, Centrum voor Wiskunde en Informatica,

Amsterdam.
[25] Puha, A. L., R. J. Williams. 2004. Invariant states and rates of convergence for a critical fluid model of a processor sharing queue.

Ann. Appl. Probab. 14(2) 517–554.
[26] Puha, A. L., A. L. Stolyar, R. J. Williams. 2006. The fluid limit of an overloaded processor sharing queue. Math. Oper. Res. 31(2)

316–350.
[27] Ritchie, D. M., K. Thompson. 1974. The Unix time-sharing system. J. ACM 17(7) 365–375.
[28] Schroeder, B., M. Harchol-Balter, A. Iyengar, E. Nahum, A. Wierman. 2006. How to determine a good multi-programming level for

external scheduling. Proc. 22nd Internat. Conf. Data Engrg., Atlanta.
[29] van der Vaart, A. W., J. A. Wellner. 1996. Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer-Verlag,

New York.
[30] Whitt, W. 2002. Stochastic-Process Limits. Springer-Verlag, New York.
[31] Zhang, F., L. Lipsky. 2006. Modelling restricted processor sharing. Proc. Internat. Conf. Parallel Distributed Processing Techniques

Appl. �PDPTA06�, Las Vegas, NV.
[32] Zhang, F., L. Lipsky. 2007. An analytical model for computer systems with non-exponential service times and memory thrashing

overhead. Proc. Internat. Conf. Parallel Distributed Processing Techniques Appl. �PDPTA07�, Las Vegas, NV.
[33] Zhang, J., B. Zwart. 2008. Steady state approximations of limited processor sharing queues in heavy traffic. Queueing Systems Theory

Appl. 60(3–4) 227–246.
[34] Zhang, J., J. G. Dai, B. Zwart. 2007. Diffusion limits of limited processor sharing queues. Technical report, Georgia Institute of

Technology, Atlanta. http://www.isye.gatech.edu/~jzhang/research/lps-ht.pdf.

http://www.isye.gatech.edu/~jzhang/research/lps-ht.pdf

	Introduction.
	Notation.

	The LPS queue and dynamic equations.
	Stochastic model.
	Fluid model.

	Main results.
	Properties of fluid model solutions.
	Fluid model as fluid limit.

	Properties of fluid model solutions.
	Starting with a nonzero valid initial condition.
	Starting with zero initial condition when $ \rho \le 1 $.
	Starting with zero initial condition when $ \rho > 1 $.

	Precompactness.
	Compact containment.
	Asymptotic regularity.
	Oscillation bound.

	Functional law of large number limit.
	A convolution equation.
	Glivenko-Cantelli estimate.

