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We study the optimal control of a queueing model with a single customer class and heterogeneous server

pools. The main objective is to strike a balance between the holding cost of the queue and the operating costs

of the server pools. We introduce a target-allocation policy, which assigns higher priority to the queue or

pools without enough customers, for general cost functions. Although we can prove its asymptotic optimality,

implementation requires solving a nonlinear optimization problem. When the cost functions are convex,

we propose a dynamic priority policy referred to as the Gc/µ rule, which is much easier to implement.

When the cost functions are concave, it turns out that a fixed priority policy is optimal. We also consider

an extension to minimize the operating cost of the server pools while satisfying a service-level target for

customers waiting in the queue. We develop hybrid routing policies, combining a threshold policy for the

queue and the aforementioned policies for the server pools, for different types of operating cost functions.

Moreover, the hybrid routing policies coincide with several classical policies in the literature in special cases.

Extensive simulation experiments demonstrate the efficacy of our proposed policies.

Key words : inverted-V model, many-server queue, fluid model, general cost, dynamic priority

1. Introduction

Motivated by various service systems in call centers and the healthcare industry (e.g., Tezcan

(2008), Mandelbaum et al. (2012)), we study the inverted-V model (a terminology coined by

Armony (2005)) with a single customer class who may abandon the system when their patience is

exhausted and many heterogeneous server pools handling customers at different service rates and

costs. The fundamental problem in the control of the inverted-V model is to decide whether an
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arriving customer should be queued in the buffer, and if not, which server pool we should use. In

this paper, we design control policies to achieve the following two objectives separately. In the first

objective, customers waiting in the queue incur a holding cost; thus, the goal is to minimize the

total long-run average holding and operating costs by finding the optimal trade-off. The second

objective is to minimize the long-run average operating cost while satisfying a target service level

in terms of the long-run abandonment proportion.

Holding and operating costs trade-off. We first consider the problem of routing arrivals

to join the queue or enter service in order to strike a balance between the holding cost from the

queue (including the queue-length cost and the abandonment penalty) and the operating cost from

the server pools (idle servers have no operating cost). Allowing more idle servers may lead to

excessive waiting and customer abandonment, whereas keeping more servers busy may increase

the operating cost. The idiosyncratic trade-off between holding and operating costs in inverted-V

models indicates that work-conserving policies might be suboptimal. This phenomenon has also

been observed in a single-class many-server queue, which is a special case of the inverted-V model

(see Zhan and Ward (2019), Zhong et al. (2022)).

When a customer is ready to be served, we must decide to which server pool the customer should

be routed. Recently, Xia et al. (2022) introduced a fixed priority routing policy, namely the c/µ

rule, and proved its optimality for linear costs, indicating that we should give higher priority to the

pool with the lower operating cost but faster service rate. The c/µ rule may cause the pools with

higher priority to be very busy but those with lower priority to be idle. In this paper, we allow

cost functions to be general functions. The corresponding routing policy therefore becomes the

generalized c/µ rule (Gc/µ) which assigns dynamic priority to the pools. As such, customers can

be dynamically routed to any one of the pools, fairly utilizing all server pools. We show that the

Gc/µ rule is asymptotically optimal for nonlinear convex costs. Moreover, our proposed Gc/µ rule

is a parsimonious dynamic priority policy oblivious to arrival rate and service capacity information.

In contrast to the Gc/µ rule (a dynamic priority policy with convex costs), we find that for

concave cost functions the optimal routing is a fixed priority policy. Akin to the convex queue

length costs considered in van Mieghem (1995), convex operating costs are suitable for situations

where the marginal cost of serving more customers is much higher than the marginal cost when

more servers become idle. Concave operating costs are appropriate for systems where managers

have strong preferences for fewer busy servers and become increasingly indifferent to pools with

more busy servers (see Ata and Olsen (2009)). In order to find an optimal priority order for systems

with concave costs, we need to solve a concave optimization problem, which is usually nontrivial

using standard non-linear approaches. We show that the fixed priority routing problem can be
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transformed into a knapsack problem, which can be solved more efficiently by using a dynamic

programming algorithm.

For nonconvex and nonconcave cost functions, we propose another dynamic scheduling policy

referred to as the target-allocation policy. Note that the steady state of customers in the queue

and pools can be viewed as the result of allocating all customers in the system. The idea is to

assign higher priority to the queue or pools that have not been assigned enough customers, which

is determined by solving a nonlinear optimization problem (24). The advantage of this policy is

that it is asymptotically optimal for any general cost functions. However, to implement the policy

we need to solve the nonlinear programming in advance.

From the above discussion, we can always choose the most appropriate policy for different cost

functions; see the last column of Table 1. In Long et al. (2020), where the authors focus on work-

conserving policies, three similar control policies (see the second column of Table 1) have been

developed to minimize the total holding cost of a V model for general, convex, and concave cost

functions, respectively. The routing problems in this paper can be thought of as a dual version

of the dynamic scheduling problems in the V model. However, they have distinct characteristics

because of different cost structures and operational controls, as reflected in Table 1.

V model in Long et al. (2020) Inverted-V model in this paper
multiple customer classes single server pool single customer class multiple server pools

Control problem scheduling different types of customers to service routing customers to different server pools
Objective minimize total holding costs trade off holding and operating costs
Work-conserving or not work-conserving non-work-conserving
General cost functions target-allocation policy target-allocation policy
Convex cost functions the Gcµ/h rule the Gc/µ rule
Concave cost functions fixed-priority policy (on buffers) fixed-priority policy (on server pools)

Table 1 Comparison of the V model in Long et al. (2020) and the inverted-V model in this paper

Minimize the operating cost with a service-level target. Another critical operational

decision in the inverted-V model is to minimize the operating cost of the system but also to meet

a certain service-level target p. In such a problem, the holding cost is removed from the objective

function by adding a service constraint. Such a formulation is more appropriate for service systems

where customer service is important but the holding cost is hard to quantify. Specifically, the

service constraint is expressed as that the steady-state abandonment probability of the whole

system is less than p, which can be any value between 0 to 1. The larger the service-level target,

the more customers will be allowed in the buffer. This inspires us to consider a hybrid policy,

where the queue follows a threshold policy (determined by p) and the pools still follow one of

the aforementioned three types of routing policies to cope with general operating cost functions.

Correspondingly, we formulate in Section 4 the hybrid target-allocation policy, the hybrid Gc/µ
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rule, and the hybrid fixed-priority policy, under which the service-level target is reached and the

total operating cost is also asymptotically optimized for general, convex and concave operating

cost functions, respectively.

Different service-level targets also enable us to characterize various practical systems. As illus-

trated in Figure 2 of Section 6, the holding cost increases with p and the operating cost decreases

with p. This implies that for systems with a low p, customers experience a short waiting time

and the abandonment rate is relatively low. A typical example is a large call center for a private

company’s after-sales customer service. In such a system, ensuring a short waiting time is the top

requirement. For systems with a medium p, an appropriate queue length is desirable. The costs

of holding and operating are balanced. A good example is a tiered security check system (see,

for example, Zhang et al. (2011)) or a make-to-order (subcontracting) system. For systems with

a relatively high p, customers experience a long waiting time and the abandonment rate can be

high. A proper example is a public service system such as a call center for a federal tax service or

an elective medical service system. Usually, the servers have specialized skills and can therefore be

scarce. Thus, our results have extensive application prospects in real-life operational systems.

1.1. Literature Review

Our paper contributes to three streams of literature i) research on systems under non-work-

conserving policies, ii) research on systems under cµ-type rules, and iii) research on systems with

a single customer class and multiple server pools.

As a special case of the inverted-V model, the queueing systems with a single customer class

and a many-server pool have been extensively studied in the literature from the pioneering work of

Whitt (2006) by applying fluid model analysis. Convergence of the stochastic processes to the fluid

limits in a many-server regime was proved in Zhang (2013) and Kang and Ramanan (2010) using

measure-valued processes. Similar to our analysis, Bassamboo and Randhawa (2010), Bassamboo

and Randhawa (2016), and Wu et al. (2019) used the steady states of fluid models to study routing

and staffing decisions in G/G/N + G systems. The focus of this line of research is on systems

under work-conserving policies (that utilize all the available service resources). However, in the

presence of server operating costs, Zhan and Ward (2019) and Zhong et al. (2022) found that work-

conserving policies are no longer asymptotically optimal in the M/M/N +M and G/G/N +G

settings, respectively. This paper extends such a finding to the inverted-V model showing that

intentional idling is a must when designing optimal routing policies to trade off the holding and

operating costs.

The cµ-type rules have a long history in the study of scheduling problems in V models (multiple

customer classes served by a single server pool) and have recently been applied to the study of
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routing problems in inverted-V models (single customer class multiple server pools). As early as

Smith (1956), the cµ rule was proposed and proved to be optimal for a multiclass M/G/1 system

with linear holding costs. In Atar et al. (2008, 2010, 2011, 2014), it was extended to the cµ/θ rule,

which is asymptotically optimal for a multiclass many-server queueing system with exponential

patience and linear holding costs. The Gcµ rule of van Mieghem (1995) appears to be the first to

consider nonlinear, convex holding costs in the analysis of a multiclass G/G/1 queue. Mandelbaum

and Stolyar (2004) generalized the Gcµ rule to a system with heterogeneous servers. The Gcµ/h

rule in Long et al. (2020) extended those studied in van Mieghem (1995) and Atar et al. (2008,

2010, 2011, 2014) to a multiclass many-server queueing system with general patience and nonlinear

convex holding costs. The aforementioned literature focuses on the analysis of V models. Recently,

Xia et al. (2022) proposed the c/µ rule to control an inverted-V model with linear operating costs.

Our Gc/µ rule extends Xia et al. (2022) to an inverted-V model with nonlinear convex operating

costs and can be viewed as a counterpart of the Gcµ rule in van Mieghem (1995). Indeed, the “Gc”

in the Gcµ rule is the marginal cost of the general queue-length cost, and the “Gc” in the Gc/µ

rule is the marginal cost of the general server operating cost.

The third literature stream to which we contribute is on the routing policies in inverted-V mod-

els. Armony (2005) analyzed the fastest-server-first (FSF) routing policy that assigns customers

to the fastest available pool, showing that it asymptotically minimizes the stationary queue length

and waiting time. Armony and Mandelbaum (2011) extended this result to accommodate aban-

donments. Tezcan (2008) proposed the load-balancing (LB) policy in order to have all server pools

in the inverted-V model fairly utilized. The idleness-ratio (IR) policy, which is a special case of the

queue-and-idleness ratio (QIR) in Gurvich and Whitt (2009a,b, 2010), routes customers to the pool

with the highest idleness imbalance. Armony and Ward (2010) analyzed the longest-idle-server-first

(LISF) policy in the inverted-V model with two pools. Atar et al. (2011) proposed the longest-idle-

pool-first policy that routes a customer to the pool with the longest cumulative idleness among

the available pools in order to balance cumulative idleness among the pools. Mandelbaum et al.

(2012) introduced the randomized most-idle (RMI) routing policy, which achieves the same server

fairness as the LISF policy. As mentioned earlier, Xia et al. (2022) proposed the c/µ rule, which

routes customers to the pool with low operating cost but high service rate as much as possible.

Most of these papers analyzed the inverted-V model based on diffusion model analysis or by for-

mulating the routing problem as a Markov decision process. In contrast, our work employs fluid

model analysis and covers the same policies proposed in the literature, including the fluid version

of the LB policy in Tezcan (2008), the IR policy in Gurvich and Whitt (2009a,b, 2010), the c/µ

rule in Xia et al. (2022) and the FSF policy in Armony (2005).
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1.2. Organization

The remainder of this paper is organized as follows. In Section 2, we introduce the inverted-V model

containing a single customer class and multiple server pools. We also establish the corresponding

fluid model and then formulate a steady-state optimization problem for the trade-off between the

holding and operating costs. Thus, we propose non-work-conserving routing policies in Section 3

that asymptotically minimize the cost of the system. In Section 4, we consider another routing

problem with a certain service-level target and develop the corresponding routing policies. We

show in Section 5 that our proposed policies have close connections to other routing policies in the

literature. In Section 6, we use simulation experiments to test the performance of our proposed

policies. Our conclusion is stated in Section 7. Technical proofs and some additional results about

the knapsack problem are collected in the e-companion.

2. Model and Asymptotic Framework

2.1. The Stochastic Model

As shown in Figure 1, we consider a sequence of inverted-V queueing systems, where a single type

of customer arrives at a system with an unlimited buffer and J server pools. In the nth system, the

external arrival process is assumed to be a Poisson process Λn(t) with rate λn. Note that the system

parameter of the nth system is denoted by the superscript n. We model customer abandonment

from the queue by assuming that each customer has a limited patience time following exponential

distribution with rate θn. Pool j, j = 1, . . . , J , has Nn
j servers and all are capable of handling

customers’ service requirements. Service times are also assumed to be exponential, with service

rates depending on the pool of the particular server. Specifically, the service rate of a server in

pool j is µnj . In addition, we assume that the interarrival times, patience times, and service times

are independent.

Denote by Qn(t) the number of customers awaiting service, and by Bn
j (t) the number of busy

servers in pool j, j = 1, . . . , J , at time t. Let Rn(t) denote the cumulative number of customers who

have abandoned the queue by time t. We use En
j (t) and Dn

j (t) to denote the cumulative number

of customers who have entered pool j and departed from pool j, by time t, respectively. The

abandonment process from the queue and the departure process from pool j satisfy

Rn(t) = R̃n
(∫ t

0

Qn(s)ds
)

and Dn
j (t) = D̃n

j

(∫ t

0

Bn
j (s)ds

)
, j = 1, . . . , J, (1)

for some Poisson processes R̃n and D̃n
j with rates θn and µnj , respectively. The above processes are

related via the following two balance equations for Qn and Bn
j :

Qn(t) =Qn(0) + Λn(t)−Rn(t)−
J∑
j=1

En
j (t), (2)
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Figure 1 A sequence of inverted-V models

Bn
j (t) =Bn

j (0) +En
j (t)−Dn

j (t), j = 1 . . . , J. (3)

Other than the index j = 1, . . . , J for each pool j, we use index J + 1 to denote the queue. Let

En
J+1(t) = Λn(t)−

J∑
j=1

En
j (t), (4)

which can be considered as the net cumulative number of customers who have joined the queue by

time t. Thus, (2) can be written as

Qn(t) =Qn(0) +En
J+1(t)−Rn(t). (5)

Moreover, let

Inj (t) =Nn
j −Bn

j (t), j = 1, . . . , J, and InJ+1(t) = +∞, (6)

where Inj (t), j = 1, . . . , J , can be viewed as the number of idle servers in pool j at time t and

InJ+1(t) can be similarly regarded as the available space in the queue, which is infinite owing to the

unlimited buffer size.

Due to exponentially distributed patience, system dynamics will not be affected by the order

of serving customers. Thus, we can assume that customers are taken from the queue according to

a first-come-first-served rule. To complete the full specification of an inverted-V model, we also

need to describe the details of policies to route customers to different server pools. The policy need

not satisfy the work conservation (i.e., non-idling server) condition. However, we assume that the

customer at the head of the queue can enter service either upon customer arrival or upon service

completion. Such an assumption is the same as (2) in Zhong et al. (2022). This means that

J∑
j=1

En
j (s, t)≤Λn(s, t) +

J∑
j=1

Dn
j (s, t), for all 0≤ s≤ t, (7)
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where En
j (s, t) :=En

j (t)−En
j (s) is the number of customers who have entered pool j during time

interval [s, t] and Λn(s, t), Dn
j (s, t) are similarly defined. The inequality (7) prevents routing a batch

of customers waiting in the queue into service and is sufficient for the tightness result in Theorem 1

in Section 2.2 to hold, which is in the same spirit as Assumption 2 in Puha and Ward (2022). Any

process

πn = (Rn,En,Dn,Qn,Bn, In) (8)

will be referred to as a policy for the nth system, provided that (1)–(7) hold. Denote by Πn the

collection of all policies for the nth system.

Heavy Traffic Regime and Fluid Scaling. We consider the many-server heavy traffic regime.

For the sequence of inverted-V models indexed by n, let the arrival rate and the number of servers

in each pool grow in proportion to n but with a fixed abandonment rate θn = θ and fixed service

rates µnj = µj for all j = 1 . . . , J . Moreover, as n goes to infinity,

λn

n
→ λ and

Nn
j

n
→Nj, j = 1, . . . , J. (9)

The fluid scaling for the arrival process can be defined as

Λ̄n(t) =
Λn(t)

n
, (10)

for all t≥ 0. The same scaling also applies to all of the other processes Rn, En, Dn, Qn, Bn and

In. We assume that the initial states satisfy Q̄n(0)⇒Q(0) and B̄n
j (0)⇒Bj(0) as n goes to infinity

for some Q(0)≥ 0 and Bj(0)≥ 0, j = 1, . . . , J .

Operating and Holding Costs. Assume that at any time t ≥ 0 each pool j, j = 1, . . . , J ,

incurs an instantaneous operating cost Cn
j (·) for busy servers and the queue incurs a per unit time

queue-length cost Cn
J+1(·) for waiting customers. In detail,

Cn
j (Bn

j (t)) =Cj(B
n
j (t)/n), j = 1, . . . , J, and Cn

J+1(Q
n(t)) =CJ+1(Q

n(t)/n), (11)

where the cost functions are rescaled as the parameter n changes and C1, . . . ,CJ ,CJ+1 can be any

general nondecreasing functions. The same scaling was also used in Section 7 of Mandelbaum and

Stolyar (2004). We set Cj(0) = 0, j = 1, . . . , J, J + 1, meaning that there will not be any cost once

there is no customer being served in pool j or waiting in the queue. There is also a penalty cost γ

for customer abandonment. Therefore, for any policy πn ∈Πn, the average total cost over [0, T ] is

LnT (πn) =
1

T

J∑
j=1

∫ T

0

Cj(B
n
j (s)/n)ds+

1

T

[∫ T

0

CJ+1(Q
n(s)/n)ds+ γRn(T )/n

]
, (12)
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where the term for the abandonment penalty is also rescaled by n. The idea of the above cost

function also follows from Mandelbaum and Stolyar (2004), where the authors study the almost

sure convergence of the cost function using Skorohod representation theorem. An alternative way

is to consider the convergence in mean, e.g., in Atar et al. (2010, 2014) the authors consider the

expectation of the cost function, and the expectation in their papers can be directly appended to

the headcount processes due to their assumption of linear costs. One of the main purposes of this

paper is to design routing policies that asymptotically minimize the average total cost (12).

For convenience, define the average operating cost and average holding cost (including the queue-

length cost and abandonment penalty) over [0, T ] as

LO,nT (πn) =
1

T

J∑
j=1

∫ T

0

Cj(B
n
j (s)/n)ds and LH,nT (πn) =

1

T

[∫ T

0

CJ+1(Q
n(s)/n)ds+ γRn(T )/n

]
,

(13)

respectively.

2.2. The Fluid Model

In this subsection, we introduce a deterministic fluid model, then show that it serves as the fluid

limit of the inverted-V model in the many-server heavy traffic regime.

Similar to the stochastic model, the fluid model involves a single type of fluid content that arrives

at an inverted-V model consisting of J server pools with the service capacity Nj in each pool j,

j = 1, . . . , J . The amount of external arrivals over [0, t] is Λ(t) = λt, where λ> 0. We use Q(t) and

Bj(t), j = 1, . . . , J , to denote the amount of fluid content waiting in the queue and being served in

pool j, respectively. The patience time in the queue follows an exponential distribution with rate

θ > 0 and the service time in pool j, j = 1, . . . , J , also follows an exponential distribution with rate

µj > 0.

Let R(t) denote the cumulative amount of fluid content that has abandoned the queue by time t.

We use Ej(t) and Dj(t) to denote the cumulative amount of fluid content that has entered pool j

and departed from pool j by time t, respectively. As a counterpart of (1), the fluid abandonment

process from the queue and the fluid departure process from pool j satisfy

R(t) = θ

∫ t

0

Q(s)ds and Dj(t) = µj

∫ t

0

Bj(s)ds, j = 1, . . . , J, (14)

respectively. Analogous to (2) and (3), we have the following two balance equations for Q and Bj:

Q(t) =Q(0) + Λ(t)−R(t)−
J∑
j=1

Ej(t), (15)

Bj(t) =Bj(0) +Ej(t)−Dj(t), j = 1, . . . , J. (16)
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Similar to (4), the net cumulative amount of fluid content that has joined the queue by time t

satisfies

EJ+1(t) = Λ(t)−
J∑
j=1

Ej(t). (17)

Then (15) becomes

Q(t) =Q(0) +EJ+1(t)−R(t). (18)

Moreover, in a similar vein to (6), the available service resource in pool j and the available space

in the queue at time t satisfy

Ij(t) =Nj −Bj(t), j = 1, . . . , J, and IJ+1(t) = +∞, (19)

respectively. Corresponding to (7), we have

J∑
j=1

Ej(s, t)≤Λ(s, t) +
J∑
j=1

Dj(s, t), for all 0≤ s≤ t, (20)

where Ej(s, t) :=Ej(t)−Ej(s) and Λ(s, t), Dj(s, t) are defined similarly.

We refer to equations (14)–(20) as the fluid model of an inverted-V queueing system. As with

the stochastic policies introduced in (8), any fluid process

π= (R,E,D,Q,B, I) (21)

will be referred to as a policy for the fluid model given that (14)–(20) hold. Also, denote by Π the

collection of all policies for the fluid model.

The following theorem, which we prove in Section EC.1 of the e-companion, proves that the fluid

model can be used to approximate the original stochastic model.

Theorem 1 (Fluid Limit). The sequence of the fluid-scaled stochastic processes

{(Λ̄n, R̄n, Ēn, D̄n, Q̄n, B̄n, Īn) : n ∈ N} satisfying (1)–(7) is tight in the Skorohod-J1 topology, and

any subsequential limit of the fluid-scaled stochastic processes satisfies the fluid model equations

(14)–(20).

In view of (12), define the associated fluid total cost as

LT (π) =
1

T

J∑
j=1

∫ T

0

Cj(Bj(s))ds+
1

T

[∫ T

0

CJ+1(Q(s))ds+ γR(T )
]
, (22)

for any fluid policy π ∈ Π. Corresponding to (13), the fluid operating and holding costs can be

respectively defined as

LOT (π) =
1

T

J∑
j=1

∫ T

0

Cj(Bj(s))ds and LHT (π) =
1

T

[∫ T

0

CJ+1(Q(s))ds+ γR(T )
]
. (23)
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The cost functions Cj(·), j = 1, . . . , J , and CJ+1(·) in (11) can now be regarded as the fluid operating

cost of the fluid content being served in pool j and the fluid queue-length cost of the fluid content

waiting in the queue, respectively.

2.3. Routing Problem

We use a steady-state optimization problem to determine the optimal routing of arrivals to the

queue and server pools. The formulation ignores the dynamic impact of variability in the inter-

arrival, service, and patience times by only focusing on “expected” arrival, service, and abandon-

ment rates.

Given λ> 0 and Nj > 0, j = 1, . . . , J , we formulate the routing problem as follows.

minimize
J∑
j=1

Cj(bj) +CJ+1(q) + γθq

subject to
J∑
j=1

µjbj + θq= λ,

0≤ bj ≤Nj, j = 1, . . . , J,

q≥ 0.

(24)

The objective is to minimize the long-run average total cost by choosing appropriate bj’s, j =

1, . . . , J , and q. The decision variables bj’s and q can be intuitively understood as the amount of fluid

content that is being served in pool j and is waiting in the queue in the long run, respectively. The

first constraint implies that the arrivals must be routed to one of the server pools or the queue. The

second constraint states that bj’s must be chosen so that the amount of fluid content being served

in pool j does not exceed the service capacity Nj. Moreover, bj’s and q should be nonnegative.

Denote by (b∗, q∗), where b∗ = (b∗1, . . . , b
∗
J), an optimal solution to this nonlinear programming and

L∗ the optimal value. It is clear that L∗ serves as the lower bound of any fluid convergent policies.

One of the main goals of this paper is to find a routing policy that approaches the lower bound.

Definition 1 (Stationary Optimal Control). A fluid routing policy π ∈ Π is said to be sta-

tionary optimal if the corresponding total cost function (22) satisfies lim
T→∞

LT (π) =L∗.

3. Non-work-conserving Routing Policies

Note that it is possible for the solution to problem (24) to satisfy q∗ ·
∑J

j=1(Nj − b∗j ) 6= 0, implying

that the queue and idle servers can coexist in the steady state. Thus, in this section, we propose

three types of non-work-conserving routing policies to cope with all possible types of cost functions.

Indeed, the routing problem (24) can become any type of optimization problem (convex, concave,

nonconvex and nonconcave). We first show the fluid routing policies in Section 3.1, then translate

them back to the original stochastic systems in Section 3.2.
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3.1. Fluid Routing Policies

In this subsection, we first introduce the fluid dynamic priority policy. In Section 3.1.1, the target-

allocation policy is proposed for any general cost functions. We then propose in Section 3.1.2 the

Gc/µ rule when the cost functions in (24) are convex. On the other hand, if the cost functions

are concave, we find it is optimal to apply the fixed priority policy in Section 3.1.3. As shown in

Table 1, our proposed three routing policies for inverted-V models actually correspond to those in

Long et al. (2020), where three similar work-conserving policies have been developed to minimize

the total holding cost of a V model with general, convex, and concave cost functions, respectively.

It is also worth pointing out that our proposed policies are non-work-conserving policies for the

purpose of balancing the holding and operating costs.

We now introduce the fluid dynamic priority policy, which routes the arrival to the queue or a

server pool with the smallest priority value at the arrival instants. Here the smallest value represents

the highest priority. This means that upon arrival, some amount of fluid content is routed to the

pool or queue with index

j ∈ arg min
j=1,...,J,J+1

Pj(t), (25)

where Pj(t), j = 1, . . . , J , is the priority value for pool j and PJ+1(t) is the priority value for the

queue at time t. Indeed, if the index j is equal to J + 1 at an arrival instant, then the arrival joins

the queue directly, and no fluid content can enter service. Otherwise, if the index j is in the set

{1, . . . , J} at an arrival instant, then the arrival joins the queue, and meanwhile, some amount of

fluid count at the head of the queue will enter service. The time-dependent index j provides us

with a dynamic priority, which introduces challenges to show the convergence of the fluid model,

especially starting from any initial state. Comparing (18) with (16), the buffer can be regarded

as another server pool with infinite service capacity indexed by J + 1. Then, EJ+1(t) and R(t) in

(18) can be regarded as the “entrance into service” process and “departure” process of pool J + 1,

respectively. Only when the pools, including pool J + 1 (queue), with the smallest priority value

are all busy, then the fluid content can be routed to the pools with the second smallest priority

value, so on and so forth. Therefore, the fluid dynamic priority policy can also be expressed as∫ t

0

∑
{k=1,...,J,J+1:Pk(s)<Pj(s)}

Ik(s)dEj(s) = 0, j = 1, . . . , J, J + 1. (26)

We take
∑
∅ Ik(s) = 0. Recall that IJ+1(t) = +∞ for all t≥ 0. Thus, no fluid content will be routed

to those pools with priority values larger than that of the queue.
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Remark 1. One can find that the routing decisions happen only at the arrival instants, which is

different from the work-conserving policies introduced in Long et al. (2020) where some amount of

fluid content in the queue will be routed to the server pool upon service completion. Interestingly,

we find that it will be suboptimal to allow fluid content to enter service upon service completion

in our inverted-V model. Let us consider a special case with J = 1 and set the initial state to be

B1(0)∈ (b∗1, λ/µ1) and Q(0) = (λ−µ1B1(0))/θ ∈ (0, q∗). If we allow the fluid content in the queue to

enter service upon service completion, then it is easy to check that the fluid model will stay at the

initial state under the policies introduced in this section. Namely, B1(t) =B1(0) and Q(t) =Q(0)

for all t≥ 0. Since (B1(0),Q(0)) is different from the optimal solution (b∗1, q
∗) of (24), it is better

not to make routing decisions upon service completion.

3.1.1. Target-allocation Policy We propose a policy that is suitable for any general cost

function. The optimal solution (b∗, q∗) of (24) reveals that there should be b∗j , j = 1, . . . , J , amount

of fluid content being served in pool j and q∗ amount of fluid content waiting in the queue in the

long run. Thus we define the following priority value functions:

Pj(t) =Bj(t)− b∗j , j = 1, . . . , J, and PJ+1(t) =Q(t)− q∗. (27)

Intuitively, the dynamic priority policy routes the fluid content to the queue or pools that have

not been assigned enough fluid content. Eventually, all the Bj’s and Q will be close to the optimal

solution (b∗, q∗). We refer to this fluid routing policy as the target-allocation policy denoted by

πb∗,q∗ (see (38) in Section 3.2 for the stochastic version). We show its optimality in the following

theorem, which is proved in Section EC.2.2 of the e-companion. Note that the target-allocation

policy needs the optimal solution of (24) in advance.

Theorem 2 (Optimality of the Target-allocation Policy). The fluid model (14)–(20),

under the target-allocation policy πb∗,q∗ with the priority value function (27), satisfies lim
t→∞

Bj(t) =

b∗j , j = 1, . . . , J , lim
t→∞

Q(t) = q∗ and lim
T→∞

LT (πb∗,q∗) =L∗.

3.1.2. The Generalized c/µ Rule For convex cost functions, we propose another dynamic

priority policy that is easier to implement since the optimal solution of (24) is not required in

advance. Consider the Lagrangian function of (24)

L (bj, q,α0, αj, βj, η) =
J∑
j=1

Cj(bj) +CJ+1(q) + γθq

+α0(λ−
J∑
j=1

µjbj − θq)−
J∑
j=1

αjbj −
J∑
j=1

βj(Nj − bj)− ηq,

where the Lagrange multipliers satisfy α0 ∈R, η ≥ 0 and αj, βj ≥ 0 for all j = 1, . . . , J . We assume

that the cost functions Cj’s, j = 1 . . . , J, J+1, satisfy conditions that are analogous to Assumption 3

in van Mieghem (1995) and Assumption 2 in Huang et al. (2015).
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Assumption 1 (Cost Regularity). The cost functions Cj’s, j = 1, . . . , J, J+1, are differentiable

and strictly convex, and there is an interior solution to the minimization problem (24).

Denote the derivative of Cj(·) by cj(·), j = 1, . . . , J, J + 1. Under Assumption 1, the Karush-

Kuhn-Tucker (KKT) conditions then satisfy

cj(b
∗
j )

µj
= α0, j = 1, . . . , J, (28)

cJ+1(q
∗)

θ
+ γ = α0, (29)

J∑
j=1

µjb
∗
j + θq∗ = λ. (30)

One can find that (28) and (29) are equal to the same constant α0, which inspires us to consider

the following priority value functions:

Pj(t) =
cj(Bj(t))

µj
, j = 1, . . . , J, and PJ+1(t) =

cJ+1(Q(t))

θ
+ γ. (31)

As argued below (25), the buffer can be regarded as another server pool with infinite service capacity

indexed by J + 1. Therefore, with a slight abuse of the terminology, we refer to the above as the

priority value functions of the generalized c/µ rule (Gc/µ) denoted by πG (see (39) in Section 3.2

for the stochastic version).

The Gc/µ rule can be viewed as a counterpart of the well-known Gcµ rule in van Mieghem (1995)

for the optimal scheduling of multiple types of customers to a server pool. Symmetrically, the Gc/µ

rule is designed for the optimal routing of inverted-V models and the optimality is shown in the

following theorem, which we prove in Section EC.2.2 of the e-companion. Here, we require cj’s to

be differentiable in the same spirit as the twice differentiability of the cost functions in Section 4

of Mandelbaum and Stolyar (2004).

Theorem 3 (Optimality of the Gc/µ Rule). Given Assumption 1, if cj’s, j = 1, . . . , J, J + 1,

are differentiable, then the fluid model (14)–(20) under the Gc/µ rule πG with the priority value

function (31) satisfies lim
t→∞

Bj(t) = b∗j , j = 1, . . . , J , lim
t→∞

Q(t) = q∗ and lim
T→∞

LT (πG) =L∗.

We find that the proofs of the optimality of the target-allocation policy and the Gc/µ rule are

almost the same. Therefore, we will simultaneously prove Theorems 2 and 3 in Section EC.2.2 of

the e-companion.

3.1.3. Fixed Priority Policy When Pj(t)’s, j = 1, . . . , J, J + 1, are independent of time t,

the fluid dynamic priority policy is known as the fixed priority policy. Consider a priority order

from pool 1 (highest priority) to pool J (lowest priority). We also set the priority value for the



15

queue such that the priorities of J pools are separated into two parts. Therefore, the priority value

function in (25) can be specified as

Pj(t) = j, j = 1, . . . , J, and PJ+1(t) = k+
1

2
, k ∈ {0,1, . . . , J}. (32)

The following proposition shows that the system converges to the steady state under the fixed

priority policy (32). The proof is given in Section EC.2.3 of the e-companion.

Proposition 1 (Convergence of the Fixed Priority Policy). The fluid model (14)–(20)

under the fixed priority policy with the priority value function (32) satisfies

lim
t→∞

Bj(t) = bj, j = 1, . . . , J, and lim
t→∞

Q(t) = q, (33)

where the limits b= (b1, · · · , bJ) and q satisfy the conditions in the following two cases:

(i) If λ>
∑k

l=1 µlNl, where k ∈ {0,1, . . . , J} is from the priority value of the buffer in (32), then

the limits satisfy

b= (N1, · · · ,Nk,0, · · · ,0) and q=
1

θ
(λ−

k∑
l=1

µlNl). (34)

(ii) If λ≤
∑k

l=1 µlNl, where k ∈ {0,1, . . . , J} is from the priority value of the buffer in (32), then

the limits satisfy

b=
(
N1, · · · ,Nj0−1, (λ−

j0−1∑
j=1

µjNj)/µj0 ,0, · · · ,0
)

and q= 0, (35)

where j0 = max
{
j ∈ [1, · · · , k] :

∑j−1
l=1 µlNl <λ

}
.

The above limits can be viewed as a solution on the boundary of the feasible region of (24).

Therefore, if the nonlinear programming (24) is a concave optimization problem, then the optimal

solution (b∗, q∗) surely has the same form as (34) or (35) after reordering the indices if needed. This

is associated with an optimal fixed priority order, of which the corresponding fixed priority policy

is denoted by πP∗ (see (40) in Section 3.2 for the stochastic version). Note that the order among

the pools with b∗j =Nj can be arbitrarily determined. It can also be arbitrary for those with b∗j = 0.

Theorem 4 (Optimality of the Fixed Priority Policy). If the cost functions Cj’s, j =

1, . . . , J, J + 1, are concave, then the fluid model (14)–(20) under the fixed priority policy πP∗ with

the priority value function (32) (after reordering the indices if needed) satisfies lim
t→∞

Bj(t) = b∗j ,

j = 1, . . . , J , lim
t→∞

Q(t) = q∗ and lim
T→∞

LT (πP∗) =L∗.

Theorem 4 is proved in Section EC.2.3 of the e-companion. This theorem provides a sufficient

condition for the optimality of the fixed priority policy. We will show in Section EC.4 the connection

between the fixed priority policy and a min-knapsack problem. Consequently, the optimal priority

order can be obtained by solving the min-knapsack problem using dynamic programming.



16

3.2. Stochastic Routing Policies

In this subsection, we show how fluid routing policies can lead to stochastic policies that are optimal

in an asymptotic sense.

In the nth system, let P n
j (t), j = 1, . . . , J , be the priority value function of each pool and P n

J+1(t)

be the priority value function of the queue. Then the stochastic version of the fluid dynamic priority

policy (25) is said to be as follows: upon arrival, there will be a customer who is routed to the pool

or the queue with index

j ∈ arg min
j=1,...,J,J+1

P n
j (t). (36)

Similar to the argument below (25), in the stochastic system, the buffer can also be regarded as

another server pool indexed by J + 1 with En
J+1 in (4) being the “entrance into service” process

and Rn in (2) being the “departure” process. Thus, a routing policy essentially routes the external

arrivals to server pools, including pool J + 1 (queue). If pool i with the smallest priority value is

busy, the customer will be routed to pools with the second smallest priority value, and so on and

so forth. Ties are broken arbitrarily once there are multiple pools with the same priority value, for

example, in favor of the smallest index j. Thus, one can find that the stochastic dynamic priority

policy (36) is equivalent to∫ t

0

∑
{k=1,...,J,J+1:Pn

k
(s)<Pn

j (s)}

Ink (s)dEn
j (s) = 0, j = 1, . . . , J, J + 1. (37)

We set
∑
∅ I

n
k (s) = 0. Since InJ+1(t) = +∞ for all t≥ 0 by (6), no customer will be routed to pools

with a lower priority than the queue.

In the following, we consider three stochastic routing policies corresponding to the three fluid

routing policies proposed in Section 3.1.

Target-allocation Policy. We denote it by πnb∗,q∗ given the priority value functions

P n
j (t) =Bn

j (t)/n− b∗j , j = 1, . . . , J, and P n
J+1(t) =Qn(t)/n− q∗, (38)

where we apply the same scaling as in (11) and (b∗, q∗) is an optimal solution of the nonlinear

programming (24).

The Generalized c/µ Rule. We denote it by πnG given the priority value functions

P n
j (t) =

cj
(
Bn
j (t)/n

)
µj

, j = 1, . . . , J, and P n
J+1(t) =

cJ+1(Q
n(t)/n)

θ
+ γ, (39)

where we apply the same scaling as in (11).
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Fixed Priority Policy. We denote it by πnP∗ given the priority value function (after reordering

the indices if needed)

P n
j (t) = j, j = 1, . . . , J, and P n

J+1(t) = k+
1

2
, k ∈ {0,1, . . . , J}. (40)

It is worth noting that under the fixed priority policy, the pools with priority lower than pool J+1

(queue) can be eliminated (i.e., the system should be downsized or have fewer server pools).

Recall that L∗ is the minimum value of the routing problem (24). We have proven in Theorems 2,

3 and 4 that the fluid model can achieve the optimal value L∗ under the three fluid routing policies

πb∗,q∗ , πG, and πP∗ . For the original queueing system, our goal is to find a routing policy such

that L∗ can also be asymptotically achieved in the many-server heavy traffic regime. We refer to

such a routing policy as an asymptotically stationary optimal policy. The following theorem shows

that the optimal value L∗ can actually be asymptotically achieved under any one of the stochastic

policies πnb∗,q∗ , πnG and πnP∗ . In fact, it is exactly the stochastic version of Theorems 2, 3, and 4. The

proof is postponed to Section EC.2.4 of the e-companion.

Theorem 5 (Asymptotically Stationary Optimality of Our Policies). Given the condi-

tions in Theorems 2, 3 and 4 respectively, there is

lim inf
T→∞

lim inf
n→∞

LnT (πn) = limsup
T→∞

limsup
n→∞

LnT (πn) =L∗ (41)

almost surely, where πn = πnb∗,q∗, πnG, and πnP∗, accordingly.

4. Routing Problem with a Service-level Target

So far, we have proposed in Section 3 three dynamic priority policies to balance the trade-off

between the holding and operating costs. In practice, another critical decision in inverted-V models

is to minimize the operating costs of the system but also to meet a certain service-level target.

Such a decision is particularly important for situations where customer service level is a major

concern, but the waiting cost is difficult to quantify. In this section, we show that this problem can

be formulated as another optimization problem that is similar to the routing problem (24).

Assume that the goal is to minimize the operating costs of all the pools subject to keeping the

steady-state abandonment probability of the whole system below a service-level target p, which

can be any number in [0,1]. Given λ> 0, Nj > 0, j = 1, . . . , J , and p∈ [0,1], consider the following

optimization problem.
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minimize
J∑
j=1

Cj(bj)

subject to θq/λ≤ p,
J∑
j=1

µjbj + θq= λ,

0≤ bj ≤Nj, j = 1, . . . , J,

q≥ 0.

(42)

It is clear that (42) is feasible only when λ(1− p) ≤
∑J

j=1 µjNj. We assume that this condition

is satisfied for the above problem. Similar to the routing problem (24), the above determines the

optimal routing of arrivals to the queue and pools and meets the service-level target p. Therefore,

we refer to the above optimization problem as the routing problem with a service-level target. The

decision variables bj’s and q have the same interpretation as in (24). The left-hand side of the first

constraint can be understood as the abandonment probability of the whole system, which should

be less than or equal to p. The other three constraints are identical to that of (24). The optimal

solution of (42) is denoted by (bp,∗, qp,∗), where bp,∗ = (bp,∗1 , . . . , bp,∗I ). Here we append a superscript

p to emphasize the dependence on the service-level target. We also denote the optimal value by

LO,∗, which is actually the steady state of the operating cost in (23).

Next, we show that if we set the service-level target p to be equal to θq∗/λ, where q∗ is the

optimal solution of (24), the two routing problems (24) and (42) have a same optimal solution.

The proof is straightforward and hence omitted.

Proposition 2 (Connection Between the Two Routing Problems). For any λ > 0 and

Nj > 0, j = 1, . . . , J , if we set the service-level target p= θq∗/λ, then there exist optimal solutions

of (24) and (42) that satisfy (b∗, q∗) = (bp,∗, qp,∗).

In the following, we will design routing policies that attain the optimal value of the routing

problem (42), which is LO,∗, for any given service-level target p∈ [0,1]. Similar to Definition 1, we

have the following definition for the routing problem with a service-level target.

Definition 2 (Stationary Optimal Control with a Service-level Target). For any given

p ∈ [0,1], a fluid routing policy π ∈Π is said to be stationary optimal with a service-level target p

if the corresponding operating cost function in (23) satisfies lim
T→∞

LOT (π) =LO,∗.

4.1. Fluid Hybrid Routing Policies

It can be easily seen that the optimal solution of (42) satisfies qp,∗ = λp/θ, which implies that there

should be λp/θ amount of fluid content waiting in the queue in the long run. This inspires us to
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consider a hybrid policy, where the queue follows a threshold policy (only when the fluid queue

length exceeds λp/θ can the fluid content at the head of the queue enter service) and the pools

still follow one of the three fluid dynamic priority policies introduced in (25).

Specifically, the hybrid policy combines the fixed priority policy on the queue with the dynamic

priority policy on the pools. The fixed priority policy on the queue prevents the fluid content from

entering service as long as the fluid queue length is no more than λp/θ. This means∫ t

0

(
λp/θ−Q(s)

)+
d

J∑
j=1

Ej(s) = 0. (43)

When the fluid queue length exceeds λp/θ, the dynamic priority policy on the pools routes some

amount of fluid content to the pool with index

j ∈ arg min
j=1,...,J

Pj(t), (44)

where Pj(t), j = 1, . . . , J , is the priority value for pool j at time t. If the pools with the highest

priority are all busy, then the fluid content can be routed to the pools with the second highest

priority value, so on and so forth. Therefore, the fluid dynamic priority policy on the pools (44)

can be expressed as ∫ t

0

∑
{k=1,...,J:Pk(s)<Pj(s)}

Ik(s)dEj(s) = 0, j = 1, . . . , J. (45)

Note that
∑
∅ Ik(s) = 0. We refer to (43) and (45) as the fluid hybrid routing policy.

It remains to specify the priority value functions for the pools. We find that Pj(t)’s, j = 1, . . . , J ,

perfectly inherit the same form as that of the three routing policies proposed in Section 3. The

main difference is that there is no need to define the priority value function for the queue, which

is now replaced by (43).

4.1.1. Hybrid Target-allocation Policy For general operating cost functions, we propose

a hybrid policy that combines the fixed priority policy on the queue, which is characterized by

(43), and the target-allocation policy on the pools. The priority value functions for the pools are

almost the same as that of (27). The optimal solution bp,∗ = (bp,∗1 , . . . , bp,∗J ) of (42) motivates us to

define the following priority value function for the pools:

Pj(t) =Bj(t)− bp,∗j , j = 1, . . . , J. (46)

We refer to the fluid routing policy satisfying (43), (45) and (46) as the hybrid target-allocation

policy denoted by πhbp,∗ (see (56) in Section 4.2 for the stochastic version). Its optimality is shown

in Theorem 6 below, which is the hybrid version of Theorem 2. The proof is given in Section EC.3

of the e-companion.
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Theorem 6 (Optimality of the Hybrid Target-allocation Policy). Given λ(1 − p) ≤∑J

j=1 µjNj, the fluid model (14)–(20) under the hybrid target-allocation policy πhbp,∗ with

the priority value function (46) satisfies lim
t→∞

Bj(t) = bp,∗j , j = 1, . . . , J , lim
t→∞

Q(t) = λp/θ and

lim
T→∞

LOT (πhbp,∗) =LO,∗.

4.1.2. Hybrid Gc/µ Rule For convex operating cost functions, we propose a hybrid policy

that combines the fixed priority policy on the queue, characterized by (43), and the Gc/µ rule on

the pools to meet the service-level target p. Similar to Assumption 1, we also have the following

assumption for the optimization problem (42).

Assumption 2 (Cost Regularity for the Routing Problem with a Service-level Target).

The operating cost functions Cj’s, j = 1, . . . , J , are differentiable and strictly convex, and there is

an interior solution to the minimization problem (42).

Under Assumption 2, the KKT conditions (28)–(30) then reduce to

cj(b
p,∗
j )

µj
= α0, j = 1, . . . , J, (47)

J∑
j=1

µjb
p,∗
j = (1− p)λ. (48)

In line with (31), we consider the following priority value function:

Pj(t) =
cj(Bj(t))

µj
, j = 1, . . . , J. (49)

This equation is referred to as the priority value function of the hybrid generalized c/µ rule (hybrid

Gc/µ) denoted by πhG (see (57) in Section 4.2 for the stochastic version).

The optimality of the hybrid Gc/µ rule is shown in the following theorem. The proof is given in

Section EC.3 of the e-companion.

Theorem 7 (Optimality of the Hybrid Gc/µ Rule). Given Assumption 2 and λ(1 − p) ≤∑J

j=1 µjNj, if cj’s are differentiable, then the fluid model (14)–(20) under the hybrid Gc/µ rule πhG

with the priority value function (49) satisfies lim
t→∞

Bj(t) = bp,∗j , j = 1, . . . , J , lim
t→∞

Q(t) = λp/θ and

lim
T→∞

LOT (πhG) =LO,∗.

4.1.3. Hybrid Fixed Priority Policy For concave operating cost functions, we propose a

hybrid policy that combines the fixed priority policy on the queue, which is characterized by (43),

and the fixed priority policy on the pools to meet the service-level target p. The fixed priority policy

on the pools essentially prevents the fluid content from entering server pools as long as other pools

with higher priority are still available. Consider a priority order from class 1 (highest priority) to
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class J (lowest priority). Then, the same as (32), the priority value function for each pool can be

specified as

Pj(t) = j, j = 1, . . . , J. (50)

The following proposition shows that the system converges to the steady state under the hybrid

fixed priority policy that satisfies (43), (45) and (50).

Proposition 3 (Convergence of the Hybrid Fixed Priority Policy). Given λ(1 − p) ≤∑J

j=1 µjNj, the fluid model (14)–(20) under the hybrid fixed priority policy with the priority value

function (50) converges to the following steady state

lim
t→∞

Bj(t) = bj, j = 1, . . . , J, and lim
t→∞

Q(t) = λp/θ, (51)

where the limit b= (b1, · · · , bJ) satisfies

b=
(
N1, · · · ,Nj0−1,

(
λ(1− p)−

j0−1∑
j=1

µjNj

)
/µj0 ,0, · · · ,0

)
, (52)

where j0 = max
{
j ∈ [1, · · · , J ] :

∑j−1
l=1 µlNl <λ(1− p)

}
.

The allocation of the service resource (52) takes a special form such that bj =Nj for all pools

j < j0 providing full service resource, bj = 0 for all pools j > j0 without providing any service,

and bi0 =
(
λ(1− pAb)−

∑i0−1
i=1 µiNi

)
/µi0 for at most one pool i0 providing partial service resource.

Combined with the fact that qp,∗ = λp/θ, this is virtually a solution on the boundary of the feasible

region of (42). Therefore, if the nonlinear programming (42) is a concave optimization problem,

then the optimal solution bp,∗ = (bp,∗1 , . . . , bp,∗J ) has the same form as (52) after reordering the pool

indices if needed. This is associated with an optimal fixed priority order on the pools, of which

the corresponding hybrid fixed priority policy is denoted by πhP∗ (see (58) in Section 4.2 for the

stochastic version).

Theorem 8 (Optimality of the Hybrid Fixed Priority Policy). Given λ(1 − p) ≤∑J

j=1 µjNj, if the operating cost functions Cj’s, j = 1, . . . , J , are concave, then the fluid model

(14)–(20) under the hybrid fixed priority policy πhP∗ with the priority value function (50) (after

reordering the pool indices if needed) satisfies lim
t→∞

Bj(t) = bp,∗j , j = 1, . . . , J , lim
t→∞

Q(t) = λp/θ and

lim
T→∞

LOT (πhP∗) =LO,∗.

The above theorem is proved in Section EC.3 of the e-companion and is the hybrid version of

Theorem 4.
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4.2. Stochastic Hybrid Routing Policies

Now we translate the fluid hybrid routing policies back to the stochastic ones and show that they

asymptotically minimize the operating cost but still meet the service-level target p.

The hybrid policy combines the fixed priority policy on the queue and the dynamic priority

policy on the pools. The stochastic version of the fluid fixed priority policy on the queue (43) can

be expressed as ∫ t

0

(
λnp/θ−Qn(s)

)+
d

I∑
i=1

En
i (s) = 0, (53)

which means customers can be routed into server pools only when the queue length exceeds a

threshold λnp/θ. Moreover, the stochastic version of the fluid dynamic priority policy on the pools

(44) is said to be: at time t, given that a customer is to be served, this customer is routed to the

pool with the index

j ∈ arg min
j=1,...,J

P n
j (t), (54)

where P n
j (t), j = 1, . . . , J , is the priority value function of each pool. If pool j with the smallest

priority value is busy, the customer will be routed to pools with the second smallest priority value,

and so on and so forth. Ties are broken arbitrarily once there are multiple pools with the same

priority value, for example, in favor of the smallest index j. It can be easily seen that the stochastic

dynamic priority policy on the pools (54) is equivalent to∫ t

0

∑
{k=1,...,J:Pn

k
(s)<Pn

j (s)}

Ink (s)dEn
j (s) = 0, j = 1, . . . , J. (55)

We set
∑
∅ I

n
k (s) = 0. We refer to (53) and (55) as a hybrid routing policy.

In line with the routing policies in Section 3, we also consider three stochastic hybrid routing

policies that correspond to the three fluid hybrid routing policies proposed in Section 4.1.

Hybrid Target-allocation Policy. We denote it by πh,nbp,∗ given the priority value function

P n
j (t) =Bn

j (t)/n− bp,∗j , j = 1, . . . , J, (56)

where we apply the same scaling as in (11) and bp,∗ is an optimal solution of the nonlinear pro-

gramming (42).

Hybrid Generalized c/µ Rule. We denote it by πh,nG given the priority value function

P n
j (t) =

cj
(
Bn
j (t)/n

)
µj

, j = 1, . . . , J, (57)

where we apply the same scaling as in (11).
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Hybrid Fixed Priority Policy. We denote it by πh,nP∗ given the priority value function (after

reordering the indices if needed)

P n
j (t) = j, j = 1, . . . , J. (58)

The following theorem is the stochastic version of Theorems 6, 7 and 8. The proof is the same

as that of Theorem 5. Thus, we omit it for brevity.

Theorem 9 (Asymptotically Stationary Optimality of Hybrid Policies). Given the con-

ditions in Theorems 6, 7 and 8 respectively, there is

lim inf
T→∞

lim inf
n→∞

LO,nT (πn) = limsup
T→∞

limsup
n→∞

LO,nT (πn) =LO,∗ (59)

almost surely, where πn = πh,nbp,∗, πh,nG and πh,nP∗ accordingly.

5. Connection to Other Routing Policies

In this section, we consider the routing problem with a service-level target p= 0. Then the opti-

mization problem (42) is feasible only when λ ≤
∑J

j=1 µjNj. By Theorems 6, 7 and 8, the fluid

queue length vanishes under any one of the three hybrid routing policies proposed in Section 4.

Furthermore, given p = 0 the hybrid Gc/µ rule can be specialized to the policies proposed in

Tezcan (2008) and Gurvich and Whitt (2009a,b, 2010), and the hybrid fixed priority policy can be

specified as the policies developed in Armony (2005) and Xia et al. (2022).

5.1. The Load-balancing (LB) Policy

The key idea of the load-balancing (LB) policy proposed in Tezcan (2008) is to have all servers in

the inverted-V model be utilized fairly. To show its connection to the hybrid Gc/µ rule, we set the

service-level target p= 0 and the operating cost function to be

Cj(x) =
x2

2Nj

µj, j = 1, . . . , J. (60)

Then the priority value function of the hybrid Gc/µ rule (49) becomes

Pj(t) =
Bj(t)

Nj

, j = 1, . . . , J, (61)

which is the utilization of pool j at time t. With regard to (43) and (44), upon arrival, the fluid

content at the head of the queue is routed to the least utilized pool with the index

arg min
j=1,...,J

Bj(t)

Nj

. (62)

We refer to (61) as the priority value function of the load-balancing (LB) policy denoted by πLB.

As a special case of the hybrid Gc/µ rule, the LB policy with the operating cost function (60)

can also attain the optimal value of the optimization problem (42). We formally state it in the

following corollary of Theorem 7.
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Corollary 1 (Optimality of the Load-balancing (LB) Policy). Given p = 0 and λ ≤∑J

j=1 µjNj, if the operating cost function satisfies (60), then the fluid model (14)–(20) under the

load-balancing policy with the priority value function (61) satisfies lim
t→∞

Bj(t) = bp,∗j , j = 1, . . . , J ,

lim
t→∞

Q(t) = 0 and lim
T→∞

LOT (πLB) =LO,∗. In detail, bp,∗j = λ∑J
j=1 µjNj

Nj and

Bj(t)

Nj

− Bk(t)
Nk

→ 0 as t→∞, (63)

for all j, k= 1, . . . , J .

5.2. The Idleness-ratio (IR) Policy.

The idleness-ratio (IR) policy is a special case of queues-and-idleness ratio (QIR) policies for service

systems with multiple server pools and multiple customer classes that were proposed and analyzed

by Gurvich and Whitt (2009a,b, 2010). Adopting the QIR policy to the inverted-V model, the IR

policy routes customers to the pool with the highest idleness imbalance. Indeed, given the service-

level target p= 0, our proposed hybrid Gc/µ rule can also degenerate to the IR policy by setting

the operating cost function to be

Cj(x) =
µj

2wj
(x−Nj)

2, j = 1, . . . , J, (64)

where
∑J

j=1wj = 1 and 0 < wj < 1 is a priori fixed constant. The priority value function of the

hybrid Gc/µ rule (49) will be

Pj(t) =
Bj(t)−Nj

wj
=−Ij(t)

wj
, j = 1, . . . , J. (65)

This together with (43) and (44) implies that upon arrival the fluid content at the head of the

queue is routed to the highest idleness imbalance pool with the index

arg max
j=1,...,J

Ij(t)

wj
,

which is in the same spirit as (12) in Gurvich and Whitt (2010). We refer to (65) as the priority

value function of the idleness-ratio (IR) policy denoted by πIR. Let I(t) =
∑J

j=1 Ij(t) be the total

available service resource among all server pools. The basic idea of the IR policy is to route the

arrivals in such a way that the vector (I1(t), . . . , IJ(t)) is as close to (w1I(t), . . . ,wJI(t)) as possible.

This is shown in the following corollary of Theorem 7.

Corollary 2 (Optimality of the Idleness-ratio (IR) Policy). Given p = 0 and λ ≤∑J

j=1 µjNj, if the operating cost function satisfies (64), then the fluid model (14)–(20) under

the idleness-ratio (IR) policy with the priority value function (65) satisfies lim
t→∞

Bj(t) = bp,∗j ,

j = 1, . . . , J , lim
t→∞

Q(t) = 0 and lim
T→∞

LOT (πIR) =LO,∗. In detail, bp,∗j =Nj −wj
∑J

j=1 µjNj−λ∑J
j=1wjµj

and

lim
t→∞

Ij(t)

I(t)
=wj,

for all j = 1, . . . , J .
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5.3. The c/µ Rule

We consider a special case of linear operating cost functions by setting Cj(x) = cjx for all j =

1, . . . , J . Then the routing problem (42) with service-level target p= 0 becomes the following linear

programming:

minimize
J∑
j=1

cjbj

subject to
J∑
j=1

bjµj = λ,

0≤ bj ≤Nj, j = 1, . . . , J.

(66)

Apparently, the above programming is feasible only when λ≤
∑J

j=1 bjNj. After replacing bj with

yj/µj, the linear programming (66) can be rewritten as

minimize
J∑
j=1

cj
µj
yj

subject to
J∑
j=1

yj = λ,

0≤ yj ≤ µjNj, j = 1, . . . , J.

(67)

Due to the simple form of the above objective function, to minimize (67), the obvious solution is

to assign as much value (namely µjNj) as possible to yj with the smaller coefficient cj/µj, and,

equivalently, to assign as much value (namely Nj) as possible to bj with smaller coefficient cj/µj.

For convenience, we relabel the indices such that c1/µ1 ≤ · · · ≤ cJ/µJ . After reordering the indices,

the linear programming (66) admits an optimal solution with the same form as (52). Thus, it is

straightforward to design a fixed priority policy that assigns higher priority to pools with smaller

cj/µj. The optimality of the c/µ rule can easily be seen from Theorem 8. This is exactly the fluid

version of the c/µ rule studied in Xia et al. (2022).

Moreover, if we set c1 = c2 = · · ·= cJ or simply replace the objective function (66) by

minimize
J∑
j=1

bj (68)

for the purpose of minimizing the total number of busy servers, then the c/µ rule coincides with

the fastest-server-first policy proposed in Armony (2005).

6. Numerical Experiments

In this section, we present some of the numerical experiments we have carried out on the inverted-V

model. The main purpose is to confirm our understanding of how the dynamic priority policy works

and to test the approximations obtained from the asymptotic analysis. In order to meet a certain

service-level target, we also illustrate through some examples how to apply the hybrid policy to

improve the design and operation of inverted-V service systems.
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6.1. Simulation Parameters

We now explain the parameters in Table 2, where we provide the simulation parameters of

an inverted-V model with a buffer and three heterogeneous server pools; this means J = 3. In

Table 2(a), we present the server pool size Nj’s, the pool dependent service rates µj’s and the oper-

ating cost functions Cj’s for three pools. The parameters for the buffer are presented in Table 2(b),

where we display the arrival rate λ, the abandon rate θ from the queue, the reneging penalty γ for

each abandonment from the queue, and the queue-length cost function CJ+1.

Server Pool Size Nj Service rate µj Operating Cost Cj(x)

Pool 1 75 1 x2/150

Pool 2 50 2 x2/50

Pool 3 25 3 3x2/50

(a) Pool sizes, service rates and operating costs for three server pools

Buffer Arrival rate λ Abandon rate θ Reneging penalty γ Queue-length Cost CJ+1(x)

Queue 200 2 0.2 x2/200

(b) Arrival rate, abandon rates, reneging penalty and queue-length cost

Table 2 Simulation parameters for an inverted-V model

We assume that the arrivals follow a Poisson process with rate λ and that customers’ patience

for waiting in the queue has an exponential distribution with rate θ. For notational simplicity, we

use “expo(x)” to denote an exponential distribution with mean x, “E2(x)” to denote an Erlang E2

distribution with mean x, and “ln(x, y)” to denote a log-normal distribution with mean x and vari-

ance y. It is well known that the steady state of the fluid approximation depends upon the service

time distributions only through their expectations (Whitt (2006)). Thus we simulate the system

with three different service time distributions, i.e, “expo(1/µj)”, “E2(1/µj)” and “ln(1/µj,1/µ
2
j)”,

which have the same service rate µj for any j = 1,2,3.

We run each simulation long enough to observe 2 million arrivals with the given parameters and

use 10 independent simulation runs to obtain confidence intervals. The first 10% and the last 10%

of the simulation period are regarded as the warm-up and close-down periods of the system; thus,

they are discarded when computing the steady-state performance metrics.

6.2. Performance under the Gc/µ Rule

The operating and queue-length cost functions specified in Table 2 are all convex. Thus, it is

suitable to apply the Gc/µ rule to minimize the long-run average total cost. Considering the Gc/µ

rule and applying the parameters in Table 2 to (31) yield

P1(t) =
B1(t)

75
, P2(t) =

B2(t)

50
, P3(t) =

B3(t)

25
and P4(t) =

Q(t)

200
+ 0.2, (69)
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where P4(t) is the priority value function for the queue.

We present the results of our simulation experiments under the Gc/µ rule in Table 3. The steady

state of the fluid model under the Gc/µ rule can easily be computed given the experimental setting

in Table 2 and the priority value functions for three pools and the queue in (69). Indeed, the steady

state (b∗, q∗) can be obtained by solving the KKT conditions (28)–(30). Then the holding cost,

operating cost, and total cost follow directly from the objective function of (24). This yields the

fluid approximation of the system, which is displayed in the last column of Table 3 for comparison

with the simulation results. In Table 3, we also present the simulation approximations for Q, Bj’s,

the long-run average holding, operating, and total costs, along with their relative errors and 95%

confidence intervals for three different service time distributions. One can find that, under the

Gc/µ rule, there are customers waiting in the queue and all three pools are not fully occupied.

This means that we need to intentionally allow some idle servers to attain the optimal total cost

of the system.

Exponential expo(1/µi) Erlang E2(1/µi) Log-normal ln(1/µi,1/µ
2
i )

Performance Simulation Relative Error(%) Simulation Relative Error(%) Simulation Relative Error(%) Approximation

Q 45.459

±0.213

1.51 45.467

±0.177

1.49 45.479

±0.209

1.46 46.154

B1 32.661

±0.080

1.09 32.658

±0.068

1.08 32.664

±0.078

1.10 32.308

B2 21.720

±0.054

0.85 21.722

±0.041

0.85 21.724

±0.052

0.86 21.538

B3 10.588

±0.066

1.68 10.980

±0.020

1.96 10.983

±0.026

1.99 10.769

Holding cost 28.690

±0.150

1.45 28.701

±0.150

1.42 28.692

±0.129

1.45 29.113

Operating cost 23.923

±0.115

3.14 23.927

±0.114

3.16 23.921

±0.093

3.13 23.195

Total cost 52.614

±0.265

0.58 52.613

±0.221

0.58 52.628

±0.263

0.61 52.308

Table 3 The Gc/µ rule: comparison of the simulation results and approximations

It is worth pointing out that the approximation using the fluid steady state performs well, not

only for systems with exponential service times but also for systems with general service times. For

example, the value of B1 is 32.661 when service time distributions in different pools are exponential.

The corresponding values of B1 for Erlang E2 and log-normal distributions are 32.658 and 32.664,

respectively. The relative errors of the approximations for B1 are all less than 1.10% in the three

cases with different service time distributions. The results of other performance metrics are also

close to each other and remarkably accurate.
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6.3. Performance under the Hybrid Gc/µ Rule

Now consider a routing problem with any service-level target p ∈ [0,1]. As an optimal solution of

(42), the value of bp,∗ = (bp,∗1 , . . . , bp,∗J ) can be solved by applying the KKT conditions (47) and (48).

In view of the objective function of (42), in the fluid steady state, the optimal operating cost is∑J

j=1Cj(b
p,∗
j ). It is clear that the optimal solution of (42) is qp,∗ = pλ/θ, where λ and θ are given

in Table 2(b). With regard to the objective function of (24), the corresponding fluid holding cost

should be CJ(qp,∗) + γθqp,∗ = CJ(pλ/θ) + γpλ. Consequently, the fluid total cost is calculated as

the sum of the holding and operating costs.

0 0.2 0.4 0.6 0.8 1
0
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40

60

80

100

0.46

Service-level target p

C
os

ts

Costs under the hybrid Gc/µ rule

Simulation total cost
Fluid total cost
Simulation operating cost
Fluid operating cost
Simulation holding cost
Fluid holding cost

Figure 2 Costs of the inverted-V models under the hybrid Gc/µ rule for any service level target p∈ [0,1]

Given the parameters in Table 2, we apply the hybrid Gc/µ rule with any possible service-level

target p between 0 and 1. Since the simulation results are almost identical for different service

time distributions, we only consider the case with exponential service times. Figure 2 depicts

the simulation results of the operating cost together with the corresponding holding and total

costs. The fluid holding, operating, and total costs are also plotted in Figure 2. The graph shows

that the fluid approximation is suitable for most service-level targets p ∈ [0,1]. However, for some

values of p (i.e., a small value range near 1), the approximation is not close enough to obtain an

accurate performance evaluation. For example, when p is very close to 1, our fluid approximation

overestimates the holding and total costs, which will be explained in Section 6.3.3.

One can find that the (fluid) holding cost increases with p but the (fluid) operating cost decreases

with p. Moreover, we can use Proposition 2 to serve as a quantitative guide to find the service-level

target p that minimizes the total cost. It turns out to be p= θq∗/λ= 2× 46.154/200 = 0.46, where
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q∗ = 46.154 is the fluid approximation of the queue length displayed in Table 3. It is also important

to point out that both the fluid and simulation costs exhibit a “flat bottom”, suggesting that the

choice of the service-level target can be quite robust. A relatively wide range of choices of the

service-level target gives similar costs that are close to the optimum.

6.3.1. Hybrid Gc/µ Rule with the Service-level Target p= θq∗/λ We have shown above

that p= θq∗/λ= 0.46, which is the point that minimizes the total cost as illustrated in Figure 2.

To show its connection with the result in Section 6.2, we display the simulation results and the

fluid approximations of an inverted-V model under the hybrid Gc/µ rule with p= θq∗/λ in Table 4.

Clearly, our approximations using the fluid steady state are fairly accurate for all three different

service time distributions.

Exponential expo(1/µi) Erlang E2(1/µi) Log-normal ln(1/µi,1/µ
2
i )

Performance Simulation Relative Error(%) Simulation Relative Error(%) Simulation Relative Error(%) Approximation

Q 46.170

±0.008

0.03 46.170

±0.008

0.03 46.170

±0.008

0.03 46.154

B1 33.079

±0.203

2.39 33.100

±0.017

2.45 32.656

±0.005

2.43 32.308

B2 21.420

±0.124

0.55 21.403

±0.011

0.59 21.402

±0.012

0.55 21.538

B3 10.588

±0.066

1.68 10.575

±0.005

1.76 10.575

±0.006

1.76 10.769

Holding cost 29.131

±0.033

0.06 29.131

±0.033

0.06 29.131

±0.033

0.06 29.113

Operating cost 23.908

±0.292

3.07 23.992

±0.294

3.44 23.938

±0.245

3.20 23.195

Total cost 53.039

±0.268

1.40 53.084

±0.026

1.45 53.048

±0.027

1.56 52.308

Table 4 Hybrid Gc/µ Policy with p= θq∗/λ: comparison of the simulation results and approximations

Another important finding is that the system performance under the hybrid Gc/µ rule with the

service-level target p = θq∗/λ is quite close to that of the Gc/µ rule (see Tables 3 and 4). This

verifies Proposition 2 showing that once the service-level target p is set to be θq∗/λ the hybrid

Gc/µ rule and the Gc/µ rule attain the same steady state; as do the long-run average holding,

operating, and total costs.

6.3.2. Hybrid Gc/µ Rule with the Service-level Target p= 0 In Table 5, we report the

simulation results and their fluid approximations for an inverted-V model under the hybrid Gc/µ

rule with p= 0 for three different service time distributions. We find that our approximations using

the fluid steady state are still very accurate. The relative errors for Q and the holding cost are
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omitted since their fluid approximations are 0. For other performance metrics, the relative errors

are less than 0.83% across all simulations with different service time distributions.

Given the operating cost functions in Table 2(a), the hybrid Gc/µ rule with p = 0 actually

degenerates to the load-balancing policy (62), which means that the servers in different server

pools are utilized fairly. As shown in Table 5, the simulation results with exponential service

time distributions satisfy B1/N1 = 60.447/75 = 0.806, B2/N2 = 39.874/50 = 0.797 and B3/N3 =

19.899/25 = 0.796, showing that the utilization of every server pool is close to 0.8. This verifies the

key feature of the load-balancing policy shown in (63).

Exponential expo(1/µi) Erlang E2(1/µi) Log-normal ln(1/µi,1/µ
2
i )

Performance Simulation Relative Error(%) Simulation Relative Error(%) Simulation Relative Error(%) Approximation

Q 0.114

±0.016

— 0.108

±0.012

— 0.110

±0.021

— 0

B1 60.447

±0.151

0.75 60.455

±0.161

0.76 60.457

±0.143

0.76 60

B2 39.874

±0.097

0.32 39.873

±0.105

0.32 39.875

±0.098

0.31 40

B3 19.899

±0.048

0.51 19.898

±0.053

0.51 19.897

±0.050

0.52 20

Holding cost 0.049

±0.009

— 0.045

±0.005

— 0.046

±0.009

— 0

Operating cost 80.604

±0.382

0.76 80.607

±0.418

0.76 80.617

±0.385

0.77 80

Total cost 80.652

±0.382

0.82 80.653

±0.419

0.82 80.663

±0.380

0.83 80

Table 5 Hybrid Gc/µ rule with p= 0: comparison of the simulation results and approximations

6.3.3. Hybrid Gc/µ Rule with the Service-level Target p= 1 In Figure 2, we can see

that our fluid approximations are not close enough to the simulations results when p is close to 1.

Table 6 presents the simulation results and fluid approximations for an inverted-V model under

the hybrid Gc/µ rule with p= 1 for three different service time distributions. The approximation

indicates that, eventually, 100 customers will wait in the queue and no customer will be serviced

in the server pools. However, in the simulations, the queue length oscillates around 100 from below

because of the randomness in arrivals and customer abandonment. Furthermore, the new arrivals

will be routed to one of the server pools whenever the queue length exceeds 100. This is the key

reason why our fluid approximation overestimates the holding and total costs. Note that the p= 1

case reveals the fluid approximation for an inverted-V model with the least accuracy. The relative

errors for the queue length, holding cost, and total cost shown in Table 6 can be considered as

the upper bounds for these relative errors when using the fluid approximation for any given p

value. For a more accurate performance evaluation, more refined approximations such as a diffusion

approximation are required.
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Exponential expo(1/µi) Erlang E2(1/µi) Log-normal ln(1/µi,1/µ
2
i )

Performance Simulation Relative Error(%) Simulation Relative Error(%) Simulation Relative Error(%) Approximation

Q 92.284

±0.208

7.72 92.238

±0.221

7.76 92.273

±0.217

7.73 100

B1 5.120

±0.232

— 5.177

±0.222

— 5.137

±0.217

— 0

B2 2.819

±0.124

— 2.844

±0.120

— 2.825

±0.124

— 0

B3 1.539

±0.051

— 1.547

±0.047

— 1.542

±0.043

— 0

Holding cost 79.716

±0.196

11.43 79.656

±0.212

11.49 79.702

±0.208

11.44 90

Operating cost 0.697

±0.060

— 0.739

±0.060

— 0.715

±0.057

— 0

Total cost 80.413

±0.254

10.65 80.394

±0.269

10.67 80.417

±0.262

10.65 90

Table 6 Hybrid Gc/µ rule with p= 1: comparison of the simulation results and approximations

6.4. Performance under the Hybrid Fixed Priority Policy

In this subsection, we restrict ourselves to the family of hybrid fixed priority policies, using the

parameters in Table 2, and find the optimal priority order for any service-level target p ∈ [0,1].

Since there are only three pools (J = 3) in this example, we can use the brute-force algorithm to

evaluate all of the six possible priority orders. According to (22) and Proposition 3, we plot in

Figure 3(a) the fluid total costs with three different priority orders. We omit the other three priority

orders since their corresponding costs are larger. We can see from Figure 3(a) that the optimal

priority order varies as p changes. If 0≤ p < 0.19, the optimal priority order is (1,3,2), whereby

pool 1 has the highest priority, pool 3 has the second highest priority, and pool 2 has the lowest

priority. If 0.19 ≤ p < 0.56, the optimal priority order becomes (1,2,3). Otherwise, 0.56 ≤ p ≤ 1,

the optimal priority order is (2,1,3). The change in the optimal priority order with p reflects the

complicated trade-off between service speeds and operating costs among the server pools. Thus,

we divide the graph into three regions, as shown in Figure 3. Since the brute-force algorithm is

NP-hard, when the number of pools J is large, we can utilize the dynamic programming algorithm

introduced in Section EC.4 to obtain the optimal priority order more efficiently.

Once the optimal priority order is determined for a given service-level target p, we run simulations

to obtain the total cost, holding cost, and operating cost, using the parameters in Table 2 under

the hybrid fixed priority policy. Their fluid approximations can be calculated using the results in

Proposition 3. Similar to Figure 2, the simulated and fluid costs under the hybrid fixed priority

policies are plotted in Figure 3(b). The graph shows that the fluid approximations of the total,

operating, and holding costs are suitable because the expected cost of the stochastic systems

dips and peaks with the corresponding fluid costs. However, at some service-level targets, the
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Figure 3 The optimal priority order and costs of the inverted-V model under hybrid fixed priority policies

approximation is not close enough to obtain an accurate performance evaluation, particularly for

the turning points (where the optimal priority order changes). For these particular points, more

refined approximations such as a diffusion approximation are required, which is beyond the aim of

this paper.

7. Conclusion

In this paper, we address some of the fundamental issues that arise in the operations of inverted-V

models based on fluid model analysis. Three non-work-conserving policies are proposed to cope

with any general cost functions in order to trade off the holding and operating costs. Specifically,

the target-allocation policy works for any general cost functions. Our Gc/µ rule optimally controls

an inverted-V model with convex costs and can be viewed as a counterpart of the Gcµ rule in van

Mieghem (1995). The fixed priority policy is asymptotically optimal for concave cost functions.

We also develop a dynamic programming algorithm to find the optimal priority order. This will be

much more efficient when the number of server pools is large.

To minimize the operating cost of the system but still meet a certain service-level target, we

propose another three hybrid routing policies; the hybrid target-allocation policy, the hybrid Gc/µ

rule, and the hybrid fixed priority policy. The hybrid routing policies not only inherit the advantages

of the aforementioned three routing policies but also allow us to characterize various practical

systems with different service-level targets. More specifically, the hybrid Gc/µ rule covers the LB

policy in Tezcan (2008) and the IR policy in Gurvich and Whitt (2009a,b, 2010), while the hybrid

fixed priority policy extends the c/µ rule in Xia et al. (2022) and the FSF policy in Armony (2005).
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Managerial insights for systems with different service-level targets are also obtained from extensive

numerical experiments.

An interesting direction for future research would be to study how to adapt the routing problem

and extend the results to more general queueing systems with heterogeneous server pools and

heterogeneous customers. In addition, the convergence of the fluid model to the steady state with

non-exponential service time distributions remains to be established. Although our Gc/µ rule

adapts automatically to the changes in the arrival rate and the service capacity in each pool,

analysis similar to Liu and Whitt (2014) might result in more accurate performance evaluation in

rapidly changing environments.

Acknowledgments

The authors thank the area editor Ramandeep Randhawa, an anonymous associate editor, and two anony-

mous reviewers for many valuable comments and suggestions that greatly helped improve the paper.

References

Armony, M. (2005). Dynamic routing in large-scale service systems with heterogeneous servers. Queueing

Systems 51 (3-4), 287–329.

Armony, M. and A. Mandelbaum (2011). Routing and staffing in large-scale service systems: The case of

homogeneous impatient customers and heterogeneous servers. Operations Research 59 (1), 50–65.

Armony, M. and A. R. Ward (2010). Fair dynamic routing in large-scale heterogeneous-server systems.

Operations Research 58 (3), 624–637.

Ata, B. and T. L. Olsen (2009). Near-optimal dynamic lead-time quotation and scheduling under convex-

concave customer delay costs. Operations Research 57 (3), 753–768.

Atar, R., C. Giat, and N. Shimkin (2008). The cµ/θ rule. In Proceedings of the 3rd International Confer-

ence on Performance Evaluation Methodologies and Tools, ValueTools ’08, ICST, Brussels, Belgium,

Belgium, pp. 58:1–58:4. ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-

cations Engineering).

Atar, R., C. Giat, and N. Shimkin (2010). The cµ/θ rule for many server queues with abandonment.

Operations Research 58 (5), 1427–1439.

Atar, R., C. Giat, and N. Shimkin (2011). On the asymptotic optimality of the cµ/θ rule under ergodic cost.

Queueing Systems 67 (2), 127–144.

Atar, R., H. Kaspi, and N. Shimkin (2014). Fluid limits for many-server systems with reneging under a

priority policy. Mathematics of Operations Research 39 (3), 672–696.

Atar, R., Y. Y. Shaki, and A. Shwartz (2011). A blind policy for equalizing cumulative idleness. Queueing

Systems 67 (4), 275–293.



34

Bassamboo, A. and R. S. Randhawa (2010). On the accuracy of fluid models for capacity sizing in queueing

systems with impatient customers. Operations Research 58 (5), 1398–1413.

Bassamboo, A. and R. S. Randhawa (2016). Scheduling homogeneous impatient customers. Management

Science 62 (7), 2129–2147.

Billingsley, P. (1968). Convergence of probability measures. Wiley Series in Probability and Statistics:

Probability and Statistics. New York: John Wiley & Sons Inc.

Chen, H. and D. D. Yao (2001). Fundamentals of queueing networks, Volume 46 of Applications of Mathe-

matics (New York). New York: Springer-Verlag.

Dupuis, P. and R. S. Ellis (1997). A weak convergence approach to the theory of large deviations. Wiley

Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York.

Gurvich, I. and W. Whitt (2009a). Queue-and-idleness-ratio controls in many-server service systems. Math-

ematics of Operations Research 34 (2), 363–396.

Gurvich, I. and W. Whitt (2009b). Scheduling flexible servers with convex delay costs in many-server service

systems. Manufacturing & Service Operations Management 11 (2), 237–253.

Gurvich, I. and W. Whitt (2010). Service-level differentiation in many-server service systems via queue-ratio

routing. Operations Research 58 (2), 316–328.

Huang, J., B. Carmeli, and A. Mandelbaum (2015). Control of patient flow in emergency departments, or

multiclass queues with deadlines and feedback. Operations Research 63 (4), 892–908.

Kang, W. and K. Ramanan (2010). Fluid limits of many-server queues with reneging. The Annals of Applied

Probability 20 (6), 2204–2260.

Liu, Y. and W. Whitt (2014). Algorithms for time-varying networks of many-server fluid queues. INFORMS

Journal on Computing 26 (1), 59–73.

Long, Z., N. Shimkin, H. Zhang, and J. Zhang (2020). Dynamic scheduling of multiclass many-server queues

with abandonment: The generalized cµ/h rule. Operations Research 68 (4), 1218–1230.
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Electronic Companion of “The Generalized c/µ Rule for
Queues with Heterogeneous Server Pools”

We prove Theorem 1 in Section EC.1. In Section EC.2, we prove the optimality of the target-

allocation policy, the Gc/µ rule, and the fixed priority policy. The optimality of the corresponding

three hybrid routing policies is provided in Section EC.3. We show in Section EC.4 the connection

between inverted-V models and knapsack problems.

EC.1. Proofs of the Asymptotic Analysis

Proof of Theorem 1. We first show that R̄n is tight. With regard to (1) and (10), there is

R̄n(t) = 1
n
R̃n
(∫ t

0
Qn(s)ds

)
, where R̃n(·) is a Poisson process with rate θn = θ. It follows from the

functional strong law of large numbers that 1
n
R̃n(nt)→ θt almost surely as n goes to infinity. For

any T > 0, by (2), (9) and the initial state Q̄n(0)⇒Q(0) we have 1
n

∫ t
0
Qn(s)ds≤ 2(Q(0) + λT )t,

0≤ t < T , and 1
n

∫ t
τ
Qn(s)ds≤ 2(Q(0)+λT )(t−τ), 0≤ τ ≤ t < T , for all large n. Thus, 1

n

∫ t
0
Qn(s)ds

is tight by Theorem 15.5 in Billingsley (1968). It then follows from the random-time-change theorem

(see Theorem 5.3 in Chen and Yao (2001)) that R̄n is tight. Next, we show that D̄n
j is tight. The

proof is almost the same as that of R̄n. In view of (1) and (10), we have D̄n
j (t) = 1

n
D̃n
j

(∫ t
0
Bn
j (s)ds

)
,

where D̃n
j (·) is a Poisson process with rate µnj = µj. It follows from the functional strong law of

large numbers that 1
n
D̃n
j (nt)→ µjt almost surely as n goes to infinity. By (9), for all large n there is

1
n

∫ t
0
Bn
j (s)ds≤ 2Njt, 0≤ t, and 1

n

∫ t
τ
Bn
j (s)ds≤ 2Nj(t− τ), 0≤ τ ≤ t. We know that 1

n

∫ t
0
Bn
j (s)ds is

tight by Theorem 15.5 in Billingsley (1968). It then follows from the random-time-change theorem

that D̄n
j is tight. It directly follows from (9) that Λ̄n(t)⇒ λt. Thus, the tightness of Λ̄n holds.

Then the tightness of
∑J

j=1 Ē
n
j (t) follows from (7). Since the entrance into service process En

j (t)

is nondecreasing, it follows that each Ēn
j , j = 1, . . . , J , must be tight. Then, the tightness of Ēn

J+1

follows from (4). As a consequence of (2), Q̄n(t) is also tight. The tightness of B̄n
j follows from (3).

Then, Īnj (t) =Nn
j /n− B̄n

j (t), j = 1, . . . , J , is also tight.

We have so far proven the tightness of the fluid-scaled stochastic processes. This shows

the existence of the fluid limit implying that the sequence of the fluid-scaled processes

{(Λ̄n, R̄n, Ēn, D̄n, Q̄n, B̄n, Īn) : n∈N} has a subsequence which converges to some limit, denoted by

(Λ,R,E,D,Q,B, I). We have shown in the above that 1
n
R̃n(nt)→ θt and 1

n
D̃n
i (nt)→ µit almost

surely as n goes to infinity. Thus, the fluid dynamic equations (14)–(20) can be verified by the

corresponding stochastic equations (1)–(7). This completes the proof. �

Lemma EC.1. Consider the fluid model (14)–(20). Then all the fluid processes

Λ(t),R(t),E(t),D(t),Q(t),B(t) and I(t) are absolutely continuous.
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Proof. It is clear that the arrival process Λ(t) is absolutely continuous. The absolute continuity

of R and Dj follows from (14). Then the absolute continuity of
∑J

j=1Ej(t) follows from (20). Since

the entrance into service process Ej(t) is nondecreasing, it follows that each Ej, j = 1, . . . , J , must

be absolutely continuous. By (17), EJ+1 is also absolutely continuous. The absolute continuity

of Q follows from (15). Moreover, the absolute continuity of Bj follows from (16). Then, Ij(t) =

Nj −Bj(t), j = 1, . . . , J , is also absolutely continuous. �

EC.2. Proofs of the Optimality of the Routing Policies

EC.2.1. Flow Rates of the Fluid Model

Let ∗Jk(t) be the collection of indices with the first kth smallest priority value at time t recursively

defined as follows:

∗J1(t) = arg min
j∈{1,...,J,J+1}

Pj(t), (EC.1)

and for 1≤ k≤ J ,

∗Jk+1(t) = ∗Jk(t)∪ arg min
j∈{1,...,J,J+1}\∗Jk(t)

Pj(t).

Lemma EC.2. Consider the fluid model (14)–(20) given any continuous priority value function

Pj(t). Then the entrance into service processes Ej(t) are absolutely continuous, and the derivatives

E′j(t) := (d/dt)Ej(t) satisfy a.e. for j = 1, . . . , J, J + 1,∑
j∈∗Jk(t)

E′j(t) =

{
λ if

∑
j∈∗Jk(t)

Ij(t)> 0,

λ∧
∑

j∈∗Jk(t)
µjNj if

∑
j∈∗Jk(t)

Ij(t) = 0,
(EC.2)

where a∧ b is the minimum of a and b.

Proof. The absolute continuity of Ej has been proven in Lemma EC.1.

First we consider the case with
∑

j∈∗Jk(t)
Ij(t)> 0 for some t. By (17), we have

∑J+1

j=1 E
′
j(t) = λ. On

the other hand, there must be E′j(t) = 0 for all j /∈ ∗Jk(t) by (26). This yields that
∑

j∈∗Jk(t)
E′j(t) = λ

if
∑

j∈∗Jk(t)
Ii(t)> 0.

Next we consider the case with
∑

j∈∗Jk(t)
Ij(t) = 0 for some t. It is clear that J + 1 /∈ ∗Jk(t)

by (19). Since Ii’s are absolutely continuous, it follows that
∑

j∈∗Jk(t)
I ′j(t) = 0 a.e. on S := {t :∑

j∈∗Jk(t)
Ij(t) = 0} by Theorem A.6.3 in Dupuis and Ellis (1997). Moreover, from (16) and (19)

we have ∑
j∈∗Jk(t)

B′j(t) =
∑

j∈∗Jk(t)

E′j(t)−
∑

j∈∗Jk(t)

µjBj(t),

Bj(t) =Nj − Ij(t) =Nj, for all j ∈ ∗Jk(t).

Thus a.e. on S, we have
∑

j∈∗Jk(t)
E′j(t) =

∑
j∈∗Jk(t)

µjNj. This together with the fact that∑J+1

j=1 E
′
j(t) = λ by (17) yields a.e. on S,

∑
j∈∗Jk(t)

E′j(t) =
∑

j∈∗Jk(t)
µjNj = λ∧

∑
j∈∗Jk(t)

µjNj. This

completes the proof. �
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EC.2.2. Optimality of the Target-allocation Policy and the Gc/µ Rule

In view of the fact that the priority value functions go to an equal constant under both policies.

We will show that the proofs of the optimality of the target-allocation policy and the Gc/µ rule

are exactly the same. Thus we prove Theorems 2 and 3 simultaneously, which is presented in the

end of this subsection. Prior to that, some auxiliary Lemmas EC.3–EC.5 are analyzed. First, we

introduce some additional notations.

As we have argued below (25), in the fluid model the buffer can be regarded as another server

pool indexed by J + 1 with EJ+1 in (18) being the “entrance into service” process and R in (18)

being the “departure” process. The fluid queue length Q can also be considered as the amount of

fluid content “being served” in pool J + 1. For notational simplicity, we set

BJ+1(t) :=Q(t), DJ+1(t) :=R(t), µJ+1 := θ, b∗J+1 := q∗. (EC.3)

Then the balance equation for the fluid queue length (18) can be written as

BJ+1(t) =BJ+1(0) +EJ+1(t)−DJ+1(t). (EC.4)

For the target-allocation policy πb∗,q∗ proposed in Section 3.1.1, let

Aj(x) = x− b∗j +α0, j = 1, . . . , J, J + 1, (EC.5)

where α0 can be chosen as any constant. Note that in (EC.3) we set b∗J+1 = q∗ when j = J + 1. To

have the same proof as the optimality of the Gc/µ rule, we choose α0 to be the one in (28) and

(29). With a slight abuse of the notation, for the Gc/µ rule we also introduce Aj(·) as follows:

Aj(x) =
cj(x)

µj
+ γ1{j=J+1}, j = 1, . . . , J, J + 1. (EC.6)

Note that by (28), (29) and (EC.5), we have

Aj(b
∗
j ) = α0, j = 1, . . . , J, J + 1, (EC.7)

for both Aj(·) in (EC.5) and (EC.6). Obviously, Aj(·) in (EC.5) is strictly increasing, and Aj(·)
in (EC.6) is also strictly increasing under Assumption 1. Thus, within this subsection Aj(·) could

either be (EC.5) or (EC.6). Now we introduce

∗A(B(t)) := min
j=1,...,J,J+1

Aj(Bj(t)). (EC.8)

It should be pointed out that BJ+1(t) =Q(t) by (EC.3). In view of (27), (EC.3) and (EC.5), for

the target-allocation policy, we can consider Aj(Bj(t)) as the priority value function instead of the

one in (27). Then ∗J1(t) in (EC.1) can be replaced by

∗J1(t) := {j ∈ {1, . . . , J, J + 1} :Aj(Bj(t)) = ∗A(B(t))}, (EC.9)
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which is the collection of indices with the smallest priority value at time t. And define

∗Bj(t) := {ζ ≥ 0 :Aj(ζ) = ∗A(B(t))}. (EC.10)

Lemma EC.3. Consider the fluid model (14)–(20) given the priority value function (27) or (31).

If ∗A(B(t))≤ α0, then we have ∑
j∈∗J1(t)

B′j(t)≥ 0, (EC.11)

d

dt
[∗A(B(t))]≥ 0. (EC.12)

Proof. Since ∗A(B(t))≤ α0, we have Bj(t)≤ b∗j for all j ∈ ∗J1(t) by (EC.7) and (EC.9). From

(16), ∑
j∈∗J1(t)

B′j(t) =
∑

j∈∗J1(t)

E′j(t)−
∑

j∈∗J1(t)

D′j(t). (EC.13)

By Lemma EC.2, the above expression is nonnegative once
∑

j∈∗J1(t)E
′
j(t) =

∑
j∈∗J1(t) µjNj. So we

only need to consider the other possible case
∑

j∈∗J1(t)E
′
j(t) = λ when proving (EC.11), which still

holds since
∑

j∈∗J1(t)D
′
j(t) =

∑
j∈∗J1(t) µjBj(t)≤

∑
j∈∗J1(t) µjb

∗
j ≤ λ. Here the last inequality follows

from the first constraint of (24) and (EC.3). Thus (EC.11) holds. We cannot have (d/dt)∗A(B(t))<

0 since this would imply B′j(t) < 0 for all j ∈ ∗J1(t) by (EC.9). This contradicts (EC.11). So we

have (EC.12). �

Lemma EC.4. Consider the fluid model (14)–(20) given the priority value function (27) or (31).

If there exists a τ0 ≥ 0 such that ∗A(B(τ0))≥ α0, then we have

∗A(B(t))≥ α0 for all t≥ τ0, (EC.14)

Bj(t)≥ b∗j for all t≥ τ0 and j = 1, . . . , J, J + 1. (EC.15)

Proof. Suppose contrarily there exists a t1 > τ0 such that ∗A(B(t1))<α0. Let t0 = sup{t0 < t1 :

∗A(B(t0))≥ α0}. It is clear that ∗A(B(t0)) = α0 and ∗A(B(t))<α0 for all t∈ (t0, t1]. This together

with (EC.12) yields ∗A(B(t1)) = ∗A(B(t0)) +
∫ t1
t0
d[∗A(B(t))] ≥ α0. It contradicts the assumption

that ∗A(B(t1)) < α0. Thus (EC.14) holds. Then, (EC.15) directly follows from (EC.5), (EC.7),

(EC.8) and (EC.14). �

Lemma EC.5. Consider the fluid model (14)–(20) given the priority value function (27) or (31).

If
∑J+1

j=1 ∗Bj(t)≤
∑J+1

j=1 b
∗
j − δ for some δ > 0, then there exists a constant ε0 > 0 depending only on

δ such that

Bj(t)≤ b∗j − ε0 for all j ∈ ∗J1(t), (EC.16)
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and there also exists a constant ε1 > 0 depending only on δ such that

∑
j∈∗J1(t)

B′j(t)≥ ε1, (EC.17)

d

dt
[
J+1∑
j=1

∗Bj(t)]≥ ε1. (EC.18)

Proof. First, we show that there must be Bj(t)< b∗j for all j ∈ ∗J1(t) with strict inequalities.

Otherwise, we will have Bj(t)≥ b∗j for at least one j ∈ ∗J1(t), which causes ∗A(B(t))≥ α0 following

from (EC.7) and (EC.9). Then ∗Bj(t)≥ b∗j for all j = 1, . . . , J, J + 1 deduced from (EC.10). This is

a contradiction to the assumption
∑J+1

j=1 ∗Bj(t)<
∑J+1

j=1 b
∗
j . Therefore ∗A(B(t)) = α0 − ε for some

ε > 0. From (EC.10), we have

J+1∑
j=1

∗Bj(t) =
J+1∑
j=1

A−1j (α0− ε)≤
J+1∑
j=1

b∗j − δ.

Let ε∗ satisfy
∑J+1

j=1 A
−1
j (α0−ε∗) =

∑J+1

j=1 b
∗
j−δ. There must be 0< ε∗ ≤ ε since A−1j , j = 1 . . . , J, J+

1, are increasing. By (EC.9), for all j ∈ ∗J1(t), Bj(t) = A−1j (α0 − ε) ≤ A−1j (α0 − ε∗) = b∗j − (b∗j −

A−1j (α0 − ε∗)). Now let ε0 = min
j∈∗J1(t)

(b∗j −A−1j (α0 − ε∗)) which is positive and depends only on δ.

This proves (EC.16).

By (EC.16), we have
∑

j∈∗J1(t) Ij(t)> 0. This together with (EC.2) and (EC.13) yields

∑
j∈∗J1(t)

B′j(t) = λ−
∑

j∈∗J1(t)

Bj(t)µj

≥ λ−
∑

j∈∗J1(t)

(b∗j − ε0)µj

≥
∑

j∈∗J1(t)

ε0µj

≥ min
j={1,...,J,J+1}

ε0µj,

where the first inequality uses (EC.16) and the second inequality is due to the first constraint of

(24) and (EC.3). This proves (EC.17).

Next, we prove (EC.18). Using (EC.9) and (EC.10) yields ∗B
′
j(t) =B′j(t) for all j ∈ ∗J1(t). We

have shown in the above that ∗A(B(t)) = α0− ε≤ α0. Then, by (EC.10) and (EC.12), ∗B
′
j(t)≥ 0

for all j = 1 . . . , J, J + 1. Therefore,

J+1∑
j=1

∗B
′
j(t)≥

∑
j∈∗J1(t)

∗B
′
j(t) =

∑
j∈∗J1(t)

B′j(t)≥ ε1,

where the second inequality follows from (EC.17). Thus (EC.18) also holds. �
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Proof of Theorems 2 and 3. We first show that

lim inf
t→∞

Bj(t)≥ b∗j for all j = 1, . . . , J, J + 1. (EC.19)

If there exists a τ0 ≥ 0 such that ∗A(B(τ0))≥ α0, then (EC.19) directly follows from (EC.15). It suf-

fices to consider the case ∗A(B(t))<α0 for all t≥ 0. This together with (EC.7) and (EC.10) implies

that ∗Bj(t)< b
∗
j for all j = 1, . . . , J, J+1 and t≥ 0. It then follows from (EC.18) that lim

t→∞
∗Bj(t) = b∗j

for all j = 1, . . . , J, J + 1. From the definition of ∗Bj(t) in (EC.10), we have Aj(∗Bj(t))≤Aj(Bj(t)).

Since Aj is increasing, this inequality implies ∗Bj(t)≤Bj(t) for all j = 1, . . . , J, J+1. Thus (EC.19)

holds. We can conclude from (EC.19) that for any ε0 > 0 and i= 1, . . . , J, J + 1,

Bj(t)≥ b∗j − ε0 for all large enough t. (EC.20)

Now we use (EC.20) to prove

lim
t→∞

J+1∑
j=1

Bj(t) =
J+1∑
j=1

b∗j . (EC.21)

To this end, we show that for any ε > 0 there exists a δ > 0 such that for all large enough t

J+1∑
j=1

B′j(t)≤−δ whenever
J+1∑
j=1

Bj(t)≥
J+1∑
j=1

b∗j + ε. (EC.22)

It is clear that there must exist j1 ∈ {1, . . . , J, J + 1} such that Bj1(t) ≥ b∗j1 + ε
J+1

. Then we can

choose the ε0 in (EC.20) small enough such that

J+1∑
j=1

D′j(t) =
∑
j 6=j1

µjBj(t) +µj1Bj1(t)≥
J+1∑
j=1

µjb
∗
j +mε,

for all large enough t, where m > 0 is a small enough constant. It follows from (17) that∑J+1

j=1 E
′
j(t) = λ=

∑J+1

j=1 µjb
∗
j for all t≥ 0, where the second inequality follows the first constraint of

(24) and (EC.3). Thus,
∑J+1

j=1 B
′
j(t)≤−mε is strictly negative deduced from the above inequality

and (16) and (EC.4). Let δ=mε, then (EC.22) holds. This together with (EC.19) yields (EC.21).

Moreover, we can conclude from (EC.19) and (EC.21) that lim
t→∞

Bj(t) = b∗j for all j = 1, . . . , J, J+1.

Thus, lim
t→∞

Q(t) = q∗ by (EC.3). This together with (22) yields lim
T→∞

LT (πb∗,q∗) = lim
T→∞

LT (πG) =L∗.

This completes the proof. �

EC.2.3. Optimality of the Fixed Priority Policy

Proof of Proposition 1. We prove this result in the following two cases.

Case 1: λ>
∑k

l=1 µlNl, k ∈ {0,1, . . . , J}. We first show that there exists T0 > 0 such that

Bj(t) =Nj for j = 1, . . . , k and t≥ T0. (EC.23)
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It follows from (16) and (EC.2) that whenever
∑k

j=1Bj(t)<
∑k

j=1Nj there must be

k∑
j=1

B′j(t) = λ−
k∑
j=1

µjBj(t)>λ−
k∑
j=1

µjNj > 0.

The above implies that there exists a T0 > 0 such that
∑k

j=1Bj(t) =
∑k

j=1Nj for all t≥ T0. Thus,

(EC.23) follows. It then follows from (EC.2) that for all t≥ T0, E
′
J+1(t) = λ−

∑k

j=1 µjNj. Then we

can see from (14) and (18) that, for all t≥ T0, Q
′(t) = λ−

∑k

j=1 µjNj−θQ(t), of which the solution

is Q(t) = Q(T0)e
−θ(t−T0) + θ−1(λ−

∑k

j=1 µjNj)(1− e−θ(t−T0)), t ≥ T0. It immediately follows that

lim
t→∞

Q(t) = (λ−
∑k

j=1 µjNj)/θ. It also follows from (EC.2) that E′j(t) = 0 for all j = k+1, . . . , J and

t≥ 0. Similarly, we can see from (14) and (16) that, for all t≥ 0, Bj(t) =Bj(0)e−µjt, j = k+1, . . . , J .

Consequently, lim
t→∞

Bj(t) = 0 for all j = k+ 1, . . . , J . This proves (34).

Case 2: λ≤
∑k

l=1 µlNl, k ∈ {0,1, . . . , J}. We next prove that there exists T1 > 0 such that

Bj(t) =Nj for j = 1, . . . , j0− 1 and t≥ T1. (EC.24)

It can be seen from (16) and (EC.2) that whenever
∑j0−1

j=1 Bj(t)<
∑j0−1

j=1 Nj there must be

j0−1∑
j=1

B′j(t) = λ−
j0−1∑
j=1

µjBj(t)>λ−
j0−1∑
j=1

µjNj > 0,

where the last inequality follows from the definition of j0. This implies that there exists a T1 > 0 such

that
∑j0−1

j=1 Bj(t) =
∑j0−1

j=1 Nj for all t≥ T1. Thus, (EC.24) holds. According to the definition of j0 in

(35), there must be λ−
∑j0−1

j=1 µjNj ≤ µj0Nj0 . It then follows from (EC.2) that for all t≥ T1, E
′
j0

(t) =

λ−
∑j0−1

j=1 µjNj. Then we can see from (14) and (16) that, for all t≥ T1, B
′
j0

(t) = λ−
∑j0−1

j=1 µjNj−

µj0Bj0(t), of which the solution isBj0(t) =Bj0(T1)e
−µj0 (t−T1)+µ−1j0 (λ−

∑j0−1
j=1 µjNj)(1−e−µj0 (t−T1)),

t≥ T1. It immediately follows that lim
t→∞

Bj0(t) = (λ−
∑j0−1

j=1 µjNj)/µj0 . It follows from (EC.2) that

E′j(t) = 0 for all j = j0 + 1, . . . , J, J + 1 and t≥ T1. Similarly, we can see from (14), (16) and (18)

that lim
t→∞

Bj(t) = 0 for all j = j0 + 1, . . . , J and lim
t→∞

Q(t) = 0. This proves (35). We have therefore

completed the proof. �

Proof of Theorem 4. It is clear that the nonlinear programming (24) is a concave optimiza-

tion problem if the cost functions Cj’s, j = 1, . . . , J, J + 1, are concave. Note that the constraint set

is a convex set (actually it is a convex polytope). Then, it follows that the optimization problem

admits a global minimum at an extreme point, i.e., at one of the vertices of this polytope. At a

vertex we have that 0< bj <Nj, j = 1, . . . , J , and q > 0 for at most one bj or q. Corresponding to

any optimal vertex, we can define an optimal fixed priority order. Then this theorem immediately

follows from (14), (22) and Proposition 1. �
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EC.2.4. Proofs of the Optimality of the Stochastic Routing Policies

Proof of Theorem 5. In addition to the fluid limit proved in Theorem 1, we also show that

(26) under the fluid routing policies πb∗,q∗ , πG, πP∗ serves as the fluid limit of (37) under the

stochastic routing policies πnb∗,q∗ , πnG, πnP∗ . By Lemma EC.1, let E′j(t) = (d/dt)Ej(t). For any fixed j ∈

{1, . . . , J, J + 1}, it suffices to prove that E′j(t) = 0 if
∑
{k=1,...,J,J+1:Pk(t)<Pj(t)}

Ik(t)> 0, which gives

(26). So assume that there exists t > 0 and j ∈ {1, . . . , J, J+1} such that Pk(t)<Pj(t) and Ik(t)> 0.

Due to the continuity of Pk and Pj (which are defined in (27), (31) and (32) for our proposed fluid

policies πb∗,q∗ , πG and πP∗ , respectively) and the continuity of Ik by Lemma EC.1, we can conclude

that for n large enough P n
k (s)<P n

j (s) and Īnk (s)> 0 for |s− t|< δ and some δ > 0. According to

the stochastic dynamic priority policy (36) (or equivalently (37)), Ēn
j (t+ δ)− Ēn

j (t− δ) = 0, and

therefore Ej(t+ δ)−Ej(t− δ) = 0. This proves that (26) serves as the fluid limit of (37) under our

proposed policies.

Now we start to prove (59). We first consider the target-allocation policy πnb∗,q∗ . By Theorem 1

and the above discussion, for the sequence of the target-allocation policies {πnb∗,q∗} we can always

choose a convergent subsequence as the supremum. Using Skorohod representation theorem (see,

for example, Lemma C.1 in Zhang (2013)) we can map all of the random objects to the same

probability space so that all weak convergence becomes almost sure convergence. Thus, there is a

fluid target-allocation policy πb∗,q∗ such that limsup
n→∞

LnT (πnb∗,q∗) = LT (πb∗,q∗) almost surely. It then

follows from Theorem 2 that the second equation in (59) holds. The limit inferior in (59) follows

for the same reason. The proof for the other two policies πnG and πnP∗ is exactly the same. �

EC.3. Proofs of the Optimality of the Hybrid Routing Policies

With regards to (43), the decisions on routing customers to the queue are the same for the three

hybrid routing policies. Their decisions on routing customers to pools correspond to the three

routing policies proposed in Section 3. Therefore, we can simultaneously prove Theorems 6, 7 and

8, and Proposition 2.

Proof of Theorems 6, 7 and 8, and Proposition 2. If Q(t)<λp/θ, then by (43) we have∑J

j=1E
′
j(t) = 0. It then follows from (14) and (15) that Q′(t) = λ− θQ(t)> 0. Otherwise, if Q(t)>

λp/θ, then due to the same reason as (EC.2) we have
∑J

j=1E
′
j(t) = λ whenever

∑J

j=1 Ij(t)> 0 and∑J

j=1E
′
j(t) = λ∧

∑J

j=1 µjNj whenever
∑J

j=1 Ij(t) = 0. By (14), (15) and the fact that λ(1− p)≤∑J

j=1 µjNj, there will be Q′(t) = λ− θQ(t)−
∑I

j=1E
′
j(t)< 0 in this case. Thus, we can conclude

that lim
t→∞

Q(t) = λp/θ. Moreover, if there exists a T0 ≥ 0 such that Q(T0) = λp/θ, then there will be

Q(t) = λp/θ for all t≥ T0. Otherwise, if there is no such a T0, there will be lim
t→∞

Q′(t) = 0 deducing

from the previous two ordinary differential equations about Q(t). Then by (14) and (15) there will

be lim
t→∞

∑J

j=1E
′
j(t) = λ(1− p). Since the three routing policies in Section 3 and the other three
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hybrid routing policies in Section 4 perform the same dynamics for customers to be serviced in the

pools. Then the convergence of Bj’s, j = 1, . . . , J , can be proved by applying the same argument

as that of Theorems 2, 3 and 4, and Proposition 1, respectively. Thus, we omit it here for brevity.

�

EC.4. Min-knapsack Problems

In this section, we show the connection between inverted-V models and knapsack problems. We

show that the c/µ rule derived from (67) is identical to the Fractional Min-knapsack problem.

We also introduce the Fractional 0-1 Min-knapsack Problem in (EC.26), which turns out to be

consistent with the fixed priority routing problem in Section 3.1.3. Moreover, in Section EC.4.3 we

propose a dynamic programming algorithm to solve it efficiently.

EC.4.1. Fractional Min-knapsack Problem

Let there be K items, indexed by k= 1, . . . ,K, with price pk and weight wk for item k. The knapsack

problem allows every item to be divided. The amount of item k that is packed in the knapsack

will be denoted by yk being a real number between 0 and wk. The minimum weight that should

be carried in the knapsack is W . More specifically, we wish to solve the following minimization

problem:

minimize
K∑
k=1

pk
wk
yk

subject to
K∑
k=1

yk ≥W,

0≤ yk ≤wk, k= 1, . . . ,K.

(EC.25)

Because of its straightforward form, it admits an immediate algorithm: order the items according

to their price-to-weight ratio, p1
w1
≤ · · · ≤ pK

wK
, then apply a greedy algorithm to pack as many low

ratio items into the knapsack as possible. It can be easily seen that the form of the optimal solution

is either 0 or wk for each item, with at most one exception to choosing the fractional part of its

weight. Now comparing the minimization problems (67) and (EC.25), there is no doubt that the

c/µ rule is virtually a Fractional Min-knapsack Problem. We formally state it in the following

proposition and omit its proof for brevity.

Proposition EC.1. For linear operating cost functions, the c/µ rule problem (66) is identical to

the Fractional Min-knapsack Problem (EC.25).
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EC.4.2. Fractional 0-1 Min-knapsack Problem

Instead of the linear objective function in (EC.25), we consider a nonlinear cost function Pk(yk)

being the price of item k with weight yk packed into the knapsack. Moreover, in addition to the K

items with finite maximum weight wk, k= 1, . . . ,K, we add one more item indexed byK+1 of which

the maximum wK+1 = +∞, showing that yK+1 can be any number in [0,+∞). For standardization,

we set Pk(0) = 0. Also Pk(yk) is assumed to be a nondecreasing function in yk. Among all of the

possible choices of {y1, . . . , yK , yK+1}, we allow at most one item to be strictly between 0 and its

maximum weight. Hence, the problem is extended to

minimize
K+1∑
k=1

Pk(yk)

subject to
K+1∑
k=1

yk ≥W,

0≤ yk ≤wk, k= 1, . . . ,K,

0≤ yK+1 ≤wK+1, where wK+1 = +∞,

0< yk <wk for at most one k ∈ {1, . . . ,K + 1}.

(EC.26)

We refer to the minimization problem (EC.26) as the Fractional 0-1 Min-knapsack Problem since

it allows at most one item to be divided, as in the Fractional Min-knapsack Problem, and requires

other items to be packed in their entirety or not packed at all, as in the classical 0-1 Knapsack

Problem. Obviously, the last constraint can be eliminated when (EC.26) is a concave optimization

problem. Now, it becomes clear that to find an optimal fixed priority order, it is essential to solve

the Fractional 0-1 Min-knapsack Problem. Therefore, the proposition below immediately follows.

Proposition EC.2. For general cost functions, the fixed priority routing problem in Section 3.1.3

is identical to the Fractional 0-1 Min-knapsack Problem (EC.26). Moreover, the hybrid fixed priority

routing problem in Section 4.1.3 is also identical to the Fractional 0-1 Min-knapsack Problem

(EC.26) after setting PK+1(yK+1) = +∞ for all yK+1 > 0.

It is worth noting that two similar maximization knapsack problems have been studied in Sec-

tion 5 of Long et al. (2020), showing the connection between V models and knapsack problems.

Indeed, the Fractional Min-knapsack Problem (EC.25) can be simply transformed into the Frac-

tional Knapsack Problem (27) in Long et al. (2020) after replacing yk in (EC.25) by wk − xk.

However, the Fractional 0-1 Min-knapsack Problem (EC.26) can not be transformed to the Frac-

tional 0-1 Knapsack Problem (28) in Long et al. (2020) since the objective function of (EC.26) is

nonlinear. Thus, we need to design a specific algorithm to solve (EC.26).
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EC.4.3. Dynamic Programming Algorithm

In this subsection, we develop a dynamic programming (DP) algorithm to solve the Fractional 0-1

Min-knapsack Problem (EC.26) using a four-step procedure, which can be considered as the dual

version of the one developed in Section EC.4 of Long et al. (2020).

Step 1: Decompose the problem into subproblems.

In view of (EC.26), any feasible solution contains at most one fractionally packed item. This

suggests constructing a three-dimensional array M [0..K+1,0..W,0..K+1], where the third dimen-

sion is used to track the fractionally packed item. For 1≤ k≤K+ 1, 0≤w≤W and 0≤ l≤K+ 1,

we consider the following two cases:

Case 1 : l= 0. The entry M [k,w,0] stores the minimum cost of items packed in their entirety from

any subset of items {1,2, . . . , k} with a total weight of at least w. The component 0 in M [k,w,0]

indicates that there is no fractionally packed item.

Case 2 : l > 0. The entry M [k,w, l] stores the minimum cost of the fractionally packed item l and

the items packed in their entirety from any subset of items {1,2, . . . , k} \{l} with a total weight of

at least w.

We also need the following initial setting for k= 0,

M [0,w, l] =



0 if l= 0 and w= 0,

+∞ if l= 0 and w> 0,

Pl(w) if l > 0 and wl >w> 0,

+∞ if l > 0 and wl ≤w,
+∞ if l > 0 and w= 0.

(EC.27)

For the case with weight limit w< 0, which is also illegal, we set

M [k,w, l] = +∞, for all w< 0 and k, l≥ 0. (EC.28)

Step 2: Recursively define the value of an optimal solution.

For l = 0, which means no item is fractionally packed, the optimal solution corresponding to

M [k,w,0] is to either leave item k behind, in which case M [k,w,0] = M [k − 1,w,0], or to pack

item k, in which case M [k,w,0] = Vk(wk) +M [k− 1,w−wk,0]. Due to the penalty for a negative

weight in (EC.28), we conclude that

M [k,w,0] = min{M [k− 1,w,0], Pk(wk) +M [k− 1,w−wk,0]} (EC.29)

for all 1≤ k≤K + 1, 0≤w≤W .

For l= 1, . . . ,K+ 1, where item l is exactly the fractionally packed item, we can similarly derive

M [k,w, l] =

{
M [k− 1,w, l] if k= l,

min{M [k− 1,w, l], Pk(wk) +M [k− 1,w−wk, l]} if k 6= l
(EC.30)
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for all 1 ≤ k ≤K + 1, 0 ≤ w ≤W , where the first entry means that item k has been fractionally

packed, and thus cannot also be packed in its entirety. The second entry relies on a similar explana-

tion to that of (EC.29). Since this time item k is not the fractionally packed item, it can be either

left behind or packed in the optimal solution corresponding to the minimum value M [k,w, l].

We show in the proposition below that these recursions can indeed be described by a single

recursive equation.

Proposition EC.3 (Recursive Equation). The Fractional 0-1 Knapsack Problem (EC.26) can

be solved using dynamic programming, namely for any l ∈ {0,1, . . . ,K + 1}, we have the following

recursive equation

M [k,w, l] = min
{
M [k− 1,w, l], Pk(wk) +M [k− 1,w−wk, l] + Inf1{k=l}

}
, (EC.31)

holds for all k ∈ {1, . . . ,K + 1} and w ∈ {0,1, . . . ,W}, where Inf = +∞.

Proof. From the condition of this proposition, only k ≥ 1 should be considered and k = 0 for

the boundary condition has been given in (EC.27). Thus, it is easy to see that the recursions

(EC.29) and (EC.30) can be expressed as a unified equation (EC.31). To prove (EC.31), we first

consider a possible case k = l, which implies that item k is the fractionally added item. Then

M [k,w, l] =M [k−1,w, l] since in this case item k cannot be wholly taken. It remains to prove the

case k 6= l. To compute M [k,w, l] we note that there are only two choices for item k. If we leave the

whole item k, then limited by the minimum weight w the minimum cost with the wholly added

items taken from {1,2, · · · , k− 1} and the fractionally added item l is M [k− 1,w, l]. Instead, if we

take the whole item k (only possible if w≥wk), then we gain Vk(wk) immediately, but consume wk

weight of our storage. Now, the rest weight limit becomes w−wk and the minimum cost with the

remaining items {1,2, · · · , k−1} is M [k−1,w−wk, l]. In all, we obtain Vk(wk)+M [k−1,w−wk, l].

Note that if w <wk, then M [k− 1,w−wk, l] = +∞ from (EC.28). So the recursion (EC.31) holds

in both cases. �

Step 3: Compute the value of an optimal solution.

For any fixed l ∈ {0,1 . . . ,K + 1}, the above recursive equation (EC.31) suggests a two-

dimensional recursive equation. In all, there areK+2 independent recursive equations. To reach our

goal, we only need to recursively calculate K+ 2 two-dimensional recursions for k ∈ {1, . . . ,K+ 1}

and w ∈ {0,1, . . . ,W} based on the boundary conditions (EC.27) and (EC.28). Thus the running

time of the dynamic programming algorithm is O(K2W ). Finally, the optimal value of the Frac-

tional 0-1 Min-knapsack Problem (EC.26) is obtained as follows:

min
K+1∑
k=1

Pk(yk) = min
l∈{0,1,...,K+1}

M [K + 1,W, l]. (EC.32)



e-companion ec13

Step 4: Construct an optimal solution.

From (EC.32), we find that Frac := arg minl∈{0,1,...,K+1}M [K + 1,W, l] is the index of the frac-

tionally packed item of the optimal solution. The only remaining problem is to obtain the indices

of the items that are packed in their entirety. To that end, we need one auxiliary three-dimensional

array T [0..K + 1,0..W,0..K + 1] to be a Boolean array to find their indices. Each entry T [k,w, l]

records whether item k is packed in its entirety in realizing the smallest value M [k,w, l]. That is,

T [k,w, l] = 1 if item k is packed in its entirety and T [k,w, l] = 0 otherwise. In the optimal solution,

item K + 1 is packed in its entirety if T [K + 1,W,Frac] = 1. We can now repeat this argument

for T [K,W −wK ,Frac]. And item K + 1 is not packed in its entirety if T [K + 1,W,Frac] = 0. In

this case, we can repeat the argument for T [K,W,Frac]. Iterating the argument K+ 1 times from

item K + 1 downward to item 1 will give the indices of all items that are packed in their entirety.

Thus far we have identified the optimal value and the solution to (EC.26).
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