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Electronic Companion of “Online Demand Fulfillment under

Limited Flexibility”

EC.1. Proof of Main Results

Proof of Theorem 1. As discussed in §5.1, the key is to to find an appropriate lower

bound of Γ (defined in (7)) involving the potential function Φ(X(k)). We divide the proof

in the following three steps.

Network Partition Let Xmin(k) be the value of the smallest load deviation among all

resources after kth arrival and Sc = {i∈ I :Xi(k) =X
min

(k)} be the set of resources with

the smallest load deviation. I is then divided into two sets, Sc and S = I \Sc, which leads

to a division of J into J (Sc) and T = J \ J (Sc) as illustrated in Figure 4. We assume

for now that S 6= ∅ and will get back to it later. Thus, the resource and request nodes are

divided into two disjoint pairs, (S,T ) and (Sc,J (Sc)). Under the load deviation policy,

any request in T will only be assigned to and fulfilled by a resource in S, while any request

in J (Sc) will be assigned to (but not necessarily fulfilled by) a resource in Sc.

In the subnetwork with nodes (S,T ) and arcs in {(i, j) ∈ A , i ∈ S, j ∈ T }, let ηT =∑
i∈S

ci−
∑
j∈T

pj =−

(∑
i∈Sc

ci−
∑

j∈J (Sc)

pj

)
. Since Xi(k) =Xi∗(j)(k) =Xmin(k) for all i∈ Sc and

j ∈J (Sc), the terms in Γ (defined in (7)) for i∈ Sc and j ∈J (Sc) can be written as

∑
i∈Sc

cie
Xi(k)/C −

∑
j∈J (Sc)

pje
Xi∗(j)(k)/C = eXmin(k)/C

∑
i∈Sc

ci−
∑

j∈J (Sc)

pj

=−ηT eXmin(k)/C

and Γ = Γ(S,T )− ηT eXmin(k)/C where

Γ(S,T ) =
∑
i∈S

cie
Xi(k)/C −

∑
j∈T

pje
Xi∗(j)(k)/C .
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Bounding Γ(S,T ) Using the Max-Flow Min-Cut Theorem In the subnetwork with

resources S and request types T as illustrated in Figure EC.1,
∑
i∈S

ci−
∑
j∈T

pj = ηT ≥ η > 0. If

we take out a total of η amount of capacity, the modified network still satisfies the nonneg-

ative GCG. Since we are trying to find a tight lower bound of Γ(S,T ), the operation of “take

out” should start with resource nodes with larger Xi(k). Suppose that X1(k)≥ · · · ≥XI′(k),

then the “take out” should start from resource 1. Evidently, there exists a resource `, `∈ S,

such that η=
`−1∑
i=1

ci + cres where 0< cres ≤ c`. The capacity of the subnetwork becomes

c′i =


0, if i < `,

c`− cres, if i= `,

ci, if i > `.

and the GCG of the subnetwork is still non-negative, i.e.,
∑

i∈I(J ′)
c′i ≥

∑
j∈J ′

pj for any non-

empty J ′ ⊂T .

1

Resources

c′1 = 0

`c′` = c`− cres

I ′c′I′ = cI′

2 p2

1

Requests

p1

J ′− 1 pJ ′−1

J ′ pJ ′

Figure EC.1 An illustration of the subnetwork with (S,T )

By the max-flow min-cut theorem, there exists a set of flows from S to T , {fij ≥ 0 : i ∈
S, j ∈ T } such that fij = 0 if (i, j) /∈A , and∑

j∈T

fij = c′i, for all i∈ S, (EC.1)

∑
i∈I(j)

fij ≥ pj, for all j ∈ T . (EC.2)
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It then follows that∑
i∈S

c′ie
Xi(k)/C −

∑
j∈T

pje
Xi∗(j)(k)/C

=
∑
i∈S

(∑
j∈T

fij

)
eXi(k)/C −

∑
i∈I(j)

∑
j∈T

fije
Xi∗(j)(k)/C +

∑
j∈T

∑
i∈I(j)

fij − pj

eXi∗(j)(k)/C

≥
∑
j∈T

∑
i∈I(j)

fije
Xi(k)/C −

∑
i∈I(j)

fije
Xi∗(j)(k)/C

+
∑
j∈T

∑
i∈I(j)

fij − pj

eXmin(k)/C

≥
∑
j∈T

∑
i∈I(j)

fij −
∑
i∈I(j)

fij

eXi∗(j)(k)/C +

(∑
i∈S

c′i−
∑
j∈T

pj

)
eXmin(k)/C

= (ηT − η)eXmin(k)/C , (EC.3)

where the first equality and inequality follows from (EC.1), (EC.2) and the second inequal-

ity follows from the definition of i∗(j).

In view of (EC.3), Γ(S,T ) can be rewritten as

Γ(S,T ) =
∑
i∈S

c′ie
Xi(k)/C −

∑
j∈T

pje
Xi∗(j)(k)/C +

`−1∑
i=1

cie
Xi(k)/C + creseX`(k)/C

≥
`−1∑
i=1

cie
Xi(k)/C + creseX`(k)/C + (ηT − η)eXmin(k)/C . (EC.4)

Recall that Γ = Γ(S,T ) − ηT eXmin(k)/C . As a consequence of (EC.4), the following lemma

establishes the relationship between Γ and the potential function Φ(X(k)).

Lemma EC.1. For θ= min{η, Icmin},

Γ≥ θ

I

I∑
i=1

eXi(k)/C − θ, (EC.5)

and

Γ≥ η
I∑
i=1

cie
Xi(k)/C − η,

which is equivalent to

I∑
i=1

cie
Xi(k)/C ≤ Γ

η
+ 1. (EC.6)
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The Contraction Mapping By (EC.5), (EC.6) and Lemma 3, we have the contraction

mapping

E
[
Φ
(
X(k+ 1)

)
|X(k)

]
−Φ

(
X(k)

)
≤ 2

C2
(
Γ

η
+ 1)− (

1

C
+

1

C2
)Γ =

2

C2
− (

1

C
+

1

C2
− 2

C2η
)Γ

≤ 2

C2
− (

1

C
+

1

C2
− 2

C2η
)

(
θ

I

I∑
i=1

eXi(k)/C − θ

)
=−aΦ

(
X(k)

)
+ b (EC.7)

for all C such that 1
C

+ 1
C2 − 2

C2η
> 0, where

a=

(
1

C
+

1

C2
− 2

C2η

)
θ

I
, b=

(
1

C
+

1

C2
− 2

C2η

)
θ+

2

C2
.

If S = ∅, then Sc = I and Xi(k) = 0 for all k as
I∑
i=1

Xi(k) = 0. Suppose that the (k+ 1)th

arrival is of type j. Then, Xi(k+ 1) =−ci for i 6= i∗(j) and Xi∗(j)(k+ 1) = 1− ci∗(j). Hence,

Φ
(
X(k+ 1)

)
≤ I +

I∑
i=1

Xi(k+ 1)/C +
I∑
i=1

X2
i (k+ 1)/C2 ≤ I +

2

C2

where the first inequality follows from ex ≤ 1+x+x2 for any x∈ [−1,1]. Since Φ(X(k)) = I,

(EC.7) holds. Thus, (EC.7) holds for all S for the right choice of C.

Since E[Φ(X(0))] = I ≤ I
[
1 + 2η

(ηC+η−2)θ

]
, it follows that E[Φ(X(K))] ≤ b

a
=

I
[
1 + 2η

(ηC+η−2)θ

]
by induction. By Lemma 2, the total number of expected number of lost

sales is bounded from above by

E
I∑
i=1

max{Xi(K),0} ≤ IC ln
(

1 + 1 +
2η

(ηC + η− 2)θ

)
≤ IC ln

(
2 +

2η

(ηC − 2)θ

)
.

Theorem 1 is established at C = 3
θ

in which case 1
C

+ 1
C2 − 2

C2η
> 0 and a< 1. �

Proof of Proposition 1. First we show that η∗ ≤ min
j∈J

pj
d(j)

. As a matter of fact, an

inventory allocation c that results in a positive GCG for the original system must satisfy∑
i∈I(J ′)

ci−
∑
j∈J ′

pj ≥ η for any of the d(j) subnetworks J ′ ∈J . Summing up the d(j) inequal-

ities, we have
∑
i∈I
ci−

∑
j′ 6=j

pj′ = 1− (1−pj) = pj ≥ d(j)η. Thus, η∗ ≤min
j∈J

pj
d(j)

. Combined with

the fact that d(j) = |I(j)|, min
j∈J

pj
|I(j)| is actually the highest GCG achievable for a connected

network with I + J − 1 arcs.
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Now we discuss the case of I + J arcs. For any J ′ ( J ,
∑
j∈J ′

pj amount of inventory is

allocated to I(J ′). Furthermore, there exists (̂i, ĵ)∈A where ĵ ∈J \J ′ and î∈ I(J ′). If

(̂i, ĵ) is unique,
∑

i∈I(J ′)
ci−

∑
j∈J ′

pj ≥
pĵ

d(ĵ)
≥min

j∈J
pj
d(j)

. Otherwise, there exist at least two arcs

between I(J ′) and J \ J ′, say from request types ĵ1 and ĵ2 (it is possible that ĵ1 = ĵ2).

With a total of I + J arcs and a single cycle in the network, at least
pĵ1

2d(ĵ1)
amount of

pĵ1 and
pĵ2

2d(ĵ2)
amount of pĵ2 are allocated to the set I(J ′) in addition to

∑
j∈J ′

pj. Thus,∑
i∈I(J ′)

ci−
∑
j∈J ′

pj ≥
pĵ1

2d(ĵ1)
+

pĵ2
2d(ĵ2)

≥min
j∈J

pj
d(j)

. �

Proof of Proposition 2. Let p̄J ∗ =

∑
j∈J∗

pj

d(J ∗) . Following a similar argument as in the

proof of Proposition 1, we can easily show that η∗ ≤ p̄J∗ and hence it suffices to prove

that the inventory allocation described in §6.1.2 achieves the GCG of p̄J∗. Recall that

η = min
J ′⊂J

ηJ
′
. We will show that ηJ

′ ≥ p̄J ∗ for any J ′ ⊂ J by considering the following

three cases.

1. If J ′ ∩ J ∗ = ∅, the request nodes in J ′ in different subnetworks have no common

suppliers and the desired conclusion holds from the definition of p̄J ∗.

2. If J ′ ∩ J ∗ = J ∗, we can break
∑

i∈I(J ′)
ci −

∑
j∈J ′

pj into d(J ∗) terms based on their

association with the subnetworks. Since
∑
j∈J ∗

pj = d(J ∗)p̄J ∗ , we can establish the desired

result for each subnetwork.

3. Otherwise, let J ′ ∩ J ∗ = Ω. Suppose that there are m subnetworks with at least

one resource in I(Ω) and m0 subnetworks with at least one resource in I(J ′ \Ω). Then,

J ′ = J ′1 ∪ · · · ∪ J ′m0
∪Ω, where J ′j belongs to different subnetworks. under our inventory

allocation c,
∑

i∈I(J ′k)

ci−
∑
j∈J ′k

pj ≥ p̄J ∗ for any k ∈ {1, · · · ,m0}. In addition, there are at least

m−m0 suppliers in I(Ω) \ I(J ′1 ∪ · · · ∪J ′m0
), each of which has a capacity of at least p̄J ∗.

It follows that

∑
i∈I(J ′)

ci−
∑
j∈J ′

pj =
∑

1≤k≤m0

 ∑
i∈I(J ′k)

ci−
∑
j∈J ′k

pj

+
∑

i∈I(Ω)\I(J ′1∪···∪J ′m0
)

ci−
∑
j∈Ω

pj

≥m0p̄J ∗ + (m−m0)p̄J ∗ −
∑
j∈Ω

pj =mp̄J ∗ −
∑
j∈Ω

pj.

Since d(J ∗) = d(J ∗ \Ω) +m− 1, p̄J ∗ =

∑
j∈J∗

pj

d(J ∗) ≤
∑

j∈J∗\Ω
pj

d(J ∗\Ω)
=

∑
j∈J∗\Ω

pj

d(J ∗)−(m−1)
, which implies that∑

j∈Ω

pj ≤ (m− 1)p̄J ∗. Desired result thus follows. �
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Proof of Proposition 3. We first note that the value of η∗ is strictly increasing with

each iteration and hence the algorithm ends in a finite number of steps. In each iteration,

we remove one resource from a request type with the lowest ratio
pj
|I(j)| , i.e., j, and add one

resource to the request type with the highest ratio
pj

|I(j)|+1
, i.e., j̄. If the algorithm finds

a solution with |I(j)| = 1, then η∗ = p1 = pmin as pj is non-decreasing in j. Otherwise, if

the algorithm finds a solution such that
pj

|I(j)| ≥
pj̄

|I(j̄)|+1
, then η∗ ≥ pj

|I(j)|+1
for all j ∈J , i.e.,

|I(j)|+1 is the maximum number of resources that can supply request type j in a network

with the highest GCG. Thus, any solution that differs from the current one would have one

request type linked to at least |I(j)|+ 1 resources and hence its GCG cannot be higher.

�

Proof of Theorem 2. The proof follows that of Theorem 1 with a modification to

Lemma 3 whose proof can be found in EC.2.

Lemma EC.2. Let A= max
j

E(`2j )

E(`j)
. For any C ≥ ¯̀,

E
[
Φ
(
X(k+ 1)

)
|X(k)

]
−Φ

(
X(k)

)
≤ 2AD

C2

I∑
i=1

cie
Xi(k)/C −

(
D

C
+
AD

C2

)
Γ,

where Γ =

(
I∑
i=1

cie
Xi(k)/C −

J∑
j=1

p′je
Xi∗(j)(k)/C

)
and i∗(j) is the resource assigned to the (k+

1)-th arrival if it is of type j.

By Lemma EC.2, we obtain a similar contraction mapping

E
[
Φ
(
X(k+ 1)

)
|X(k)

]
−Φ

(
X(k)

)
≤ D

[(
1

C
+
A

C2
− 2A

C2η′

)
θ′+

2A

C2

]
−D

(
1

C
+
A

C2
− 2A

C2η′

)
θ′

I

I∑
i=1

eXi(k)/C ,

where θ′ = min{η′, Icmin}. With the choice of C = max{¯̀,3A/θ′},
I∑
i=1

EX+
i (D) =

I∑
i=1

E

[
Li(D)− ci

D∑
k=1

`(k)

]+

≤ ln 64 ·max

{
¯̀,

A

min{cmin, η′}

}
where D is the random variable representing the total number of arrivals.

Note that the expected number of lost sales under the full flexibility case is

E
[∑D

k=1 `(k)−K
]+

for given D, the expected optimality gap is bounded by

I∑
i=1

E [Li(D)− ciK]+−E

[
D∑
k=1

`(k)−K

]+

≤
I∑
i=1

E

[
Li(D)− ci

D∑
k=1

`(k)

]+

≤ ln 64 ·max

{
¯̀,

A

min{cmin, η′}

}
.

�
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Proof of Theorem 3. Following the proof of Theorem 1, we can show the following

inequality similar to (EC.7):

E
[
Φ
(
X(k+ 1)

)
|X(k)

]
−Φ

(
X(k)

)
≤−akΦ

(
X(k)

)
+ bk (EC.8)

for all C such that 1
C

+ 1
C2 − 2

C2ηk
> 0, where

ak =

(
1

C
+

1

C2
− 2

C2ηk

)
θk
I
, bk =

(
1

C
+

1

C2
− 2

C2ηk

)
θk +

2

C2
, θk = min{ηk, Icmin}.

We first present a lemma that will be used later.

Lemma EC.3. Suppose that a sequence {ek} satisfies ek+1 ≤ (1−ak)ek + b for all k and

e1 ≤ b, where ak < 1, b > 0. Then, for K > 0,

eK ≤
b

min
k

{
1
k

K−1∑
r=K−k

ar

} .
Rewrite (EC.8) as

E
[
Φ
(
X(k+ 1)

)
− I |X(k)

]
≤ (1− ak)(Φ

(
X(k)

)
− I) +

2

C2
.

Applying Lemma EC.3 with ek =E[Φ
(
X(k)

)
]− I, we have

E[Φ
(
X(k)]≤ I +

2/C2

min
k

{
1
k

K∑
r=K−k+1

ar

} .

Letting C = 3
min

1≤k≤K
{θ̄k}

, we can verify that, for all 0<k≤K, 1
k

K∑
r=K−k+1

ar ≥ 1/(IC2). Hence,

E[Φ
(
X(k)]≤ 3I and

E
I∑
i=1

max{Xi(K),0} ≤ IC ln(4) =
I ln 64

min
1≤k≤K

{θ̄k}
.

�

EC.2. Proof of lemmas

Proof of Lemma 1. Suppose that there exists a J ′ ⊂J such that
∑

i∈I(J ′)
ci ≤

∑
j∈J ′

pj <

1. Since the total number of requests from J ′ follows a Binomial distribution with



ec8(
K,
∑
j∈J ′

pj

)
and there is only

( ∑
i∈I(J ′)

ci

)
K amount of supply, the total expected number

of lost sales are at least

E

Binom

(
K,
∑
j∈J ′

pj

)
−

 ∑
i∈I(J ′)

ci

K

+

≈ E

∑
j∈J ′

pj −
∑

i∈I(J ′)

ci

K +
√
KNorm

(
0,

(∑
j∈J ′

pj

)(
1−

∑
j∈J ′

pj

))+

by the Central Limit Theorem, which is at least in the order of
√
K. �

Proof of Lemma 2. Consider a variant of the LDP in which any request assigned

to a resource after it runs out of inventory is simply lost, instead of (possibly) fulfilled

by another resource. We claim that the expected total number of lost sales is exactly

E
I∑
i=1

max{Xi(K),0} under the new policy. Indeed, a request assigned to resource i is lost

if and only if Li(k)> ciK. It is easy to see that, for each sample path, a request that is

lost must contribute to max{Xi(K),0} for some i. Take summation and then expectation

the desired result follows. Note that the amount of lost sales under the new policy is no

less than that under the LDP, we have shown that E
I∑
i=1

max{Xi(K),0} serves an upper

bound of the expected number of total lost sales under the LDP.

Recall that Φ (X(K)) =
∑I

i=1 e
Xi(K)/C . For any given constant C > 1, after applying

Jensen’s Inequality twice,

e
1
I

I∑
i=1

Emax{Xi(k)/C,0}
≤ 1

I

I∑
i=1

eEmax{Xi(k)/C,0} ≤ 1

I

I∑
i=1

Eemax{Xi(k)/C,0}

Now take logarithm on both sides of the above inequality,

I∑
i=1

Emax{Xi(K),0} ≤ IC ln

(
1

I
E [Φ (X(K))] + 1

)
.

�

Proof of Lemma 3. By (2), we can write X(k+ 1) = X(k) + ∆(k), where

∆i(k) =−ci +

1, if i= i∗(j),

0, otherwise,
(EC.9)

and |∆i(k)| ≤ 1. Applying the inequality ex ≤ 1 + x+ x2 (|x| ≤ 1) at x= ∆i(k)/C (|x| ≤ 1

since |∆i(k)| ≤ 1 and C > 1), we have

eXi(k+1)/C ≤ eXi(k)/C +
∆i(k)

C
eXi(k)/C +

|∆i(k)|2

C2
eXi(k)/C
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and

E
[
Φ
(
X(k+ 1)

)
|X(k)

]
−Φ

(
X(k)

)
≤ 1

C
E

[
I∑
i=1

∆i(k)eXi(k)/C

∣∣∣∣∣X(k)

]
+

1

C2
E

[
I∑
i=1

|∆i(k)|eXi(k)/C

∣∣∣∣∣X(k)

]

≤ 1

C

(
−

I∑
i=1

cie
Xi(k)/C +

J∑
j=1

pje
Xi∗(j)(k)/C

)
+

1

C2

(
I∑
i=1

cie
Xi(k)/C +

J∑
j=1

pje
Xi∗(j)(k)/C)

)

=

(
− 1

C2
− 1

C

)( I∑
i=1

cie
Xi(k)/C −

J∑
j=1

pje
Xi∗(j)(k)/C

)
+

2

C2

I∑
i=1

cie
Xi(k)/C .

The last inequality follows because |∆i(k)|= ci for i 6= i∗(j) and |∆i(k)| ≤ 1+ci for i= i∗(j),

and each request is of type j with probability pj for j ∈J . �

Proof of Lemma 4. Consider the allocation rule that allocates pj evenly to all

resources in I(j). For any J ′ ( J , the resources in I(J ′) can fulfill not only the request

types in J ′ but also at least one request type in J \ J ′ due to the connectivity of the

network. Thus, resources in I(J ′) are allocated
∑
j∈J ′

pj plus
pĵ

|I(ĵ)| for each request type

ĵ ∈ J \ J ′ that can be fulfilled by a resource in I(J ′). Hence,
∑

i∈I(J ′)
ci −

∑
j∈J ′

pj ≥
pĵ

|I(ĵ)| ≥

min
j∈J

pj
|I(j)| and η∗ ≥min

j∈J
pj
|I(j)| . �

Proof of Lemma EC.1. Since ci ≥ θ
I

for all i∈ I, η≥ θ, and Xi(k) decreases in i,

`−1∑
i=1

cie
Xi(k)/C + creseX`(k)/C

≥θ
I

`−1∑
i=1

eXi(k)/C +

[
`−1∑
i=1

(
ci−

θ

I

)
+ cres

]
eX`(k)/C

=
θ

I

`−1∑
i=1

eXi(k)/C +

[
η− θ(`− 1)

I

]
eX`(k)/C

≥θ
I

`−1∑
i=1

eXi(k)/C +
θ(I − `+ 1)

I
eX`(k)/C + (η− θ)eXmin(k)/C

≥θ
I

I∑
i=1

eXi(k)/C + (η− θ)eXmin(k)/C .

Hence by (EC.4),

Γ = Γ(S,T )− ηT eXmin(k)/C ≥ θ

I

I∑
i=1

eXi(k)/C − θeXmin(k)/C ≥ θ

I

I∑
i=1

eXi(k)/C − θ,
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where the last inequality follows because Xmin(k)≤ 0. Similarly,

`−1∑
i=1

cie
Xi(k)/C + creseX`(k)/C ≥

`−1∑
i=1

ciηe
Xi(k)/C +

[
`−1∑
i=1

(ci− ciη) + cres

]
eX`(k)/C

= η
`−1∑
i=1

cie
Xi(k)/C + η

I∑
i=`

cie
X`(k)/C

≥ η
I∑
i=1

cie
Xi(k)/C ,

and

Γ≥ η
I∑
i=1

cie
Xi(k)/C − ηeXmin(k)/C ≥ η

I∑
i=1

cie
Xi(k)/C − η.

�

Proof of Lemma EC.2. We can write X(k+ 1) = X(k) + `(k)∆(k), where

∆i(k) =−ci +

1, if i= i∗(j),

0, otherwise,
(EC.10)

and |∆i(k)| ≤ 1. Applying the inequality ex ≤ 1+x+x2(|x| ≤ 1) at x= `(k)∆i(k)/C (|x| ≤ 1

as C ≥ ¯̀), we have

eXi(k+1)/C ≤ eXi(k)/C +
`(k)∆i(k)

C
eXi(k)/C +

`2(k)|∆i(k)|2

C2
eXi(k)/C

and

E
[
Φ
(
X(k+ 1)

)
|X(k)

]
−Φ

(
X(k)

)
≤ 1

C
E

[
I∑
i=1

`(k)∆i(k)eXi(k)/C

∣∣∣∣∣X(k)

]
+

1

C2
E

[
I∑
i=1

`2(k)|∆i(k)|eXi(k)/C

∣∣∣∣∣X(k)

]

≤ 1

C

(
−

I∑
i=1

Dcie
Xi(k)/C +

J∑
j=1

pjE(`j)e
Xi∗(j)(k)/C

)

+
1

C2

(
I∑
i=1

(

J∑
j=1

pjE(`2
j))cie

Xi(k)/C +

J∑
j=1

pjE(`2
j)e

Xi∗(j)(k)/C)

)

≤D
(
− A

C2
− 1

C

)( I∑
i=1

cie
Xi(k)/C −

J∑
j=1

p′je
Xi∗(j)(k)/C

)
+

2AD

C2

I∑
i=1

cie
Xi(k)/C .

The second inequality follows because |∆i(k)| = ci for i 6= i∗(j) and |∆i(k)| ≤ 1 + ci for

i= i∗(j), and each request is of type j with probability pj for j ∈ J . The last inequality

follows because of the fact A= max
j

E(`2j )

E(`j)
.
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�

Proof of Lemma EC.3. Let āk =

K−1∑
r=K−k

ar

k
and āmin = min

k
{āk}. We first use induction

to show that

ek ≤ b
k−1∑
i=1

k−1∏
j=k−i

(1− aj) + b (EC.11)

for all k≥ 1. Since e1 ≤ b, the conclusion holds for k= 1. Suppose that the conclusion holds

for k. For the case of k+ 1,

ek+1 ≤ (1− ak)ek + b≤ (1− ak)

(
b
k−1∑
i=1

k−1∏
j=k−i

(1− aj) + b

)
+ b

= b
k−1∑
i=1

k∏
j=k−i

(1− aj) + b(1− ak) + b= b
k∑
i=1

k∏
j=k+1−i

(1− aj) + b.

Having established (EC.11), we can reach the desired result by the arithmetic-mean and

geometric-mean inequality:

eK ≤ b
K−1∑
i=1

K−1∏
j=K−i

(1− aj) + b≤ b
K−1∑
i=1

(1− āi)i + b≤ b
K−1∑
i=1

(1− āmin)i + b≤ b/āmin.

�


