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Abstract. We study online demand fulfillment in a class of networks with limited flexi-
bility and arbitrary numbers of resources and request types. We show analytically that
such a network is both necessary and sufficient to guarantee a performance gap in-
dependent of the market size compared with networks with full flexibility, extending the
previous literature from the long chains to more general sparse networks. Inspired by the
performance bound, we develop simple inventory allocation rules and guidelines for de-
signing such network structures. Numerical experiments including one using some real data
from Amazon China are conducted to confirm our findings as well as some of the flexibility
principles conjectured in the literature.
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1. Introduction
E-commerce is an exciting trend for many traditional
industries, with the rising number of global Internet
and smartphone users driving its growth. According
to Statista, retail e-commerce salesworldwide amounted
to $2.3 trillion in 2017 and e-retail revenues are projected
to grow to $4.88 trillion in 2021. In particular, online
sales in China accounted for 23% of total retail sales in
2017.1 A key challenge for any online retailer is how to
efficiently fulfill a large number of customer orders
from different geographical locations as they arrive
using its existing distribution resources. Order ful-
fillment at an online retailer such as Amazon China,
which has a total of 12 distribution centers serving cus-
tomers from hundreds of regions throughout China,
involves three important decisions: (1) the distribution
network, that is, which distribution center(s) can cater
the demand in a given geographical region (e.g., a city
or a province); (2) inventory allocation, that is, for a
given distribution network, how inventory should be
allocated to each distribution center; and (3) dynamic de-
mand fulfillment rule, that is, given the network struc-
ture and actual inventory levels, which distribution
center should fulfill an arriving customer order.
Online demand fulfillment implies that the fulfillment
decision must be made upon the arrival of each order
and is irrevocable.

We now elaborate on these three decisions, how
they are related and why they are difficult. The in-
ventory allocation and dynamic fulfillment decisions
are closely related to the network structure. Intui-
tively, for a given network structure, more inventory
should be allocated to distribution centers that are
serving large customer bases, and distribution centers
with higher remaining inventory and smaller customer
bases should be used to fulfill arriving customer orders.
However, finding an optimal inventory allocation and
dynamic fulfillment policy requires solving a high-
dimensional dynamic programming and is analyti-
cally intractable for most real systems.
For given distribution centers and demand regions,

there are many choices for designing a distribution
network. A straightforward solution is to group a few
nearby demand regions together, and dedicate one
distribution center exclusively for this group, making
the network a collection of nonoverlapping star-shaped
components. It is simple and easy to operate, but it is
suboptimal as some groups may starve while others
have lots of leftover. Alternatively, we can make
inventory at multiple distribution centers available to
one demand location. Such flexibility likely will ben-
efit the fulfillment if implemented well, though ad-
ditional costs, for example, shipping and operational
costs, may incur. At the extreme are systems with full
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flexibility if every distribution center is allowed to
fulfill orders from all locations. Such systems can best
match supply with demand and thus maximize sales;
however, they are likely too expensive to operate, and
hence impractical. The study of network structure is
closely related to the process flexibility literature that
dates back to the seminal work by Jordan and Graves
(1995), which has shown that a little bit of flexibility in
the form of the long chain structure goes a long way.
However,most research along this line has focused on
production systems, where the fulfillment decision is
made either periodically or after all the demand is
observed, that is, demand is fulfilled offline. The only
exception is thework byAsadpour et al. (2019), which
focuses on online demand fulfillment under the long
chain structure, which is a balanced system with
equal numbers of distribution centers and demand
locations. However, most real e-retail systems, in-
cluding Amazon China are unbalanced, making the
long chain structure not applicable. Research is
needed to study the design of network structures for
general systems that need to fulfill customer orders as
they arrive.

Although our study is motivated by online retail-
ing, similar problems also arise from other application
models where, for example, a few machines or service
representatives can process many different jobs as they
arrive over time and the jobs need to be assigned to the
machines or representatives immediately upon arrival.
We model our network structure using a bipartite
graphwith J types of requests (demand locations) and
I types of resources (distribution centers). A resource
type can serve a request type if there is an arc between
them in the bipartite graph. The performancemeasure
we are concerned with is the expected number of lost
sales. We consider a class of connected networks with
a positive generalized chaining gap (GCG), referred
to as GCG systems and first introduced by Shi et al.
(2019). Intuitively, a positive GCG means there is slack
between the total (expected) demand for any subset
of request types and the total supply at the resources
that can serve these requests. The GCG measures the
extent to which supply dominates demand and hence
serves as an important indicator of the system perfor-
mance under online fulfillment. For order fulfillment,
we generalize the modified greedy policy in Asadpour
et al. (2019). Our main contributions can be summa-
rized as follows.

1. Asadpour et al. (2019) showed bounded per-
formance of the long chains where I ! J as the mar-
ket size increases when demand is fulfilled online.
By bounded performance we mean that the expected
number of lost sales does not diverge with the market
size, which is desirable when a retailer faces large
customer demand in practice. Under the same online

setting, we show that a positive GCG is both necessary
and sufficient for achieving bounded performance for
general network structures with arbitrary I and J.
Furthermore, we establish the tightness of our per-
formance bound that is inversely proportional to the
GCG. This not only extends the result in Asadpour
et al. (2019) that the performance bounds are inde-
pendent of the market size to general network struc-
tures, but also achieves a tighter bound when applied
to the long chains. Our results are established based on
a novel proof, making our work a methodologically
and managerially significant contribution.
2. The performance bound inspires us to use theGCG

as a proxy for the system performance when making
the inventory allocation and network design decisions.
(a) We show that any connected network structure

with as few as I + J − 1 arcs, much less than I × J arcs
under full flexibility, is guaranteed to be a GCG sys-
tem under our inventory allocation policies. Further-
more, such limited flexibility can achieve near-optimal
performance. So our work has extended toward the
online direction of the work by Shi et al. (2019), which
showed that a GCG production system can achieve
near-optimal performance if demand is fulfilled pe-
riodically and the capacity utilization is close to one.
(b) We develop simple principles for guiding the

design of GCG networks or adding arcs to an existing
GCG network in practice. First, we show that GCG
networks with as few as I + J − 1 arcs can perform
quitewell and are excellent options if it is expensive to
add one more arc. If we are allowed to add one more
arc to a connected network with I + J − 1 arcs, there
will be a cycle in the network and the additional arc
should be added to form the largest cycle possible,
which is consistent with the observation made in
Jordan and Graves (1995). Second, with I + J arcs, we
can simply divide the resources into I groups and
form a generalized long chain (GLC) with I resources
and I request groups. If we have the option to add an
arc to a network structure with at least I + J arcs, the
arc should be added to strengthen the weakest link in
the exiting network.

3. Numerical studies including experiments using
some real data from Amazon China are performed
to confirm and verify our main findings. For instance,
flexible systems that fulfill requests online may incur
additional shipping costs compared with dedicated
ones. We demonstrate that a little flexibility improves
the performance significantly without increasing the
total shipping costs too much for systems with a
positive GCG.
The paper is organized as follows. After a brief

literature review in Section 2, we present our de-
tailed model in Section 3 and introduce the GCG and
dynamic fulfillment policy in Section 4.We establish a

Xu et al.: Online Demand Fulfillment Under Limited Flexibility
4668 Management Science, 2020, vol. 66, no. 10, pp. 4667–4685, © 2020 INFORMS



performance bound for systems with a positive GCG
that is independent of the market size in Section 5.
Based on the insights from the bound, we derive some
important principles for the inventory allocation de-
cision and network structure design in Section 6. We
extend bounded performance to systems with ran-
dom batch arrivals and time varying arrivals in
Section 7. We conduct numerical studies including
one using some data from Amazon China in Sections 8
and 9. The paper is concluded in Section 10. The
proofs of lemmas and theorems can be found in the
e-companion.

2. Literature Review
The study of process flexibility structures dates back
to the seminal work of Jordan and Graves (1995), who
observe that a sparse chaining flexibility structure
often achieves almost the same performance as the
fully flexible system. Motivated by their empirical
findings, most theoretical work since then has fo-
cused on explaining the power of chaining for bal-
anced systems, with a few exceptions for unbalanced
systems.

The effectiveness of a long chain in balanced sys-
tems, that is, I ! J, compared with the effectiveness of
fully flexible systems, has been investigated exten-
sively. Chou et al. (2010) derive the ratio of the per-
formance of the long chain to that of the full flexibility
system when the system size approaches infinity and
show that, for certain demand distributions, the ratio
is very close to 1. Simchi-Levi andWei (2012) consider
the benefit of adding each arc as one constructs a long
chain from a dedicated system and show that the
benefit increases under the assumption that the re-
quest types are interchangeable, implying that the
biggest benefit is always achieved when the last arc
closes the chain. Furthermore, they establish that the
long chain maximizes the expected sales among
all flexibility designs where each node is incident to
exactly two arcs. Wang and Zhang (2015) obtain a
bound on the asymptotic performance of the long
chain that only depends on the mean and variance of
the demand distribution. Recently, Désir et al. (2016)
prove the optimality of the long chain among all
connected structures with the same number of arcs.
Research has also been conducted on the long chain
using a graph expander. Chou et al. (2011) prove that
there exists a sparse graph that can achieve (1 − ε) of
the sales of a fully flexible system in the worst-case
demand scenario. Chen et al. (2015) use the proba-
bilistic expander, that is, the probability that an arc
linking a supply node and a demand node is pro-
portional to the product of their capacity and de-
mand, to derive a theoretical bound on the number of
arcs required to achieve (1 − ε) performance of full
flexibility in a symmetric system.

For unbalanced systems, that is, I $! J, for which the
long chain concept does not apply, analytical results
are difficult to obtain and much effort has been de-
voted to developing flexibility design indices to mea-
sure the effectiveness of different flexibility structures
starting from the JG index proposed by Jordan and
Graves (1995). Other indices include the structural
flexibility index in Iravani et al. (2005), the WS-APL
index in Iravani et al. (2007), the g-measure in Graves
and Tomlin (2003), the expansion index in Chou et al.
(2008), and the plant cover index in Simchi-Levi and
Wei (2015). Deng (2013) offers detailed descriptions
of these indices. Researchers have also studied un-
balanced systems from other perspectives. Shen and
Deng (2013) propose flexibility design guidelines for
symmetric demand via simulation and refined the
well-known chaining guidelines if each product is
manufactured at exactly two plants. Chen et al. (2019)
construct a simple flexibility design to fulfill (1 − ε)
fraction of the expected total demand with high prob-
ability with an average degree of O(ln(1/ε)) using a
probabilistic expander. Tanrisever et al. (2012) eval-
uate the effectiveness of different flexibility structures
by simulation under a feasible production scheduling
policy obtained using a sampling-based decomposi-
tion method in amultiperiod setting. Sheng et al. (2015)
consider capacity portfolio investment on flexible ma-
chines and show that, under certain conditions, the
optimal flexibility configuration consists only of dedi-
cated machines and machines capable of building only
two types of products. Simchi-Levi et al. (2018) study
the synergy between inventory and process flexibility
by considering a two-stage robust optimization prob-
lem, and use inventory allocation to mitigate demand
disruption in the first stage.
The work of Shi et al. (2019) is a recent break-

through in the theoretical study of unbalanced sys-
tems. They introduce the GCG to identify effective
flexibility structures. For production systems with a
positive GCG, which is essentially the complete re-
source pooling condition (CRP) in the queueing lit-
erature (see Mandelbaum and Stolyar 2004 and ref-
erences therein), they obtain an upper bound on the
long-run average backlog cost under a max-weight
fulfillment policy. The upper bound theoretically
demonstrates that, when capacity utilization is high,
the performance of a system with a positive GCG
is almost the same as that of a fully flexible structure.
For a given capacity profile, they also provide a simple
and efficient algorithm for finding such sparse struc-
tures and show that the requirement of I + J arcs is
tight in general for a given GCG system. In contrast,
we treat the inventory allocation as a decision and
show that I + J − 1 arcs is sufficient to achieve boun-
ded performance under our inventory allocation
policy that guarantees a positive GCG and dynamic
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fulfillment policy. Under a different setting, Ding et al.
(2018) show that the CRP provides a necessary and
sufficient condition for global first-come, first-served
in an overloaded bipartite queueing system without
customer reneging.

Asadpour et al. (2019) are the first to study the
performance of the long chain structure when demand
is fulfilled as it arrives or online. Under a so-called
ξ-Hall condition, they show bounded performance
of the long chain structure. In this paper, we extend
Asadpour et al. (2019) to general systems and show
bounded performance for systemswith a positive GCG
when demand is stationary. We also discuss condi-
tions under which bounded performance is guaranteed
when demand is time varying. Our bounds are tighter
than that in Asadpour et al. (2019) for the long chains.

Process flexibility has also been studied in various
areas, such as limited labor cross-training in call
centers (Wallace and Whitt 2005), resource portfolio
investment (Bassamboo et al. 2010), and queueing
networks (Gurumurthi and Benjaafar 2004, Tsitsiklis
and Xu 2017). Since flexibility has the potential to
increase shipping costs, research on how to develop
order fulfillment policies for online retailers in order
to minimize the total outbound shipping costs, for
example, Xu et al. (2009) and Jasin and Sinha (2015), is
also relevant.

Our work is also related to the broad class of dy-
namic resource allocation problems that require ir-
revocable decisions to be made as requests arrive se-
quentially. One approach to coping with sequential
arrivals is to utilize approximate dynamic program-
ming techniques, which produce tractable solutions
that often exhibit satisfactory performance in practice
(e.g., see Van Roy et al. 1997). On amore general level,
our problem can also be viewed as an online sto-
chastic matching and dynamic matching problem.
For more information on online stochastic matching,
see Feldman et al. (2009), Manshadi et al. (2012), and
Jaillet and Lu (2013). Bušić et al. (2013) and Bušić and
Meyn (2015) study dynamic matching problems where
there is exactly one request and one supply in each pe-
riod, and propose near-optimal policies to minimize
the infinite-horizon average-cost.

3. Model Formulation
We consider a systemwith I resources and a total of K
units of initial inventory for a whole selling season.
Requests for inventory arrive sequentially and need
to be fulfilled immediately. Requests that cannot be
fulfilled are lost. We do not take into account in-
ventory holding costs and discounting factors. Thus,
the interarrival times do not matter and we only need
to know the inventory profile after each arrival. Upon

arrival, each request is revealed to be of type j with
probability pj > 0 and there is a total of J request types.
We assume that I ≤ J as in most real applications. We
refer to p ! (p1, . . . , pJ) as the demandvector, and define
min≤ j≤ J{pj}≜ pmin and max≤ j≤ J{pj}≜ pmax. We assume
that I, J, andp are all given andfixed.We nowdescribe
the details of the system and operational decisions.
1. The flexibility structure. The flexibility structure

we are concerned with can be modeled as a bipartite
graphA ! ((,),E), where ( ! {1, 2, . . . , I} is the set of
resources, ) ! {1, 2, . . . , J} is the set of request types,
and E is the set of all the arcs in the network. An arc
(i, j) ∈ E if resource i is capable of fulfilling request
type j. A structure has full flexibility ifA is a complete
bipartite graph with I × J arcs, that is, each resource
can serve all request types, whereas the well-known
long chain structure where I ! J has I + J ! 2I arcs. Fig-
ure 1(a) provides a general network structure and
Figure 1(b) illustrates a long chain.
2. Inventory allocation. For a given total amount of

inventory K, let ciK, where ∑I
i!1 ci ! 1, be the amount

of inventory allocated to resource i. Although almost
all existing research on process flexibility assumes
that the initial inventory or capacity is given and not a
decision to be made, we treat inventory allocation c !
(c1, · · · , cI) as a decision. Note that, if ci ! 0, we can
simply remove resource i from the network. Thus,
when analyzing the performance of a system for a given
c, we always assume that mini∈({ci}≜ cmin > 0.
3. Dynamic fulfillment policy. Upon an arrival, the

resource needed to fulfill the request must be de-
termined based on the flexibility structure A and
system status. Since it is difficult to find an optimal
dynamic fulfillment policy, we will extend the greedy
fulfillment policy for the long chain proposed by
Asadpour et al. (2019) to unbalanced systems.
We will refer to (A , c,p) as a system and the goal is

to better match supply with demand, that is, satisfy
customer demand as much as possible. We take the
fully flexible version of a system as the benchmark

Figure 1. (Color online) Network Structures
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and consider the difference in the expected number
of lost sales between the two systems after all requests
have arrived as the performance measure. The perfor-
mance difference is most significant when the total
demand is exactly equal to the total capacity K, as
discussed in Asadpour et al. (2019). Thus we will
follow Asadpour et al. (2019) and focus on the impact
of limited flexibility by assuming that the total ex-
pected demand is K. In this case, there would not be
any lost sales under full flexibility no matter how
inventory is allocated and how requests are fulfilled,
and the performancemeasure reduces to the expected
number of lost sales of a given system (A , c,p).

4. The GCG Systems and a Dynamic
Fulfillment Policy

In this section, we will first define the GCG of a given
system (A , c,p) and show that a positive GCG is a
necessary condition for the expected number of lost
sales to remain bounded despite increases in K. We
then introduce the dynamic fulfillment policy.

4.1. Generalized Chaining Gap
Let )(i) ! {j : (i, j) ∈ E} and )((′) ! ∪i∈(′)(i) be the sets
of request types that can be fulfilled by resource i and
by a resource in (′ ⊆ (, respectively. Similarly, let
((j) ! {i : (i, j) ∈ E} and (()′) ! ∪j∈)′((j) be the sets of
resources that can fulfill type j requests and a request
in )′ ⊆ ), respectively.

For a subset of requests )′, η)′ !∑
i∈(()′) ci−

∑
j∈)′ pj

represents the system’s ability to fulfill )′. In Fig-
ure 1(a), request types in )′ ! {1, 2} can only be ful-
filled by resources in(()′) ! {1, 2} and η)

′ ! (c1 + c2)−
(p1 + p2). The GCG is then defined as

η≜ min
)′=), )′ $!∅

η)
′{ }

(1)

measuring the ability of the system to fulfill all subsets
of requests. Our GCG is a special case of that con-
sidered by Shi et al. (2019) when the total demand is
equal to the total capacity K. A system (A , c,p)with a
positive GCG is referred to as a GCG system in which
there is slack between the total expected demand from
request types in )′ ⊂ ) and the total inventory that
can be used to fulfill the requests in)′. In Figure 1(a), a
positive GCG implies that c1 + c2 > p1 + p2.

It can be easily shown that a GCG system (A , c,p)
described previously has the following important
properties:

• The GCG η ≤ pmin since η ≤∑
i∈(()′) ci −

∑
j∈)′ pj ≤

1− (1− pj) ! pj when )′ ! ) \ j for any j ∈ ).
• The network A is connected and has at least I +

J − 1 arcs. The long chain in Asadpour et al. (2019)
where I ! J and c ! p is a GCG system with I + J arcs.

• For any given connected network structure A
and demand vector p, there always exists an inven-
tory allocation c such that (A , c,p) is a GCG net-
work. For instance, we have a GCG network if we
allocate pj amount of inventory evenly to all the re-
sources in ((j) for all j ∈ ).
Lastly, we show that a positive GCG is a necessary

condition for the expected number of lost sales to not
diverge with the market size K.

Lemma1. If a system (A , c,p) has a nonpositive GCG, that
is, η ≤ 0, then the expected number of lost sales diverges with
K under any feasible fulfillment policy.

4.2. The Load Deviation Fulfillment Policy for a GCG
System (A ,c, p)

The fulfillment decision when a request arrives clearly
requires consideration of not only the network struc-
ture A , the capacity vector c, and the demand vector
p, but also the system status upon arrival, for ex-
ample, the current inventory at all resources and the
number of remaining arrivals. Thus, it is difficult to
optimize the fulfillment decision. Let us first exam-
ine two simple fulfillment policies.
1. A priority policy: Each type of request has a

primary resource and is fulfilled by another resource
only if the primary resource is out of stock. Such a
policy may lead to lost sales that increase in K, as
demonstrated in the following example. Consider the
system in Figure 2, where resource j is the primary
resource for request type j and sample paths of the
demand where there is an roughly equal number of
requests (by roughly we mean that the difference is
no more than O(

̅̅̅
K

√
) from each type after the first K/2

arrivals). Then, resource 1 will have little or no in-
ventory, and resources 2 and 3 will have roughly K/6
and K/3 inventory, respectively, after the first K/2
arrivals. Since resource 2 is the only resource for re-
quest type 1 as well as the primary resource for re-
quest type 2 for the remaining K/2 arrivals, the ex-
pected number of lost sales will be in the order of K.
Since the probability that demand takes such sample

Figure 2. A Simple Example with I ! J ! 3
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paths does not vanish as K → ∞ by the central limit
theorem, the expected total number of lost sales is at
least in the order of K.

2. A random fulfillment policy: Requests of type j
are randomly fulfilled by resources in ((j) with
positive remaining inventory according to a certain
distribution, for example, with equal probability. That
is, a type j request is first randomly assigned to a
resource in ((j). It will be fulfilled by this resource if it
has positive inventory or by another resource in ((j)
otherwise. For the example in Figure 2, if a type 2
request is assigned to resource 3 (which occurs with
probability 1/2), it will be fulfilled by resource 2 (if
possible) if resource 3 is out of stock. Let Yk ! 1 if the
kth request is assigned to resource 3 and Yk ! 0 other-
wise. Then, Yk is a Bernoulli random variable withmean
1/2.When resource 3 runs out of stock, which happens
after k′ ! min k :

∑k
i!1 Yi ≥ K/2

{ }
arrivals, the number

of remaining requests of type 3 follows a binomial
distributionwith ( K − k′[ ]+, 1/3) andwill be lost. Since

E K − k′[ ]+ !
∫ K

0
P(K − k′ ≥ k)dk !

∫ K

0
P(k′ ≤ k)dk

! K −
∫ K

0
P(k′ ≥ k)dk

! K −
∑K

k!1
P(Y1 + . . . + Yk ≤ K/2)

≥
̅̅̅
K

√
−

∑K

k!K−
̅̅
K

√
P(Y1 + . . . + Yk ≤ K/2)

≥
̅̅̅
K

√
−

̅̅̅
K

√
P(Y1 + . . . + YK−

̅̅
K

√ ≤ K/2)
∼

̅̅̅
K

√
(1 − P(Z ≤ 1)),

where ∼ follows from the central limit theorem and Z
is the standard normal random variable. E K − k′[ ]+
and hence the total expected number of lost sales are
at least in the order of

̅̅̅
K

√
.

Thus,wewill generalize themodified greedy policy
in Asadpour et al. (2019), which was designed for the
long chains where I ! J and each request can be ful-
filled by exactly two resources. Let Li(k)be the number
of requests that have been assigned (which we will
explain later) to resource i, referred to as the load of
resource i, and Xi(k) ! Li(k) − cik be its deviation from
the average load of resource i after k arrivals. Let
Xi(0) ! 0 for all i. A positive (negative) load deviation
indicates a higher (lower) ideal rate of demand for
inventory at a resource. As the (k + 1)th request, for
example, of type j, arrives, it is assigned to a resource
in ((j) that has the smallest load deviation regardless
of its inventory status, denoted by i∗(j), and the load at
this resource is updated as Li∗(j)(k + 1) ! Li∗(j)(k) + 1
while Li(k + 1) ! Li(k) for i $! i∗(j). If there are multiple
resources with the same smallest load deviation, we

simply pick one randomly. Thus, the load deviation
evolves as

Xi(k + 1) ! Li(k + 1) − ci(k + 1)

! Xi(k) − ci +
1, if i ! i∗(j),
0, otherwise,

{ (2)

and, for any k ≤ K, ∑I
i!1 Li(k) ! k and ∑I

i!1 Xi(k) ! 0.
Note that resource i∗(j) may not have inventory, in
which case, the request will be fulfilled by a resource
in ((j) in an arbitrary manner, or lost if none of the
resources in ((j) has inventory.
We can remove resources from the system one by

one over time as they run out of inventory and the
network structure changes in k. However, doing so
would greatly complicate the presentation of the anal-
ysis. Thus, for the ease of presentation, we will keep
all resources in the network at all times and allow the
assignment of requests to resources with zero inven-
tory, that is, Li(k) ≥ ciK, even though these requests
would most likely be fulfilled by another resource with
inventory. Thus, Li(k) can be understood as the number
of requests that would have been fulfilled by resource
i after k arrivals had there been enough inventory.
We would like to point out that a fulfillment policy

based on the relative magnitude of the load devia-
tion Xi(k)/ci, i ! 1, . . . , I, also works well and bounded
performance is guaranteed by the same bound in the
next section for GCG systems. As a matter of fact, nu-
merical examples indicate that this weighted load de-
viation policy may perform even better than the load
deviation policy.

5. Bounded Performance of GCG Systems
In this section, we establish an upper bound on the
expected number of lost sales for any GCG system
(A , c,p) if requests are fulfilled according to the load
deviation fulfillment policy. This bound is indepen-
dent of the market size K, implying that a positive
GCG is not only necessary but also sufficient to guar-
antee bounded performance. By bounded perfor-
mance we mean that the expected number of lost sales
does not diverge with the market size K.

Theorem 1. The expected number of lost sales of a GCG
system are bounded from above by ln 64 ·max{ 1

cmin
, Iη}, in-

dependent of the market size K.
The upper bound only depends on I, cmin, and the

GCG η. When cmin < η/I, which occurs when at least
one resource is allocated relatively low inventory
compared with others, the upper bound is inversely
proportional to cmin but independent of other sys-
tem parameters. Otherwise, the upper bound is in-
creasing in the number of resources I and decreas-
ing in the GCG η. For the long chain with c ! p in
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Asadpour et al. (2019), η ! pmin ! cmin and our bound
reduces to ln 64 · I/η, which is tighter than 2I/η ln(1+
18I2/η2) provided by Asadpour et al. (2019).

Tightness of the upper bound. Note that the upper
bound is in the order of η−1 as η → 0. Consider the
example in Figure 3, where c ! (1/2, 1/2) and p ! ((1 −
ε)/2, ε, (1 − ε)/2) for small ε > 0, so η ! ε/2. Since the
total number of type 1 requests, denoted as $1, fol-
lows a binomial distribution with (K, p1), the expected
total number of lost sales of request type 1 alone is at
least

E[$1 − Kc1]+ ! E[$1 − K(p1 + ε/2)]+

!
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Kp1(1 − p1)

√
E

$1 − Kp1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Kp1(1 − p1)

√ −
̅̅̅
K

√
ε

2
̅̅̅̅̅̅̅̅̅̅̅̅̅
p1(1 − p1)

√
[ ]+

(3)
under any feasible fulfillment policy. Note that $1−Kp1̅̅̅̅̅̅̅̅̅̅

Kp1(1−p1)
√

converges to the standard normal as K → ∞, and p1 →
1/2 as ε → 0. When ε → 0, for K ! C/ε2 where C is a
constant so that

̅̅̅
K

√
ε is a constant, the right-hand side

of Equation (3) is at least in the order of ε−1 or η−1 and
our upper bound is indeed tight.

5.1. Overview of the Proof
At a high level, we follow Asadpour et al. (2019) by
first establishing a bound of the expected number
of lost sales in Lemma 2 and then trying to bound the
expectation of thepotential function,which is achieved
by showing that the potential function exhibits a
contraction property.

Lemma 2. The expected total number of lost sales under
the Load Deviation Fulfillment Policy (LDFP) is bounded
from above by

E
∑I

i!1
max Xi(K), 0{ }

[ ]
≤ IC ln

1
I
E Φ X(K)( )[ ] + 1

( )
,

where Φ X(k)( ) ! ∑I
i!1 e

Xi(k)/C is a potential function.

We say that the potential function exhibits a con-
traction property if

E Φ X(k + 1)( ) | X(k)[ ] ≤ (1 − a)Φ X(k)( ) + b,
for some 0 < a < 1, b > 0,

(4)

which immediately implies that E Φ X(K)( )[ ] ≤ b/a by
induction under the initial conditionE Φ X(0)( )[ ] ≤ b/a.
The approach used by Asadpour et al. (2019)

to establish Equation (4) for the long chains relies
heavily on their symmetric network structure and
does not apply to general network structures. Thus,
we need a completely new approach to establishing
Equation (4) for general network structures. Since
Equation (4) is equivalent to

E Φ X(k + 1)( ) | X(k)[ ] −Φ(X(k)) ≤ −aΦ(X(k)) + b, (5)

we first obtain the following property of the potential
function through the Taylor expansion of the left-
hand side of Equation (5).

Lemma 3. For any C > 1,

E Φ X(k + 1)( ) | X(k)[ ] −Φ X(k)( )

≤ 2
C2

∑I

i!1
cieXi(k)/C − 1

C
+ 1
C2

( )
Γ, (6)

where

Γ !
∑I

i!1
cieXi(k)/C −

∑J

j!1
pjeXi∗(j)(k)/C

( )
(7)

and i∗(j) is the resource assigned to the (k + 1)th arrival if it
is of type j.
With Lemma 3, establishing Equation (5) becomes

finding an upper bound of the right-hand side of
Equation (6), that is, a desired lower bound of Γ and an
upper bound of ∑I

i!1 cie
Xi(k)/C for any C > 1. When C is

relatively large, the second termof the right-hand side
of Equation (6) dominates the first term and we focus
on finding a desired lower bound of Γ, that is,

Γ ≥ a′Φ(X(k)) + b′ (8)
for some a′ > 0.
Note that Γ is a summation of terms associated with

all the resources and demand locations. Recall that i∗(j)
is the resource with the lowest load deviation in ((j);
thus, if we define 6c ! i ∈ ( : Xi(k) ! Xmin(k)

{ }
where

Xmin(k) denotes the value of the lowest load deviation
among all resources, then Xi(k) ! Xi∗(j)(k) ! Xmin(k) for
all i ∈ 6c and j ∈ )(6c). For the terms in Γ associated

Figure 3. Illustration of the Tightness of the Upper Bound
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with the set of resources 6c and the set of demand
locations )(6c), the following holds:

∑

i∈6c
cieXi(k)/C −

∑

j∈)(6c)
pjeXi∗ (j)(k)/C

! eXmin(k)/C ∑

i∈6c
ci −

∑

j∈)(6c)
pj

( )
.

Thus, we only need to bound the terms associated
with the rest of the resources 6 ! ( \ 6c and demand
locations 7 ! ) \ )(6c); that is,

Γ(6,7) !
∑

i∈6
cieXi(k)/C −

∑

j∈7
pjeXi∗ (j)(k)/C.

For an illustration of the network partition, see Figure 4.
To find a lower bound of Γ(6,7), note that the GCG

of the subnetwork involving 6 and 7 is at least η by
definition. That is, there is at least η amount of slack
inventory to fulfill requests in 7. We can then apply
the max-flow min-cut theorem to establish a desired
lower bound in the form of Equation (8). In the same
process, we can also obtain an upper bound of∑I

i!1 cie
Xi(k)/C. With these bounds, we can derive the

contraction property of the potential function and
obtain the desired performance bound by an appro-
priate choice of C. A detailed proof of Theorem 1 is in
the e-companion.

It is worth mentioning that even though we con-
sider general network structures, our proof involves
fewer steps in the bounding process than that in
Asadpour et al. (2019). Although they partitioned the
resources with positive load deviations into multiple

subgroups and then established a bound for the terms
associated with each of the groups, we partition the
whole network (including the resources and requests)
into two subnetworks and only need to establish a
bound for the terms in one subnetwork. In addition
to fewer steps in the bounding process (each step of
bounding loosens the bounds), they relied on local
minimum and maximum load deviations in each
subgroup, while we applied the max-flow min-cut
theorem to the subnetwork involving 6 and 7. We
attribute these differences to our tighter bounds.

6. Inventory Allocation and
Network Design

In this section, we consider the decisions on inventory
allocation c for a given connected network structure
A and demand vector p in Section 6.1 and network
structure in Section 6.2 with the goal of minimizing
the expected number of lost sales. Since the objec-
tive function is elusive due to the complexity of the
problem, we need to find a proxy for it first and will
seek inspiration from the upper bound in Section 5,
ln 64 ·max{ 1

cmin
, Iη}.

Since η is not amonotone function of cmin, the bound
may increase or decrease in cmin. For a given net-
work structure, suppose that cmin is low, for example,
cmin < η

2I. We canmove some inventory from resources
with higher inventory to raise cmin to c′min ! η

2Iwith the
corresponding GCG, η′. It is easy to show that η′ ≥ η
or η

2 ≤ η′ < η. Thus, the bound under the new inven-
tory allocation, ln 64 ·max{ 1

c′min
, I
η′}, reduces to ln 64 ·

I
η′ ≤ ln 64 · 2Iη < ln 64 ·max{ 1

cmin
, Iη}, the bound under in-

ventory allocation c. On the other hand, the bound is
obviously in the order of I

η for inventory allocations
with cmin ≥ η

2I. Given the tightness of the performance
bound established after introducing Theorem 1, a
higher η is likely to indicate better performance, an
insight consistent with that from Shi et al. (2019) for
production systems and confirmed by our numerical
study in Section 8.1. Thus, we will use η as a proxy for
the objective function when making the inventory
allocation and network structure decisions.

6.1. Inventory Allocation Decision
In this section, we examine the inventory allocation
decision c that maximizes the GCG for any connected
network A ! ((,),E) and demand vector p. We first
present a lower bound of the highest GCG possible,
denoted as η∗.

Lemma 4. For any given connected network A and de-
mand vector p, η∗ ≥ minj∈)

pj
|((j)|.

Since a connected network requires at least I + J − 1
arcs, wewill consider the inventory allocation decisions

Figure 4. (Color online) Illustration of the Sets 6,6c,)(6c)
and 7
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for networks with at least I + J − 1 arcs. Before pro-
ceeding, we would like to exclude a trivial case where a
resource is dedicated to a single request type in a GCG
system. If resource i is dedicated to request type j, that
is, |)(i)| ! 1, request type j must have access to at least
one more resource as the network would be discon-
nected otherwise. Since inventory at resource i has little
flexibility, one should not allocate any to it absent of
capacity or geographical constraints and the problem
reduces to onewith I − 1 resources.Otherwise,we simply
allocate the minimum required inventory to resource i
and the problem reduces to allocating the rest of the
inventory 1 − ci to I − 1 resources for the remaining
demand in the system. Thus, we only need to consider
GCG networks where |)(i)| ≥ 2 for all i ∈ (; that is, each
resource must serve at least two types of requests. This
is certainly true in most real applications where I 2 J.

6.1.1. Networks with I + J − 1 and I + J Arcs. Let d(j)
denote the number of connected subnetworks after
request type j and the arcs associated with it are re-
moved. Then, d(j) ! |((j)| for networks with I + J − 1
arcs, and d(j) ! |((j)| − 1 or |((j)| for networks with I +
J arcs. This is because, with only I + J − 1 arcs, a
network does not contain a cycle and removing re-
quest type j divides the network into exactly |((j)|
connected, nonoverlapping subnetworks. Adding one
more arc increases the connectivity of a network and
hence may reduce d(j), by at most 1.

Proposition 1. For a connected network structure A !
((,),E) and demand vector p, η∗ ! minj∈)

pj
d(j) is achieved

under the following inventory allocations.
• If |E| ! I + J − 1, allocate pj amount of inventory

evenly to all the resources in ((j).
• If |E| ! I + J, allocate pj

d(j) amount of inventory to each
of the d(j) subnetworks and then allocate pj

d(j) evenly to the
resources in each subnetwork that belong to ((j).

For networks with I + J − 1 arcs, Proposition 1 re-
veals a very simple inventory allocation that maxi-
mizes the GCG and η∗ can be any value in [pmin

I , pmin].
For example, η∗ ! pmin

I if J − 1 types of requests each
have a single supplier and one request type with the
lowest demand enjoys full supplier flexibility. On the
other hand, η∗ ! pmin if pmax ≥ Ipmin, and a request type
with pmax is linked to all the resources (with I arcs) and
the rest of the request types are only linked to a single
resource (with J − 1 arcs).

Proposition 1 also implies that adding one arc to an
existing connected network with I + J − 1 arcs can
potentially decrease d(j) and achieve a higher GCG.
For example, a long chain with pj ! 1

J for all j ∈ ) can
achieve the highest GCG η∗ ! 1

J ! pmin. Removing
any arc does not affect the connectivity of the network,

but it reduces the GCG by a half to η∗ ! minj∈)
1/J
|((j)| ≤ 1

2J.
This further confirms theeffectiveness of the longchains.

6.1.2. Beyond I + J Arcs. With more arcs, a network
may still be connected after removing a request type.
Thus, we need to extend d(j) and let d()′) be the
number of connected subnetworks after removing
)′ ⊂ ) and all the arcs associated with it. The higher
the d()′), the weaker )′ is connected to the rest of the
network. Let )∗ ! argmin)′⊂)

∑
j∈)′ pj
d()′) (choose one ar-

bitrarily if multiple minimizers exist). In all the
subnetworks after removing )∗, we add a single re-

quest node with demand
∑

j∈)∗ pj
d()∗) so that the total de-

mand from )∗ is evenly allocated to the d()∗) sub-
networks. Each link from )∗ to a resource in (()∗) in
the original network is represented by a link from the
new request node in the same subnetwork to it. The
process can be viewed as if we group the request types in
)∗ into a single request type with demand∑

j∈)∗ pj. We

then split it into d()∗) requests, eachwithdemand
∑

j∈)∗ pj
d()∗)

and in a unique subnetwork, while maintaining all the
links from (()∗) to )∗ in their respective subnetworks.
As an illustration, consider the example in Figure 5(a),
where )∗ ! {3} and without the dashed arc. Then, re-
moving request type 3 and arcs associated with it will
break the network into d()∗) ! 2. We split request
type 3 into two, each with demand p3/2 in its asso-
ciated subnetwork as in Figure 5(b).
Of course, with a well-connected network, some of

the d()∗) subnetworks may still be well connected or
even have full flexibility. In that case, we suggest
following the same procedure in those subnetworks

Figure 5. A Network Structure with I + J + 1 (Solid) Arcs
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until all their subnetworks are of the structures in
Section 6.1.1 when making the inventory allocation
decision, althoughwe are not able to prove that it will
maximize the GCG.

Proposition 2. If all the d()∗) subnetworks are of the
structures in Section 6.1.1, η∗ !

∑
j∈)∗ pj

d()∗) if inventory is allo-
cated according to their respected rules for the subnetworks.

6.2. Network Structure Design
In Section 6.1, we provided the maximum achievable
GCG, η∗, for given p and A ! ((,),E), and the in-
ventory allocation that achieves η∗. We now deter-
mine the set E that maximizes η∗ for networks with
I + J − 1 arcs in Section 6.2.1, I + J arcs in Section 6.2.2
and more than I + J arcs in Section 6.2.3.

Since we do not explicitly consider the storage ca-
pacity at the resources or geographical constraints, a
network with a single resource and a total of J arcs
would be sufficient to achieve the best performance,
which is obviously not practical. In real networks, each
distribution center is responsible for multiple demand
locations due to their proximity to it, and each demand
location is covered by at least one distribution center.
Thus, to avoid the complications of explicit capacity
and geographical constraints, we start with networks
with J arcs that link each request type to a resource
and each resource is linked to at least one request, as
illustrated in Figure 6(a). That is, design of a network
structure starts with an existing network with I groups
of request types. The decision is to determine the rest
of the arcs that maximize η∗ under the inventory allo-
cations described in Section 6.1.

6.2.1. Networks with I + J − 1 Arcs. To construct net-
works with I + J − 1 arcs that maximize η∗, we first

find the optimal number of suppliers for each request
type |(∗(j)|, j ∈ ). Insights from Section 6.1.1 suggest
that request types with higher demand should be
given higher supplier flexibility, that is, access to more
resources. That is, suppose that p1 ≤ · · · ≤ pJ without
loss of generality. Then, |(∗(j)| ≥ 1 should be nonde-
creasing in j and can be obtained using Algorithm 1.
By Proposition 3, any connected network with |((j)| !
|(∗(j)|, j ∈ ), maximizes η∗. Note that for given |((j)| !
|(∗(j)|, j ∈ ), and the existing J arcs, there may be
multiple ways to form a network with I + J − 1 arcs,
which provides flexibility and opportunities to take
capacity constraints into consideration in designing a
network in practice.

Proposition 3. For given I, J, and demand vector p, any
connected networkwith |(∗(j)|, j ∈ ), obtained by Algorithm 1
achieves the same and highest possible GCG with I + J − 1
arcs, if pj amount of inventory is evenly allocated to the
resources in (∗(j).

Algorithm 1. Network Design with I + J − 1 Arcs
1. Initialization: Find a solution 1 ! |(∗(1)| ≤ |(∗(2)|

≤ · · · ≤ |(∗(J)| such that ∑J
j!1 |(∗(j)| ! I + J − 1.

2. while 1 do
3. Compute pj

|(∗(j)| and
pj

|(∗(j)|+1 for j ∈ {1, . . . , J}. Let j
be the smallest index such that pj

|(∗(j)| isminimal
and j̄ the largest index such that pj

|(∗(j)|+1 is
maximal. Let η∗ ! pj

|(∗(j)|.
4. if |(∗(j)| ! 1 then break;
5. end if
6. if η∗ <

pj̄
|(∗(j̄)|+1 then,

7. Update |(∗(j)| ← |(∗(j)| − 1,
|(∗(j̄)| ← |(∗(j̄)| + 1;

8. else break;
9. end if

10. end while
11. Output: {|(∗(1)|, · · · , |(∗(J)|} and η∗.

6.2.2. Networks with I + J Arcs. Note that, with only
I + J − 1 arcs, the highest GCG that can be achieved is
likely to be below pmin. If we have the freedom to
design a network structure with I + J arcs, we can
form a GLC by linking the I resources and I groups of
request types with I arcs through a request node in
each request group (with the highest demand if pos-
sible), as illustrated in Figure 6(b). Since d(j) ! 1 for all
j ∈ ), η∗ ! pmin by Proposition 1.
We note that Shi et al. (2019) provide an algorithm

for designing a network with I + J arcs for given (p, c)
that achieves a GCG above a threshold, while we treat
the inventory vector c as a decision and design net-
works that achieve the highest GCG, that is, pmin.
Indeed, with the flexibility in inventory allocation,
one hasmore freedom in selecting a network structure

Figure 6. (Color online) Illustration of an Existing Network
and a Generalized Long Chain
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that not only achieves the highest GCG, pmin, but also
takes other constraints (e.g., storage capacity and ship-
ping distance) into consideration.

Proposition 1 also provides two insights if we have
the option to add an additional arc to an existing
connected network with I + J − 1 arcs. First, the re-
quest typewith the lowest pj

|((j)| should be in the cycle as
d(j) < |((j)| for all request type j in the cycle. Second, an
additional arc should always be added to form as
large a cycle as possible. This insight is consistentwith
the observations made by Jordan and Graves (1995,
p. 586), who state that as one of the flexibility prin-
cipals, “the right way to add flexibility is to create
fewer, longer plant-product chains.”

6.2.3. Networks Beyond I + J Arcs. Since I + J arcs are
sufficient to design a network that achieves themaximum
GCG possible, pmin, adding one more arc will not
improve the GCG. However, if we have the option to
add an additional arc to an existing network, Propo-
sition 2 suggests that it should be added to strengthen
the weakest link, that is, to reduce d()∗). In the example
in Figure 5, we can add the dashed link to reduce d({3})
from 2 to 1.

7. Extensions
7.1. Random Batch Arrivals
So far we have assumed that each arrival only needs
one unit of the product. In this section, we allow a
randombatch size of $j for request type j, inwhich case
the total demand may not be equal to the total initial
inventory K and the number of lost sales under full
flexibility may not be zero. Suppose that the batch
sizes are independent and identically distributed
across different arrivals. Then, p′j ! pjE($j)/D repre-
sents the expected demand rate for request type j,
where D ! ∑J

r!1 prE($r) is the expected batch size for
each arrival. We say that the previous system has a
positive GCG denoted as η′ if the system defined in
our main model, (A , c,p′), is a GCG system.

With batch arrivals, we need to modify the load
deviation policy. Let $(k) be the batch size of the kth
arrival, Li(k) be the number of units that have been
assigned to resource i, the load of resource i, and
Xi(k) ! Li(k) − ci

∑k
s!1 $(s) be the load deviation of re-

source i after the kth arrival. As the (k + 1)th request,
say of type j, arrives, it is assigned to a resource in ((j)
that has the smallest load deviation regardless of its
inventory status, denoted by i∗(j), and the load at this
resource is updated as Li∗(j)(k + 1) ! Li∗(j)(k) + $(k + 1)
while Li(k + 1) ! Li(k) for i $! i∗(j). We recognize that an
ordermay be fulfilled bymultiple resources in reality.
For simplicity, we will assume that each order can
only be fulfilled by inventory at one resource and

may be partially fulfilled due to insufficient inventory
at the resource. Next we establish a similar performance
bound as in Theorem 1 under mild conditions.

Theorem 2. Suppose that the random batch sizes {$j : j ∈ )}
have finite support, that is, $j ≤ $̄ for all j ∈ ). The ex-
pected optimality gap between a GCG system and the sys-
tem with full flexibility is bounded from above by ln 64 ·

max{$̄,
maxj∈)

E($2j )
E($j)

min{cmin,η′/I}}, independent of the total initial inven-
tory K.
Here, maxj∈)

E($2j )
E($j) measures the variability of the

batch sizes. The bound reduces to that in Theorem 1
when $j ≡ 1.

7.2. Time-Varying Demand Rates
In this section, we establish bounded performance to
the casewhere the demand vector is time varying, that
is, the demand vector of the kth arrival is pk ! {pjk, j !
1, . . . , J} with the corresponding GCG of the system
(A , c,pk) as ηk and θk ! min{ηk, Icmin}. We say that the
system with time-varying demand vector {pk, k !
1, . . .K} is a GCG system if ηk > 0 for all 1 ≤ k ≤ K.
Next, we develop an upper bound of the expected
number of lost sales for any GCG system, and then
show bounded performance if ηk is not too small as
k becomes large.

Theorem 3. Let θ̄k !
∑K

r!K−k+1 θr
k for 1 ≤ k ≤ K. For any

given K, the expected number of lost sales of a GCG system is
bounded from above by I ln 64

min1≤k≤K{θ̄k}.

Here, θ̄k is the average of θ′
js for the last k arrivals. For

a special case of pk → p, the upper bound in Theorem 3
converges to ln 64 ·max{ 1

cmin
, Iη} when K → ∞, the up-

per bound in Theorem 1, and bounded performance is
guaranteed. Although the bound is a function of K in
general, as K becomes large, the impact of earlier ar-
rivals on the performance should diminish. Bounded
performance can be achieved as long as ηk is bounded
away from zero for k large enough. This condition is
similar to the ξ-Hall condition in Asadpour et al. (2019)
that guarantees bounded performance when demand
is time varying. When applied to long chains under the
ξ-Hall condition, the upper bound in Theorem 3 re-
duces to ln 64 ·max{ 1

cmin
, Iξ}, tighter than the upper

bound 2I/ξ ln(1 + 18I2/ξ2) in Asadpour et al. (2018).

8. Numerical Studies
We perform numerical experiments to verify the ef-
fectiveness of the GCG as a proxy for system perfor-
mance under different network structures in Sec-
tion 8.1, and test some design principles obtained in
Section 6.2 for networks in Section 8.2. We show that
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networks with I + J − 1 and I + J arcs can achieve very
good performance.

8.1. The Effectiveness of the GCG as a Proxy for
Performance Measure

For a given network structure, different inventory al-
location leads to different GCG. Thus, we first consider
four different structures, (a) and (b) in Figure 7 with
I + J − 1 arcs, and twoGLCswith I ! 5, 10 and J ! 10 as
in Figure 6(b), where there are I + J arcs and each
request group has exactly J/I request types.We let pj !
1/J and find the inventory allocation that achieves the
highest GCG η∗ under each structure. We then move
different amounts of inventory from the resourcewith
the tightest supply to another resource to create
different GCGs as η∗, η∗/2, η∗/4, and η∗/8. As one can
see in Figure 8, the expected number of lost sales can
increase much faster in K when the GCG is extremely
small, while they seem to converge rather quickly or
stay flat when the GCG is large. Thus, the GCG is
indeed a good indicator of the system performance.

Since network structure also affects the GCG, we
now compare the performance of some well-known
network structures with I + J − 1 arcs that maximize
theGCG. For J ! I + 1 and I ! 5, 10, 15, 20, we consider
(1) network structures formed according to the out-
puts from Algorithm 1 that maximize the GCG, and
(2) open chains formed by removing arc (1, I) from
GLCs. If the demand for all request types are fairly
balanced, then the open chains will perform well
under the inventory allocation in Proposition 1. Sowe
set pj ! 1/(2I) for j ! 1, · · · , J − 1 and pJ ! 1/2. We

allocate pj amount of inventory evenly to all the re-
sources in ((j) under all network structures and re-
port their performance for different K in Figure 9.
As we can see, all the GCG networks with I + J − 1
arcs perform quite well. Thus, if it is too expensive
to add an arc, a GCG network with the minimum
number of arcs can be an excellent option. If one is
allowed to redesign a network structure with I + J − 1
arcs rather than removing one arc from a long chain,
one may be able to achieve much better perfor-
mance with the help of Algorithm 1, especially facing
asymmetric demand.

8.2. The Impact of Chaining
Note that there is no cycle in any connected network
with I + J − 1 arcs, whereas there is exactly one cycle in
networkswith I + J arcs.Weconjectured inSection 6.2.2
using the GCG as an indication of system performance
that, if we are allowed to add one more arc to a con-
nected network with I + J − 1 arcs, we should do so to
form a large cycle rather than a small one. To confirm
this, we consider a network with I + J − 1 arcs obtained
by removing arc (1, J) from the corresponding GLC
where the J request types are divided evenly into I
groups, referred to as an open chain. We then compare
its performance with that of networks with one more
arc and hence cycles of different sizes, referred to as
short chains [with arc (1, 40/I)], middle chains [with
arc (1, 10)], and long chains [with arc (1, 20)], as shown
by the dotted arcs in Figure 10 where J ! 20.
We consider I ! 5, 10. For I ! 5, there are four re-

quests in each group, and we let pj ! 1
25 for all j except

Figure 7. Network Structures with I + J − 1 Arcs
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the last request type in each group and p4i ! 2
25, i !

1, . . . , 5. For I ! 10, there are only two request types
in each group and we let p2i−1 ! 1

30 and p2i ! 1
15 for

i ! 1, . . . , 10. We allocate the inventory so that the
GCGs are maximized. Figure 11 provides the ex-
pected number of lost sales under these network
structures for K ∈ [1,000, 10,000] and the performance
increases in the size of the cycle in general.

9. A Numerical Study on Amazon China
Both our theoretical bounds and numerical results
demonstrate that GCG networks perform very well
compared with fully flexible systems with respect to
the expected number of lost sales. However, GCG net-
works may fulfill an order through a farther resource
when the closest one has a large load deviation, which
may lead to higher shipping costs. In this section, we

Figure 8. Expected Number of Lost Sales as Functions of the GCG

Figure 9. Comparisons Between Open Chains and Structures Generated by Algorithm 1
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examine both the expected number of lost sales and
outbound shipping costs under several flexible GCG
networks using real data.

Amazon China has a total of 12 fulfillment centers in
10 regions across China. For simplicity, we combine
the centers in the same region into one, which gives I !
10 in the network. We select a total of 44 main cities
with a population above three million as the demand
centers, that is, J ! 44, and normalize the total retail
sales of consumer goods in those cities in 2015 from the
National Bureau of Statistics of China2 to form the nom-
inal demand vector p. The 10 regions, the fulfillment
centers in each region, and the cities in each region are
shown on the map in Figure 12. Table 1 provides the
names of the fulfillment centers, the demand centers

in each region, and the demand vector. The number of
demand centers in a region ranges from two to nine,
and each demand center has access to the fulfillment
center in the same region, which requires J ! 44 arcs.

9.1. Performance of Network Structures with
Different Flexibilities

We first construct five different network structures
with increasing numbers of arcs, as illustrated in Fig-
ure 13(a). Although structures 2–4 are connected net-
works, structures 0 and 1 are not.
• Structure 0: Each fulfillment center only serves

its own region and there is a total of J ! 44 arcs (arcs
with no number). This is similar to the current practice
of Amazon China, where each region has its primary
fulfillment center.
• Structure 1: Add I − 2 arcs (marked as 1) to

structure 0 to form two connected networks, the south
(regions 1–3) and north (regions 4–10). There is a total
of I + J − 2 arcs.
• Structure 2: Add 1 arc (marked as 2) linking

Beijing (region 3) and Xuzhou (in region 5) to structure 1
to form a connected network with I + J − 1 arcs.
• Structure 3: Add 1 arc (marked as 3) linking Xian

(region 10) and Jinan (in region 5) with a total of I + J
arcs in the network. There is a cycle connecting all the
fulfillment centers south of Beijing.
• Structure 4: Add 1 arc (marked as 4) linking

Shanghai (region 5) and Qingdao (in region 3) with a
total of I + J + 1 arcs in the network.
For all the structures, we allocate pjK amount of in-

ventory evenly to the resources in((j) for all j ! 1, · · · , 44
and fulfill each arriving request following the load
deviation policy. Since structures 0 and 1 are not con-
nected, the systems are not GCG systems, whereas the
systems under structures 2–4 are GCG ones. The ex-
pected number of lost sales and total shipping distance
under the five structures for various K are presented
in Figure 14. As we add more arcs, the networks
becomemore flexible and the expected number of lost

Figure 11. Performance for Different Cycle Sizes with J ! 20

Figure 10. (Color online) Network Structures Used in
Section 8.2
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sales decreases rapidly at the (albeit small) expense of
shipping distance. The GCG systems work very well
and structure 4 represents only a slight improvement
over structure 3 with one less arc. Although there is
a significant increase in performance when cross-
region fulfillments are allowed, the total shipping
distance does not increase further asmoreflexibility is
introduced. This suggests that a network with I + J arcs
provides enough flexibility to accommodate cross-
region shipments.

9.2. Comparisons Between Our Policy and a Myopic
Policy Under Different Network Structures

We introduce a myopic order fulfillment and inven-
tory allocation policy that is similar toAmazonChina’s
practice and also mentioned as a common practice in
industry by Acimovic and Graves (2014). Under the
myopic policy, one allocates to each resource the
amount of inventory equal to the average demand of
the region and fulfills a request by its primary re-
source if there is inventory left or the closest resource

Table 1. Amazon China’s Fulfillment Centers and Their Regional Demand Centers with the Demand Vector

Resources Requests p

Harbin Harbin, Daqing, Changchun, Yanbian (0.019, 0.019, 0.013, 0.013)
Shenyang Shenyang, Jinzhou, Dalian (0.017, 0.022, 0.022)
Beijing Beijing, Tianjin, Tangshan, Shijiazhuang, Jinan,

Qingdao
(0.057, 0.015, 0.015, 0.029, 0.020, 0.019)

Wuhan Wuhan, Nanchang, Changsha, Hefei, Xiangyang (0.029, 0.029, 0.021, 0.009, 0.012)
Shanghai Shanghai, Suzhou, Hangzhou, Ningbo, Wenzhou,

Changzhou, Wuxi, Nanjing, Xuzhou
(0.026, 0.026, 0.026, 0.026, 0.026, 0.019, 0.026, 0.026, 0.057)

Xiamen Xiamen, Fuzhou, Ganzhou (0.009, 0.007, 0.019)
Guangzhou Guangzhou, Foshan, Shenzhen, Dongguan (0.045, 0.045, 0.045, 0.028)
Nanning Nanning, Kunming, Guilin, Guiyang (0.006, 0.010, 0.010, 0.011)
Chengdu Chengdu, Chongqing (0.028, 0.036)
Xian Xian, Hanzhong, Zhengzhou, Taiyuan (0.009, 0.018, 0.019, 0.019)

Figure 12. (Color online) Regions, Fulfillment Centers, and Demand Centers of Amazon China

Note. Regions are shown in different colors, fulfillment centers are shown as large black dots, and demand centers are shown as small
black dots.
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allowed by the network structure. Such an inventory
allocation makes sense as each region has a primary
fulfillment center at Amazon China.

Under structures 3 and 4with a total number of I + J
and I + J + 1 arcs, we plot the expected number of lost
sales and average shippingdistance under our inventory
allocation and demand fulfillment policy with that of
the myopic one in Figure 15. As we can see, our pol-
icy outperforms the myopic one with lower lost sales

and slightly higher shipping distances. This is ex-
pected as our policy aims to fulfill more demand and
ignores the fact that the arcs have different distances.
To balance the GCG and the total shipping distance,

we also construct network structures that take into ac-
count the shipping distance between the resources
and demand centers explicitly. We first link each re-
quest node to its nearest fulfillment center to form I
demand regions and their primary fulfillment centers.

Figure 13. (Color online) Network Structures Considered for Amazon China
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We then solve the following integer program to de-
termine the remaining cross-region arcs:

min
∑I

i,j!1,i$!j
dijxij

s.t.
∑I

i,j!1,i$!j
xij ! the total number of arcs −J,

xij ∈ {0, 1}, the structure A is connected.

Here xij ! 1 if fulfillment center i is linked to a closest
request node in region j and dij is the distance between
them. That is, the regions are connected by a fulfillment

center in one region to the closest request node in an-
other region. This optimization problem is not trivial
in general. However, for network structures with a
total of I + J − 1 arcs, the problem reduces to finding
a minimum spanning tree on an edge-weighted graph,
and we can apply Kruskal’s algorithm to obtain an
optimal solution for the integer programming. The re-
sulting network structure, referred to as structure 5, is
presented in Figure 13(b). In Figure 15, we also plot-
ted the performance of our policy and the myopic policy
under structure 5. As one can see, structure 5 achieves
the lowest average shipping distance under each pol-
icy without losing much sales.

9.3. Robustness of Our Policy With Uncertain
Demand Rates

We test the robustness of our policy with uncertain
demand rates in this section. Following Asadpour
et al. (2019), we randomly generate the demand vec-
tor for the kth arrival from the uncertainty set Up !
{p̂|p̂i ∈ [pi − ε, pi + ε] for each 1 ≤ i ≤ I and∑I

i!1 p̂i ! 1}
for a given ε. We vary ε ! p2min, p2.5min, p3min, reflecting a
decreasing level of uncertainty of the demand vector.
Since the results are similar, we only report the
simulation results for ε ! p2min in Figure 16. As one can
see, the performance is quite stable.

10. Conclusions
Process flexibility has been studied extensively under
offline fulfillment but not under online fulfillment
except for the work of Asadpour et al. (2019), who
focus on the long chain structure, which is a balanced
system. They establish bounded performance of the
long chain structure under a specific inventory allo-
cation as the market size increases. In this paper, we
extend their greedy fulfillment policy to a class of
unbalanced systems called GCG systems under online
fulfillment, where the number of request types can be
arbitrarily larger than the number of resources, and
establish bounded performance. We further extend
bounded performance to systems with random batch
arrivals and time-varying demand rates.

Figure 14. Performance Under Different Network Structures and for Various K for Amazon China

Figure 15. Performance Comparisons Between Our Policy
and the Myopic Policy Under Structures 3–5 for Amazon
China.

Note. Solid lines represent our policy; dashed lines represent the
myopic policy.

Figure 16. Performance Under Different Network
Structures and Random p for Amazon China
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The upper bound on system performance also re-
veals that theGCG is an important indicator of system
performance, which leads to simple inventory allo-
cation decisions for any connected network structure
with as few as I + J − 1 arcs that guarantee a positive
GCG and achieves bounded performance. We also
provide principles for the design of network structures
that achieve bounded performance. For networkswith
I + J arcs, we extend the long chain concept to un-
balanced networks, referred to as generalized long
chains (GLCs), by dividing the request types into I
groups and forming a network structure with I re-
sources and request groups. Numerical studies in-
cluding one using some data from Amazon China are
conducted to verify our findings.

Acknowledgments
The authors thank the department editor, associate edi-
tor, and three anonymous reviewers for their careful reading
of the paper, and for providing constructive feedback.

Endnotes
1 See https://www.statista.com/statistics/379046/worldwide-retail
-e-commerce-sales/.
2 See http://data.stats.gov.cn/english/easyquery.htm?cn=E0103.
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