
An Economic Model of Blockchain: The Interplay between

Transaction Fees and Security

Jiahao He, Guangyuan Zhang, Jiheng Zhang, and Rachel Q. Zhang

The Hong Kong University of Science and Technology

May 21, 2020

Abstract

A blockchain system, such as Bitcoin or Ethereum, validates electronic transactions

and stores them in a chain of blocks without a central authority. Miners with computing

power compete for the right to create blocks according to a pre-set protocol and in return

earn fees paid by users who submit transactions. Such a system essentially operates as

a single server queue with batch services based on a fee-based priority discipline, albeit

with distinctive features due to the security concerns caused by decentralization. That is, a

transaction is confirmed only after a number of additional blocks are subsequently extended

to the block containing it, which complicates the interplay between miners and users. In our

study, we build a model to analyze how miners’ participation decisions interact with users’

participation and fee decisions in equilibrium, and identify the optimal protocol design when

the goal is to maximize total throughput or users’ utility. Our analyses show that miners

and users may end up in either a vicious or virtuous cycle, depending on the initial system

state. We validate our model and analytical results using data from Bitcoin.

Key words: blockchain; queueing model; decentralization; transaction fee; security.

1 Introduction

In the past decade, cryptocurrencies, or digital assets that function as a means of exchange

enabled by the blockchain technology, have exploded as a significant global phenomenon. While

Bitcoin and Ethereum are the most commonly known, there are almost five thousand cryptocur-

rencies in the global market with a daily trading volume exceeding $100 billion1. The market

capitalization of these cryptocurrencies is close to $200 billion, representing a fifty-fold increase

since 2015, and the estimated number of unique active users has grown from between 0.3 ∼ 1.3

million in 2013 to over $40 million by April 20202. Furthermore, these cryptocurrencies have

1https://coinmarketcap.com/charts/
2https://www.statista.com/statistics/647374/worldwide-blockchain-wallet-users/

1

generated an entire financial ecosystem comprising exchanges, financial derivatives and mining

businesses, making them viable investment assets. For example, Bitcoin alone had generated

over $143 billion in mining revenue by August 2019, not to mention the additional revenue gen-

erated from the sales of mining hardware and the provision of cloud mining and remote hosting

services as well as price appreciation gains. Cryptocurrencies have also led to the development

of sizable new business platforms and new forms of peer-to-peer economic activities.

These economic activities differ from traditional centralized payment systems which are

processed through a single trusted central agency. For instance, fiat cash is issued by central

banks that possess reliable anti-counterfeiting technology while credit cards and digital payment

services are provided by trusted financial institutions. In contrast, cryptocurrencies are based

on a decentralized participant-level exchange following a pre-specified protocol. Since these

exchanges are not conducted under the auspices of a credible agency, they are open to potential

adversarial attacks and thus the underlying protocol must be able to ensure consensus in the

presence of such an adversary. One protocol that has been established to ensure consensus

is proof-of-work (PoW). PoW is the most popular consensus mechanism and supports several

mainstream cryptocurrencies such as Bitcoin and Ethereum, representing over two thirds of the

cryptocurrency market. In our paper, we examine the impact of PoW on user participation and

fees in a cryptocurrency setting.

Under a proof-of-work mechanism, users submit transactions to a public buffer called a

mempool. These transactions then await processing by miners, who process the transactions

in batches according to the following procedure. At any time, each miner selects a number

of transactions from the mempool not exceeding a pre-specified upper limit (1 megabyte for

Bitcoin). Each miner then packages the selected transactions into a block and identifies an

existing block on the blockchain as the new block’s predecessor. To be allowed to append

the new block to its predecessor, the miner needs to solve a cryptographic puzzle before other

miners do. Solving the puzzle requires a specifically-designed computing machine such as GPU

or ASIC and considerable computing power (Antonopoulos, 2014). In this system, miners

essentially engage in a competition to earn the right for a miner’s block to be accepted by other

miners, as once a block is created, all its transactions are considered to be processed and hence

are removed from the mempool. Given the computing power required to compete in arriving

at the solution, miners equipped with more computing power have a greater chance of winning

the competition.

Note that this process of appending a new block to an existing one leads to a tree of blocks.

Blocks that are carried on the longest chain indicate the most extensive proof-of-work and are

included in a public ledger. They are also an indication of honest miner activity, as opposed

to blocks not carried on the longest chain, which reflect malicious work done by adversaries.

Thus, we refer to miners who append their blocks to the end of the longest chain as honest

ones and those who don’t as adversaries. Since the decentralized nature of the process creates

3https://cointelegraph.com/news/bitcoin-miners-made-14-billion-to-date-securing-the-network

2

possibility of adversaries, blocks within the longest chain are considered confirmed only after a

certain number of blocks are attached to them, referred to as the confirmation latency. This

confirmation latency provides a means of preventing adversary activity, as it would take a

disproportionally large amount of computing power for an adversary to fork a branch fast

enough to overrun the honest chain and invalidate a transaction after its confirmation. Hence,

as long as the computing power of honest miners exceeds that of adversarial ones, consensus

can be established with a high probability. Thus, the records for transaction contained within

the longest chain of blocks form a secure and irrevocable public ledger, as demonstrated by the

successful transaction management of various cryptocurrencies.

As indicated, the successful operation of a blockchain system depends on the participation

of honest miners, who incur costs in terms of computing power required to compete. These

miners receive a block reward, or fixed fee, in the form of newly-issued coins, in addition to

transaction fees associated with all the transactions in the block provided by the users. To

prevent inflation and limit the total supply of new coins, mainstream cryptocurrencies have

instituted exponentially-diminishing block reward policies. For example, Bitcoin starts with

50 bitcoins as a block reward and halves the amount every 210, 000 blocks or roughly every

four years according to the block production speed. Eventually, block rewards will completely

disappear, leaving miners to rely solely on transaction fees as their mining income.

On the user side, users who need their transactions processed by miners will decide to

participate based on transaction queueing time, the transaction fee and the confirmation latency.

To obtain a fast queueing time, users may need to pay a higher transaction fee to motivate miners

to select their transactions over others. The confirmation latency to guarantee a high probability

that the system will not be attacked by adversaries relies on the collective computing power of

honest miners. At a high level, the higher computing power honest miners have, the harder it

is for adversaries to attack the system and the shorter the confirmation latency is needed.

Thus, a user’s participation and fee decisions are affected by the collective ability of honest

miners to validate transactions, while a miner’s computing power expenditure decision is de-

termined by transaction fees and block rewards, although the latter will disappear eventually.

A greater number of users willing to participate and pay higher fees incentivizes honest miners

to provide a greater amount of computing power, leading to ultimately a healthier system and

shorter confirmation latency. Thus, the interplay between users and miners in this decentralized

system exhibits an intricate dynamic and one which has received little attention in the academic

literature. This paper attempts to fill this void in the literature by first building an economic

model that captures the unique features of cryptocurrency systems, and then using this model

to analyze participant behavior and the optimal system design.

To do so, we first study the queueing dynamics in the mempool under a homogeneous

user utility function to capture users’ rational behavior in equilibrium, assuming away the

block reward which is planned to disappear in the future. We first note that the activity of

solving a cryptographic puzzle is essentially a continuous flipping of a coin with an extremely

3

small success probability. Thus, the number of trials needed to mine a block is geometrically

distributed, which can be well approximated by an exponential random variable. To ensure a

stable block production rate, the protocol dynamically adjusts the mining difficulty, i.e., the

small success probability, according to the total computing power in the system. Therefore, the

block processing rate remains constant even though the honest miners’ participation level varies

over time and the honest miners collectively work as a single server with exponential service time.

If we assume transactions arrive according to a Poisson process, then the mempool essentially

operates as an M/M/1 queue with prioritized batch service. While honest miners cannot

increase the block production rate, their total computing power can affect the confirmation

latency, which in turn impacts users’ participation and fee decisions and thus impacts the

honest miners’ participation decisions. We characterize the equilibrium behavior of both users

and miners and delineate the optimal system design using the model. We then verify our model

with cryptocurrency data from Bitcoin and discuss our results.

Our study contributes to the existing literature on blockchain systems in several important

ways. To the best of our knowledge, it is the first to incorporate the security features of such

systems in analyzing the intricate interplay between users and miners, leading to important find-

ings and insights into how a blockchain system works. Specifically, we provide three important

insights.

1. Assuming that honest miners’ participation is proportional to the level of transaction fees,

we show how the equilibrium behavior of the users and miners is interdependent, and how

the ultimate health of the system depends on the initial participation of honest mining

power from an evolutionary point of view. Thus, our results suggest that it is critical for

a blockchain system to attract a sufficient number of honest miners at the beginning.

2. Our findings suggest that the blockchain design to achieve maximal throughput or user

welfare, in terms of mining rate, block size, and minimum transaction fee requirement,

entails running the system at its full capacity, which contradicts some existing research

that recommends holding back capacity in order to generate higher transaction fees. Our

results further confirm a current trend in practice that suggests setting a block size as

small as possible. We further obtain optimal design parameters in the presence of a block

reward.

3. We analytically identify user behavior under heterogeneous user utility and conduct nu-

merical experiments using real block rewards and transaction fees from Bitcoin. We show

that classifying users into multiple types leads to a better fit of user behavior to real data.

The rest of the paper is organized as follows. After a literature review in Section 2, we

introduce our detailed model in Section 3 and derive the equilibrium behavior in Section 4. The

optimal system parameters are derived in Section 5. We discuss some extensions of our model

in Section 6 and conduct a numerical study using real data in Section 7. The paper concludes

in Section 8.

4

2 Literature Review

Since the inception of Bitcoin, the first blockchain system designed by and documented in

Nakamoto (2008), a number of systems have evolved to enable users to establish trust in a

decentralized setting. These systems seek to develop alternative mechanisms to achieve the

same functionality as Bitcoin with better performance. For instance, Algorand Gilad et al.

(2017) use a modification of the Byzantine agreement algorithm by Feldman and Micali (1988)

to reach consensus, while Conflux Li et al. (2018) and Prism Bagaria et al. (2018) utilize a graph

structure rather than a simple chain structure to store transaction contents. To reach consensus

efficiently, Conflux relies on the weights of the graph vertices while Prism incorporates a sortition

and group voting mechanism to improve throughput and reduce latency. Blockchain systems

have also been extended to applications beyond the processing of transaction payments. For

instance, Ethereum implements state machines on a Bitcoin-like system that allows users to sign

and fulfill contracts in a decentralized manner (Wood (2014)). Since these blockchain systems

are focused on real-world applications, the design reliability issue has only been discussed with

informal arguments, e.g., the recorded transaction history can hardly be modified or all users

agree on the same transaction history in a reasonable time.

Garay et al. (2015) are the first to analytically define system“reliability” using the concepts

common prefix property and chain quality property. They show that Bitcoin possesses the two

properties under the assumption that communication among participants is highly synchronized.

In another study, Pass et al. (2017) allow for asynchronous communication with a bounded delay

and find similar results. The subsequent discussion examines several streams of research related

to our study of the interaction of participant decisions in a blockchain system.

2.1 Incentives and Participant Behavior

Miner Incentives and Decision Strategies: In the first study on blockchain miners’ par-

ticipation incentives, Kroll et al. (2013) show that the impact of transaction fees on miners’

participation decisions is low when the block reward is high. They also find that transaction

fees function as a reward substitute and impact miners prioritization of transactions in the

mempool.

Subsequent papers explore other determinants of miners’ decisions. Prat and Walter (2018)

conduct an empirical study on Bitcoin and establish a model to verify that miners’ decisions are

influenced by the exchange rate of the cryptocurrency to US dollars. In another study, Arnosti

and Weinberg (2018) show that miners’ participation decisions are affected by the required

investment costs for mining machine and electricity. They further derive an equilibrium of

miners’ decisions under asymmetric investment costs and show how cost asymmetry leads to

a market oligopoly. Finally, Cong et al. (2019) examine the impact of miner collaboration

decisions, (i.e., miners pool their computing power together to form a so-called mining pool in

order to reduce the risk of mining) on the extent of computing power decentralization.

5

User Behavior and Miner Participation Decisions: Another stream of research examines

users’ participation decision and bids on the transaction fees and how their decisions affect the

miners’ participation decisions. Huberman et al. (2019) and Easley et al. (2019) characterize

the equilibrium of users’ strategy under a priority queueing model. The difference between the

two studies is that Huberman et al. (2019) assume that the block size can be any integer and

optimize the block size to achieve the maximum total transaction fees. By contrast, Easley

et al. (2019) only consider block size of one. Our study extends these models by modeling the

interplay of user and miner decisions and the design of blockchain system in greater detail and

examining the reliability of decentralized payment systems under the possibility of an adversary

attack.

Auction Mechanisms for Transaction Fees: Another stream of work related to our study

focuses on the mechanism for determining transaction fees, comparing the performance of var-

ious auction mechanisms with the current “pay your bid” transaction fees mechanism. Within

this area, Lavi et al. (2019), Yao (2018) and Basu et al. (2019) consider different auction mecha-

nisms for determining transaction fees, while Lavi et al. (2019) show that their new mechanism

can extract higher transaction fees from users.

Blockchain Related Research in Operations Management: Research on blockchain

technology is still quite new in the field of operations management. One study in this area

(Babich and Hilary (2019)) identifies five strengths and weaknesses in blockchain applications

and points out several potential areas for future research. In another study, Cui et al. (2018)

examine how improved traceability due to blockchain technology influences quality decisions

and supply chain contracts in parallel and serial supply chains. Our study can lend potential

insight into this emerging field within operations management research.

2.2 Priority Queues with Rational Behavior

In addition to the research on participant incentives, our study is related to the queueing liter-

ature, as we model the operations of Bitcoin as a priority queue and with rational participants.

Within this area, Hassin (2016) provides a comprehensive review. Meanwhile, several studies

on queues with priority and rational behavior are closely related. In an early study, Kleinrock

(1967) investigates an unobservable M/M/1 queueing system in which a relative position in

the queue is determined by a customer’s bribe and establish the relationship between the bribe

amount distribution and the average waiting time. When the cost is a heterogeneous linear com-

bination of bribe amount and waiting time, they establish certain monotonicity in the optimal

deterministic bribing under a constant average bribe constraint.

In two additional studies, Lui (1985) and Hassin (1995) analyze an M/G/1 queue in a

similar setting while assuming a linear waiting cost and additive positive utility from receiving

the service, each with a different linear coefficient distribution, to determine the impact of the

6

process rate on revenue and social welfare. Since a low process rate creates less competition

but a greater number of entrants, they aim for an optimal balance in their respective models.

Our queueing model differs from theirs in that our transaction fee affects both the position of

the customers and the equilibrium behavior of the miners (server), leading to a more involved

influence on the waiting time of users.

3 Model Description

In this section, we outline a model that incorporates the operational features of blockchain

systems, the interplay between miners and users, and the security issue associated with the

decentralized nature of the blockchain system.

In our model, transactions arrive to the system over time and are immediately placed in the

mempool. Miners then select transactions from the mempool and process the transactions in

blocks up to K transactions in a process referred to as hashing or mining, which is essentially

a series of Bernoulli trials until one success. Thus, the number of trials needed to mine a block

follows a geometric distribution and the service time can be described as an exponential random

variable with rate µ. If we assume that transactions submitted by users arrive to the system

according to a Poisson process with rate λ, then a blockchain system essentially operates as an

M/M/1 queue with arrival rate λ, service rate µ, and batch size K. The service discipline is

prioritized by the fee b that a user is willing to pay for his transaction to be processed, such

that the higher the fee, the more quickly the transaction will be selected and processed.

For each transaction processed, a user will gain R, pay a transaction fee b, and incur a waiting

cost that is an increasing convex function c(·) of the total waiting time, i.e., the mempool waiting

time plus the confirmation latency. Thus, some potential users may not join the system and

the fees users are willing to pay may be different, depending on the system status upon arrival.

Hence, we model a user’s behavior by (p,G), where p is the probability a potential user will join

the system and G is the distribution from which the fee b is sampled. Assuming that the total

market size is Λ, the arrival rate to the service system λ = pΛ if every user joins the system

with the same probability p. For generality, we allow the system to specify a minimum entrance

fee b, so G is a cumulative distribution function on [b,∞). In Section 6, we will extend our basic

model to accommodate heterogeneous users with different waiting cost functions.

In our basic model, we assume away the block reward due to its planned disappearannce

in the mainstream cryptocurrencies. We further ignore potential miner incentives based on

the market value of cryptocurrencies given the difficulty in modeling the volatility of these

currencies. Thus, we assume that miners’ total computing power is proportional to the total

fee paid by users, Φ. Without loss of generality, we then use Φ to represent the total computing

power provided by miners. Note that miners’ total computing power Φ does not affect the block

production rate µ in practice as mining difficulty is dynamically adjusted with Φ. Hence, Φ

affects neither the system capacity µK nor the mempool waiting time.

7

By contrast, Φ does affect the confirmation latency required to guarantee that there is an

overwhelmingly small probability of the system being attacked by an adversary, as represented

by α, e.g., α = 10−4. Assume that the total adversary mining power is known and fixed at A

at all times, as adversary also needs to acquire expensive mining machines and incur electricity

cost for its operations. Then, a higher the computing power Φ makes it more difficult for an

adversary to overtake the longest chain and hence a shorter confirmation latency is required. If

we let z denote the number of blocks required to be extended on the same branch to ensure a

sufficiently low probability α that a newly-mined block on the longest chain is confirmed, then

it takes z
µ to confirm a block of transactions in expectation. For convenience, we refer to z

as the confirmation latency and note that it is decreasing in miners’ computing power Φ for a

given α. While z is an integer in practice, we treat it as a real number in our basic model for

the ease of presentation. In subsequent discussions, we incorporate integer constraints for z.

Figure 1 summarizes our basic model of how user behavior (p,G) and miners’ total com-

puting power Φ influence each other through total transaction fees and confirmation latency

z. Miners’ computing power Φ affects the confirmation latency z, which impacts users’ wait-

ing costs and behavior (p,G). On the other hand, users’ behavior (p,G) determines the total

transaction fees which in turn incentivize miners’ computing power Φ.

Users’ behavior (p,G) Total fee Φ

Confirmation latency z Miners’ computing power Φ

Figure 1: Interplay between users and miners through total transaction fees and confirmation
latency

4 Interplay between Users and Miners

Given the complexity of a blockchain system, we focus on the equilibrium behavior as in most

existing economic studies of complex systems including blockchains and use superscript “∗” to

represent equilibrium values and functions. Note that we may add different arguments to the

notation as needed when deriving equilibrium behavior to make the dependence of outcomes

and parameters explicit. In Section 4.1, we first investigate users’ equilibrium behavior (p∗, G∗)

under any given confirmation latency z, which leads to an equilibrium miner computing power

Φ∗(z). In Section 4.2, we examine the minimum required confirmation latency z∗(Φ) to achieve

a certain security level for given total computing power Φ. The system equilibria, defined as

(z∗,Φ∗), are obtained and presented in Section 4.3.

8

4.1 Users’ Equilibrium Behavior

To analyze users’ behavior for a given confirmation latency z, we need to derive their expected

total waiting time and define their utility.

4.1.1 Users’ Expected Waiting Time and Utility Function

Since it takes z
µ to confirm a block in expectation, we need to derive only the queueing latency.

As described in Section 3, queueing latency is the expected waiting time in an M/M/1 queue

with arrival rate λ assuming all users follow the same strategy, service rate µ, block sizes of K

transactions, and a fee-based priority. To derive the queueing latency, we begin by considering

a user with a transaction fee b. Given a transaction fee distribution G(·) adopted by all users,

only 1 − G(b) portion of all transactions will have fees above b and hence a higher priority.

This means that, assuming that transactions with the same fee will be selected by miners on a

first-come-first-serve basis 4, our user will be bumped in the priority only by those who arrive

at a rate of λ[1 − G(b)]. Thus, his expected waiting time is the expected time it takes for an

M/M/1 batch service queue with arrival rate λ̃ = λ[1 − G(b)] to become empty for the first

time after his arrival, as given in the following proposition.

Proposition 1. The expected time it will take an M/M/1 queue with arrival rate λ̃, service

rate µ, and batch size K to become empty for the first time after a user’s arrival is

Wq(λ̃) =

󰀻
󰀿

󰀽

1
(1−θ)[λ̃−µ(K+1)θK]

, if λ̃ < µK,

∞, otherwise,
(1)

where θ ∈ (0, 1) is the unique solution to (λ̃+ µ)θ − λ̃− µθK+1 = 0.

Therefore, the expected queueing latency of a transaction with fee b is Wq([1 − G(b)]λ) if

G(·) is continuous. We later demonstrate that the users’ equilibrium fee distribution G∗(·) is

indeed continuous and thus the above proposition applies to our equilibrium solutions. The

next proposition states how the queueing latency changes in users’ behavior (p,G) and estab-

lishes that the inverse function W−1
q (·) is well-defined, which is critical for identifying users’

equilibrium behavior in Theorem 1.

Proposition 2. Wq(λ̃) is strictly increasing convex for λ̃ ∈ [0, µK).

Based on Proposition 2, the total expected waiting time for a transaction with fee b given

other users’ behavior (p,G) and confirmation latency z is

W (b|(pΛ, G), z) = Wq (pΛ[1−G(b)]) +
z

µ
. (2)

4In fact, any tie-breaking rule yields an identical analysis as long as the distribution function G is continuous.

9

For a given z, the expected utility of a user who adopts the strategy (p,G) given everyone

else’s strategy (p′, G′) is then

U((p,G)|(p′, G′), z) = p

󰁝 ∞

b
[R− b− c(W (b|(p′Λ, G′), z))]dG(b), (3)

assuming the utility of those users who balk is zero. For a given confirmation latency z, we define

the users’ equilibrium strategy (p∗, G∗) as one that maximizes a user’s expected utility given

that all other users apply the same strategy, i.e., it is the solution to the following equation:

U((p∗, G∗)|(p∗, G∗), z) = sup
(p,G)

U((p,G)|(p∗, G∗), z). (4)

4.1.2 Users’ Equilibrium Behavior

Before deriving users’ equilibrium strategy in Theorem 1, we demonstrate in Proposition 3 that

the equilibrium fee distribution G∗(·) is continuous and hence Proposition 1 applies.

Proposition 3. The equilibrium fee distribution G∗(·) is continuous on [b,∞).

Intuitively, if the equilibrium fee distributionG∗(·) were not continuous and instead exhibited

a jump at b, then a positive proportion of the transactions would incur b as a fee. However,

this is impossible as an infinitesimal increase at b would allow a transaction to jump ahead of

a positive proportion of the transactions and reduce its queueing latency by a non-infinitesimal

amount; hence, no user would bid at b. The continuity of G∗(·) and monotonicity of Wq(·) in

Proposition 2 lead to a unique equilibrium user strategy (p∗(z), G∗(·|z)) for a given z as stated

in our first theorem.

Theorem 1. For a given z, there exists a unique equilibrium user strategy (p∗(z), G∗(·|z)), as
defined in (4), that is represented by the following:

p∗(z) = min

󰀝
1

Λ
W−1

q

󰀕
c−1(R− b)− z

µ

󰀖
, 1

󰀞
, (5)

G∗(b|z) = 1− 1

p∗(z)Λ
W−1

q

󰀕
c−1

󰀕
c

󰀕
Wq(p

∗(z)Λ) +
z

µ

󰀖
− (b− b)

󰀖
− z

µ

󰀖
. (6)

Users’ equilibrium strategy as a function of the confirmation latency reveals some interesting

properties in Proposition 4. For instance, a shorter confirmation latency z will attract more

users to join the system, which intensifies user competition and increases queueing latency,

resulting in higher transaction fees. We state these formally in our next proposition. As one

will see later in our numerical study in Section 7, users’ equilibrium strategy and its properties

obtained from our simple utility function fits the Bitcoin data nicely.

Proposition 4. The equilibrium solution given in Theorem 1 has the following properties.

1. p∗(z) decreases in z;

10

2. G∗(·|z) stochastically decreases in z;

3. For a given z, G∗(b|z) is strictly increasing convex in b before it reaches 1.

By Theorem 1, a user’s expected equilibrium utility then becomes:

U((p∗, G∗)|(p∗, G∗), z) = max

󰀝
0, R− b− c

󰀕
Wq(Λ) +

z

µ

󰀖󰀞
. (7)

If R − b − c
󰀓
Wq(Λ) +

z
µ

󰀔
≥ 0, a user can achieve a positive utility by bidding the minimum

entrance fee b even if all users choose to participate, i.e., the arrival rate is Λ. In this case, all

users will indeed participate, i.e., p∗(z) = 1, and achieve a positive utility R−b−c
󰀓
Wq(Λ) +

z
µ

󰀔
.

Otherwise, p∗(z) < 1 and all users will have a zero utility. Thus, users’ total expected utility is

also a function of z in equilibrium and can be expressed as:

U∗(z) = Λmax

󰀝
0, R− b− c

󰀕
Wq(Λ) +

z

µ

󰀖󰀞
. (8)

4.1.3 Total Fee Rate

In equilibrium, transactions arrive to the system at the rate p∗(z)Λ as all users join the system

with the same probability p∗(z) with fees that follow the distribution G∗(·). By Theorem 1, the

expected total fee rate paid by users is expressed as:

Φ∗(z) = p∗(z)Λ

󰁝 ∞

b
bdG∗(b)

= p∗(z)Λmin

󰀝
R, b+ c

󰀕
Wq(Λ) +

z

µ

󰀖󰀞
−
󰁝 p∗(z)Λ

0
c

󰀕
Wq(λ̃) +

z

µ

󰀖
dλ̃. (9)

This leads to Proposition 5, as expressed below:

Proposition 5. Φ∗(z) is decreasing and ln[Φ∗(z)] is decreasing concave in z.

Note that the expected total fee rate exhibits monotonicity since the joining probability

p∗(z) decreases and the fee distribution G∗(·|z) decreases stochastically in the confirmation

latency z, by Proposition 4. While Φ∗(z) is not concave in general, it is log-concave, which

helps in establishing the system equilibria discussed in Section 4.3.

4.2 Confirmation Latency

To obtain the equilibrium confirmation latency z∗ for a given total fee rate, or equivalently the

total miner computing power, Φ, we first derive the probability of a successful attack. To do

so, we follow the blockchain literature and model the attack process as a random walk. Since

the exact expression for the probability of a successful attack is quite complex and difficult to

analyze, we instead use a simple yet accurate approximation.

11

4.2.1 Probability of a Successful Attack

An attack is successful when an adversary is able to fork another chain from a confirmed block

in the longest chain, referred to as double spending, and eventually overtake the longest chain

following Nakamoto (2008). Since a confirmed block in the longest chain, by definition, has

already been followed by at least z blocks, an adversary needs to catch up with the longest

chain from at least z blocks behind. Thus, the number of blocks by which the adversary chain

is behind the longest one is a random walk with a one-step transition probability Φ
A+Φ if the

next block is added to the longest chain and A
A+Φ otherwise. Thus, the probability the adversary

will ever catch up within the longest chain from at least z blocks behind is given by

γ(β, z) = e−zβ

󰀥
βz

z󰁛

k=0

zk

k!
+

∞󰁛

k=z+1

(zβ)k

k!

󰀦
, (10)

where β ≜ A
Φ is the adversary-to-miner computing power ratio. The higher the β and/or the

smaller the z are, the higher the probability that an adversary will be able to launch a successful

attack. Lemma 1 provides the lower and upper bounds for this probability.

Lemma 1. For any given 0 ≤ β < 1, γ(β, z) ≤ γ(β, z) ≤ γ̄(β, z) where

γ(β, z) =
1

2
βzez(1−β),

γ̄(β, z) =

󰀗
1

2
+

1√
2πz

󰀕
2

3
+

1

1− β

󰀖󰀘
βzez(1−β).

4.2.2 Confirmation Latency and Its Approximations

The confirmation latency for a given security level α and ratio of computing power β is the

smallest integer z that satisfies γ(β, z) ≤ α. As mentioned, due to the complexity of γ(β, z), we

will look for approximations inspired by the bounds in Lemma 1. We first establish that the

accuracy of confirmation latency approximation increases as α decreases.

Lemma 2. Denote z and z̄ as the smallest z such that γ(β, z) ≤ α and γ̄(β, z) ≤ α, respectively.

Then, the difference between z̄ and z decreases as α becomes smaller.

Numerical experiments for various values of β when α = 0.001 in Table 1 demonstrate the

accuracy of our approximations when we use the bounds provided in Lemma 1. From Table 1,

we see that our approximations are very accurate especially when the proportion of adversary

computing power β is not too high, which is in general true in reality. Similar results are

observed for various values of α.

Since both the bounds work well, we will use the lower bound γ(β, z) as a proxy for γ(β,α)

for its simplicity. Furthermore, we will treat z as a continuous variable in our basic model for

cleaner presentation. We will present the analytical results when z is an integer in the extensions

in Section 6 and numerical studies in Section 7. With z being a non-negative real number and

12

β z z z − z z̄ z̄ − z

0.10 5 5 0 5 0

0.15 7 6 1 7 0

0.20 8 8 0 9 1

0.25 11 10 1 11 0

0.30 13 13 0 14 1

0.35 17 16 1 17 0

0.40 21 20 1 21 0

0.45 26 26 0 27 1

0.50 34 33 1 34 0

0.55 44 43 1 45 1

0.60 58 57 1 59 1

0.65 80 77 3 81 1

0.70 114 110 4 115 1

0.75 170 165 5 172 2

0.80 277 269 8 279 2

Table 1: Confirmation latency z and their approximations z and z̄

using γ(β, z) as a proxy for γ(β,α), for a given security level α and miners’ computing power

Φ, the equilibrium confirmation latency z∗(Φ) satisfies γ
󰀃
A
Φ , z

∗(Φ)
󰀄
= α which results in the

following:

z∗(Φ) =
ln 2α

1− A
Φ + ln A

Φ

. (11)

4.3 System Equilibria

We define system equilibrium as the state when (9) and (11), which describe the dependency

between the confirmation latency z and computing power Φ in equilibrium, are satisfied. That

is, a system equilibrium is a pair (z∗,Φ∗) that satisfies (9) and (11) simultaneously. This leads

us to state the following interesting property.

Proposition 6. γ
󰀓

A
Φ∗(z) , z

󰀔
is quasi-convex in z, where Φ∗(z) is given by (9).

While it is harder for an adversary to attack a system successfully when the confirmation

latency z is higher given a fixed level of computing power Φ by Proposition 5, the probability

of a successful attack γ
󰀓

A
Φ∗(z) , z

󰀔
is not monotonic in equilibrium. This is because enhancing

security with a higher confirmation latency z increases users’ total waiting time, discouraging

users from joining the system or paying higher fees by Proposition 4. This in turn will reduce

the total fee rate and equivalently lower computing power Φ∗. Thus, γ(β, z) may increase or

decrease in z, depending on whether the loss of computing power dominates the enhancement of

security via an increase in the confirmation latency z. As γ(β, z) is an exponential function in z

for a fixed β, the former (latter) dominates and γ
󰀓

A
Φ∗(z) , z

󰀔
increases (decreases) in z when z is

large (small). Furthermore, the quasi-convexity of γ
󰀓

A
Φ∗(z) , z

󰀔
leads directly to the possibility

of the existence of up to two system equilibria. Thus a unique equilibrium occurs if and only if

min
z

γ
󰀓

A
Φ∗(z) , z

󰀔
= α. This leads to our second theorem.

13

Theorem 2. A system equilibrium (z∗,Φ∗) exists if and only if min
z

γ
󰀓

A
Φ∗(z) , z

󰀔
≤ α, in which

case there can exist up to two equilibria.

We next examine how the system evolves. Suppose that an equilibrium exists and the

system starts with Φ0 amount of computing power from miners. Then, users will respond

with a strategy which results in a required confirmation latency z1 = z∗(Φ0), according to (9).

Miners in turn will then adjust their computing power to Φ1 = Φ∗(z1), following (11), and the

process continues as zn+1 = z∗(Φn) and Φn+1 = Φ∗(zn+1), n = 0, 1, · · · . It is obvious that, a

system that begins in equilibrium remains so. Otherwise, the following proposition reveals the

evolution of the blockchain system before it reaches an equilibrium.

Proposition 7. Suppose that there exist at most two equilibria (z∗1 ,Φ
∗
1) and (z∗2 ,Φ

∗
2) with z∗1 ≤ z∗2

and Φ∗
1 ≥ Φ∗

2. Then, the series (zn,Φn) converges to (z∗1 ,Φ
∗
1) if Φ0 > Φ∗

2 and to (∞, 0) if

Φ0 < Φ∗
2.

Here, z∗1 and z∗2 are the solutions to γ
󰀓

A
Φ∗(z) , z

󰀔
= α. That is, a system will converge to

(z∗2 ,Φ
∗
2) only if the system starts with it, making (z∗2 ,Φ

∗
2) an unstable equilibrium. Figure 2

plots the evolution of series (zn,Φn) when there are two equilibria: zn as a function of A
Φn−1

(from (11)) and Φn as a function of zn (from (9)). As defined earlier, the equilibria are the

solutions to (9) and (11), represented by the intersecting lines in Figure 2. If Φ0 > Φ∗
2, i.e., the

system begins with sufficient computing power, it will converge to a stable equilibrium (z∗1 ,Φ
∗
1)

through a virtuous cycle, as seen in Figure 2(a). Otherwise, the system will be locked in a vicious

cycle and eventually dissolve, as seen in Figure 2(b). A system that begins with insufficient

computing power requires a long confirmation latency, which in turn discourages users from

participating or being willing to pay high fees, in turn discouraging miners participation. Thus,

key to a successful launch of a new blockchain system is the ability to secure a sufficient amount

of initial mining power.

5 System Designs to Optimize Equilibrium Performance

While the potential market Λ, security level requirement α, and amount of adversary computing

power A are all exogenous, system designers are able to decide the rate µ at which blocks are

created, the number of transactions K in a block, and the entrance fee b. Since each block must

contain both transaction data and headers that identify the block in the entire blockchain, a

small block size requires more headers and greater data storage. Coupled with other engineering

concerns, we impose a lower bound Km on the block size K and require that

K ≥ Km. (12)

Furthermore, whenever a new block is mined, it is required to be broadcasted in the system,

and the system capacity, or the maximum number of transactions that can be broadcasted by

14

0.2 0.4 0.6 0.8
0

z∗1

25

z∗2

50

A
Φ∗

2

A
Φ

z

Fee rate
Confirmation

(a) Virtuous cycle (Φ0 > Φ∗
2)

0.2 0.4 0.6 0.8
0

z∗1

25

z∗2

50

A
Φ∗

2

A
Φ

z

Fee rate
Confirmation

(b) Vicious cycle (Φ0 < Φ∗
2)

Figure 2: The evolution of a blockchain system for different levels of initial computing power
Φ0

the system, η, per unit time, is fixed. Thus, given the rate at which blocks are created µ, the

rate at which transactions can be processed is µK and we specify that

µK ≤ η. (13)

Recall that, for any system design (µ,K, b), there may be two equilibria (z∗1 ,Φ
∗(z∗1)) and

(z∗2 ,Φ
∗(z∗2)), and that (z∗2 ,Φ

∗(z∗2)) can be reached only if the system beings with it (Propo-

sition 7). It is easy to show that (z∗1 ,Φ
∗(z∗1)) always yields a better performance. Thus, we

focus on the equilibrium (z∗1 ,Φ
∗(z∗1)) for any given system design. To indicate the dependence

of performance on the design, we replace p∗(z) in (5) with p∗(z|µ,K, b) and replace Φ∗(z) in (9)

with Φ∗(z|µ,K, b). Since an explicit expression for z∗1 as a function of (µ,K, b) is not available,

we include z as a decision along with the design parameters (µ,K, b) and require that z satisfies

the following security constraint

γ

󰀕
A

Φ∗(z|µ,K, b)
, z

󰀖
= α. (14)

Thus, a feasible design (µ,K, b) and the corresponding confirmation latency z in equilibrium

must satisfy (12), (13), and (14). We investigate optimal design with the goals of maximizing

the system equilibrium throughput in Section 5.1 and users’ total utility in Section 5.2.

15

5.1 Maximizing the Throughput

Denoting the throughput rate as λ∗(z|µ,K, b) = p∗(z|µ,K, b)Λ, we can express the optimization

problem as follows:

max
(z,µ,K,b)≥0

λ∗(z|µ,K, b)

s.t. (12), (13), (14).

We can now partially characterize an optimal solution in Lemma 3

Lemma 3. Suppose that the feasible region is not empty. Then, for any feasible z, there exits

b(z) ∈
󰀗
0,
󰁫
R− c

󰀓
Wq(Λ| η

Km
,Km) + zKm

η

󰀔󰁬+󰀘
such that (µ,K, b) =

󰀓
η

Km
,Km, b(z)

󰀔
maximizes

the throughput.

While Lemma 3 does not rule out other potential optimal designs, it establishes that there

exists at least one optimal solution such that constraints (12) and (13) are binding, assuming

the feasible set is not empty. Essentially, the solution entails setting a block size as small as

possible and running the system at full capacity. Indeed, we observe smaller block sizes in

practice, e.g., IOTA even sets K = 1 (Popov (2016)). Note that our finding that an optimal

system should run at full capacity µK = η differs from the conclusion in Huberman et al. (2019)

that a blockchain system should withhold some capacity to create longer queues. This difference

in conclusions reflects differences in how we model system goals and decisions. First, while we

maximize the throughput rate and specify that congestion discourages user participation, they

maximize the transaction fees given a fixed arrival rate and specify that congestion motivates

users to bid high fees. Second, they implicitly set b = 0 and ignore the security issue, while we

treat b as a decision and require a confirmation latency z to address the security requirement,

both of which can influence the fees. Their model can thus be viewed as an example of a limiting

case of ours when R = ∞ and z = 0, under which maximizing the throughput is equivalent to

maximizing the total fees and their solution is also feasible to our problem. We further note

that while they maximize the total fees by congesting the system, we do so by setting a positive

b to extract users’ utility such that it motivates sufficient miner participation to ensure a secure

system without diminishing the throughput rate.

By Lemma 3, we can now reduce the above optimization problem to the following with

decision variable z and an implicit function b(z) as

max
b(z),z≥0

λ∗
󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km, b(z)

󰀖
(15)

s.t. γ

󰀳

󰁃 A

Φ∗
󰀓
z| η

Km
,Km, b(z)

󰀔 , z

󰀴

󰁄 = α, (16)

b(z) ∈
󰀥
0,

󰀗
R− c

󰀕
Wq

󰀕
Λ| η

Km
,Km

󰀖
+

zKm

η

󰀖󰀘+󰀦
. (17)

16

If z ≥ z0 where R = c
󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ z0Km

η

󰀔
, then R ≤ c

󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔
and

b(z) = 0 at which the objective function λ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, 0
󰀔
decreases in z from Λ. Otherwise,

all users will participate and λ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, b(z)
󰀔
= Λ, as discussed in Section 4.1.2. Thus, the

optimal objective value (15) is exactly λ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, 0
󰀔
. Since γ

󰀣
A

Φ∗
󰀓
z| η

Km
,Km,b

󰀔 , z

󰀤
decreases

in b, feasibility of z in Problem (15)-(17) can be expressed by constraints (19) and (20) as shown

below, and Problem (15)-(17) becomes equivalent to the following problem with a single decision

variable z:

max
z

λ∗
󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km, 0

󰀖
(18)

s.t. γ

󰀳

󰁅󰁅󰁃
A

Φ∗
󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km,

󰁫
R− c

󰀓
Wq(Λ| η

Km
,Km) + zKm

η

󰀔󰁬+󰀖 , z

󰀴

󰁆󰁆󰁄 ≤ α, (19)

γ

󰀳

󰁃 A

Φ∗
󰀓
z| η

Km
,Km, 0

󰀔 , z

󰀴

󰁄 ≥ α. (20)

We first establish that the left-hand sides of (19) and (20) are quasi-convex, as expressed in

Lemma 4.

Lemma 4. Both γ

󰀳

󰁃 A

Φ∗
󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km,

󰁫
R−c

󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬+󰀖 , z

󰀴

󰁄 and γ

󰀣
A

Φ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km,0
󰀔 , z

󰀤

are quasi-convex in z.

Assuming a non-empty feasible region, if equalities hold for (19) and (20) at z3 ≤ z4 and

z′3 ≤ z′4, respectively, then it is easy to verify that z3 ≤ z′3 ≤ z′4 ≤ z4 (if all exist). By extension,

the feasible region is either [z3, z
′
3]∪ [z′4, z4] or [z3, z4] and all z ≤ z0 are optimal as long as they

are feasible. We summarize the structure of the optimal solutions in the next proposition.

Proposition 8. If the feasible region of (18)–(20) is not empty, z3 is always optimal.

1. If z0 < z3, (z, µ,K, b) = (z3,
η

Km
,Km, 0) is the unique optimal solution and the optimal

λ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, 0
󰀔
< Λ.

2. Otherwise, the set of optimal solution is [z3, z0∧z′3] or [z3, z0∧z4] and λ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, 0
󰀔
=

Λ.

Note that there may be multiple solutions that lead to the maximum throughput Λ. Indeed,

with a sufficiently high utility gain R, K > Km, µ = η
K , and b = 0 may also yield the maximum

throughput Λ. However, when the objective is to maximize users’ total utility, there exists a

unique optimal solution, as we discuss next.

17

5.2 Maximizing Users’ Total Utility

Since the miners achieve zero utility in a completely competitive environment, maximizing users’

total utility (8) and maximizing the social welfare are equivalent in our setting. Furthermore,

users’ total utility is also zero when λ∗ < Λ, say p∗ < 1, as shown in Section 4.1. Thus, the

designs that maximize users’ utility must be among those that achieve the throughput Λ, i.e.,

p∗(z|µ,K, b) = 1. (21)

To indicate the dependence on the design decisions, we use U∗(z|µ,K, b) and Wq(Λ|µ,K) to

represent users’ total utility and waiting time, respectively. At p∗ = 1, the objective function

can be written as:

U∗(z|µ,K, b) = Λ

󰀗
R− b− c

󰀕
Wq(Λ|µ,K) +

z

µ

󰀖󰀘
. (22)

We can now describe the problem as follows:

max
(z,µ,K,b)≥0

U∗(z|µ,K, b)

s.t. (12), (13), (14), (21).

The feasible region of the above problem is a subset of the feasible region when maximizing

throughput. While a solution where constraints (12) and(13) are not binding may also be

optimal when the goal is to maximize throughput, when the goal is to optimize user utility, a

system designer must use up all system capacity and set the block size as small as possible, as

indicated in Lemma 5.

Lemma 5. Suppose that the feasible region is not empty. Then, an optimal solution must exist

and be of the form (z∗, µ∗,K∗, b∗) =
󰀓
z∗, η

Km
,Km, b(z∗)

󰀔
.

This is because, for any feasible solution (z, µ,K, b), a feasible solution
󰀓
z, η

Km
,Km, b(z)

󰀔

will increase user utility by reducing the waiting cost while maintaining the total transaction

fee. Thus, there exists a unique optimal design for a given z, which is different when the goal

is to maximize the throughput, by Lemma 3. By Proposition 8, the problem when the goal is

to maximize users’ utility is reduced to the following unconstrained form:

max
z≥0

U∗
󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km, b(z)

󰀖
(23)

s.t. z ∈ [z3, z0 ∧ z′3]. (24)

By (9) at p∗(z) = 1 and (11), the objective function U∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, b(z)
󰀔
can be rewritten as

a function of Φ∗ as

U∗(Φ∗) = ΛR− Φ∗ −
󰁝 Λ

0

c

󰀣
Wq

󰀕
λ̃

󰀏󰀏󰀏󰀏
η

Km
,Km

󰀖
+

ln(2α)
η

Km

󰀅
1− A

Φ∗ + ln(A
Φ∗)

󰀆
󰀤
dλ̃. (25)

18

This leads to Lemma 6.

Lemma 6. U∗(Φ∗) is quasi-concave in Φ∗ with a unique maximizer Φ̂∗ and z∗(Φ̂∗) ≥ z3.

When the computing power Φ∗ is low, the required confirmation latency is long and the

waiting cost in (25) is large, resulting in lower user utility. However, when Φ∗ is high, users

pay high fees, which also yields lower utility. The quasi-concavity of U∗(Φ∗) leads to a unique

optimal confirmation latency for Problem (23)-(24), as stated in Proposition 9.

Proposition 9. The unique optimal z∗ = z0 ∧ z′3 ∧ z∗(Φ̂∗).

Here, z0 enforces a throughput rate of Λ, z′3 fulfils the security requirement, and z∗(Φ̂∗) is

the unique maximizer of the utility function.

6 Extensions

In this section, we present the results when the confirmation latency z is an integer, extend

our basic model to allow a block reward to each winning miner for creating a block besides the

transaction fees, and derive users’ equilibrium strategy under heterogeneous user waiting costs.

6.1 Confirmation Latency z as an Integer

We first consider the implications for our model when we treat the confirmation latency z as an

integer rather than a real number. In this case, the smallest integer z such that γ
󰀓

A
Φ∗(z) , z

󰀔
≤ α

must satisfy γ
󰀓

A
Φ∗(z) , z

󰀔
≤ α and γ

󰀓
A

Φ∗(z) , z − 1
󰀔

> α, and vice versa. Theorem 3 presents

the set of equilibria confirmation latencies obtained through establishing the quasi-convexity

of γ
󰀓

A
Φ∗(z) , z

󰀔
and γ

󰀓
A

Φ∗(z) , z − 1
󰀔
. Here, the equilibrium behaviors identified in Theorem 2

and Proposition 7, are replaced by Theorem 3 and Proposition 10, respectively. Recall that

z∗1 and z∗2 are defined in Proposition 7 and the solutions to γ
󰀓

A
Φ∗(z) , z

󰀔
= α, given that these

solutions exist. Let z′1 and z′2 be the solutions to γ
󰀓

A
Φ∗(z) , z − 1

󰀔
= α if they exist, and

⌈z∗1⌉ < z′1 ≤ z′2 ≤ z∗2 .

Theorem 3. A system equilibrium z∗ exists if and only if min
z∈N+

γ
󰀓

A
Φ∗(z) , z

󰀔
≤ α, in which case

the system equilibria are all the integers in [z∗1 , z
∗
2] if min

z∈N+
γ
󰀓

A
Φ∗(z) , z − 1

󰀔
> α or [z∗1 , z

∗
2]/[z

′
1, z

′
2]

otherwise.

By contrast, when z is treated as a real number, the set of equilibria, if exists, is reduced

by up to two points z∗1 and z∗2 as stated in Theorem 2. As long as an equilibrium exists when

z is treated as a real number, ⌈z∗1⌉ < z′1 guarantees the existence of an equilibrium when it is

specified to be an integer. Analogous to Proposition 7, we now consider the series defined by

zn+1 =
󰀉
z∗(Φn+1)

󰀊
=

󰀛
ln 2α

1− A
Φn+ln A

Φn

󰀜
and Φn+1 = Φ∗(zn+1) with initial computing power Φ0.

19

When the set of equilibria is comprised of all the integers in [z∗1 , z
∗
2]/[z

′
1, z

′
2], the system will

evolve through either a vicious or virtuous cycle, as stated in Proposition 10. The case where

z′1 and z′2 do not exist is treated as a special case.

Proposition 10. Suppose the set of equilibria z is all the integers in [z∗1 , z
∗
2]/[z

′
1, z

′
2].

1. If z∗1 ≤
󰀉
z∗(Φ0)

󰀊
< z′1 or z′2 <

󰀉
z∗(Φ0)

󰀊
≤ z∗2, the system begins and remains at an

equilibrium.

2. Otherwise, the series zn converges to ⌈z∗1⌉ if ⌈z∗(Φ0)⌉ < z∗1, to ⌈z′1−1⌉ if z′1 ≤
󰀉
z∗(Φ0)

󰀊
≤

z′2 and to ∞ in which case Φ∗ = 0 if ⌈z∗(Φ0)⌉ > z∗2.

We next derive the optimal design when the confirmation latency z is an integer and miners

are able to receive a block reward.

6.2 Existence of Block Rewards and Confirmation Latency as an Integer

In our basic model, we allow miners to receive only transaction fees. Here, we consider in our

model that miners also receive a reward B for each block mined or B0 = µB per unit time.

Then, the miners’ total fee, or equivalently their total computing power, in equilibrium becomes

B0 + Φ∗ per unit time. Furthermore, the probability of a successful attack γ
󰀓

A
Φ∗(z)+B0

, z
󰀔
is

no longer quasi-convex in z in general, as shown numerically in Section 7.3. While a structural

analysis of the equilibrium behavior in this context is very difficult, we are able to derive the

structure of the optimal design in Propositions 11 and 12 as counterparts of the designed outlined

in Propositions 8 and 9.

Here, it is easy to verify that Lemma 3 still holds, with the exception that b(z) may not be

unique, so the problem with the goal of maximizing throughput rate can still be reduced to a

problem with a single decision variable z.

Proposition 11. When the feasible region of the problem with the goal of maximizing the

throughput rate in the presence of a block reward is non-empty and z̃3 is the smallest feasible

integer, the following will hold.

1. If λ∗
󰀓
z̃3| η

Km
,Km, 0

󰀔
< Λ, then (z, µ,K, b) =

󰀓
z̃3,

η
Km

,Km, 0
󰀔
is the unique optimal solu-

tion.

2. Otherwise, there exists z̃4, z̃4 ≥ z̃3, such that
󰀓
z, η

Km
,Km, b(z)

󰀔
is optimal for all z ∈

[z̃3, z̃4] and λ∗
󰀓
z, η

Km
,Km, b(z)

󰀔
= Λ.

In the absence of a block reward, z̃3 = ⌈z3⌉ where z3 is defined as in Proposition 8. Recall

that z∗(Φ̂∗) is defined in Lemma 6.

Proposition 12. In the presence of a block reward, an optimal design that maximizes users’

utility must be in the form (z, µ,K, b) =
󰀓
z, η

Km
,Km, b(z)

󰀔
where the optimal z is z̃4 ∧ ⌈z∗(Φ̂∗)⌉

and/or z̃4 ∧ ⌊z∗(Φ̂∗)⌋.

20

6.3 Heterogeneous Users

In our final extension of our model, we consider the impact of heterogeneous users. Specifically,

we follow Huberman et al. (2019) and allow users to have different waiting costs, i.e., a user’s

waiting cost is a linear function c(w) = Cw where C follows a general distribution F (·) and is

not required to be continuous. Since there may be infinite types of users, it is difficult to derive

an equilibrium behavior for each type of user. Thus, we derive an aggregated joining probability

p∗ and fee distribution G∗(·) in equilibrium for a given z, and the resulting computing power

Φ∗. This is also sufficient for our numerical study for heterogeneous users in Section 7.2 as we

only have access to aggregated data from Bitcoin. We outline the aggregated equilibrium user

strategy in Proposition 13. The key insight of the proposition is that the q% of users who are

most patient will pay the q% lowest fees.

Proposition 13. Let C(q) and b(q) be the q-quantile of the distributions F (·) and G∗(·), re-
spectively. Then,

p∗ = max
p′≤1

󰀫
p′ : R− b−

󰁝 p′

0
C(p′ − p)dWq(pΛ)− C(p′)

󰀕
1 + z

µ

󰀖
≥ 0

󰀬
,

b(q) = b+

󰁝 p∗

(1−q)p∗
C(p∗ − p)dWq(pΛ),

and the resulting computing power is

Φ∗ = bp∗Λ+

󰁝 p∗Λ

0
pλC(p∗ − p)dWq(pΛ).

7 Numerical Study

In this section, we first use data from Bitcoin to verify our users’ utility function (4) in Section

7.1 and equilibrium behavior obtained in Section 4 in Section 7.2. We then continue with a

comprehensive study of optimal system design when the confirmation latency is an integer and

miners are able to receive a block reward in Section 7.3.

In a blockchain system, transaction records are kept by all the miners and can be ob-

tained from any miner. To obtain our data, we crawl from a miner’s website (https://www.

blockchain.com) all the transaction data from the period of 16:28:18 Jan 5 to 23:59:59 Jan-

uary 31, 2018. We select this timeframe for our sample as it represents Bitcoin’s most congested

transaction period to date and hence contains transactions with the most significant fees. For

each transaction, we obtain its arrival time, size in bytes, and fee in Satoshi, the monetary unit

in Bitcoin, as well as the time that the block containing it was created. We extract the following

system parameters from the data.

1. Arrival rate: Our dataset is comprised of a total of 6, 674, 639 transaction arrivals, of

which 6, 669, 963 were successfully packed into a block by the end of the considered period,

21

https://www.blockchain.com

yielding an effective arrival rate λ∗ ≈ 3.0518 per second.

2. Process rate: Within our dataset, there is a total of 4, 073 created blocks, reflecting an

average mining rate µ ≈ 0.0018754 blocks per second, or one every 9 minutes on average.

3. From Figure 3, we see that the size of most transactions are concentrated around the

median value of 226 bytes. Since the size limit of a block is 106 bytes, by design, the block

size K ≈ 106/226 = 4, 425 transactions.

4. Between 2016 and 2020, miners are also rewarded B = 12.5 Bitcoin, or 12.5×108 Satoshi,

newly-minted Bitcoin at the moment they add a new block to the system. To be consistent

with the unit of transaction fee data, which is in Satoshi per byte, the block reward rate

B0 = µB = 12.5 × 108 × 0.0018754/226 = 10, 370.57522 Satoshi per second per byte,

where 226 is the median transaction size.

200 400 600 800 1,000

0

5 · 10−2

0.1

0.15

0.2

Transaction Size (bytes)

P
ro
b
a
b
il
it
y

Figure 3: Distribution of the transaction size

With the above estimated parameters, we can estimate the parameters in the users’ utility

function in section 7.1. Since we do not have access to more data needed to estimate other

parameters, we will make the following assumptions for illustration purposes.

1. z = 6, as suggested in Nakamoto (2008).

2. The system runs at its capacity during our sample period, i.e., η ≈ µK = 8.24622 trans-

actions per second.

3. Λ = 5.5 per second so that λ∗ = 3.0518 < Λ < η = 8.24622, the system capacity.

4. α = 10−4 and 10 ≤ Km ≤ 4, 000.

22

7.1 Model Validation

Note that we describe users’ utility with a very simple utility function:

U((p,G)|(p,G), z) = p

󰁝 ∞

b
[R− b− c(W (b|(pΛ, G), z))]dG(b).

To verify whether this function captures the users’ behavior within the Bitcoin system, we

further limit the waiting cost to be a linear function as c(W) = CW , i.e, our utility function

has only two parameters (C,R). We estimate C = 2.079 Satoshi per second per byte and

R = 8, 270 Satoshi per byte by Theorem 1. Figure 4 plots the fee distribution G∗(b) from the

data marked as Empirical.

0 200 400 600 800

0

0.2

0.4

0.6

0.8

1

Transaction Fee b per byte in Satoshi

F
ee

D
is
tr
ib
u
ti
on

G
∗ (
b)

Empirical
Model

Three-class

Figure 4: Distributions of fees

We then plot in Figure 4 the equilibrium fee distribution predicted by our model labeled

as Model. As one can see, our simple model with only two degrees of freedom fits the data

with only slight discrepancies which may be caused by user heterogeneity and behavior not

captured by the model. Figure 4 further plots the fee distribution predicted by our model with

three user classes (high with a waiting cost rate of 4.6281; medium, 2.424; and low, 1.3650),

labeled as Three-class, and it clearly fits the data better. However, for simplicity, we will assume

homogeneous users with C = 2.079 in our subsequent numerical study in this section.

7.2 Equilibrium Behavior without Block Rewards

In this section, we illustrate the equilibrium behavior predicted by our model in section 4.

Specifically, given the utility function with (C,R) = (2.079, 8, 270), µ = 0.0018754, and K =

4, 425, as estimated from the data, we can illustrate the extent to which users’ equilibrium

behavior (p∗, G∗(b)) and miners’ computing power Φ∗ change in z, predicated qualitatively in

Proposition 4. From Figure 5(a), we see that p∗ hovers briefly at 1 before decreasing sharply to

23

zero. Figure 5(b) illustrates how the increasing convex function G∗(b) stochastically decreases

in z. Finally, Figure 5(c) shows the log-concavity of Φ∗, while Figure 5(d) reveals that Φ∗ at

first exhibits a concave shape but becomes convex as z increases. Since Bitcoin operates at

z∗ = 6, our model yields Φ∗(6) ≈ 1, 095.3802 Satoshi per second per byte.

0 1 2 3 4 5 6 7 8 9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

z

p
∗

(a) Joining probability

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

b

G
∗ (
b)

z ≤ 2
z = 3
z = 4
z = 5
z = 6

(b) Fee distribution

0 1 2 3 4 5 6

7

7.5

8

8.5

9

9.5

10

z

ln
Φ
∗

(c) Log-concavity of the computing power

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

·104

z

Φ
∗

(d) Computing power

Figure 5: Equilibria including user joining probability, fee distribution, and computing power
as functions of z

We then illustrate the system equilibria z∗ using data from Bitcoin and assume A = 100

and B = 0. From Figure 6(a), we see that the confirmation time z∗/µ first decreases and then

increases in the block size K. Figure 6(b) presents the equilibria z∗ for various b. Note that

the equilibria are achieved at ⌈z∗1⌉ and ⌊z∗2⌋ at b = 0, while they are ⌈z∗1⌉ and ⌊z′1⌋ for other b

values.

24

102 103

200

400

600

800

1,000

1,200

1,400

1,600

K

z
∗ µ

(a) Confirmation latency vs block size

0 500 1,000 1,500 2,000 2,500 3,000 3,500

2

2.5

3

3.5

4

4.5

5

5.5

6

b

z
∗

(b) Confirmation latency vs. b

Figure 6: Confirmation latency for different parameters

7.3 The Impact of a Block Reward to the Probability of a Successful Attack

We next use the Bitcoin data to examine the impact of a block reward on the probability that

an adversary will launch a successful attack. At B0 = 10, 370.57522 Satoshi per second per

byte, the total hashing power becomes Φ∗+B0. Here, we examine how the block reward affects

the shape of the probability of a successful attack γ
󰀓

A
Φ∗(z)+B0

, z
󰀔
as well as its sensitivity as a

function of A and z.

Although we cannot observe A, we can derive the upper bound allowed for any given α.

When there is a high block reward (z∗ = 6 at which Φ∗(6) = 1, 095.3802 Satoshi per second

per byte, γ
󰀓

A
Φ∗(z)+B0

, z
󰀔

≤ α = 10−4), A ≤ 9.81%[Φ∗(z) + B0] = 1, 124.8032, indicating an

extremely reliable system. By contrast, when there is no block reward, A ≤ 107.456798, which

indicates a much stronger requirement.

Figure 7 plots γ
󰀓

A
Φ∗(z)+B0

, z
󰀔
as a function of z for various values of A. From Figure 7, we

can see that the attack probability function is no longer convex. Figure 8 plots the equilibrium

z∗ in integers required as a function of α for A = 700 and 1, 000. Here, the equilibrium z∗ is

always unique for A = 700; for A = 1000, it is unique except when 4.88×10−5 ≤ α ≤ 4.96×10−5

(between the dashed lines). As the figure shows, while z∗ is quite sensitive to the hashing power

of the adversary A for a given α, it is not as sensitive to the security requirement α for a given

A. For instance, we see that z∗ changes from 8 to 5 as α changes from 3 × 10−7 to 3 × 10−5

when A = 700 and from 6× 10−6 to 10−4 when A = 1, 000.

However, γ
󰀓

A
Φ∗(z)+B0

, z
󰀔

is no longer quasi-convex in general in the presence of a block

reward. Finally, we depict the attack probability since Bitcoin’s inception in Figure 9. Here,

B0 = 41, 480 (2008 - 2012, the initial reward), 10, 370 (2016 - 2020), 5, 185 (2020 - 2024), and

25

4 4.5 5 5.5 6 6.5 7 7.5 8

0

0.2

0.4

0.6

0.8

1

1.2
·10−4

z

P
ro
b
a
b
il
it
y
of

a
su
cc
es
sf
u
l
a
tt
a
ck

A = 1000
A = 900
A = 800
A = 700

Figure 7: Probability of a successful attack as a function of z for different A

0 0.5 1 1.5 2 2.5 3

·10−5

5

5.5

6

6.5

7

7.5

8

α

z
∗

(a) A = 700

0 0.2 0.4 0.6 0.8 1

·10−4

5

5.5

6

6.5

7

7.5

8

α

z
∗

(b) A = 1000

Figure 8: All integers z∗ versus α for different A

26

648 (2032 - 2036) Satoshi per second per byte for A = 1, 000. Thus, we see that Proposition 6

and Theorem 2 no longer hold. From Figure 9, we identify the following properties of the

probability function.

1. When the block reward is large enough, A
Φ∗(z)+B0

is dominated by A
B0

and increasing z

decreases γ
󰀓

A
Φ∗(z)+B0

, z
󰀔
. Thus, the probability of a successful attack is a decreasing

function in z.

2. When the block reward is small enough, A
Φ∗(z)+B0

is dominated by A
Φ∗(z) and γ

󰀓
A

Φ∗(z)+B0
, z
󰀔

is quasi-convex.

3. Otherwise, γ
󰀓

A
Φ∗(z)+B0

, z
󰀔
may have several reflection points.

5 5.5 6 6.5 7 7.5 8

0

0.2

0.4

0.6

0.8

1

1.2

1.4
·10−8

Confirmation Latency z

A
tt
ac
k
in
g
P
ro
b
ab

il
it
y
γ

(a) B0 = 41, 480

4.5 5 5.5 6 6.5 7 7.5

1

2

3

4

5

6

7

·10−5

Confirmation Latency z

A
tt
ac
k
in
g
P
ro
b
ab

il
it
y
γ

(b) B0 = 10, 370

2 4 6 8 10

0

2

4

6

·10−3

Confirmation Latency z

A
tt
ac
k
in
g
P
ro
b
ab

il
it
y
γ

(c) B0 = 5, 185

1 2 3 4 5 6

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

0.16

0.18

Confirmation Latency z

A
tt
ac
k
in
g
P
ro
b
ab

il
it
y
γ

(d) B0 = 648

Figure 9: The probability of a successful attack for various block rewards B0

27

7.4 System Design

In our final numerical analysis, we examine our system design recommendations using Bitcoin

Data. Assuming that Bitcoin runs at its capacity at η = 8.24622, we calculate the optimal

equilibrium z∗ and the corresponding b(z∗) for Km from 10 to 4, 000 for the data-current block

reward (B0 = 10, 370) in Figure 10 and for the May 2020 level (B0 = 5, 185) in Figure 11. Note

that the shaded areas represent multiple equilibrium solutions that maximize the throughput

while the solid lines represent the unique solutions that maximize the user utility. From Fig-

ures 10 and 11, we see that as Km increases and µ∗ = η
Km

decreases, the shaded areas become

narrower. As µ∗ decreases, the time to process a block and the queueing latency both increase.

This discourages miner participation and pushes down b(z∗), resulting in an increase in the

lower bands of the areas and a decrease in the upper bands. Due to the high block reward and

low b(z∗) (at zero most of the time), our z∗ that maximizes the user utility occurs more often

in the upper band.

0 1,000 2,000 3,000 4,000

3

4

5

6

Km

z
∗

Throughput
User utility

0 1,000 2,000 3,000 4,000

0

2,000

4,000

6,000

8,000

Km

b(
z
∗)

Throughput
User utility

Figure 10: The optimal equilibrium z∗ and the corresponding b(z∗) when B0 = 10, 370

0 1,000 2,000 3,000

4

6

8

10

Km

z
∗

Throughput
User utility

0 1,000 2,000 3,000

0

2,000

4,000

6,000

8,000

Km

b(
z
∗)

Throughput
User utility

Figure 11: The optimal equilibrium z∗ and the corresponding b(z∗) when B0 = 5, 185

28

8 Conclusions

In this paper, we develop a blockchain model to describe the interplay between user participa-

tion, transaction fees, and miner participation. Our model focuses on the transaction blockchain

system used by cryptocurrencies and includes system security, as reflected by confirmation la-

tency. We also test our model using a data sample from Bitcoin. Our results from our numerical

analysis show that the Bitcoin data validates our simple user utility function. In particular, we

analyze the equilibrium behavior of users and miners and identify the optimal design of system

parameters for maximizing both system throughput and users’ total utility under limited system

capacity.

Our equilibrium analysis indicates the system must attract a sufficient level of initial comput-

ing power to encourage users participation and willingness to pay sufficiently high transaction

fees. Doing so creates enough miner participation to stabilize the system and allow it to reach

equilibrium. In this sense, the total transaction fee, which is assumed to be proportional to the

total computing power and thus reflects system maintenance energy costs, can be seen as the

cost for decentralization, and it is finite.

Our analysis also provides insight into the optimal system design. In particular, we find that

the optimal design entails setting the block size as small as possible, consistent with practice.

We also find that the optimal design entails running a system at full capacity, which differs

from previous research that does not model the goal of maximizing users total utility. Smaller

block sizes lead to faster processing speed, which attracts more users and hence more computing

power to the system. Indeed, when it has exhausted the whole user market, a blockchain system

may still be able to increase miners’ revenue with a higher entrance fee while maintaining user

participation at the highest level.

Our paper is one of the first to study the interplay between users and miners in a blockchain

system and incorporate the security feature brought about by decentralization. Future research

could extend our model in various way, for instance, incorporating more complicated miner

behavior by considering heterogeneous mining efficiency and costs due to prices of different

mining equipment and electricity consumption. It could also extend our analysis to blockchain

systems use similar protocols but with functions beyond those used by cryptocurrencies as well

as to systems with multiple cryptocurrencies in order to gain further understanding of the

operational features underneath blockchain systems and optimal system designs.

References

Antonopoulos, A. M. (2014). Mastering Bitcoin: unlocking digital cryptocurrencies. ” O’Reilly

Media, Inc.”.

Arnosti, N. and S. M. Weinberg (2018). Bitcoin: A natural oligopoly. arXiv preprint

arXiv:1811.08572 .

29

Babich, V. and G. Hilary (2019). Distributed ledgers and operations: What operations man-

agement researchers should know about blockchain technology. Manufacturing & Service

Operations Management .

Bagaria, V., S. Kannan, D. Tse, G. Fanti, and P. Viswanath (2018). Deconstructing the

blockchain to approach physical limits. arXiv preprint arXiv:1810.08092 .

Basu, S., D. Easley, M. O’Hara, and E. Sirer (2019). Towards a functional fee market for

cryptocurrencies. Available at SSRN 3318327 .

Cong, L. W., Z. He, and J. Li (2019). Decentralized mining in centralized pools. Technical

report, National Bureau of Economic Research.

Cui, Y., M. Hu, and J. Liu (2018). Values of traceability in supply chains. Available at SSRN

3291661 .

Easley, D., M. O’Hara, and S. Basu (2019). From mining to markets: The evolution of bitcoin

transaction fees. Journal of Financial Economics.

Feldman, P. and S. Micali (1988). Optimal algorithms for byzantine agreement. In Proceedings

of the twentieth annual ACM symposium on Theory of computing, pp. 148–161. ACM.

Garay, J., A. Kiayias, and N. Leonardos (2015). The bitcoin backbone protocol: Analysis and

applications. In Advances in Cryptology - EUROCRYPT, Berlin, Heidelberg, pp. 281–310.

Springer.

Gilad, Y., R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich (2017). Algorand: Scaling byzantine

agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems

Principles, pp. 51–68. ACM.

Hassin, R. (1995). Decentralized regulation of a queue. Management Science 41 (1), 163–173.

Hassin, R. (2016). Rational queueing. Chapman and Hall/CRC.

Huberman, G., J. Leshno, and C. C. Moallemi (2019). An economic analysis of the bitcoin

payment system. Columbia Business School Research Paper (17-92).

Kleinrock, L. (1967). Optimum bribing for queue position. Operations Research 15 (2), 304–318.

Kroll, J. A., I. C. Davey, and E. W. Felten (2013). The economics of bitcoin mining, or bitcoin

in the presence of adversaries. In Proceedings of WEIS, Volume 2013, pp. 11.

Lavi, R., O. Sattath, and A. Zohar (2019). Redesigning bitcoin’s fee market. In The World

Wide Web Conference, pp. 2950–2956. ACM.

Li, C., P. Li, D. Zhou, W. Xu, F. Long, and A. Yao (2018). Scaling nakamoto consensus to

thousands of transactions per second. arXiv preprint arXiv:1805.03870 .

30

Lui, F. T. (1985). An equilibrium queuing model of bribery. Journal of political economy 93 (4),

760–781.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/

bitcoin.pdf.

Pass, R., L. Seeman, and A. Shelat (2017). Analysis of the blockchain protocol in asynchronous

networks. In Annual International Conference on the Theory and Applications of Crypto-

graphic Techniques, pp. 643–673. Springer.

Popov, S. (2016). The tangle. cit. on, 131.

Prat, J. and B. Walter (2018). An equilibrium model of the market for bitcoin mining.

Watson, G. N. (1929). Theorems stated by ramanujan (v): Approximations connected with ex.

Proceedings of the London Mathematical Society 2 (1), 293–308.

Wolff, R. W. (1982). Poisson arrivals see time averages. Operations Research 30 (2), 223–231.

Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger. Ethereum

project yellow paper . https://ethereum.github.io/yellowpaper/paper.pdf.

Yao, A. C.-C. (2018). An incentive analysis of some bitcoin fee design. arXiv preprint

arXiv:1811.02351 .

31

https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

A Appendix

A.1 Preliminary results on M/MK/1 queues

Proof of Proposition 1. We first summarize some basic properties of an M/MK/1 queue with

arrival rate λ̃ and service rate µ. The queue length process is an ergodic continuous time

Markov chain. Let Q be the random variable representing the stationary queue length. Then

πn = P (Q = n) = (1 − θ)θn and E(Q) = θ
1−θ where θ ∈ (0, 1) is the unique solution to

(λ̃+ µ)θ − λ̃− µθK+1 = 0.

Due to the ergodicity (or Poisson Arrival See Time Average, see Wolff (1982)), upon an

arrival, the observed queue length has the same distribution as Q. Thus, if we let wn be the

expected hitting time of 0 for a queue of length n, then the expected time to clear a queue after

an arrival is given by

Wq(λ̃) =
󰁛

n≥0

πnwn+1 =
1− θ

θ

∞󰁛

n=1

wnθ
n =

1

(1− θ)[λ̃− µ(K + 1)θK]
(26)

where the last equality follows from the standard generating function method. The above

argument serves as a proof for Proposition 1. Substituting λ̃ = µ θ−θK+1

1−θ , we can write Wq as a

function of θ

Wq(θ) =
1

µ[1− (1 +K)θK +KθK+1]
., (27)

Proof of Proposition 2. Since

dWq(θ)

dλ̃
= W ′

q(θ)
dθ

dλ̃
=

K(K + 1)

µ2

(1− θ)3 θK−1

[1− (1 +K)θK +KθK+1]3

and θ is increasing in λ̃, Wq is increasing in λ̃ and it suffices to show that (1−θ)3θK−1

η3(θ)
, where

η(θ) = 1− (1 +K)θK +KθK+1, is increasing in θ. Since

d

dθ

󰀕
(1− θ)3θK−1

η3(θ)

󰀖
=

(1− θ)2θK−2

η4(θ)
[(K − 1− (K + 2)θ)η(θ)− 3η′(θ)(1− θ)θ] ≜ (1− θ)2θK−2

η4(θ)
h(θ),

and h(θ) > 0 when K ≤ 3, it suffices to show that h(θ) > 0 for θ ∈ (0, 1) and hence h′(θ) < 0

given that h(1) = 0 for K ≥ 4. We show this by establishing that h′(θ) has a unique global

maximum θ = 1 in (0, 1] at h′(1) = 0. Taking the derivatives, we obtain:

h′(θ) =− (K + 2) +K(K + 1)(2K + 1)θK−1 + (K + 1)(−4K2 − 4K + 2)θK +K(K + 2)(2K + 1)θK+1,

h′′(θ) =K(K + 1)θK−2[(K − 1)(2K + 1) + (−4K2 − 4K + 2)θ + (K + 2)(2K + 1)θ2].

It can be easily shown that the term in “[]” in h′′(θ) is quadratic with exactly two roots θ1 < θ2

in (0, 1). Thus, h′(θ) must achieve its global maxima at either θ1 or 1. Since θ1 is a root of

h′′(θ) = 0, it satisfies (K − 1)(2K + 1)+ (−4K2 − 4K + 2)θ1 = −(K + 2)(2K + 1)θ21 and h′(θ1)

32

can be reduced to

h′(θ1) = −(K + 2) + 2K(2K + 1)θK−1
1 − (4K2 + 4K − 2)θK1 ,

which is bounded from above by

󰀝
4K+2
K+2

󰁫
(2K+1)(K−1)
2K2+2K−1

󰁬K−1
− 1

󰀞
(K +2). Applying ln(1− x) <

−x− x2

2 , we have:

d

dK
ln

󰀥
4K + 2

K + 2

󰀕
(2K + 1)(K − 1)

2K2 + 2K − 1

󰀖K−1
󰀦

=
6K3 + 18K2 + 9K + 3 + (K + 2)(2K + 1)(2K2 + 2K − 1) ln(1− 3K

2K2+2K−1
)

(K + 2)(2K + 1)(2K2 + 2K − 1)

<
6K3 + 18K2 + 9K + 3 + (K + 2)(2K + 1)(−3K − 9K2

2K2+2K−1
)

(K + 2)(2K + 1)(2K2 + 2K − 1)

=
−3(4K4 + 11K3 + 3K2 −K + 1)

(K + 2)(2K + 1)(2K2 + 2K − 1)2
< 0

for K ≥ 1. Since 4K+2
K+2 (

(2K+1)(K−1)
2K2+2K−1

)K−1|K=4 < 1, h′(θ) < 0 θ ∈ [0, 1] for K ≥ 4.

A.2 Proof of Proposition 3

Proof. We first claim that G∗(b) must be continuous for b > b for a given p∗. Suppose that

G∗(b+) > G∗(b−) at some b. Then, for 󰂃 sufficiently small, the cost difference for bidding at b

and b+ 󰂃 is b+ c (W (b− 󰂃|(p∗Λ, G∗), z))− (b+ 󰂃)− c(W (b+ 󰂃|(p∗Λ, G∗), z)) > 0. Thus, bidding

at b+ 󰂃 is preferred to bidding at b, and hence G∗(·) must be continuous.

Second, if b is the lowest bid allowed, the lowest bid must be b as it would otherwise cost

users more to bid the lowest bid without lowering the queueing latency otherwise.

A.3 Proof for Theorem 1

Proof. By Proposition 3, the support of the equilibrium fee distribution G∗(·) includes b and

G∗(·) is continuous. Thus, (6) follows as the users’ cost is the same for any bid b in the support,

i.e.,

b+ c

󰀕
Wq(p

∗Λ) +
z

µ

󰀖
= b+ c

󰀕
Wq(p

∗Λ(1−G∗(b))) +
z

µ

󰀖
.

Since the equilibrium joining probability p∗ ≤ 1, p∗ = 1 if the users’ utilityR−b−c
󰀓
Wq(Λ) +

z
µ

󰀔
≥

0. Otherwise, p∗ is given by c (Wq(p
∗Λ) + z/µ) = R − b and users’ utility is 0 in equilibrium.

Thus, we have (5).

Since the highest possible bid is the smallest solution to Ḡ∗(b) = 0 or b+c
󰀓
Wq(p

∗Λ) + z
µ

󰀔
−

33

c
󰀓
z+1
µ

󰀔
, (9) holds as

Φ∗(z) = p∗Λb+

󰁝 b+c
󰀓
Wq(p∗Λ)+ z

µ

󰀔
−c(z+1

µ
)

b
p∗ΛḠ∗(b)db

= p∗Λb+

󰁝 c(Wq(p∗Λ)+ z
µ
)

c
󰀓

1+z
µ

󰀔 W−1
q

󰀕
c−1(s)− z

µ

󰀖
ds

= p∗Λb+

󰁝 Wq(p∗Λ)

1/µ
W−1

q (t)dc

󰀕
t+

z

µ

󰀖

= p∗Λb+

󰁝 p∗Λ

0
λ̃dc

󰀕
Wq(λ̃) +

z

µ

󰀖
(28)

= p∗Λb+ p∗Λc

󰀕
Wq(p

∗Λ) +
z

µ

󰀖
−

󰁝 p∗Λ

0
c

󰀕
Wq(λ̃) +

z

µ

󰀖
dλ̃

= p∗Λmin

󰀝
R, b+ c

󰀕
Wq(Λ) +

z

µ

󰀖󰀞
−

󰁝 p∗Λ

0
c

󰀕
Wq(λ̃) +

z

µ

󰀖
dλ̃

and the expected utility of the users are given by (7).

A.4 Proof for Proposition 4

Proof. p∗(z) is decreasing in z and G∗(b|z) is strictly increasing convex in b as Wq(·) and c(·)
are both strictly increasing and convex, which imply that W−1

q (·) and c−1(·) are decreasing

concave. Thus, G∗(b|z) = 1 −
W−1

q

󰀓
c−1(R−b)− z

µ

󰀔

W−1
q (c−1(R−b)− z

µ
)
is increasing in z for p∗ < 1 and G∗(b|z) is a

constant otherwise.

A.5 Proof for Proposition 5

Proof. We first establish the log-concavity of Φ∗(z) for piece-wise linear c(·) functions. That is,
for 0 = s0 < s1 < · · · , k1 < k2 < · · · and w ∈ [si−1, si],

c(w) = d0 +

i−1󰁛

j=0

kj(sj − sj−1) + ki(w − si−1). (29)

Suppose that Wq(0) +
z
µ ∈ [sm−1, sm) and Wq(p

∗(z)Λ) + z
µ ∈ [sn−1, sn). By (28),

Φ∗(z) = bp∗(z)Λ+

󰁝 p∗(z)Λ

0
λ̃dc

󰀕
Wq(λ̃) +

z

µ

󰀖

= bp∗(z)Λ+

n−1󰁛

j=m

(kj+1 − kj)

󰁝 Wq(p∗(z)Λ)

sj− z
µ

W−1
q (λ̃)dλ̃+ km

󰁝 Wq(p∗(z)Λ)

0
W−1

q (λ̃)dλ̃

34

and is differentiable even if Wq(0) +
z
µ = sm−1 as

lim
δ↓0

Φ∗(z + δ)− Φ∗(z)

δ
− lim

δ↓0

Φ∗(z)− Φ∗(z − δ)

δ
=

−(km − km−1)W
−1
q

󰀓
sm−1 − z

µ

󰀔

µ
= 0.

Since

d lnΦ∗(z)

dz
=

Φ∗′(z)

Φ∗(z)
=

−b

µW ′
q(p

∗(z)Λ)Φ∗(z)
+

−kmp∗(z)Λ

µΦ∗(z)

+

n−1󰁛

j=m

(kj+1 − kj)
W−1

q

󰀓
sj − z

µ

󰀔
−W−1

q

󰀓
c−1(R− b)− z

µ

󰀔

µΦ∗(z)
≤ 0

by applying p∗′(z) = − 1
ΛµW ′

q(p
∗(z)Λ) from (5), Φ∗(z) decreases in z. Furthermore, both the first

term and the summands in the third term are all decreasing in z, by the concavity of W−1
q (·).

Note that Φ∗(z)
p∗(z)Λ is the expected fee paid by a user who joins the system and G∗(·|z) is the fee

distribution in equilibrium. Since G∗(·|z) is stochastically decreasing in z, the second term is

also decreasing in z. Thus, lnΦ∗(z) is concave and, by the Weierstrass’ approximation, remains

concave for general increasing convex c(·) functions.

A.6 Proof for Lemma 1

Proof. By Watson (1929) and Stirling’s formula,

1

2
≤ 1

2
+

nne−n

2n!
≤

z󰁛

k=0

zke−z

k!
≤ 1

2
+

2nne−n

3n!
≤ 1

2
+

2

3
√
2πz

.

Since

0 <

∞󰁛

k=z+1

(zβ)k

k!
≤

∞󰁛

k=z+1

(zβ)z+1

(z + 1)!

󰀕
zβ

z + 2

󰀖k−z−1

=
(zβ)z+1

(z + 1)!

1

1− zβ
z+2

≤ 1

1− β

1√
2πz

βzez(1−2β),

we are able to obtain our bounds.

A.7 Proof for Lemma 2

Proof. Since γ̄ (β, z̄(β,α)) = γ(β, z(β,α)) = α,

󰀥
1 +

4
3 + 2

1−β󰁳
2πz̄(β,α)

󰀦 󰁫
βe(1−β)

󰁬z̄(β,α)−z(β,α)
= 1.

Since 0 < βe(1−β) < 1 and z̄(β,α) is decreasing in α for 0 ≤ β < 1, z̄(β,α)−z(β,α) is increasing

in α.

35

A.8 Proof for Proposition 6

Proof. When p∗(z) = 1, γ
󰀓

A
Φ∗(z) , z

󰀔
is decreasing. Thus, it suffices to show that the log of the

function is quasi-convex when p∗(z) < 1. Letting

d

dz

󰀗
ln

󰀕
γ

󰀕
A

Φ∗(z)
, z

󰀖󰀖󰀘
= 0 (30)

yields

[lnΦ∗(z)]′ = 1 +
ln
󰀓

A
Φ∗(z)

󰀔

1− A
Φ∗(z)

. (31)

The left hand side is decreasing in z by Proposition 5 and the right hand side is increasing in

z. Therefore, (30) has at most one solution and the function is quasi-convex.

A.9 Proof for Theorem 2

Proof. The results hold since γ
󰀓

A
Φ∗(z) , z

󰀔
is quasi-convex in z.

A.10 Proof for Proposition 7

Proof. Due to the quasi-convexity of γ
󰀓

A
Φ∗(z) , z

󰀔
, the sequence is monotonic and hence either

converges to an equilibrium or diverges to infinity. The initial conditions determine whether

the sequence increases or decreases. See Figure 2 for a graphical illustration.

A.11 Proof for Lemma 3

Proof. It suffices to show that

Φ∗
󰀣
z

󰀏󰀏󰀏󰀏󰀏
η

Km
,Km,

󰀗
R− c

󰀕
Wq

󰀕
Λ

󰀏󰀏󰀏󰀏
η

Km
,Km

󰀖
+

zKm

η

󰀖󰀘+󰀤
≥ Φ∗(z|µ,K, b) ≥ Φ∗

󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km, 0

󰀖

which implies that there is a desired b(z) such that (z, η
Km

,Km, b(z)) is feasible, and

λ∗(z|µ,K, b) ≤ λ∗
󰀣
z

󰀏󰀏󰀏󰀏󰀏
η

Km
,Km,

󰀗
R− c

󰀕
Wq

󰀕
Λ

󰀏󰀏󰀏󰀏
η

Km
,Km

󰀖
+

zKm

η

󰀖󰀘+󰀤
= λ∗

󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km, 0

󰀖
.

By (5), λ∗ is maximized when b =
󰁫
R− c

󰀓
Wq(Λ|µ,K) + z

µ

󰀔󰁬+
for given (µ,K, z) and

λ∗(z|µ,K, b) ≤ λ∗

󰀣
z

󰀏󰀏󰀏󰀏󰀏µ,K,

󰀗
R− c

󰀕
Wq(Λ|µ,K) +

z

µ

󰀖󰀘+󰀤
= min

󰀝
W−1

q

󰀕
c−1(R)− z

µ

󰀏󰀏󰀏󰀏µ,K
󰀖
,Λ

󰀞

≤ λ∗

󰀣
z

󰀏󰀏󰀏󰀏󰀏
η

K
,K,

󰀗
R− c

󰀕
Wq

󰀓
Λ
󰀏󰀏󰀏
η

K
,K

󰀔
+

zK

η

󰀖󰀘+󰀤

≤ λ∗

󰀣
z

󰀏󰀏󰀏󰀏󰀏
η

Km
,Km,

󰀗
R− c

󰀕
Wq(Λ|µ,K) +

z

µ

󰀖󰀘+󰀤
(32)

36

where the last two inequalities follow as Wq(λ|µ,K) is decreasing in µ for a given (λ,K), and,

by Lemma 7 below, Wq

󰀃
λ
󰀏󰀏 η
K ,K

󰀄
is increasing in K for a given λ. Note that

∂Φ∗(z|µ,K, b)

∂b
=

󰀻
󰀿

󰀽
Λ > 0, if b <

󰁫
R− c

󰀓
Wq(Λ|µ,K) + z

µ

󰀔󰁬+
,

b∂λ
∗(z|µ,K,b)

∂b < 0, if b >
󰁫
R− c

󰀓
Wq(Λ|µ,K) + z

µ

󰀔󰁬+

and

Φ∗

󰀣
z

󰀏󰀏󰀏󰀏󰀏µ,K,

󰀗
R− c

󰀕
Wq(Λ|µ,K) +

z

µ

󰀖󰀘+󰀤
=

󰁝 λ∗
󰀓
z
󰀏󰀏󰀏µ,K,[R−c(Wq(Λ|µ,K)+ z

µ)]
+
󰀔

0

󰁫
R− c

󰀓
Wq(λ̃|µ,K)

󰀔󰁬
dλ̃

increases in µ as both the upper limit and the integrand are non-negative and increasing in µ.

Thus,

Φ∗(z|µ,K, b) ≤ Φ∗
󰀣
z

󰀏󰀏󰀏󰀏󰀏µ,K,

󰀗
R− c

󰀕
Wq(Λ|µ,K) +

z

µ

󰀖󰀘+󰀤

≤ Φ∗
󰀣
z

󰀏󰀏󰀏󰀏󰀏
η

K
,K,

󰀗
R− c

󰀕
Wq

󰀓
Λ
󰀏󰀏󰀏
η

K
,K

󰀔
+

zK

η

󰀖󰀘+󰀤

≤ Φ∗
󰀣
z

󰀏󰀏󰀏󰀏󰀏
η

Km
,Km,

󰀗
R− c

󰀕
Wq

󰀕
Λ

󰀏󰀏󰀏󰀏
η

Km
,Km

󰀖
+

zKm

η

󰀖󰀘+󰀤
.

The last inequality follows a similar argument as the previous one and Lemma 7.

It remains to show that Φ∗(z|µ,K, b) ≥ Φ∗(z| η
Km

,Km, 0). By the optimality of (z, µ,K, b),

equality holds for (32), implying that either (µ,K, b) =

󰀕
η

Km
,Km,

󰁫
R− c

󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬+󰀖

or λ∗(z|µ,K, b) = Λ. For the former, the result holds trivially. Otherwise, it follows from

(9) that (µ̃, K̃, b̃) = (η
Km

,Km, 0) minimizes Φ∗(z|µ̃, K̃, b̃) when λ∗(z|µ̃, K̃, b̃) = Λ. Hence

Φ∗(z| η
Km

,Km, 0) ≤ Φ∗(z|µ,K, b).

Lemma 7. For a given λ, Wq

󰀃
λ
󰀏󰀏 η
K ,K

󰀄
is increasing in K.

Proof. By (27) and letting θ ∈ (0, 1) be the unique solution to θ−θK+1

1−θ = K λ
η , we have

Wq

󰀓
λ
󰀏󰀏󰀏
η

K
,K

󰀔
=

K

η[1− (1 +K)θK +KθK+1]
=

θ

(1− θ) [λ(1 +K)− (η + λK) θ]
. (33)

It is obvious that Wq(λ|η, 1) < Wq

󰀃
λ
󰀏󰀏η
2 , 2

󰀄
. Thus, it suffices to show that

d
dKWq

󰀃
λ
󰀏󰀏 η
K ,K

󰀄
> 0 for K ∈ [2,∞), which is equivalent to

(η + 2λK + λ) θ

λ(1 +K)− (η + λK) θ2
>

−ηθK+1 ln θ

λK(1− θ)
+ 1− 1

K
(34)

by applying
dθ

dK
=

θ
󰀅
λ(1− θ) + ηθK+1 ln θ

󰀆

K [λ(1 +K)− (η + λK) θ]
. (35)

37

Since 1 + λ
ηK − λK

θη = θK ∈
󰀓
0, λη

󰀔
, θ ∈

󰀓
λK

η+λK , λK
η−λ+λK

󰀔
. Therefore,

(η + 2λK + λ) θ

λ(1 +K)− (η + λK) θ2
>

K (η + 2λK + λ)

(1 +K)η + λK
. (36)

Furthermore,

θK <

󰀕
λK

η − λ+ λK

󰀖K

≤ 2λ2K

[λ2 + η2]K − (η − λ)2

and − ln θ
1−θ ≤ 1

θ imply that

−ηθK+1 ln θ

λK(1− θ)
+ 1− 1

K
<

2λ

[λ2 + η2]K − (η − λ)
2 − 1

K
+ 1 ≤ K (η + 2λK + λ)

(1 +K)η + λK

for K ≥ 2. Thus (34) and hence, the lemma hold.

A.12 Proof for Lemma 4

Proof. The second statement follows by Proposition 6 with b = 0. For ease of notation, we

denote b1(z) =
󰁫
R− c

󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬+
.

IfR−c
󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ Km

η

󰀔
< 0, then b1(z) = 0 for all z ≥ 1, and γ

󰀣
A

Φ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km,b1(z)
󰀔 , z

󰀤

is quasi-convex.

IfR−c
󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ Km

η

󰀔
≥ 0, let z0 be the smallest such thatR−c

󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ z0Km

η

󰀔
≤

0,

Φ∗
󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km, b1(z)

󰀖
=

󰀻
󰁁󰀿

󰁁󰀽

󰁕 Λ
0

󰁫
R− c

󰀓
Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬
dλ, if z ≤ z0,

󰁕W−1
q

󰀓
c−1(R)− zKm

η

󰀏󰀏󰀏 η
Km

,Km

󰀔

0

󰁫
R− c

󰀓
Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬
dλ, if z > z0.

Since c
󰀓
Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔
is increasing convex in z, ln

󰀓󰁕 Λ
0

󰁫
R− c

󰀓
Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬
dλ

󰀔

is decreasing concave in z. Following a similar argument as in the proof of Proposition 6, we have

that γ

󰀣
A󰁕 Λ

0

󰁫
R−c

󰀓
Wq(λ

󰀏󰀏󰀏 η
Km

,Km)+ zKm
η

󰀔󰁬
dλ
, z

󰀤
and γ

󰀳

󰁃 A
󰁕W−1

q (c−1(R)− zKm
η | η

Km
,Km)

0

󰁫
R−c

󰀓
Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬
dλ

, z

󰀴

󰁄

are quasi-convex for z ≥ 0.

When z ≤ z0, W
−1
q

󰀓
c−1(R)− zKm

η

󰀏󰀏󰀏 η
Km

,Km

󰀔
≥ Λ and hence,

γ

󰀳

󰁃 A
󰁕 Λ

0

󰁫
R− c

󰀓
Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬
dλ

, z

󰀴

󰁄

≥ γ

󰀳

󰁅󰁃
A

󰁕W−1
q (c−1(R)− zKm

η | η
Km

,Km)
0

󰁫
R− c

󰀓
Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬
dλ

, z

󰀴

󰁆󰁄 .

38

Therefore, γ

󰀣
A

Φ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km,b1(z)
󰀔 , z

󰀤
is quasi-convex.

A.13 Proof of Lemma 5

Proof. The feasibility of (z, η
Km

,Km, b(z)) follows from Lemma 3 if (z, µ,K, b) is feasible. Here,

the users’ utility can be reformulated as

U∗(z|µ,K, b) = ΛR− Φ∗(z|µ,K, b)−
󰁝 Λ

0
c

󰀕
Wq(λ|µ,K) +

z

µ

󰀖
dλ.

Since Φ∗(z|µ,K, b) = Φ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, b(z)
󰀔
and Wq(λ|µ,K) + z

µ ≥ Wq

󰀓
λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η with

equality holds only when (µ,K) =
󰀓

η
Km

,Km

󰀔
, U∗(z|µ,K, b) ≤ U∗

󰀓
z
󰀏󰀏󰀏 η
Km

,Km, b(z)
󰀔
.

A.14 Proof of Lemma 6

Proof. Here, we prove the lemma for differentiable c(·). Since any convex function can be

approximated by a sequence of differentiable convex functions, the result follows for general

c(·). It suffices to show that

dU∗(Φ∗)

dΦ∗ = −1+
ln(2α)

A η
Km

󰀃
A
Φ∗

󰀄2 − A
Φ∗

󰀅
1− A

Φ∗ + ln
󰀃

A
Φ∗

󰀄󰀆2 ·
󰁝 Λ

0
c′
󰀣
Wq

󰀕
λ

󰀏󰀏󰀏󰀏
η

Km
, 1

󰀖
+

ln(2α)
η

Km

1

1− A
Φ∗ + ln(A

Φ∗)

󰀤
dλ = 0

has a unique solution. Since
(A
Φ∗)

2− A
Φ∗

[1− A
Φ∗+ln(A

Φ∗)]
2 is increasing in Φ∗ > A with lim A

Φ∗ ↓0
(A
Φ∗)

2− A
Φ∗

[1− A
Φ∗+ln(A

Φ∗)]
2 =

0 and lim A
Φ∗ ↑1

(A
Φ∗)

2− A
Φ∗

[1− A
Φ∗+ln(A

Φ∗)]
2 = −∞, ln(2α)

A η
Km

(A
Φ∗)

2− A
Φ∗

[1− A
Φ∗+ln(A

Φ∗)]
2 ≥ 0 and decreases in Φ∗. Noting that

the integration is also non-negative and decreasing in Φ∗ by the convexity of c(·), we have
dU∗(Φ∗)

dΦ∗ is decreasing in Φ∗. Thus, lim
Φ∗↓A

dU∗(Φ∗)
dΦ∗ = +∞ and lim

Φ∗↑+∞
dU∗(Φ∗)

dΦ∗ = −1 guarantee

a unique solution Φ̂∗. Since U∗
󰀓
Φ∗

󰀓
z3

󰀏󰀏󰀏 η
Km

, 1, 0
󰀔󰀔

= 0, dU∗(Φ∗)
dΦ∗ |

Φ∗=Φ∗
󰀓
z3

󰀏󰀏󰀏 η
Km

,1,0
󰀔 ≤ 0 and

Φ̂∗ = Φ∗
󰀓
z∗(Φ̂∗)

󰀏󰀏󰀏 η
Km

, 1, 0
󰀔
≤ Φ∗

󰀓
z3

󰀏󰀏󰀏 η
Km

, 1, 0
󰀔
, which implies z∗(Φ̂∗) ≥ z3.

A.15 Proof of Theorem 3

Proof. Since γ
󰀓

A
Φ∗(z∗) , z

∗
󰀔
< γ

󰀓
A

Φ∗(z∗) , z
∗ − 1

󰀔
and both functions are quasi-convex,

γ
󰀓

A
Φ∗(z∗) , z

∗ − 1
󰀔

= α has at most two roots z′1 ≤ z′2 such that z∗1 < z′1 ≤ z′2 ≤ z∗2 and

all the integers in [z∗1 , z
′
1) and (z′2, z

∗
2] are equilibria. Furthermore, γ

󰀓
A

Φ∗(⌈z∗1⌉)
, ⌈z∗1⌉ − 1

󰀔
≥

γ
󰀓

A
Φ∗(⌈z∗1⌉−1) , ⌈z∗1⌉ − 1

󰀔
> α implies z′1 > ⌈z∗1⌉.

39

A.16 Proof of Proposition 11

Proof. The constraints of the reduced optimization problem analogous to (18)-(20) can be writ-

ten as:

γ

󰀳

󰁅󰁅󰁃
A

B0 + Φ∗
󰀕
z

󰀏󰀏󰀏󰀏
η

Km
,Km,

󰁫
R− c

󰀓
Wq

󰀓
Λ
󰀏󰀏󰀏 η
Km

,Km

󰀔
+ zKm

η

󰀔󰁬+󰀖

󰀴

󰁆󰁆󰁄 ≤ α (37)

γ

󰀳

󰁃B0 +
A

Φ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, 0
󰀔 , z − 1

󰀴

󰁄 > α (38)

Due to the monotonicity of the objective function, the first statement follows from the same

reasoning as that of Proposition 8. Note that when λ∗
󰀓
z
󰀏󰀏󰀏 η
Km

,Km, 0
󰀔

= Λ, the left side of

(37) is quasi-convex while the left side of (38) is decreasing in z. Thus, the second statement

follows.

A.17 Proof of Proposition 13

Proof. Following a similar argument as that provided in the proof of Theorem 1, we can show

that G∗ is continuous for any given p∗. Next, we show that b increases in C. Suppose that

c1 < c2 but b1 > b2. As a result, it is more costly for users with c1 to bid at b2 than at b1, i.e.,

b1 + c1Wq ((1−G∗(b1)p
∗Λ)) ≤ b2 + c1Wq((1−G∗(b2)p

∗Λ))

or

Wq ((1−G∗(b2))p
∗Λ)−Wq((1−G∗(b2))p

∗Λ) ≥ b1 − b2
c1

.

Hence, it is more costly for users with c2 to bid at b2 than at b1 as

[b2 + c2Wq((1−G∗(b2))p
∗Λ)]− [b1 + c2Wq((1−G∗(b1))p

∗Λ)] ≥ b2 − b1 +
c2
c1
(b1 − b2) > 0,

which contradicts with the definition of an equilibrium.

The monotonicity of b depending on C implies that users with a waiting cost C(qp∗) bid at

b(q) in equilibrium, i.e., b(q) is a minimizer of the total cost b+C (qp∗)Wq((1−G∗(b))p∗Λ). By

the first-order optimality condition, we have:

db(q)

dq
= C (qp∗)W ′

q((1− q)p∗Λ).

Solving the above differential equation with the boundary condition b(0) = b, we obtain the

40

desired result for b(q). The total cost of bidding at b(q) is given by

b(q) + C (qp∗)

󰀕
Wq((1− q)p∗Λ) +

z

µ

󰀖

= b+

󰁝 p∗

(1−q)p∗
C (p∗ − p) dWq(pΛ) + C (qp∗)

󰀕
Wq((1− q)p∗Λ) +

z

µ

󰀖

= b(0) + C(0)Wq(p
∗Λ) +

󰁝 p∗

(1−q)p∗
Wq(pΛ)dC (p∗ − p) + C (qp∗)

z

µ
,

and is increasing in q. Thus, p∗ is the largest such that b(1)+C (p∗)
󰀓
1+z
µ

󰀔
≤ R. The expression

of Φ∗ follows immediately.

41

