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We prove Theorem 1 in §EC.1.1. The proof of Proposition 1 about the equivalence of

the convergence of Qi and Bi is presented in §EC.1.2. Then we prove Lemma 1 in §EC.1.3.
We study the asymptotic analysis of the original queueing system in §EC.2. The proofs

of the optimality of our proposed policies is placed in §EC.3. In §EC.3.1, we analyze the

flow rates of the fluid model. We provide a proof to the optimality of the target-allocation

and the Gcµ/h rule in §EC.3.2 simultaneously. The optimality of the fixed priority policy

is shown in §EC.3.3. In §EC.4, we develop a dynamic programming algorithm to solve the

Fractional 0-1 Knapsack Problem.

EC.1. Preliminary Analysis of the Fluid Model

In this section, we start with the analysis of the fluid model (1)–(8). Due to the fact that

class-i customers arrive at the system with a constant arrival rate �i, we can see from (6)

that

⌘i,t([0, x]) = �i

Z x

0

F
c
i (s)ds, (EC.1)

which implies ⌘i,t(dx) = �iF
c(x)dx. This with (7) yields

Ri(t) = �i

Z t

0

Fi(wi(s))ds. (EC.2)

For all i= 1, . . . , I, let

Fi,d(x) :=

Z x

0

F
c
i (y)dy. (EC.3)

Combining (4) and (EC.1) yields wi(t) = F
�1

i,d (Qi(t)/�i). This together with (EC.2) gives

Ri(t) = �i

Z t

0

Fi

✓
F

�1

i,d

✓
Qi(s)

�i

◆◆
ds. (EC.4)

Then it follows from (5) that

Ki(t) = �i

Z t

0

F
c
i

✓
F

�1

i,d

✓
Qi(s)

�i

◆◆
ds�Qi(t)+Qi(0). (EC.5)
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We can also see from (1) and (3) that

Bi(t) =Bi(0)+Ki(t)�µi

Z t

0

Bi(s)ds,

of which the solution can be solved as

Bi(t) =Bi(0)e
�µit +

Z t

0

e
�µi(t�s)

dKi(s).

Now plugging (EC.5) into the above equation and applying integration by parts yields

Xi(t) =Xi(0)e
�µit +�i

Z t

0

F
c
i

✓
F

�1

i,d

✓
Qi(t� s)

�i

◆◆
e
�µisds+µi

Z t

0

Qi(t� s)e�µisds.

(EC.6)

The above equation is consistent with (3.21) in Zhang (2013). It reveals the relationship

between Qi and Bi for each class since Xi = Qi +Bi, and will play a central role in the

proofs of Theorem 1 and Proposition 1.

Lemma EC.1. Consider the fluid model (1)–(8). Then all the fluid processes Ei, Bi, Xi,

Qi, Di, Ki, Ri, i=1,. . . ,I, are absolutely continuous.

Proof. It is clear the arrival process Ei is absolutely continuous. The absolute continuity

of Di and Ri follows from (3) and (7), respectively. By (1) and (5), Xi(t) =Xi(0)+Ei(t)�
Ri(t) � Di(t). This implies that Xi is absolutely continuous. As a result,

PI
i=1

Qi(t) =

(
PI

i=1
Xi(t)�n)+ is also absolutely continuous. Then the absolute continuity of

PI
i=1

Ki(t)

follows from (5). Since the entrance into service process Ki(t) is nondecreasing, it follows

that each Ki must be absolutely continuous. Consequently, the absolute continuity of Bi

and Qi follows from (1) and (5). This completes the proof. ⇤

EC.1.1. Underloaded System

If the fluid model is underloaded, i.e.,
PI

i=1
�i/µi <n, then any work-conserving policy will

be optimal as all the queues vanish in finite time.

Proof of Theorem 1. Let

U(t) =�
IX

i=1

Bi(t)+
IX

i=1


Xi(0)e

�µit +�i

Z t

0

F
c
i

✓
F

�1

i,d

✓
Qi(t� s)

�i

◆◆
e
�µisds

�
. (EC.7)

Then we can see from (EC.6) that

IX

i=1

Qi(t) = U(t)+
IX

i=1

µi

Z t

0

Qi(t� s)e�µisds. (EC.8)
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If
PI

i=1
Qi(t) = 0, then by (EC.8), U(t) = 0�

PI
i=1

µi

R t

0
Qi(t�s)e�µisds 0. If

PI
i=1

Qi(t)>

0, then
PI

i=1
Bi(t) = n due to the non-idling constraint (8). Since

PI
i=1

�i/µi < n, we can

pick �= (n�
PI

i=1
�i/µi)/2, which is positive, such that

IX

i=1


�i

Z t

0

F
c
i

✓
F

�1

i,d

✓
Qi(t� s)

�i

◆◆
e
�µisds

�

=
IX

i=1


�i

µi
µi

Z t

0

F
c
i

✓
F

�1

i,d

✓
Qi(t� s)

�i

◆◆
e
�µisds

�

 n� 2�,

where the last inequality follows since

µi

Z t

0

F
c
i

✓
F

�1

i,d

✓
Qi(t� s)

�i

◆◆
e
�µisds µi

Z t

0

e
�µisds= 1� e

�µit  1. (EC.9)

For this given �> 0, there exists a T1 such that for all t > T1,
PI

i=1
Xi(0)e�µit  �. Applying

theses estimates to (EC.7), we have U(t)�n+ �+n� 2� =�� for all t satisfying t > T1

and
PI

i=1
Qi(t)> 0.

Denote by S = {t� 0 :
PI

i=1
Qi(t)> 0} the collection of time epochs when the total fluid

queue length is larger than 0. Following the discussion of the above two cases, we have

that U(t) 0 for any t 2 [T1,+1) and U(t)�� for any t 2 S \ [T1,+1). We show that

m(S)<1, where m is the Lebesgue measure of real numbers. Consider the contradictory,

i.e., m(S) =1. Note that
Z 1

0

e
�ytU(t)dt=

Z T1

0

e
�ytU(t)dt+

Z 1

T1

e
�ytU(t)dt


Z T1

0

|U(t)|dt�
Z

S\[T1,+1)

e
�yt

�dt. (EC.10)

Since we assumem(S) =1, there exists a T2 >T1 such that
R
S\[T1,T2]

�dt= 2+2
R T1

0
|U(t)|dt.

Choosing y0 =
ln 2

T2
> 0 yields

Z

S\[T1,+1)

e
�y0t�dt� e

�y0T2

Z

S\[T1,T2]

�dt= 1+

Z T1

0

|U(t)|dt.

So we have
R1
0

e
�y0tU(t)dt�1 from (EC.10). On the other hand, (EC.8) implies that for

all y > 0,

Z 1

0

e
�yt

IX

i=1

Qi(t)dt=

Z 1

0

e
�ytU(t)dt+

IX

i=1

Z 1

0

e
�yt

Qi(t)dt ·
Z 1

0

e
�yt

µie
�µitdt

�
,



ec4 e-companion

where the last term follows from the Laplace transform. Due to the fact that
R1
0

e
�yt

µie
�µitdt 1 from (EC.9), the above implies

R1
0

e
�ytU(t)dt� 0 for all y > 0, which

is a contradiction. Hence, we have shown by contradiction that m(S)<1.

Since m(S)<1, for any " 2 (0,1) there exists a ⌧ � 1 such that m(S \ [⌧ � 1,1))< ".

So for any t� ⌧ , there exists a ⇠ 2 [t� ", t] such that
PI

i=1
Qi(⇠) = 0. The balance equation

(5) implies

Qi(t)Qi(⇠)+�i"= �i" for all t� ⌧. (EC.11)

Denote Xi,⌧ (t) :=Xi(t+ ⌧) and Qi,⌧ (t) := Qi(t+ ⌧). In other words, we shift the fluid

model by time ⌧ . Similar to (EC.6) we have the following “shifted” version:

IX

i=1

Xi,⌧ (t) =
IX

i=1

h
Xi(⌧)e

�µit +�i

Z t

0

F
c
i

✓
F

�1

i,d

✓
Qi,⌧ (t� s)

�i

◆◆
e
�µisds+µi

Z t

0

Qi,⌧ (t� s)e�µisds

i


IX

i=1

Xi(⌧)e
�µit +

IX

i=1

�i

µi
+

IX

i=1

�i",

where the inequality is due to (EC.9) and (EC.11). We can see that Xi(⌧)e�µit! 0 as t

goes to infinity. Due to the arbitrariness of ", taking the limsup on both sides of the above

equation yields limsup
t!1

PI
i=1

Xi,⌧ (t) =
PI

i=1
�i/µi <n. Thus, there must exists a T > 0 such

that
PI

i=1
Qi(t) = 0 for all t > T . Consequently, with regards to (9), we have lim

T!1
JT (⇡) = 0

for any work-conserving policy ⇡ 2⇧. Now by (EC.6), Qi(t) vanishing in finite time implies

the convergence of Bi(t). It can also be seen from (EC.6) that lim
t!1

Bi(t) =
�i
µi
. ⇤

EC.1.2. Equivalence of the convergence of Qi and Bi

Proposition 1 shows that the convergence of Qi is equivalent to that of Bi. This helps

to control the system based on the status of the server pool especially when the queue

length of the system is unobservable. This result will be multiply used in the proofs of the

optimality of our scheduling polices.

Proof of Proposition 1. We first prove that the convergence of Qi(t) implies that

of Bi(t). The left-hand side of (EC.6) is nothing but Qi(t)+Bi(t) and the right-hand side

of (EC.6) converges to a certain constant as t goes to infinity due to the convergence of

Qi(t). Therefore, Bi(t) also converges.

Now we start to prove that Bi(t) converging implies the convergence of Qi(t). Assume
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that lim
t!1

Bi(t) = bi, where the limit bi must satisfy bi 2 [0,�i/µi] for all i 2 I. Indeed, if

bi > �i/µi, then by (1), (3) and (5),

X
0
i(t) = �i�R

0
i(t)�µiBi(t)�

1

2
µi(bi�

�i

µi
) (EC.12)

for all large enough t, where R
0
i(t) � 0 following from (7) and the inequality holds due

to the assumption bi > �i/µi. The above implies Xi(t)!�1 as t goes to infinity, which

is a contradiction. Thus, we have bi  �i/µi for all i = 1, . . . , I. Moreover, there must be
PI

i=1
bi = n. Otherwise, assume to the contrary that

PI
i=1

bi < n
PI

i=1
�i/µi, where the

last inequality is due to Assumption 1. This implies there must exist an i0 2 {1, . . . , I}

satisfying bi0 < �i0/µi0 . Moreover, there will be
PI

i=1
Bi(t) < n for large enough t, which

means all the arrivals enter into service upon arriving. For class i0, we have for any ✏> 0

there will be Bi0(t) bi0 + ✏ for all large t. Then by (1) and (3), we have

B
0
i0(t) = �i0 �µi0Bi0(t)� �i0 �µi0(bi0 + ✏)� 1

2
(�i0 �µi0bi0)

for small enough ✏. The above implies Bi0(t)!+1, which is a contradiction. This proves
PI

i=1
bi = n. Now let

Xi,1 := bi +�i

Z F�1
i (1�µibi/�i)

0

F
c
i (s)ds.

Plugging (EC.4) into the equation in (EC.12) yields

X
0
i(t) = �iF

c
i

✓
F

�1

i,d

✓
Xi(t)�Bi(t)

�i

◆◆
�µiBi(t).

For any ✏> 0, there exists a T0 > 0 such that for all t > T0, bi� ✏Bi(t) bi + ✏, and as

well there exists �1, �2 > 0 depending only on ✏ such that

X
0
i(t)�✏ whenever Xi(t)�Xi,1 + �1, (EC.13)

X
0
i(t)� ✏ whenever Xi(t)Xi,1� �2, (EC.14)

for all t� T0, where �1 and �2 will be determined in the following. It can be easily checked

that

�iF
c
i

✓
F

�1

i,d

✓
Xi,1� bi

�i

◆◆
= µibi, (EC.15)
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where F�1

i,d (·) is defined in (EC.3). One can find F
c
i (F

�1

i,d (·)) is strictly decreasing. Therefore,

when Xi(t)�Xi,1 + �1, we have

X
0
i(t) = �iF

c
i

✓
F

�1

i,d

✓
Xi(t)�Bi(t)

�i

◆◆
�µiBi(t) �iF

c
i

✓
F

�1

i,d

✓
Xi,1� bi + �1� ✏

�i

◆◆
�µi(bi� ✏).

Solving the equation

�iF
c
i

✓
F

�1

i,d

✓
Xi,1� bi + �1� ✏

�i

◆◆
�µi(bi� ✏) =�✏

yields �1 = �1(✏)> 0 following from (EC.15) and the fact that F c
i (F

�1

i,d (·)) is strictly decreas-

ing. Moreover, �1(✏)! 0 as ✏ goes to zero also following from (EC.15). This determines �1

in (EC.13). The �2 in (EC.14) can be determined in a same way. Let L(t) = (Xi(t)�Xi,1)2.

Then

L0(t) = 2(Xi(t)�Xi,1)


�iF

c
i

✓
F

�1

i,d

✓
Xi(t)�Bi(t)

�i

◆◆
�µiBi(t)

�
�2✏min{�1, �2},

whenever Xi(t)  Xi,1 � �1 or Xi(t) � Xi,1 + �2. So there must be a T > T0 such that

Xi(t) 2 (Xi,1 � �1,Xi,1 + �2) for all t > T . Since �1 and �2 can be arbitrarily small,

we have limt!1Xi(t) = Xi,1. Thus Qi(t) also converges. More specifically, lim
t!1

Qi(t) =

�i

R F�1
i (1�µibi/�i)

0
F

c
i (s)ds. This implies (11). And we proved that the convergence of Bi and

Qi are equivalent.

In view of (EC.4) and (EC.15), we have lim
T!1

1

TRi(T ) = µibi for a convergent policy. Thus,

the convergence of the total cost JT (⇡) immediately follows from (9) and satisfies (12) for

the cost of each class. ⇤

EC.1.3. Types of the Optimization Problem

In this paper three scheduling polices are proposed to cater the di↵erent types of the

nonlinear programming (13). Lemma 1 provides su�cient conditions to each type of the

optimization problem.

Proof of Lemma 1. It is evident that (14) is a nondecreasing function in bi for convex

cost function Ci and nonincreasing hazard rate function hi. The reason is simply that

ci(�i

R x

0
F

c
i (s)ds)µi/hi(x) is nondecreasing in x, so is the derivative (d/dbi)Ji(bi). Then the

objective function
PI

i=1
Ji(bi) is a convex function, and the optimization problem (13) is

a convex programming.
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On the other hand, if the cost function Ci is concave and the hazard rate function

hi is nondecreasing then the objective function Ji(bi) in (13) is a concave function of bi.

Indeed, it follows that ci(�i

R x

0
F

c
i (s)ds)µi/hi(x) becomes nonincreasing in x. Thus, the

derivative (d/dbi)Ji(bi) is non-increasing in bi. Therefore the objective function
PI

i=1
Ji(bi)

is a concave function, and the optimization problem (13) becomes a concave optimization.

⇤

EC.2. The Original Queueing System

As explained in §2, our fluid model of a multiclass G/M/n+GI queue follows directly

from Atar et al. (2014). Since they focused on the fixed priority policy, the dynamic pri-

ority policy (16) was only proved when the priority value function is specified to be (21).

Thus, we still need to prove that (16) holds under our proposed policies. This is shown

in Theorem EC.1. We also prove in Theorem EC.2 that under the stochastic version of

our proposed policies the fluid-scaled queueing system can also asymptotically achieve the

optimal value J
⇤ of the nonlinear programming (13).

To this end, let (EN
,B

N
,X

N
,Q

N
,D

N
,K

N
,R

N
,⌘

N) be the prelimit stochastic processes

of the fluid limits (E,B,X,Q,D,K,R,⌘) defined in §2. For the Nth system, there are n
N

homogeneous servers that serve customers of I classes. The arrival processes {EN
i : i =

1, . . . , I} are mutually independent renewal processes with mean interarrival times (�N
i )

�1,

respectively. Upon arrival customers who cannot be served immediately will join an infinite-

capacity queue dedicated to their class. Each class-i customer has an independent and

identically distributed (i.i.d.) patience time following distribution Fi for waiting in queue,

and abandons the queue once the waiting time exceeds the patience time. Once admitted

to service, a class-i customer will be served with exponentially distributed service time

with mean 1/µi, i.e., the service time follow the distribution function Gi(x) = 1� e
�µix

depending on the customer class i. Note that the service and patience time distributions

are independent of N . It’s worth pointing out that only ⌘
N the measure-valued process of

the bu↵er is needed since the measure-valued process of the server pool just becomes an

auxiliary process due to the exponential service time distributions. The stochastic processes

characterize exactly the same dynamics of a multiclass many-server queueing system as

that of §2 in Atar et al. (2014) except the scheduling policy. Thus, we won’t repeat the

dynamics of the original queueing model here. The stochastic version of our policies will
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be proposed in (EC.19) together with three priority value functions in (EC.20), (EC.21)

and (EC.22). Before that, we denote by ⇧N the class of all work-conserving policies that

satisfy, for all t� 0,

�
n
N �

IX

i=1

B
N
i (t)

� IX

i=1

Q
N
i (t) = 0.

Stochastic Cost Function. Assume that each queue i incurs a per unit time queue

length cost

C
N
i (QN

i (t)) =Ci(Q
N
i (t)/N), (EC.16)

where Ci(·) is a nondecreasing function with the additional properties in Assumption 1

and the cost function is rescaled as the parameter N changes. Actually, the same scaling

has also been used in §7 of Mandelbaum and Stolyar (2004). It also incurs a penalty cost

�i for each class-i customer who abandons the queue before being admitted to service. For

any work-conserving policy ⇡
N 2⇧N , consider the rescaled average cost function

J
N
T (⇡N) =

1

T

IX

i=1

Z T

0

Ci(Q
N
i (s)/N)ds+ �iR

N
i (T )/N

�
, (EC.17)

where the first term on the right-hand side of (EC.17) is due to (EC.16) and the last term

about the abandon penalties is also rescaled by N . The idea of the above cost function also

follows from Mandelbaum and Stolyar (2004), where the authors study the almost sure

convergence of the cost function using Skorohod representation theorem. An alternative

way is to consider the convergence in mean, e.g., in Atar et al. (2010, 2014) the authors

consider the expectation of the cost function and the expectation in their papers can be

directly appended to the queue length process due to their assumption of linear cost.

Stochastic Scheduling Policies. In the Nth system, let PN
i (t) be the priority value

function of each level. Then the stochastic version of the fluid dynamic priority policy (15)

is said to be: at time t, given that a customer is to be served by an idle server, it chooses

the head-of-the-line customer from the class with index

i2 argmax
i=1,...,I

P
N
i (t), (EC.18)

where P
N
i (t) is the priority value for class i at time t of the Nth system. If queue i with

the highest priority value is empty, the idle server will check classes with the second largest
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priority value, so on so forth. Ties are broken arbitrarily once there are multiple queues

with same priority value, for example, in favor of the smallest index i. It can be easily seen

that the stochastic dynamic priority policy (EC.18) is equivalent to

Z t

0

X

{j=1,...,I:PN
j (s)>PN

i (s)}

Q
N
j (s)dK

N
i (s) = 0, i= 1, . . . , I. (EC.19)

Note that
P

{j=1,...,I:PN
j (s)>PN

i (s)}Q
N
j (s) = 0 if {j = 1, . . . , I : PN

j (s)>P
N
i (s)}= ;.

In the following, we consider three stochastic scheduling policies that correspond to the

three fluid scheduling polices proposed in §3.

• Target-allocation Policy, which we denote by ⇡
N
b⇤ given the priority value function

P
N
i (t) = b

⇤
i �B

N
i (t)/N, (EC.20)

where we apply the same scaling as in (EC.16) and b
⇤
i is an optimal solution of the nonlinear

programming (13).

• The Generalized cµ/h Rule, which we denote by ⇡
N
G given the priority value function

P
N
i (t) =

ci

��N
i
N

R F�1
i (1�BN

i (t)µi/�N
i )

0
F

c
i (s)ds

�
µi

hi(F
�1

i (1�BN
i (t)µi/�

N
i ))

+ �iµi. (EC.21)

Recall that hi is the hazard rate function of the patience time distribution Fi and in (10)

we have (d/dx)Ci(x) = ci(x), to which we also apply the same scaling as in (EC.16).

• Fixed Priority Policy, which we denote by ⇡
N
P ⇤ given the priority value function (after

re-ordering the class indices if needed)

P
N
i (t) = I � i. (EC.22)

Asymptotic Analysis. In the many-server heavy tra�c regime, both the arrival rates

�
N
i , i= 1, . . . , I, and the number of agents nN increase to infinity. More precisely, asN !1,

�
N
i

N
! �i, i= 1, . . . , I, and

n
N

N
! n. (EC.23)

Define the fluid-scaled processes X̄
N
i = N

�1
X

N
i and define Ē

N
i , B̄N

i , Q̄N
i , D̄

N
i , K̄

N
i , R̄N

i

analogously. Similarly, ⌘̄Ni =N
�1
⌘
N
i for the measure-valued process. We assume that the

initial states satisfy X̄
N
i (0))Xi(0) and ⌘̄

N
i,0) ⌘i,0 as N !1 for all i= 1, . . . , I.
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Theorem EC.1 (Fluid Limits). The sequence of fluid-scaled stochastic processes

{(ĒN
, B̄

N
, X̄

N
, Q̄

N
, D̄

N
, K̄

N
, R̄

N
, ⌘̄

N) :N 2N} under any one of the three policies ⇡
N
b⇤, ⇡

N
G

and ⇡
N
P ⇤ is tight in the Skorohod-J1 topology and any subsequential limit of the fluid-

scaled stochastic processes satisfies the fluid model equations (1)–(8) together with the fluid

dynamic priority policy (16) specified by ⇡b⇤, ⇡G and ⇡P ⇤ in §3, respectively.

Proof. Following the same argument as Theorem 4.3 of Atar et al. (2014), we can

conclude that the fluid-scaled stochastic processes {(ĒN
, B̄

N
, X̄

N
, Q̄

N
, D̄

N
, K̄

N
, R̄

N
, ⌘̄

N) :

N 2N} are tight for any work-conserving policy (including our proposed policies ⇡
N
b⇤ , ⇡

N
G

and ⇡
N
P ⇤). From their argument, we can also conclude that any subsequential limit also

satisfies the fluid model equations (1)–(8). This together with (EC.23) implies that any

subsequential limit of PN
i (t) in (EC.20), (EC.21) and (EC.22) is just Pi(t) in (17), (20)

and (21), respectively. For notational simplicity, we still use index N for the convergent

subsequence.

It remains to prove that (16) also holds under the three fluid scheduling policies ⇡b⇤ , ⇡G

and ⇡P ⇤ . By Lemma EC.1, let K 0
i(t) = (d/dt)Ki(t). For any fixed i2 {1, . . . , I}, it su�ces to

prove that K 0
i(t) = 0 if

P
{j=1,...,I:Pj(t)>Pi(t)}Qj(t)> 0, which gives (16). So assume that there

exists t > 0 and j 2 {1, . . . , I} such that Pj(t)>Pi(t) and Qj(t)> 0. Due to the continuity

of Pj and Pi (which are defined in (17), (20) and (21) for our proposed fluid policies ⇡b⇤ ,

⇡G and ⇡P ⇤ , respectively) and the continuity of Qj by Lemma EC.1, we can conclude that

for N large enough P
N
j (s)>P

N
i (s) and Q̄

N
j (s)> 0 for |s� t|< � and some �> 0. Here, we

map all the random objects to the same probability space such that all weak convergence

becomes almost sure convergence by Skorohod representation theorem (see, for example,

Lemma C.1 in Zhang (2013)). According to the stochastic dynamic priority policy (EC.18)

(or equivalently (EC.19)), K̄N
i (t+�)�K̄N

i (t��) = 0, and thereforeKi(t+�)�Ki(t��) = 0.

This gives us the desired result. ⇤
Recall that J⇤ is the minimum value of the nonlinear programming (13) and by Propo-

sition 1 it is actually the lower bound of any fluid convergent policies. We have proven in

Theorems 2, 3 and 4 that the fluid model can achieve the minimum value J
⇤ under the

three fluid scheduling policies ⇡b⇤ , ⇡G, and ⇡P ⇤ . For the original queueing system, our goal

is similar to find a scheduling policy such that J⇤ can also be asymptotically achieved in

the many-server heavy tra�c regime. We refer to such a scheduling policy as an asymp-

totically stationary optimal control policy. The following theorem shows that the optimal
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value J
⇤ can actually be asymptotically achieved under any one of the stochastic policies

⇡
N
b⇤ , ⇡

N
G and ⇡

N
P ⇤ . Actually, it is exactly the stochastic version of Theorems 2, 3 and 4. Since

Theorem EC.1 ensures the subsequential limit of the fluid-scaled stochastic processes, we

need to consider both the limit inferior and limit superior of the cost function.

Theorem EC.2 (Asymptotically Stationary Optimality of Our Policies). Given

the conditions in Theorems 2, 3 and 4 respectively, there is

lim inf
T!1

lim inf
N!1

J
N
T (⇡N) = limsup

T!1
limsup
N!1

J
N
T (⇡N) = J

⇤ (EC.24)

almost surely, where ⇡
N = ⇡

N
b⇤, ⇡

N
G and ⇡

N
P ⇤ accordingly.

Proof. We first consider the target-allocation policy ⇡
N
b⇤ . By Theorem EC.1, for the

sequence of the target-allocation policies {⇡N
b⇤} we can always choose a convergent subse-

quence as the supremum. By Skorohod representation theorem (see, for example, Lemma

C.1 in Zhang (2013)) we can map all the random objects to the same probability space so

that all weak convergence becomes almost sure convergence. Thus, there is a fluid target-

allocation policy ⇡b⇤ such that limsup
N!1

J
N
T (⇡N

b⇤) = JT (⇡b⇤) almost surely. It then follows from

Theorem 2 that the second equation in (EC.24) holds. The limit inferior in (EC.24) follows

due to the same reason. The proof for the other two policies ⇡
N
G and ⇡

N
P ⇤ is exactly the

same. Thus, we omit it. ⇤

EC.3. Proofs of the Optimality of the Fluid Scheduling Policies

EC.3.1. Flow Rates of the Fluid Model

The following lemma extends Theorem 3.2 in Atar et al. (2014) and characterizes a notable

property of the dynamic priority policy that the entrance into service process can be

represented by the external arrival and departure processes.

Let ⇤
Ij(t) be the collection of indices with the first jth highest priority value at time t

recursively defined as follows:

⇤
I1(t) = argmax

i2{1,...,I}
Pi(x), (EC.25)

and for 1 j  I,

⇤
Ij+1(t) =

⇤
Ij(t)[ argmax

i2{1,...,I}\⇤Ij(t)
Pi(t).
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Lemma EC.2. Consider the fluid model (1)–(8) given any continuous priority value func-

tion Pi(t). Then the entrance into service processes Ki(t) are absolutely continuous, and

the derivatives K
0
i(t) := (d/dt)Ki(t) satisfy a.e. for j = 1, . . . , I,

X

i2⇤Ij(t)

K
0
i(t) =

8
>>>><

>>>>:

PI
i=1

µiBi(t) if
P

i2⇤Ij(t)
Qi(t)> 0,

[
PI

i=1
µiBi(t)]^

P
i2⇤Ij(t)

�i if
P

i2⇤Ij(t)
Qi(t) = 0,

PI
i=1

Bi(t) = n,

P
i2⇤Ij(t)

�i if
PI

i=1
Bi(t)<n,

(EC.26)

where a^ b is the minimum of a and b.

Proof. We prove this lemma following a similar argument to Theorem 3.2 in Atar et al.

(2014). The absolutely continuity of Ki has been proven in Lemma EC.1.

If
PI

i=1
Bi(t) < n for some t, then by the continuity of Bi’s (which follows from (1)

using the continuity of Ki and Di) this holds on a neighborhood of t. For any s in such a

neighborhood, it is easily seen that Qi(s) = 0 by (8) and R
0
i(s) = 0 by (EC.4). Hence, by

(5), we have Ki(s)�Ki(t) =Ei(s)�Ei(t). This shows K 0
i(t) = �i for all i= 1, . . . , I.

On the other hand, if
P

i2⇤Ij(t)
Qi(t)> 0, then we have

P
i2⇤Ij(t)

Qi(s)> 0 for any s� t

in a right neighborhood of t by the continuity of Qi’s (which follows from (5) using the

continuity of Ei, Ri, and Ki). By (8), for any s in such a neighborhood,
PI

i=1
Bi(s) = n.

We also have ⇤
Ij(s)⇢ ⇤

Ij(t) for small enough neighborhood, which is due to continuity of

the priority value function. According to the definition of the dynamic priority policy (15),

customers with lower priority value can be served only if those with higher priority are

all in service. This together with the fact
P

i2⇤Ij(t)
Qi(s) > 0 implies that there must be

K
0
i(s) = 0 for all i /2 ⇤

Ij(t) for small enough neighborhood. It then follows from (1) that

X

i2⇤Ij(t)

Ki(s)�
X

i2⇤Ij(t)

Ki(t) =
IX

i=1

Di(s)�
IX

i=1

Di(t).

By (3), the above implies that
P

i2⇤Ij(t)
K

0
i(t) =

PI
i=1

µiBi(t) if
P

i2⇤Ij(t)
Qi(t)> 0.

Now we start to prove the second entry in (EC.26). Since
PI

i=1
Bi(t) and

P
i2⇤Ij(t)

Qi(t)

are absolutely continuous, it follows that
PI

i=1
B

0
i(t) = 0 a.e. on S1 := {t :

PI
i=1

Bi(t) = n}
and

P
i2⇤Ij(t)

Q
0
i(t) = 0 a.e. on S2 := {t :

P
i2⇤Ij(t)

Qi(t) = 0} by Theorem A.6.3 in Dupuis

and Ellis (1997). Moreover, from (1) and (5) we have

IX

i=1

B
0
i(t) =

IX

i=1

K
0
i(t)�

IX

i=1

µiBi(t),
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X

i2⇤Ij(t)

Q
0
i(t) =

X

i2⇤Ij(t)

�i�
X

i2⇤Ij(t)

K
0
i(t)�

X

i2⇤Ij(t)

R
0
i(t).

Note that R
0
i(t) = 0 whenever Qi(t) = 0 by (EC.4). Thus a.e. on S1 \ S2, we have

PI
i=1

K
0
i(t) =

PI
i=1

µiBi(t) and
P

i2⇤Ij(t)
K

0
i(t) =

P
i2⇤Ij(t)

�i. Hence a.e. on S1 \ S2,
P

i2⇤Ij(t)
K

0
i(t) =

P
i2⇤Ij(t)

�i(t) = [
PI

i=1
µiBi(t)]^

P
i2⇤Ij(t)

�i. This completes the proof. ⇤

EC.3.2. Optimality of the Target-allocation Policy and the Gcµ/h Rule

In view of the fact that the priority value functions go to an equal constant under both

policies. We will see that the proofs of the optimality of the target-allocation policy and

the Gcµ/h rule are exactly the same. Thus we prove Theorems 2 and 3 simultaneously,

which is presented in the end of this subsection. Before that, some auxiliary Lemmas EC.3

– EC.6 are analyzed. First we introduce the following auxiliary functions.

For the target-allocation policy ⇡b⇤ proposed in §3.1, let

Ai(x) = ↵0 + b
⇤
i �x, (EC.27)

where ↵0 can be chosen as any constant. In order to have a same proof as the optimality

of the Gcµ/h rule, we choose ↵0 to be the one in (18). With a little bit abuse of notation,

for the Gcµ/h rule, we also introduce Ai(·) as follows:

Ai(x) =
ci

�
�i

R F�1
i (1�xµi/�i)

0
F

c
i (u)du

�
µi

hi(F
�1

i (1�xµi/�i))
+ �iµi. (EC.28)

Note that by (18) and (EC.27), we have

Ai(b
⇤
i ) = ↵0 (EC.29)

for both Ai(·) in (EC.27) and (EC.28). Obviously, Ai(·) in (EC.27) is strictly decreasing.

And Ai(·) in (EC.28) is also a strictly decreasing function under Assumption 2. Thus,

within this subsection Ai(x) could be either (EC.27) or (EC.28). Now introduce

⇤
A(B(t)) := max

i=1,...,I
Ai(Bi(t)). (EC.30)

In view of (17) and (EC.27), for the target-allocation policy, we can consider Ai(Bi(t))

as the priority value function instead of the one in (17). Then ⇤
I1(t) in (EC.25) can be

replaced by

⇤
I1(t) := {i2 {1, . . . , I} :Ai(Bi(t)) =

⇤
A(B(t))}, (EC.31)
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which is the collection of indices with the highest priority value at time t. And define

⇤
Bi(t)

.
= {⇣ � 0 :Ai(⇣) =

⇤
A(B(t))}. (EC.32)

Lemma EC.3. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). The following properties hold at any time t� 0.

(1) The process Bi(t) is absolutely continuous and the derivative B
0
i(t) := (d/dt)Bi(t) sat-

isfies a.e.

X

i2⇤I1(t)

B
0
i(t)� 0. (EC.33)

(2) Moreover, if
PI

i=1

⇤
Bi(t)  n� �, for some � > 0, then there exists a constant ✏0 > 0

depending only on � such that

Bi(t) b
⇤
i � ✏0 for all i2 ⇤

I1(t), (EC.34)

and there also exists a constant ✏1 > 0 depending only on � such that

X

i2⇤I1(t)

B
0
i(t)� ✏1. (EC.35)

Proof. First, the absolute continuity of Bi(t) follows from (1) and Lemma EC.2. Now,

we claim that there must be Bi(t) b
⇤
i for all i2 ⇤

I1(t). Suppose there exists an i0 2 ⇤
I1(t)

satisfying Bi0(t) > b
⇤
i0 . Together this with (EC.29) yields Ai0(Bi0(t))  Ai0(b

⇤
i0) = ↵0. By

(EC.31), this implies ⇤
A(B(t)) ↵0, which yields Ai(Bi(t)) ↵0 for all i2 {1, . . . , I}. Thus

Bi(t) � b
⇤
i for all i 2 {1, . . . , I} following from (EC.29). Due to the strict inequality of

Bi0(t)> b
⇤
i0 , we obtain

PI
i=1

Bi(t)> n. This contradicts (2) and then it follows Bi(t) b
⇤
i

for all i2 ⇤
I1(t). From (1),

X

i2⇤I1(t)

B
0
i(t) =

X

i2⇤I1(t)

K
0
i(t)�

X

i2⇤I1(t)

D
0
i(t). (EC.36)

By Lemma EC.2, the above expression is nonnegative once
P

i2⇤I1(t)
K

0
i(t) =

PI
i=1

D
0
i(t) =

PI
i=1

µiBi(t). So we just need to consider the other possible case
P

i2⇤I1(t)
K

0
i(t) =

P
i2⇤I1(t)

�i

when proving (EC.33), which still holds since D
0
i(t) =Bi(t)µi  b

⇤
iµi  �i for all i 2 ⇤

I1(t).

Thus (EC.33) holds.
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We show that the condition
PI

i=1

⇤
Bi(t) n� � implies there exists an ✏

0
> 0, such that

Bi(t) b
⇤
i � ✏

0 for all i2 ⇤
I1(t), (EC.37)

where ✏
0 depends only on the subset ⇤

I1(t) and �. Indeed, there must be Bi(t)< b
⇤
i for all

i2 ⇤
I1(t) with strict inequalities. Otherwise, we will have Bi(t) = b

⇤
i for at least one i2 ⇤

I1(t),

which causes ⇤
A(B(t)) = ↵0 following from (EC.29) and (EC.31). Then ⇤

Bi(t) = b
⇤
i for all

i 2 I deducing from (EC.32). This is a contradiction to the assumption
PI

i=1

⇤
Bi(t) < n

since
PI

i=1
b
⇤
i = n. Therefore ⇤

A(B(t)) = ↵0 + ", for some "> 0. From (EC.32), we have

IX

i=1

⇤
Bi(t) =

IX

i=1

A
�1

i (↵0 + ") s� �.

Let "⇤ satisfy
PI

i=1
A

�1

i (↵0+"
⇤) = n� �. There must be 0< "

⇤  " since A�1

i , i2 {1, . . . , I},
are decreasing. By (EC.31), for all i2 ⇤

I1(t), Bi(t) =A
�1

i (↵0+")A
�1

i (↵0+"
⇤) = b

⇤
i � (b⇤i �

A
�1

i (↵0+"
⇤)). Now let ✏0 =mini2⇤I1(t)(b

⇤
i �A

�1

i (↵0+"
⇤)) which is positive and depends only

on the subset ⇤
I1(t)⇢ {1, . . . , I} and �. This proves (EC.37). Because there is only a finite

number of subsets of {1, . . . , I}, we have proved (EC.34) and ✏0 only depends on �.

From (3) and (EC.36), if
P

i2⇤I1(t)
K

0
i(t) =

P
i2⇤I1(t)

�i, then

X

i2⇤I1(t)

B
0
i(t) =

X

i2⇤I1(t)

�i�
X

i2⇤I1(t)

Bi(t)µi

�
X

i2⇤I1(t)

�i�
X

i2⇤I1(t)

(b⇤i � ✏0)µi

�
X

i2⇤I1(t)

µi✏0

� min
i2{1,...,I}

µi✏0,

where the first inequality uses (EC.34), the second inequality is due to the fact �i �
b
⇤
iµi. Another case is

P
i2⇤I1(t)

K
0
i(t) =

PI
i=1

D
0
i(t), which happens only when

PI
i=1

Bi(t) = n

deduced from Lemma EC.2. In this case the set {1, . . . , I} \ ⇤
I1(t) is nonempty, otherwise,

observing (EC.34),
PI

i=1
Bi(t) =

P
i2⇤I1(t)

Bi(t)<
P

i2⇤I1(t)
b
⇤
i  n becoming a contradiction.

Then there must be an i1 2 {1, . . . , I} \ ⇤
I1(t) satisfying Bi1(t)� b

⇤
i1 . Thus, by (EC.36),

X

i2⇤I1(t)

B
0
i(t) =

X

i2{1,...,I}\⇤I1(t)

D
0
i(t)�Bi1(t)µi1 � b

⇤
i1µi1 � min

i2{1,...,I}
b
⇤
iµi.

Combining the above two inequalities yields (EC.35). ⇤
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It follows from (EC.27) and the absolutely continuous of Bi(t) proved in Lemma EC.3

that Ai(Bi(t)) is absolutely continuous for the target-allocation policy. For the Gcµ/h

rule, with the fact ci and hi are di↵erentiable assumed in Theorem 3, the function Ai(x)

in (EC.28) is absolutely continuous. Thus Ai(Bi(t)) is also absolutely continuous for the

Gcµ/h rule. This implies that ⇤
A(B(t)) is absolutely continuous, so is ⇤

Bi(t) by (EC.32).

Let us call such points t strictly regular. This concept was also used in Mandelbaum and

Stolyar (2004) (see Page 847 for reference).

Lemma EC.4. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). Suppose t is a strictly regular point, then

d

dt
[Ai(Bi(t))] =

d

dt
[⇤A(B(t))] for all i2 ⇤

I1(t). (EC.38)

Proof. Suppose contrarily

d

dt
[Ai0(Bi0(t))] = max

i2⇤I1(t)

d

dt
[Ai(Bi(t))]> min

i2⇤I1(t)

d

dt
[Ai(Bi(t))] =

d

dt
[Ai1(Bi1(t))]

for some i0, i1 2 ⇤
I1(t). There exist sequences {✏n

1
, ✏

n
2
} both converging to 0

such that Ai0(Bi0(t + ✏
n
1
)) > Ai1(Bi1(t + ✏

n
1
)) and Ai0(Bi0(t � ✏

n
2
)) < Ai1(Bi1(t �

✏
n
2
)). Thus lim

s!t+

⇤A(B(s))�⇤A(B(t))
s�t = lim

✏n1!0

Ai0 (Bi0 (t+✏n1 ))�Ai0 (Bi0 (t))

✏n1
= d

dt [Ai0(Bi0(t))]. Similarly,

lim
s!t�

⇤A(B(s))�⇤A(B(t))
s�t = d

dt [Ai1(Bi1(t))] 6= d
dt [Ai0(Bi0(t))], which contradicts the strict regular-

ity at t. This completes the proof. ⇤

Lemma EC.5. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). The following inequalities hold for almost all t� 0,

⇤
A(B(t))� ↵0, (EC.39)

d

dt
[⇤A(B(t))] 0. (EC.40)

And if
PI

i=1

⇤
Bi(t) n� �, for some �> 0, then there exists an ✏1 > 0 depending only on �

such that for almost all t > 0,

d

dt
[

IX

i=1

⇤
Bi(t)]� ✏1, (EC.41)

where ✏1 is given in (EC.35).
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Proof. In view of (2) and the fact that
PI

i=1
b
⇤
i = n, there must be an i2 {1, . . . , I} such

that Bi(t) b
⇤
i . Then by (EC.29) and (EC.30) the inequality (EC.39) follows.

We have shown in the above of Lemma EC.4 that ⇤
A(B(t)) and ⇤

Bi(t) for all i= 1, . . . , I

are absolutely continuous, which means they have derivatives almost everywhere. Consider

an arbitrary strictly regular point t > 0. We cannot have (d/dt)⇤A(B(t)) > 0 since by

Lemma EC.4 this would imply B
0
i(t)< 0 for all i2 ⇤

I1(t). This contradicts (EC.33). So we

have (EC.40).

Next we prove (EC.41). Using (EC.31), (EC.32), and (EC.38) yields ⇤
B

0
i(t) = B

0
i(t) for

all i2 ⇤
I1(t). Therefore,

IX

i=1

⇤
B

0
i(t)�

X

i2⇤I1(t)

⇤
B

0
i(t) =

X

i2⇤I1(t)

B
0
i(t)� ✏1,

where the first inequality comes from the fact that ⇤
B

0
i(t)� 0 for all i= 1, . . . , I (which is

implied by (EC.40)) and the second inequality follows from (EC.35). ⇤
The following lemma is similar to Proposition 7 in van Mieghem (1995), which is essen-

tially a su�cient condition of the optimality of our policies.

Lemma EC.6. Consider the fluid model (1)–(8) given the priority value function (17) or

(20). If

max
1k,lI

|Ak(Bk(t))�Al(Bl(t))|! 0 as t!1, (EC.42)

then the amount of fluid content in service Bi(t) satisfies lim
t!1

Bi(t) = b
⇤
i for all i= 1, . . . , I.

Proof. We first claim that for any ✏0 > 0 and i2 {1, . . . I},

Bi(t) �i/µi + ✏0 for large enough t. (EC.43)

Otherwise, there must be an i0 2 {1, . . . , I} and a subsequence tn!1 such that

Bi0(tn)> �i0/µi0 + ✏0 � b
⇤
i0 + ✏0. (EC.44)

We have Ai0(Bi0(tn))  Ai0(b
⇤
i0) = ↵0 by (EC.29) and the fact that Ai0(·) is decreasing.

Then by (EC.42), Ai(Bi(tn))  ↵0 + ✏
0 for all i 6= i0 and large enough tn, where ✏

0
> 0

could be arbitrarily small. Thus we can chose ✏
0 small enough such that for all i 6= i0,

Bi(tn)� b
⇤
i � ✏0/(2(I� 1)) for large enough tn. This together with the assumption (EC.44)

yields
PI

i=1
Bi(tn)�

PI
i=1

b
⇤
i + ✏0/2>n, contradicting (2). Thus (EC.43) holds.
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Now we use (EC.43) to prove

lim
t!1

IX

i=1

Bi(t) = n. (EC.45)

To this end, we show that for any "> 0 there exists a �> 0 such that

IX

i=1

B
0
i(t)� � whenever

IX

i=1

Bi(t) n� ". (EC.46)

Since
PI

i=1
�i/µi � n, there must exist i1 2 {1, . . . , I} such that Bi1(t)

�i1
µi1
� "

2I . Then we

can choose the ✏0 in (EC.43) small enough such that

IX

i=1

D
0
i(t) =

X

i 6=i1

µiBi(t)+µi1Bi1(t)
IX

i=1

�i� c",

where c is a small enough constant. Note that
PI

i=1
K

0
i(t) =

PI
i=1

�i whenever
PI

i=1
Bi(t)<

n by (EC.26). Thereby,
PI

i=1
B

0
i(t) � c" is strictly positive deduced from the above and

(1). Let �= c", then (EC.46) holds. This yields (EC.45).

Next we consider the following two cases:

Case 1: Ai(x) is given in (EC.27). Fix a class, say l 2 {1, . . . , I}. Then by (EC.27) and

(EC.42),

lim
t!1

|b⇤k�Bk(t)� (b⇤l �Bl(t))|= 0.

Summing over the classes k= 1, . . . , I,

lim
t!1

��
IX

k=1

(b⇤k�Bk(t))� I · (b⇤l �Bl(t))
��= 0.

From (EC.45), the above implies Bl(t)! b
⇤
l . Thus, Bi(t)! b

⇤
i for all i= 1, . . . , I.

Case 2: Ai(x) is given in (EC.28). We also fix a class, say l 2 {1, . . . , I}. The limit (EC.42)

shows that for all ✏1 > 0 there exists a T such that for all t > T ,

|Ak(Bk(t))�Al(Bl(t))|< ✏1 for all k 2 {1, . . . , I}.

Since Ak(x) is strictly decreasing and continuous in x according to (EC.28), its inverse A�1

k

is also strictly decreasing and continuous. Thus by (EC.43) and the above, for all ✏ > 0

there exists a �
0
> 0 such that if ✏0, ✏1 < �

0, then

��Bk(t)�A
�1

k (Al(Bl(t)))
��< ✏.
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Summing over the classes k= 1, . . . , I,

�����

IX

k=1

Bk(t)�
IX

k=1

A
�1

k (Al(Bl(t)))

�����< ✏I.

Because the function
PI

k=1
A

�1

k (Al(·)) is strictly decreasing , Bl(t) converges by (EC.45).

The policy satisfying (EC.42) controls the service capacity such that b⇤ = (b⇤
1
, . . . , b

⇤
I) is the

solution to the su�cient first order conditions of the minimization problem (13). Thus,

Bi(t)! b
⇤
i for all i = 1, . . . , I. Combining the above two cases yields the result of this

lemma. ⇤
Proof of Theorems 2 and 3. From the definition of ⇤

Bi(t) in (EC.32), we have

Ai(⇤Bi(t))�Ai(Bi(t)). Since Ai is decreasing, this inequality implies ⇤
Bi(t)Bi(t) for all

i= 1, . . . , I. Then it can be seen from (2) that
PI

i=1

⇤
Bi(t) n. This yields lim

t!1

P
i=1

⇤
Bi(t) =

n by (EC.41). Then, we also have limt!1
PI

i=1
Bi(t) = n following from (2). Hence,

limt!1(Bi(t)� ⇤
Bi(t)) = 0 for all i= 1, . . . , I. Thus we can conclude from (EC.32) that

lim
t!1

max
1k,lI

|Ak(Bk(t))�Al(Bl(t))|= 0.

It then follows from Lemma EC.6 that lim
t!1

Bi(t) = b
⇤
i . This together with Proposition 1

yields lim
T!1

JT (⇡b⇤) = lim
T!1

JT (⇡G) = J
⇤. Till now we complete the proof. ⇤

EC.3.3. Optimality of the Fixed Priority Policy

Proposition 2 shows that the fluid model given any fixed priority order converges to an

equilibrium with a special form as (23). For concave holding cost functions and nondecreas-

ing hazard rate functions, Theorem 4 states that the optimal scheduling policy must be in

the family of the fixed priority policies. The proof is placed in the end of this subsection.

Recall from the definition of i0 in (23), i0 is the biggest number such that
Pi0�1

i=1
�i/µi

is strictly less than n, which implies that the tra�c intensity of the first i0 � 1 classes

with high priorities are actually underloaded. Intuitively, their queue lengths should vanish

after a finite time under a fixed priority scheduling. The following lemma verifies such a

phenomena and claims that the first i0� 1 queues will become empty eventually.

Lemma EC.7. Under Assumption 1, for any class i 2 {1, · · · , i0 � 1}, where i0 is given

in (23), the queue length vanishes after a finite time and the amount of fluid content in
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service converges to (23). In other words, there exists a T > 0 such that Qi(t) = 0 for all

t� T and i2 {1, · · · , i0� 1}. And

lim
t!1

Bi(t) = �i/µi for all i2 {1, · · · , i0� 1}. (EC.47)

Proof. We prove the result by induction.

Step 1: As a first step, we show this lemma holds for i= 1. To prove this, we first show

that lim inf
t!1

B1(t) � b1 =
�1
µ1
. Suppose that B1(t)  �1

µ1
� � for some � > 0. Combining (1)

with (EC.26) yields

B
0
1
(t) =K

0
1
(t)�D

0
1
(t) =

8
>>>><

>>>>:

PI
i=1

µiBi(t)�µ1B1(t) if Q1(t)> 0,

[
PI

i=1
µiBi(t)]^�1�µ1B1(t) if Q1(t) = 0 and

PI
i=1

Bi(t) = n,

�1�µ1B1(t) if
PI

i=1
Bi(t)<n.

Then, one can easily see from the above equation that B
0
1
(t)� c > 0 for small constant c

only depending on �. Due to the arbitrariness of �, the result lim inf
t!1

B1(t)� b1 =
�1
µ1

thus

follows. Now for any ✏> 0, we have B1(t)� b1 � ✏ for all large t. This together with (3),

(2) and the first entry of (EC.26) implies when Q1(t)> 0 we have

K
0
1
(t) =

IX

i=1

D
0
i(t)� µ1B1(t)+µmin(n�B1(t))

� µ1(b1� ✏)+µmin(n� b1 + ✏)

� µ1b1 +
1

2
µmin(n� b1)

for small enough ✏> 0, where µmin =mini=1,...,I µi. Thus, Q0
1
(t)�1

2
µmin(n� b1) whenever

Q1(t)> 0 from (5). Therefore there exists t1 > 0 such that Q1(t) = 0 for all t� t1. Thus by

Proposition 1 we have lim
t!1

B1(t) = �1/µ1.

Step 2: Suppose that Lemma EC.7 is true for all i= 1, · · · , k� 12 {1, · · · , i0� 1}, i.e.,

lim
t!1

Bi(t) = bi for all i= 1, · · · , k� 1. (EC.48)

And there exists a Tk�1 > 0 such that
Pk�1

i=1
Qi(t) = 0 for all t� Tk�1. From this, we need

to show that Lemma EC.7 continues to hold for k 2 {1, · · · , i0 � 1}. Now by (5) we have
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Pk�1

i=1
K

0
i(t) =

Pk�1

i=1
�i for all t � Tk�1. So from (3) and (EC.26), one can see that for all

t� Tk�1,

K
0
k(t) =

8
>>>><

>>>>:

PI
i=1

µiBi(t)�
Pk�1

i=1
�i, if Qk(t)> 0,

�k ^
⇣PI

i=1
µiBi(t)�

Pk�1

i=1
�i

⌘
if Qk(t) = 0 and

PI
i=1

Bi(t) = n,

�k if
PI

i=1
Bi(t)<n.

(EC.49)

By (1),

B
0
k(t) =

8
><

>:

PI
i=1

µiBi(t)�µkBk(t)�
Pk�1

i=1
�i, if K 0

k(t) =
PI

i=1
µiBi(t)�

Pk�1

i=1
�i,

�k�µkBk(t), if K 0
k(t) = �k.

Similar to Step 1, we also show that lim inf
t!1

Bk(t)� bk =
�k
µk
. Suppose that Bk(t) �k

µk
� �

for some � > 0. From (EC.48) and the above, one can conclude that B
0
k(t) � c > 0 for a

small constant c only depending on �. As a consequence, we have lim inf
t!1

Bk(t)� bk =
�k
µk
.

Note that µibi = �i for all i2 {1, · · · , i0� 1}. Thus (EC.48) implies that for any ✏> 0

k�1X

i=1

�i� ✏
k�1X

i=1

µiBi(t)
k�1X

i=1

�i + ✏

for all large t. According to the above proved limit inferior of Bk(t), for any ✏
0
> 0, we have

Bk(t)� bk� ✏
0 for all large t. When Qk(t)> 0, using (2) and (EC.49), we have

K
0
k(t) =

IX

i=1

µiBi(t)�
k�1X

i=1

�i

�
k�1X

i=1

(µiBi(t)��i)+µkBk(t)+µmin(n�
kX

i=1

Bi(t)) (EC.50)

��✏+(µk�µmin)(bk� ✏
0)+µmin

 
n�

k�1X

i=1

(bi + ✏)

!

= µkbk +µmin(n�
kX

i=1

bi)� ✏� ✏
0
µk� (k� 1)✏0µmin+ ✏

0
µmin

� µkbk +
1

2
µmin(n�

kX

i=1

bi)

for small enough ✏, ✏
0
> 0. The above and (5) implies Q0

k(t)�1

2
µmin(n�

Pk
i=1

bi) whenever

Qk(t) > 0. Therefore, there exists a tk such that Qk(t) = 0 for all t � tk. Therefore, the

result lim
t!1

Bk(t) = �k/µk follows from Proposition 1. ⇤



ec22 e-companion

With Lemma EC.7, we now proceed with the proof of Proposition 2.

Proof of Proposition 2. Lemma EC.7 shows that the first i0 � 1 classes with high

priorities satisfy lim
t!1

Bi(t) = bi and there exists a T such that Qi(t) = 0, t � T , for all

i2 {1, . . . , i0�1}. And
Pi0�1

i=1
K

0
i(t) =

Pi0�1

i=1
�i for all t� T from (5) and (7). Then it follows

from (3) and (EC.26) that for all t� T ,

K
0
i0(t) =

8
>>>><

>>>>:

PI
i=1

µiBi(t)�
Pi0�1

i=1
�i if Qi0(t)> 0,

�i0 ^
⇣PI

i=1
µiBi(t)�

Pi0�1

i=1
�i

⌘
if Qi0(t) = 0 and

PI
i=1

Bi(t) = n,

�i0 if
PI

i=1
Bi(t)<n.

(EC.51)

In order to complete the proof of this theorem, a critical step is to prove lim
t!1

Bi0(t) =

bi0 = n�
Pi0�1

i=1

�i
µi
, which is less than or equal to �i0/µi0 according to the definition of i0

in (23). Deducing from (2), (23) and (EC.47), there must be limsup
t!1

Bi0(t) bi0 . Then it

su�ces to show that lim inf
t!1

Bi0(t)� bi0 . To this end, we consider the following two cases.

Case 1: i0 = I. Suppose that Bi0(t)  bi0 � � for some � > 0. For large enough t, this

could happen only when
PI

i=1
Bi(t)< n. Otherwise, we have

PI
i=1

Bi(t) = n. And by (2)

and (EC.47) this causes Bi0(t) = n�
Pi0�1

i=1
Bi(t)> bi0� � for all large enough t. So we just

need to consider
PI

i=1
Bi(t)<n. Then by (1) and (EC.51), B0

i0(t) = �i0 �µi0Bi0(t)� µi0�.

This implies lim inf
t!1

Bi0(t)� bi0 . Combining the limit superior in the above, it immediately

follows lim
t!1

Bi0(t) = bi0 .

Case 2: i0 < I. Deduce from (1) and (EC.51) that

B
0
i0(t) =

8
><

>:

PI
i=1

µiBi(t)�µi0Bi0(t)�
Pi0�1

i=1
�i, if K 0

i0(t) =
PI

i=1
µiBi(t)�

Pi0�1

i=1
�i,

�i0 �µi0Bi0(t), if K 0
i0(t) = �i0 .

Here we also suppose that Bi0(t)  bi0 � � for some � > 0. Together this with the above

equation, one can find that if K 0
i0(t) =

PI
i=1

µiBi(t)�
Pi0�1

i=1
�i, then

B
0
i0(t) =

i0�1X

i=1

[µiBi(t)��i] +
IX

i=i0+1

µiBi(t)

�
i0�1X

i=1

[µiBi(t)��i] +µmin(n�
i0�1X

i=1

Bi(t)� bi0 + �)

� 1

2
µmin�,
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where the last inequality follows from (EC.47). If K 0
i0(t) = �i0 , then B

0
i0(t)� �i0 �µi0bi0 +

µi0� � µi0�. It then follows that lim inf
t!1

Bi0(t) � bi0 . As argued in the above this implies

lim
t!1

Bi0(t) = bi0 . Apparently, together this with (2) and (EC.47) yields lim
t!1

Bi(t) = 0 for all

i= i0+1, · · · , I. The convergence of queue length processes can be seen from Proposition 1.

This completes the proof. ⇤
Proof of Theorem 4. We claim that there exists a global minimum for which 0<

bi < �i/µi for at most one index i. From Lemma 1, the nonlinear programming (13) is a

concave optimization problem if the cost functions Ci’s are concave and the hazard rate

functions hi’s are nondecreasing. Note that the constraint set is a convex set (acutally a

convex polytope), then it follows that the optimization problem admits a global minimum

at an extreme point, i.e., at one the vertices of this polytope. And at a vertex we have that

0< bi < �i/µi for at most one index i. Corresponding to any optimal vertex, we can define

an optimal fixed priority order. Then this theorem immediately follows from Propositions 1

and 2 (after re-ordering the class indices if needed). ⇤

EC.4. Dynamic Programming Algorithm

This section is devoted to developing a dynamic programming (DP) algorithm to solve the

Fractional 0-1 Knapsack Problem (28). It is easy to see that there exists a straightforward

algorithm, especially when K is relatively small. According to each possible order of items,

items are packed into the knapsack until the weight limit W is reached. Note that the last

item packed might be divided. After evaluating all of the sequences, the optimal solution

and the maximum value can be determined. However, such a brute-force algorithm is NP-

hard. Fortunately, the DP algorithm of the classical 0-1 Knapsack Problem inspired us to

develop a dynamic programming to solve it e�ciently.

A DP Algorithm for the Fractional 0-1 Knapsack Problem. We determine how

to optimally pack items into a knapsack, allowing at most one item to be divided, using a

four-step procedure.

Step 1: Decompose the problem into subproblems.

In view of (28), any feasible solution contains at most one fractionally packed item.

This suggests constructing a three-dimensional array M [0..K,0..W,0..K], where the third

dimension is used to track the fractionally packed item. For 1  k K, 0  w W and

0 lK, we consider the following two cases:
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Case 1: l = 0. The entry M [k,w,0] stores the maximum rewarded value of items packed

in their entirety from any subset of items {1,2, . . . , k} with total weight at most w. The

component 0 in M [k,w,0] indicates that there is no fractionally packed item.

Case 2: l 6= 0. The entry M [k,w, l] stores the maximum rewarded value of the fractionally

packed item l and the items packed in their entirety from any subset of items {1,2, · · · , k}\
{l} with total weight at most w.

We also need the following initial setting for k= 0,

M [0,w, l] =

8
>>>><

>>>>:

0 if l= 0,

Vl(w) if l > 0 and wl >w,

�1 if l > 0 and wl w.

(EC.52)

The first entry means no item is packed in the knapsack. The second one implies that

item l is fractionally packed with weight w since its full weight wl exceeds the weight limit

w. The third entry is illegal, since item l cannot be divided. Thus, we simply set the value

to be �1. For the case with weight limit w< 0, which is also illegal, we set

M [k,w, l] =�1 for all w< 0 and k, l� 0. (EC.53)

Step 2: Recursively define the value of an optimal solution.

We use the above notations to define the rewarded value of an optimal solution recur-

sively. Similar to the definition of M [k,w, l], we recursively define it for two cases as well.

For l= 0, which means no item is fractionally packed, the optimal solution corresponding

to M [k,w,0] is to either leave item k behind, in which case M [k,w,0] =M [k� 1,w,0], or

pack item k, in which case M [k,w,0] = Vk(wk)+M [k� 1,w�wk,0] given wk w. Due to

the penalty for a negative weight in (EC.53), we conclude that

M [k,w,0] =max{M [k� 1,w,0], Vk(wk)+M [k� 1,w�wk,0]} (EC.54)

for all 1  k K, 0  w W . Actually, (EC.54) is exactly the recursive equation of the

classical 0-1 Knapsack Problem (see §2.6 in Martello and Toth (1990)). For l = 1, . . . ,K,

where item l is exactly the fractionally packed item, we can similarly derive

M [k,w, l] =

8
><

>:

M [k� 1,w, l] if k= l,

max{M [k� 1,w, l], Vk(wk)+M [k� 1,w�wk, l]} if k 6= l.

(EC.55)
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for all 1 kK, 0wW , where the first entry means that item k has been fractionally

packed, and thus it cannot also be packed in its entirety. The second entry relies on a

similar explanation to that of (EC.54). Since this time item k is not the fractionally packed

item, it can be either left behind or packed in the optimal solution corresponding to the

maximum value M [k,w, l].

We show in the proposition below that these recursions can indeed be described by a

single recursive equation.

Proposition EC.1 (Recursive Equation). The Fractional 0-1 Knapsack Problem (28)

can be solved using dynamic programming. Namely, for any l 2 {0,1, . . . ,K}, we have the

following recursive equation

M [k,w, l] =max
�
M [k� 1,w, l], Vk(wk)+M [k� 1,w�wk, l] + Inf1{k=l}

 
, (EC.56)

holds for all k 2 {1, . . . ,K} and w 2 {0,1, . . . ,W}, where Inf =�1.

Proof. From the condition of this proposition, only k � 1 should be considered and

n = 0 for the boundary condition has been given in (EC.52). Thus, it’s easy to see that

the recursions (EC.54) and (EC.55) can be expressed as a unified equation (EC.56). In

order to prove (EC.56), we first consider a possible case k = l, which implies that item k

is the fractionally added item. Then M [k,w, l] = M [k � 1,w, l] since in this case item k

cannot be wholly taken. It remain to prove the case k 6= l. To compute M [k,w, l] we note

that there are only two choices for item k. If we leave the whole item k, then limited by

the maximum weight w the maximum reward with the wholly added items taken from

{1,2, · · · , k�1} and the fractionally added being item l is M [k�1,w, l]. If instead we take

the whole item k (only possible if w�wk), then we gain Vk(wk) immediately, but consume

wk weight of our storage. Now the rest weight limit becomes w�wk, then the maximum

reward with the remaining items {1,2, · · · , k� 1} is M [k� 1,w�wk, l]. In all, we obtain

Vk(wk) +M [k � 1,w � wk, l]. Note that if w < wk, then M [k � 1,w � wk, l] = �1 from

(EC.53). So the recursion (EC.56) holds in both cases. ⇤
Step 3: Compute the value of an optimal solution.

For any fixed l 2 {0,1 . . . ,K}, the above recursive equation (EC.56) suggests a two-

dimensional recursive equation. In all, there are K + 1 independent recursive equations.

To reach our goal, we just need to recursively calculate K + 1 two-dimensional recur-

sions for k 2 {1, . . . ,K} and w 2 {0,1, . . . ,W} based on the boundary conditions (EC.52)
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and (EC.53). Thus the running time of the dynamic programming algorithm is O(K2
W ).

Finally the optimal value of the Fraction 0-1 Knapsack Problem (28) is obtained as follows:

max
KX

k=1

Vk(yk) = max
l2{0,1,...,K}

M [K,W, l]. (EC.57)

Step 4: Construct an optimal solution.

From (EC.57), we find that Frac := argmaxl2{0,1,...,K}M [K,M, l] is the index of the frac-

tionally packed item of the optimal solution. The only remaining problem is to obtain the

indices of the items that are packed in their entirety. To that end, we need one auxiliary

three-dimensional array T [0..K,0..W,0..K] to be a Boolean array to find their indices.

Each entry T [k,w, l] records whether item k is packed in its entirety in realizing the highest

value M [k,w, l]. That is, T [k,w, l] = 1 if item k is packed in its entirety and T [k,w, l] = 0

otherwise. In the optimal solution, item K is packed in its entirety if T [K,W,Frac] = 1. We

can now repeat this argument for T [K�1,W �wK ,Frac]. And item K is not packed in its

entirety if T [K,W,Frac] = 0. In this case, we can repeat the argument for T [K�1,W,Frac].

Iterating the argument K times from item K downward to item 1 will give the indices of

all items that are packed in their entirety.

Thus far we have identified the optimal value and the solution to (28). The step-by-step

procedures are described in Algorithm 1.

Remark EC.1. To the best of our knowledge, the problem (28) was only studied in Burke

et al. (2008). They also proposed an exact algorithm to solve that problem. The complexity

of their approach is O(UK
2
W ), where U = maxk=1,...,K wk. The additional U is needed

because they have to further calculate each possible value of the fractionally packed item.

In contrast, the complexity our algorithm is only O(K2
W ) as shown in Step 3. Obviously,

our proposed dynamic programming algorithm is more e�cient. Note that the classical 0-1

Knapsack Problem needs O(KW ) time. More importantly, Propositions 3 and 4 reveal the

internal connection between queueing and knapsack problems.
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Algorithm 1 The Fractional 0-1 Knapsack (Dynamic Programming)

procedure Initialization according to (EC.52)

procedure Recursively define values

for k 1 to K do

for w 0 to W do

for l 0 to K do

if wk w and k 6= l and M [k� 1,w, l]<Vk(wk)+M [k� 1,w�wk, l] then

begin

M [k,w, l] Vk(wk)+M [k� 1,w�wk, l]

T [k,w, l] 1

end

else

begin

M [k,w, l] M [k� 1,w, l]

T [k,w, l] 0

end

procedure Search for the optimal value and the fractionally packed item

Max M [K,W,0]; Frac 0

for k 1 to K do

if M [K,W, l]>Max then

Max M [K,W, l]; Frac l

procedure Find indices of items packed in their entirety

S W

for k K to 1 do

if T [k,S,Frac] = 1 then

S S�wk; output k
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