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Abstract. We study the fluidmodel of amany-server queuewithmultiple customer classes
and obtain optimality results for this model. For the purpose of minimizing the long-run
average queue-length costs and abandon penalties, we propose three scheduling policies
to cope with any general cost functions and general patience-time distributions. First, we
introduce the target-allocation policy, which assigns higher priority to customer classes
with larger deviation from the desired allocation of the service capacity and prove its
optimality for any general queue-length cost functions and patience-time distributions. The
Gcµ/h rule, which extends the well-known Gcµ rule by taking abandonment into account,
is shown to be optimal for the case of convex queue-length costs and nonincreasing hazard
rates of patience. For the case of concave queue-length costs but nondecreasing hazard
rates of patience, it is optimal to apply a fixed-priority policy, and a knapsack-like problem
is developed to determine the optimal priority order efficiently. As amotivating example of
the operations of emergency departments, a hybrid of theGcµ/h rule and the fixed-priority
policy is suggested to reduce crowding and queue abandonment. Numerical experiments
show that this hybrid policy performs satisfactorily. We also prove the asymptotic op-
timality of policies in the original queueing system using the fluid results.
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1. Introduction
In 2011, the number of left-without-being-seen (LWBS)
patients in the United States was 2.6 million (The Na-
tional Hospital Ambulatory Medical Care Survey) for
the most common reason of being “fed up with wait-
ing” (Rowe et al. 2006). Patient crowding in the emer-
gency department (ED) has become an increasing public
health problem for hospitals around the world, as it con-
tributes to increased LWBS rates and dissatisfaction
with care (Pines et al. 2011). We consider the problem
of scheduling triage patients from the waiting room to
treatment rooms to reduceEDcrowdingandLWBSrates.

Upon arrival, patients are rapidly sorted into five
triage classes by experienced triage nurses using the
Emergency Severity Index (ESI). The acuity levels
from level 1 (most critical) to 5 (least critical) are based
on patient acuity and resource needs (Gilboy et al.

2011). The ESI may or may not lead to improved
patient flow through the ED because the physician
response times for levels 1 and 2 are within minutes,
but leaves the majority of lower-acuity patients waiting
to be called for service according to their triage levels.
Many patients visiting EDs are in low-acuity conditions.
These patients have limited patience and may abandon
the ED before receiving treatment. A new empirical
study (Batt and Terwiesch 2015) indicates that the
proportion of patients who abandon is up to 6.5%,
and this rate ranges from 1.5% to 9.0% for different
triage levels. The fundamental question that ED physi-
cians face on a daily basis is: Which patient should be
called for service first when a treatment bed becomes
available? This also gives us a motivating example for
treating a general queueing control problem—scheduling
of multiclass many-server queues with abandonment.

1218

http://pubsonline.informs.org/journal/opre
mailto:zlong@nju.edu.cn
https://orcid.org/0000-0003-2925-375X
https://orcid.org/0000-0003-2925-375X
mailto:shimkin@ee.technion.ac.il
https://orcid.org/0000-0001-7105-9956
https://orcid.org/0000-0001-7105-9956
mailto:zhanghailun@cuhk.edu.cn
https://orcid.org/0000-0001-6116-6168
https://orcid.org/0000-0001-6116-6168
mailto:jiheng@ust.hk
https://orcid.org/0000-0003-3025-1495
https://orcid.org/0000-0003-3025-1495
https://doi.org/10.1287/opre.2019.1908
https://doi.org/10.1287/opre.2019.1908


Recent studies on this scheduling problem have
introduced a handy policy—namely, the cµ/θ rule.
This fixed-priority scheduling policy has been proved
to be asymptotically optimal (Atar et al. 2008, 2010,
2011, 2014) for linear costs and exponential patience.
It is consistent with the ESI system in the sense that
high-acuity patients receive high priority. However,
this rough treatment ignores the real-time status of
the ED system and may lead to long waiting times
and high LWBS rates for low-acuity patients. Indeed,
the well-known generalized cµ rule (Gcµ) assigns
dynamic priority to the flows of multiple classes of
customers (van Mieghem 1995, Mandelbaum and
Stolyar 2004, Gurvich and Whitt 2009b). Recently,
this scheduling policy has been applied in the control
of patient flows in EDs with feedback (Huang et al.
2015). However, the Gcµ rule does not consider the
LWBS patients. In this paper, we take into account
patience time (the amount of time a patient is willing
to wait for service) following general distributions.
A natural paradigm to study the ED dynamics would
be a multiclass, many-server queueing system with
abandonment (the LWBS phenomenon), as shown in
Figure 1. One of our main results is to introduce a
dynamic scheduling policy, which we refer to as the
generalized cµ/h rule (Gcµ/h), to minimize the long-
run average queueing costs and abandon penalties.

To describe our Gcµ/h rule, let µi be the service rate
of level-i patients and Fi denote the patience-time
distribution of level-i patients with the hazard-rate
function hi. Denote the marginal queue-length cost
function and the penalty for each abandonment of
level i by ci(·) and γi, respectively. The arrival rates λi’s
are determined by triage nurses when categorizing
ED visits. Let Bi(t) be the number of level-i patients
being served in the treatment rooms. We call the
scheduling policy that serves the level-i patient [first-
come-first-served (FCFS) within each level] with the
highest index

i ∈ argmax
i

ci λi
∫ F−1i (1−Bi(t)µi/λi)
0 Fci (s)ds

( )
µi

hi F−1i 1 − Bi(t)µi/λi
( )( ) + γiµi

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

the generalized cµ/h rule (Gcµ/h). We will show that
the Gcµ/h rule is asymptotically optimal for convex
queueing costs and nonincreasing hazard rates.
The Gcµ/h rule can be brought into play in systems

like EDs due to its flexibility. For call-center opera-
tions, the latest information technology allows all
agents and supervisors to observe the real-time status
of the system (Gans et al. 2003). However, the situ-
ation in EDs is quite different. The queue status is
usually unknown to ED staff because they are not
notified when patients quit waiting. Our scheduling
decision suitably depends on the current number of
patients in the treatment room. Moreover, there is no
need to modify the rule when the service capacity in
the hospital changes. For example, the ED beds may
be temporarily added to increase available capacity
when all licensed beds are occupied (Derlet et al.
2014). In such a situation, the Gcµ/h rule adapts au-
tomatically to the change in service capacity.
Our Gcµ/h rule and the family of Gcµ rules (van

Mieghem 1995, Mandelbaum and Stolyar 2004) all
consider convex queue-length costs, but a theoretical
understanding of more general cost functions is still
lacking. To tackle this problem, we propose another
dynamic scheduling policy referred to as the target-
allocation policy (see Section 3.1). In an overcrowded
ED, where a portion of the patients may end up leaving
without being treated, the number of patients will be
stable. The steady state of all types of patients in the
treatment rooms can be viewed as an allocation of the
service capacity. Our target-allocation policy aims to
assignhigher priority to the class of patients that deviates
most from the optimal allocation, which is determined
by solving a nonlinear optimization problem (13). The
advantage of this policy is that it is asymptotically
optimal for any general cost functions and patience
distributions. However, the primary challenge lies in
solving the nonlinear programming in advance.
The current practice in the EDs is mainly to im-

plement triage priority (Batt and Terwiesch 2015),
which can be considered as a fixed-priority policy. As
mentioned in the above, the Gcµ/h rule (a dynamic-
priority policy) is asymptotically optimal for convex
queue-length costs and nonincreasing hazard-rate
functions. Unexpectedly, for concave queue-length
cost functions and nondecreasing hazard-rate func-
tions of patience, we find that the optimal scheduling
is a fixed-priority policy. In order to determine an
optimal priority order, it involves the minimization
of a concave function. As it is nontrivial to solve a
concave optimization problem by using standard non-
linear approaches, we formulate it as a knapsack-like
problem and develop a dynamic-programming algo-
rithm. The algorithm can efficiently determine the
treatment priority, especially when patients are fur-
ther categorized by disease types. Our algorithm

Figure 1. The Scheduling Problem in EDswith LWBSPatients
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reduces the time complexity in a similar problem stud-
ied in Burke et al. (2008) (see Remark EC.1 in the
e-companion). Until now, the three proposed policies
actually allow us to choose the most appropriate pol-
icy for any given queue-length cost functions and pa-
tience distributions.

1.1. Literature Review
Fluid approximations for many-server queues with
general patience-time distributions began to emerge
following the pioneering work of Whitt (2006).
Bassamboo and Randhawa (2010) established the
optimal gap of fluid approximation as the system size
increases. As an example of how powerful the fluid
model approach is that it can be used to approximate
a system with dependent service and patience times
(see Bassamboo and Randhawa 2016, Wu et al. 2019).
For multiclass queues, Atar et al. (2014) established
the fluid limit of a multiclass G/GI/n + GI queueing
system, building on the approach developed by Kaspi
and Ramanan (2011). Our fluid model is tailored to a
multiclassG/M/n + GI systemwith exponential service-
time distributions.

The cµ-type rules have a long history in the study of
scheduling problems. As early as Smith (1956) and
Cox and Smith (1961), the cµ rule was proposed and
proved to be optimal for a multiclass M/G/1 system
with linear holding costs. Recently, inAtar et al. (2008,
2010, 2011, 2014), it was extended to the cµ/θ rule
that is asymptotically optimal for a multiclass many-
server queueing system with exponential patience
and linear holding costs. TheGcµ rule of vanMieghem
(1995) appears to be the first to consider nonlinear,
convex holding costs in the analysis of a multiclass
G/G/1 queue. Mandelbaum and Stolyar (2004) gen-
eralized the Gcµ rule to a system with heterogeneous
servers. Our Gcµ/h rule extends van Mieghem (1995)
and Atar et al. (2008, 2010, 2011, 2014) to a multiclass
many-server queueing system with general patience
and nonlinear holding costs.

Other than the cµ-type rules, there has also been an
expanding body of literature on the optimal control
of multiclass queueing systems. Harrison and López
(1999) explicitly solved a dynamic control problem
in the multiclass parallel-server setting. Based on the
conventional heavy-traffic regime, Ata and Tongarlak
(2013) and Kim andWard (2013) considered dynamic
policies by studying the approximating Brownian
control problems. Focusing on the Halfin–Whitt scaling
proposed by Halfin and Whitt (1981) in the quality-
and-efficiency-driven regime, Atar et al. (2004), Atar
(2005), and Ata and Gurvich (2012) studied dynamic
scheduling policies by formulating a Hamilton–Jacobi–
Bellman equation based on the heavy traffic limits;
Dai and Tezcan (2008) developed robust control poli-
cies to minimize the total linear holding and abandon

costs for a parallel server system; Gurvich and Whitt
(2009a, b, 2010) studied the staffing and control
problems of service systems with multiple customer
classes and multiple agent pools; and Kim et al. (2018)
solved a diffusion-control problem to propose a sched-
uling policy for a critically loaded multiclass system
with abandonment.

1.2. Contributions
The main contributions of this paper are summarized
as follows:
• We propose three scheduling policies to control

a multiclass many-server queueing system with all
kinds of queue-length cost functions and patience
distributions. The asymptotic optimality of the pro-
posed policies is proved based on the results of the
fluid model.
• The target-allocation policy is asymptotically opti-

mal for any general queue-length cost functions and
patience-time distributions by assigning higher priority
to customer classes that deviate most from the desired
allocation of the service capacity.
• The Gcµ/h rule extends the Gcµ rule of van

Mieghem (1995) to overloaded systems with impa-
tient customers and is shown to be asymptotically
optimal for convex queue-length cost functions and
nonincreasing hazard rates of patience.
• The fixed-priority policy is proved to be as-

ymptotically optimal for concave queue-length cost
functions andnondecreasing hazard rates of patience.
It represents a generalization of the cµ/θ rule of Atar
et al. (2008, 2010, 2011, 2014), which considers linear
cost and exponential patience.
The remainder of this paper is organized as follows.

In Section 2, we introduce the fluid model of a mul-
ticlass many-server queueing system with abandon-
ment (the original queueing system is analyzed in
Section EC.2 of the e-companion). We also study a
steady-state optimization problem. Our proposed poli-
cies and the main results are presented in Section 3. In
Section 4, we use simulation experiments to test the
performance of a hybrid policy. We show the con-
nection between queueing and knapsack problems
in Section 5. Our conclusion is stated in Section 6.
Technical proofs and the analysis of the original queue-
ing system are collected in the e-companion, where
we also develop a dynamic-programming algorithm
to solve the knapsack problem.

2. Multiclass Many-Server Queues
We consider the scheduling problem of a G/M/n + GI
queueing system with multiple customer classes. The
system consists of n homogeneous servers that serve I
classes of customers. Upon arrival, if a customer can-
not be served immediately, this customer will be queued
in a buffer. Each class-i customer has an independent
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patience time following distribution Fi for waiting in
queue and abandons the queue once the waiting time
exceeds the patience time. Within each class, cus-
tomers are sent to servers according to the first-come-
first-served discipline. Once admitted to service, a
class-i customer will be served with exponentially
distributed service time with mean 1/µi. Note that
in the ED context, customer classes are usually called
acuity levels; hereafter, we use these terms inter-
changeably. Such a system has been studied in Atar
et al. (2008, 2010, 2011, 2014) under a fixed-priority
policy with linear queue-length costs. The main differ-
ence is that our paper proposes three dynamic-priority
policies in accordance with more general cost functions.
As the stochastic system is analogous to that of Atar
et al. (2014), the analysis of the original queueing
model (including the asymptotic analysis of the fluid-
scaled stochastic processes) will be placed in the
e-companion (see Section EC.2). Themain body of this
paper will focus on the analysis of the fluid model.

2.1. A Fluid Model
The fluid model consists of I classes of fluid content
that arrives at a service system having I unlimited
waiting queues and a server pool with a fixed service
capacity n > 0. Here, the stochastic counterpart of
the fluid content is just the customers in the origi-
nal queueing system. For each class i # 1, . . . , I, the
amount of external arrivals over [0, t] is Ei(t) # λit,
where λi > 0. At time t, the arrival enters the server
pool if there is any available service resource. Oth-
erwise, the arrivals that cannot be directly served will
join the end of their own queue and are allowed to
abandon the queue once losing patience. We use Qi(t)
and Bi(t) to denote the amount of class-i fluid content
waiting in queue and being served in the server pool,
respectively. Thus, the total amount of class-i fluid
content in the system is Xi(t) # Qi(t) + Bi(t).

Let Ki(t) denote the total amount of class-i fluid
content that has entered service by time t and Di(t)
be the total amount of class-i fluid content that has
completed service by time t. It is clear that the cu-
mulative processes Ki(t) and Di(t) would be non-
decreasing.We can also deduce the following balance
equation for Bi:

Bi(t) # Bi(0) + Ki(t) −Di(t). (1)

Obviously, there is also

∑I

i#1
Bi(t) ≤ n. (2)

Let the service time follow the distribution function
Gi(x) # 1 − e−µix for class-i fluid content—namely, the
service rate of class i is µi. Because of the memoryless

property of exponential distributions, the service-
completion process satisfies the equation

Di(t) # µi

∫ t

0
Bi(s)ds. (3)

One can see that the derivative of the service-completion
process is µiBi(t), which facilitates the analysis of the
convergence of the fluid model.
Because of the general patience-time distributions,

we use the fluid measure-valued process developed
in Atar et al. (2014) to capture the dynamics of the
queues. Let ηi,t([0, x]) denote the amount of class-i
fluid that has not abandoned by time t with elapsed
time since arrival not longer than x no matter whether
the fluid content has entered service or not. Within
each queue, the fluid content is served based on the
FCFS discipline. Thus, the fluid queue-length process
of class i can be recovered as

Qi(t) # ηi,t [0,wi(t)]( ), (4)
where wi(t) is the waiting time of the fluid content at
the head of the class-i queue. Let Ri(t) be the total
amount of class-i fluid that abandons the queue during
the time interval [0, t]. So, we have the following bal-
ance equation for Qi:

Qi(t) # Qi(0) + Ei(t) − Ri(t) − Ki(t). (5)
Let Fi(·) be the patience-time distribution of class-i
fluid content. Then, we have

ηi,t [0, x]( ) #
∫ t

t−x
Fci (t − s)dEi(s), (6)

where Fci (·) # 1 − Fi(·). Indeed, dEi(s) is the amount of
fluid that enters the system at time s, among which
Fci (t − s)dEi(s) is the amount that has not abandoned
by time t. For s < 0, we regard dEi(s) as the fluid that
had entered the system before time 0. On the other
hand, ηi,t([0, x]) only consists of the arrivals between
time t − x to t. Thus, (6) holds. Clearly, ηi,t(dx) is the
density of class-i fluid with the waiting time x, but
without abandoning at time t. Let the hazard-rate
function of Fi be hi(x) # fi(x)/Fci (x). Then, hi(x) is the
fraction of the infinitesimal ηi,t(dx) that abandons the
queue. Recall that wi(t) is the longest elapsed time
of the fluid in the class-i queue at time t, so the total
amount of fluid that abandons the queue during the
interval [0, t] can be written as

Ri(t) #
∫ t

0

∫ wi(s)

0
hi(x)ηi,s(dx)

( )
ds. (7)

We denote byΠ the class of all fluid work-conserving
policies that, for all t ≥ 0, satisfy

n −
∑I

i#1
Bi(t)

( )
∑I

i#1
Qi(t) # 0. (8)
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We refer to Equations (1)–(8) as the fluid model of a
multiclass many-server queueing system. We rigor-
ously prove in Theorem EC.1 in the e-companion
that the tuple (E,B,X,Q,D,K,R, η) satisfying (1)–(8)
serves as the fluid limit of a multiclass many-server
queueing system (see Section EC.2 of the e-companion
for detailed discussion).

To manage such a system well, the cost it incurs
should also be considered. We allow any general non-
decreasing function Ci(·) for the (fluid) queue-length
cost of each class i. Set Ci(0) # 0, which means there
won’t be any queue-length cost once there is no queue.
There is also a penalty cost γi associated with aban-
donment for each class-i fluid content. Therefore, for
any fluid work-conserving policy π ∈ Π, the average
cost of the fluid model over [0,T] is

JT(π) #
1
T
∑I

i#1

∫ T

0
Ci Qi(s)( )ds + γiRi(T)

[ ]
. (9)

The cost function of the original queueing system is
defined in (EC.17) of the e-companion.

We define the traffic intensity as ∑I
i#1 λi/µi. The sys-

tem is underloaded if ∑I
i#1 λi/µi < n, critically loaded

if ∑I
i#1 λi/µi # n, or overloaded if ∑I

i#1 λi/µi > n. In-
tuitively, if the system is underloaded, then the av-
erage cost given above should vanish in the long
run under anywork-conserving policy. The following
theorem validates this intuition.

Theorem 1. If the system is underloaded—that is, ∑I
i#1 λi/

µi < n—then for any fluid work-conserving policy π ∈ Π,
the fluid queue-length process of each class vanishes after a
finite time, and the amount of fluid being served converges
to λi/µi for each class i # 1, . . . , I. As a consequence, the
long-run average cost is zero. In other words, there exists a
T > 0 such that Qi(t) # 0 for all t > T,

lim
t→∞

Bi(t) #
λi

µi
and lim

T→∞
JT(π) # 0.

The proof is postponed to Section EC.1 of the e-
companion. A well-designed scheduling policy is ex-
pected to reduce system congestion, especially for
an overloaded system. However, a critically loaded
system also needs a well-designed scheduling policy.
In Mandelbaum and Stolyar (2004), the Gcµ rule is
applied to a queueing system with multiple types of
customers and multiskilled servers. Note that their
system is critically loaded, and the corresponding
fluid model is studied under the Gcµ rule. We go one
step further and focus on both the critically loaded
and overloaded cases.

The following assumption on the input parameters
is required throughout this paper.

Assumption 1 (On Input Parameters). For each class i #
1, . . . , I, the service-time distribution Gi(x) # 1 − e−µix is

exponentially distributed, and the patience-time distribution
Fi(x) #

∫ x
0 fi(y)dy is strictly increasing. The system is either

critically loaded or overloaded—that is, ∑I
i#1 λi/µi ≥ n. The

fluid queue-length cost function Ci(·) can be any differen-
tiable nondecreasing function, and the marginal cost satisfies

d
dx

Ci(x) # ci(x), (10)

where ci(x) ≥ 0. The abandon penalty cost also satisfies
γi ≥ 0.

Remark 1. It is well known that the steady-state be-
havior of the queue length of the fluid model of a single-
class many-server queue depends upon the service-
time distribution only through its mean, but upon
the patience-time distribution beyond its mean (Whitt
2006). Therefore, we restrict ourselves to exponential
service times. The simulation results in Section 4
suggest that our proposed policies also work well
for nonexponential service times. However, for non-
exponential service-time distributions, we are not able
to prove that the fluid model converges to the in-
variant state, as time goes to infinity. But even for the
single-class G/GI/n + GI fluid model, this remains an
open problem (see theorem 2 in Long and Zhang 2014,
where an additional assumption on the initial state is
needed for critically loaded and overloaded systems).

2.2. Stability and Optimality
We first give the following proposition to show the
convergence relationship between the fluid content
in the queues and that in service. This would help
managers in scheduling the system when the status
of the queues or the server pool cannot be fully ob-
served. Usually the situation in waiting rooms in EDs
is difficult to observe because the time when patients
abandon the queue is normally not observed. This is
one of the motivations for designing scheduling pol-
icies based on the status of the server pool in Section 3.

Proposition 1 (Equivalence of the Convergence of Qi

and Bi). Given Assumption 1, for any fluid scheduling
policy π ∈ Π, as t → ∞,

Qi(t) converges ⇔ Bi(t) converges for all i # 1, . . . , I.

Moreover, for such a fluid-convergent policy, let F−1i be the
inverse function of Fi. Then, we have, for all i # 1, . . . , I,

qi # λi

∫ F−1i 1−biµi/λi( )
0

Fci (s)ds, (11)

where qi # limt→∞ Qi(t) and bi # limt→∞ Bi(t), satisfying
0≤ bi≤λi/µi and

∑I
i#1bi#n. Therefore, limT→∞ JT(π)#∑I

i#1 Ji(bi). Here,

Ji(bi) # Ci λi

∫ F−1i 1−biµi/λi( )
0

Fci (s)ds
( )

+ γi λi − biµi
( )

. (12)
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The detailed proof is given in Section EC.1.2 of the
e-companion. The steady-state behavior of the fluid
content in the queues and of those being served follows
the relation (11), which is consistent with theorem 3.1
in Whitt (2006). We can see from Proposition 1 that
the steady-state behavior under the convergent policy
has a simple form, and the cost function (12) can be
expressed in terms of the status of the server pool.

Let us consider the optimization problem in terms
of the steady state of the fluid model:

minimize
∑I

i#1
Ji(bi)

subject to
∑I

i#1
bi ≤ n,

0 ≤ bi ≤
λi

µi
, i # 1, . . . , I.

(13)

The decision variables bi’s can be intuitively under-
stood as the amount of service resources that is assigned
to class-i fluid content in the long run. The objective is
to minimize the long-run average cost by choosing
appropriate bi’s. The first constraint states that bi’s
must be chosen so that the amount of fluid being served
does not exceed the service capacity n. The second
constraint implies that at most λi/µi service resource
is needed to handle class i. Denote by b∗ # (b∗1, . . . , b∗I)
an optimal solution to this nonlinear programming
and J∗ the optimal value. It is clear that b∗ indicates the
optimal allocation of the service capacity.Meanwhile,
Proposition 1 implies that J∗ is the lower bound of any
fluid-convergent policies. The main goal of this paper is
to find a scheduling policy that attains the lower bound.

Definition 1 (Stationary Optimal Control). A fluid-
scheduling policy π ∈ Π is said to be stationary op-
timal if the corresponding cost function (9) satisfies
limT→∞ JT(π) # J∗.

The following lemma implies that (13) can actually
become either a convex or a concave optimization
problem.

Lemma 1. If the fluid queue-length cost functions Ci’s are
convex and the hazard-rate functions hi’s are nonincreasing,
then the nonlinear programming (13) is a convex optimi-
zation problem. In contrast, if the fluid queue-length cost
functions Ci’s are concave and the hazard-rate functions hi’s
are nondecreasing, then the nonlinear programming (13) is
a concave optimization problem.

A direct way to show the above lemma is to consider
the derivative of the cost function Ji(bi). By (12) and after
some basic calculations, it becomes clear that

d
dbi

Ji(bi) # −
ci λi

∫ F−1i 1−biµi/λi( )
0 Fci (s)ds

( )
µi

hi F−1i 1 − biµi/λi
( )( ) − γiµi.

(14)

We leave the detailed proof to Section EC.1 of the
e-companion. In the following section, we propose
different scheduling policies for all types of optimi-
zation problems, such that the optimal value J∗ can be
attained in all cases.

3. Fluid Scheduling Policies
In this section, we propose fluid dynamic-priority
policies that give a time-varying priority order. The
goal is to design a policy such that the cost function (9)
approaches J∗. In Section 3.1, the target-allocation
policy is proposed for general queue-length cost func-
tions and patience-time distributions. We then propose
in Section 3.2 the Gcµ/h rule, which is an extension
to the Gcµ rule in van Mieghem (1995), by adding
abandonments. When the optimization problem (13)
is convex, the Gcµ/h rule is shown to be stationary
optimal. On the other hand, if (13) is a concave op-
timization problem, we find that it is optimal to apply
the fixed-priority policy in Section 3.3.
Actually, every process in the fluid model has a

stochastic counterpart. Therefore, our proposed policies
can be easily translated back to the original queueing
system. To be more rigorous, we define the stochastic
version of our proposed polices in Section EC.2 of the
e-companion. And we prove in Theorem EC.2 of the
e-companion that the fluid-scaled queueing system
under the stochastic version of the cost function (9)
can also achieve the optimal value J∗ of the nonlinear
programming (13) asymptotically. Here, we stick to
the design of fluid scheduling policies that help us
better understand the original queueing system.
And so, we first introduce the fluid dynamic-priority

policy. At time t, given that there is a certain amount
of service resource, the policy chooses some amount
of fluid content from the class with index

i ∈ argmax
i#1,...,I

Pi(t), (15)

where Pi(t) is the priority value for class i at time t. If
the classes of fluid content with the highest priority
value are all in service, then the available service re-
source can be assigned to classes with the second
highest priority value, and so on and so forth. From
this point of view, any (fluid) scheduling policy can be
regarded as a (fluid) dynamic-priority policy. Equiv-
alently, the fluid dynamic-priority policy means that
the fluid content with lower priority can enter service
at time t only if at that time no one else in the queue
has higher priority. Therefore, the fluid dynamic-
priority policy can also be expressed as
∫ t

0

∑

{j#1,...,I:Pj(s)>Pi(s)}
Qj(s)dKi(s) # 0, i # 1, . . . , I. (16)

Note that ∑{j#1,...,I:Pj(s)>Pi(s)}Qj(s)# 0 if {j# 1 . . . , I :Pj(s)>
Pi(s)}# ∅. As a special case, the (fluid) dynamic-priority
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policy becomes the fixed-priority policywhen Pi(t)’s are
independent of time t. We will see in Section 3.3 that
(16) is actually an extension of equation (32) in Atar
et al. (2014).

3.1. Target-Allocation Policy
We propose in this subsection a policy that is suit-
able for any general queue-length cost function and
patience-time distribution. The optimal solution b∗ #
(b∗1, . . . , b∗I) of (13) reveals that class-i fluid content
should be allocated b∗i amount of service resources in
the long run. Thus, we define the following priority-
value function:

Pi(t) # b∗i − Bi(t) , (17)
for all i # 1, . . . , I. Intuitively, given the above priority-
value function, the dynamic-priority policy serves the
class with the largest deviation from its target. Thus,
more service resources will be assigned to those
classes that are not given enough service resources.
All the Bi’s will gradually be close to the optimal
allocation b∗ of the service capacity. We refer to this
fluid-scheduling policy as the target-allocation policy
denoted by πb∗ (see (EC.20) in the e-companion for
the stochastic version). Its optimality is shown in
Theorem 2 below,which is proved in Section EC.3.2 of
the e-companion.

Theorem 2 (Optimality of the Target-Allocation Policy).
GivenAssumption 1, the fluidmodel (1)–(8) under the target-
allocation policy πb∗ with the priority-value function (17)
satisfies limT→∞ JT(πb∗) # J∗.

3.2. The Generalized cµ/h Rule
For convex queue-length cost functions and patience-
time distributions with nonincreasing hazard-rate
functions under which the nonlinear programming (13)
becomes a convex optimization by Lemma 1, we
propose another dynamic-priority policy that is easier
to implement. Consider the Lagrangian function

L(bi, α0, αi, βi) #
∑I

i#1
Ji(bi) − α0 n −

∑I

i#1
bi

( )

−
∑I

i#1
αibiµi −

∑I

i#1
βi · λi − biµi

( )
.

Combining it with (14), the optimal solution b∗ #
(b∗1, . . . , b∗I) of (13) solves

ci λi
∫ F−1i 1−b∗iµi/λi( )
0 Fci (s)ds

( )
µi

hi F−1i 1 − b∗iµi/λi
( )( ) + γiµi + αiµi − βiµi # α0,

αib∗i # 0,
βi · λi − b∗iµi

( ) # 0,
∑I

i#1
b∗i # n,

where the Lagrange multipliers satisfy α0 ∈ R and
αi, βi ≥ 0 for all i # 1, . . . , I. We assume that the cost
function Ci, i # 1 . . . , I, satisfies conditions that are
analogous to van Mieghem (1995, assumption 3) and
Huang et al. (2015, assumption 2). Specifically, we
have the following assumption.

Assumption 2 (Cost Regularity). The cost function Ci, i #
1, . . . , I is strictly convex, and there is an interior solution
to the minimization problem (13).
Recall that the patience-time distribution Fi is strictly

increasing. By Lemma 1, there is a unique solution
to (13) if the cost functions are strictly convex and
the hazard rates of patience are nonincreasing. If
we assume in addition that ci(0) # 0 and γi # 0, then
all classes satisfy b∗i < λi/µi, making βi # 0 for all i.
Similarly, if we further assume that hi(x) → 0 as
x → ∞, then all classes receive positive service re-
sources, making αi # 0 for all i. This essentially pro-
vides a sufficient condition such that the solution b∗i
is unique and interior.
Under Assumption 2, the Karush–Kuhn–Tucker

(KKT) conditions then reduce to

ci λi
∫ F−1i 1−b∗iµi/λi( )
0 Fci (s)ds

( )
µi

hi F−1i 1 − b∗iµi/λi
( )( ) + γiµi # α0,

(18)

∑I

i#1
b∗i # n. (19)

Observe that the left-hand side of (18) is equal to a
constant. This inspires us to consider the following
priority-value function:

Pi(t) #
ci λi

∫ F−1i 1−Bi(t)µi/λi( )
0 Fci (s)ds

( )
µi

hi F−1i 1 − Bi(t)µi/λi
( )( ) + γiµi,

(20)

for all i # 1, . . . , I. This equation is referred to as the
priority-value function of the generalized cµ/h rule
(Gcµ/h) denoted by πG (see (EC.21) in the e-com-
panion for the stochastic version).
The idea of theGcµ/h rule comes fromvanMieghem

(1995), where the striking result Gcµ rule performs
well for a single-server multiclass queueing system.
Actually, Figure 1 in this paper is almost the same as
figure 1 in van Mieghem (1995). The main difference
is that our scheduling problem allows abandonment
and considers a many-server pool. Later, the Gcµ rule
was generalized to a system with heterogeneous
servers in Mandelbaum and Stolyar (2004). They both
consider the conventional diffusion approximation for
critically loaded queueing systems without abandon-
ment. We focus on the fluid model of an overloaded
multiclass many-server queueing system with aban-
donment. This is why the hazard-rate function ap-
pears in the priority-value function (20). Anothermain
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difference is that we take advantage of the equivalence
of the convergence of Qi and Bi (see Proposition 1) to
control the system based on the real-time value of Bi(t)
instead of Qi(t). The optimality of our Gcµ/h rule is
shown in the following theorem, which we prove in
Section EC.3.2 of the e-companion.

Theorem 3 (Optimality of the Gcµ/h Rule). Given
Assumptions 1 and 2, if ci and hi are differentiable and the
hazard-rate functions hi’s are nonincreasing, then the fluid
model (1)–(8) under the Gcµ/h rule πG with the priority-
value function (20) satisfies limT→∞ JT(πG) # J∗.

The assumption that ci and hi are differentiable is
in the same spirit as the twice differentiability of Ci
in section 4 of Mandelbaum and Stolyar (2004). It
surprised us somewhat that the proofs of the opti-
mality of the target-allocation policy and the Gcµ/h
rule are almost the same. Part of the reason is that
the priority-value functions go to a constant under
both policies—the priority value of the target-allocation
policy converges to 0, and that of the Gcµ/h rule con-
verges to α0. Therefore, wewill prove Theorems 2 and 3
in Section EC.3.2 of the e-companion simultaneously.

3.3. Fixed-Priority Policy
A fixed-priority policy essentially prevents the fluid
content from entering service as long as other classes
of fluid content with higher priority are still waiting
for their turn. Consider a priority order from class 1
(highest priority) to class I (lowest priority). Then, the
priority-value function in (15) can be specified as

Pi(t) # I − i , (21)
for all i # 1, . . . , I. Note that only if the fluid content
with the highest priority value are all in service, then
the available service resource can be assigned to
classes with the second highest priority value, and so
on and so forth. Equation (16) becomes exactly the
same as equation (32) in Atar et al. (2014). The fol-
lowing proposition shows that the system converges
to the steady state under the fixed-priority policy (21).
Especially, the limit of Bi(t) follows the form as (23),
which is the main feature of the fixed-priority policy.
Theproof ispostponedtoSectionEC.3.3of thee-companion.

Proposition 2 (Convergence of the Fixed-Priority Policy).
Given Assumption 1, the fluid model (1)–(8) under the fixed-
priority policy with the priority-value function (21) con-
verges to the following steady state:

lim
t→∞

Bi(t) # bi and lim
t→∞

Qi(t) # qi , (22)
for all i # 1, . . . , I, where the allocation b # (b1, · · · , bI) of
the service capacity to their dedicated classes is

b # λ1

µ1
, · · · ,λi0−1

µi0−1
,n −

∑

j<i0

λj

µj
, 0, · · · , 0

( )
, (23)

where i0 # max i ∈ [1, · · · , n] : ∑i−1
j#1

λj
µj
< n

{ }
. And

qi #

0, i < i0,

λi

∫ F−1i 1−biµi/λi( )
0

Fci (s)ds, i # i0,

λi

∫ ∞

0
Fci (s)ds, i > i0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Moreover, there exists T > 0 such that Qi(t) # 0 for all t >
T and i # 1, . . . , i0 − 1.
The allocation of the service capacity (23) takes a

special form such that bi # λi/µi for all classes i < i0
being fully served, bi # 0 for all classes i > i0 without
receiving any service, and bi0 # n −∑i0−1

i#1 λi/µi for at
most one class i0 being partially served. This is vir-
tually a solution on the boundary of the feasible region
of (13). Therefore, if the nonlinear programming (13)
is a concave optimization problem, then the optimal
solution b∗ # (b∗1, . . . , b∗I) surely has the same form as (23)
after reordering the class indices if needed. This is as-
sociated with an optimal fixed-priority order, of which
the corresponding fixed-priority policy is denoted by
πP∗ (see (EC.22) in the e-companion for the stochastic
version). Note that the order among the classes with
b∗i # λi

µi
can be arbitrarily determined. It can also be

arbitrary for those with b∗i # 0.

Theorem 4 (Optimality of the Fixed-Priority Policy). Given
Assumption 1, if the queue-length cost functions Ci’s are
concave and the hazard-rate functions hi’s are nondecreasing,
then the fluid model (1)–(8) under the fixed-priority policy
πP∗ with the priority-value function (21) (after reordering
the class indices if needed) satisfies limT→∞ JT(πP∗ ) # J∗.
Theorem 4 is proved in Section EC.3.3 of the e-

companion. This theorem actually gives a sufficient
condition for the optimality of the fixed-priority
policy. We will show in Section 5 the innovative con-
nection between the fixed-priority policy and knap-
sack problems.

Remark 2 (Connection to Linear Queue-Length Costs and
Exponential Patience). We consider a special case of
exponential patience-time distributions Fi(x) # 1 − e−θix

and linear queue-length cost functions by settingCi(x) #
cix for all i # 1, . . . , I. Then, the optimization prob-
lem (13) becomes the following linear programming:

minimize
∑I

i#1
ci
λi − µibi

θi
+ γi λi − µibi

( )[ ]

subject to
∑I

i#1
bi ≤ n,

0 ≤ bi ≤
λi

µi
, i # 1, . . . , I.

(24)
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Let c̃i # ci + θiγi for notational simplicity. Then, the
objective function in (24) is identical to

maximize
∑I

i#1

c̃iµi

θi
bi. (25)

Because of the simple form of the above objective
function, to maximize (25), the obvious solution is to
assign as much value (namely, λi/µi) as possible to bi
with higher coefficient c̃iµi/θi. For convenience, we
relabel indices such that c̃1µ1/θ1 ≥ · · · ≥ c̃IµI/θI. After
reordering the indices, the linear programming (24)
admits an optimal solutionwith the same form as (23).
Thus, it is straightforward to design a fixed-priority
policy that assigns higher priority to customers with
higher c̃iµi/θi. This is exactly the cµ/θ rule studied in
Atar et al. (2008, 2010, 2011, 2014). The optimality of
the cµ/θ rule can be easily seen from Propositions 1
and 2.

4. Numerical Experiments
We first introduce a hybrid policy that is a mixture
of the fixed-priority policy and the Gcµ/h rule in
Section 4.1. This policy can be implemented in EDs
to reduce the crowding and LWBS rates. We illustrate
with performance metrics including the numbers of
patients in each of the five acuity levels in steady state
and the long-run average cost that the hybrid policy
inherits the merits of both the fixed-priority policy
and the Gcµ/h rule. In Section 4.2, we present the
parameters used in our experiments. Our simulation
results in Section 4.3 show that the lengths of the
queues for patients of levels 1 and 2 with the highest
priority are close to zero in steady state. We also
observe that the patients in the other three less-critical
levels following the Gcµ/h rule are able to receive
proper medical treatment in the long run.

4.1. A Hybrid Policy
In practice, we can combine the fixed-priority policy
with the Gcµ/h rule. It is widely accepted that in EDs,
patients are generally called for service on a FCFS
basis by triage level (Batt and Terwiesch 2015). Ac-
tually, the Gcµ/h rule and the fixed-priority rule have
their own merits in the sense that the former gives
consideration to the least-critical patients, whereas

the latter enables the most-critical patients to receive
timely treatment. In view of the fact that the most-
critical patients may not survive if they fail to receive
medical care in time, there is no doubt that they should
be given the highest priority. On the other hand, the
majority of patients in low-acuity conditions should
also be taken care of in a timely manner, as they are
the main reason for ED crowding and high LWBS
rates. To balance the tradeoff, we suggest a hybrid
policy to improve patient flows in EDs as follows:
According to ESI, assign the highest priority to level 1
and the second highest priority to level 2, and apply
the Gcµ/h rule to levels 3, 4, and 5 with proper input
parameters. The fluid queues of levels 1 and 2 will
vanish after a finite time by Proposition 2. This means
that all patients in levels 1 and 2 are prior to entering
service and then all patients in levels 3, 4, and 5 will
enter service according to the Gcµ/h rule. Then, by
Theorem 3, the fluid model under the hybrid policy
converges to a certain steady state.

4.2. Simulation Parameters
In order to demonstrate the fluid approximation,
the service capacity is set to be n # 100. We now ex-
plain the parameters in Table 1. In the column titled
“Arrival rate,” we display the arrival rates λi’s for
different acuity levels. The service rates µi’s are set to
increase monotonically from level 1 to level 5, as is
typically the case in EDs. In general, the monotonicity
of the parameters in Table 1 is unnecessary. Because
the hybrid policy assigns the highest priority to level 1
and the second highest priority to level 2, there is
no need to identify the abandon penalty and queue-
length cost for these two levels. An alternative way to
think about this is that the cost of not treating the
most critical patients promptly is high, and so they
must be seen by a physician within minutes. We will
see in the next subsection that there is almost no queue
for level 1 and 2 patients. For level 3, 4, and 5 patients,
the related costs are presented in the last two columns.
For patients in levels 1 and 2, we assume that they

will not abandon the queue because of their high
treatment priority. For patients in less critical con-
ditions, their patience-time distributions are assumed
to be Fi(x) # 1 − 1/(x + 1) for all levels i # 3, 4, 5,
of which the hazard-rate function hi(x)# 1/(x+1) is

Table 1. Arrival and Service Rates Together with Related Costs for Five Triage Classes

Triage class Arrival rate λi Service rate µi Abandon penalty γi Queue-length cost Ci(x)

Level 1 30 1 — —
Level 2 40 2 — —
Level 3 80 3 3 3x2

Level 4 100 4 2 2x2

Level 5 160 5 1 x2

Long et al.: Dynamic Scheduling of Multiclass Many-Server Queues with Abandonment
1226 Operations Research, 2020, vol. 68, no. 4, pp. 1218–1230, © 2020 INFORMS



nonincreasing. Considering the Gcµ/h rule for levels
3, 4, and 5 and applying the above parameters to (20)
yield

Pi(t) # 2(6 − i) ln λi

Bi(t)µi

( )
λ2
i

Bi(t)
+ γiµi for i # 3, 4, 5.

(26)

Thus, once there are no more level 1 and 2 patients
waiting, the patients in levels 3, 4, and 5will be treated
according to the above priority-value function.

Assume that the arrivals follow Erlang E2(1/λi)
distributions for levels i # 1, . . . , 5. From now on, we
use “E2(x)” to denote an Erlang E2 distribution with
mean x, “expo(x)” to denote an exponential distri-
bution with mean x, and “ln(x, y)” to denote a log-
normal distribution with mean x and variance y.
As pointed out in Remark 1, the steady state of the
fluid approximation depends only on the mean of the
service-time distributions. Thus, we simulate the sys-
tem with three different service-time distributions—
that is, expo(1/µi), E2(1/µi), and ln(1/µi, 1/µ2

i )—which
have same service rate µi for any i # 1, . . . , 5.

With the given parameters and distributions, we
run each simulation under the hybrid policy for 1,000
time units. The first 10% and the last 10% of the
simulation period are regarded as the warm-up and
the close-down periods of the system; thus, they are
discarded when computing the steady-state perfor-
mance metrics. We use the batch-means method with
five independent runs to obtain confidence intervals.

4.3. Summary of Results
We present the results of our simulation experi-
ments in this subsection. The steady state of the fluid
model under the hybrid policy can be easily com-
puted, given the experimental setting in Table 1 and
the priority-value function (26). For level 1 and 2patients
with the highest priority, we can deduce from (23)
that b1 # λ1

µ1
# 30 and b2 # λ2

µ2
# 20. Thus, the ser-

vice capacity that remains for level 3, 4, and 5 patients is
50. And their steady state can be obtained by solv-
ing the KKT condition (18) with service capacity b3 +
b4 + b5 # 50. Then, the corresponding queue lengths
qi’s, i # 1, . . . , 5, and the total cost followdirectly from(11)
and (12). This yields the fluid approximation of the
system,which isdisplayed in the last columnofTable 2 for
comparisonwith the simulation results. In Table 2, we
also present the simulation approximations for Qi’s,
Bi’s, and the total long-run average cost, along with
their relative errors and 95% confidence intervals for
three different service-time distributions. The relative
errors for Q1 and Q2 are omitted because their fluid
approximations are 0.
It is worth noting that the steady-state performance

of the systems with general service times is similar
to that of the system with exponential service-time
distributions. For example, the value of B3 is 15.758
when service-time distributions for different levels
are exponential. The corresponding values of B3 for
Erlang E2 and log-normal distributions are 15.730 and
15.711, respectively. The results of other performance
metrics are also close to each other.

Table 2. Comparison of Simulation Results and Approximations with General Service-Time Distributions

Exponential expo(1/µi) Erlang E2(1/µi) Log-normal ln(1/µi, 1/µ2
i )

Performance Simulation Relative error (%) Simulation Relative error (%) Simulation Relative error (%) Approximation

Q1 0.600 — 0.555 — 0.578 — 0
±0.063 ±0.076 ±0.130 —

Q2 0.621 — 0.668 — 0.668 — 0
±0.077 ±0.099 ±0.002 —

Q3 42.119 2.34 42.208 2.13 42.325 1.86 43.126
±1.815 ±1.694 ±1.643

Q4 49.865 0.91 49.783 1.07 49.816 1.01 50.325
±1.847 ±1.929 ±1.904

Q5 80.247 0.48 80.365 0.34 80.497 0.18 80.640
±3.220 ±2.857 ±3.233

B1 29.775 0.75 29.864 0.45 29.995 0.02 30
±0.403 ±0.500 ±0.778

B2 19.941 0.30 20.024 0.12 20.035 0.18 20
±0.537 ±0.181 ±0.439

B3 15.758 1.31 15.730 1.13 15.711 1.01 15.554
±0.172 ±0.060 ±0.218

B4 15.245 0.87 15.193 0.52 15.153 0.26 15.114
±0.171 ±0.204 ±0.190

B5 19.280 0.27 19.186 0.76 19.145 0.97 19.332
±0.250 ±0.144 ±0.218

Long run 18,027.311 3.66 17,833.704 2.55 18,050.739 3.80 17,390.018
average cost ±562.222 ±414.350 ±556.930
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Moreover, our approximations using the fluid
steady state are fairly accurate. The relative errors
of the approximations for Qi’s and Bi’s are less than
2.34% and 1.31%, respectively, with an average error
of 1.17% for patients who are waiting in queue and
0.59% for patients who are being treated. The quality
of the approximations for the long-run average cost
is relatively worse. Because of the quadratic queue-
length cost functions in Table 1, the magnitude of
the long-run average cost in the last row of Table 2
is much larger than that of the other performance
metrics. Even so, the average error is still less than
3.34% across all simulations with different service-
time distributions.

5. Knapsack Problems
In this section, we show the connection between queue-
ing systems and knapsack problems. We declare that
the cµ/θ rule derived from (25) is identical to the
Fractional Knapsack Problem (27). We also introduce
the Fractional 0-1 Knapsack Problem in (28), which
turns out to be consistent with the fixed-priority sched-
uling problem in Section 3.3. Moreover, in Section
EC.4 of the e-companion, we propose a dynamic pro-
gramming algorithm to solve it efficiently.

5.1. The Fractional Knapsack Problem
The Fractional Knapsack Problem (also known as the
continuous knapsack problem) was first considered
by George Dantzig in Dantzig (1957). Let there be K
items, indexed by k # 1, . . . ,K, with value vk and
weight wk for item k. This knapsack problem allows
every item to be divided. The amount of item k that
is packed in the knapsack will be denoted by yk being
a real number between 0 and wi. The maximum
weight that can be carried in the knapsack isW. More
specifically, we wish to solve the following maximi-
zation problem:

maximize
∑K

k#1

vk
wk

yk

subject to
∑K

k#1
yk ≤ W,

0 ≤ yk ≤ wk, k # 1, . . . ,K.

(27)

Because of its very simple form, it admits an imme-
diate algorithm: Order the items according to their
value-to-weight ratio, v1w1

≥ · · · ≥ vK
wK
, then apply a greedy

algorithm to pack as many high-ratio items into the
knapsack as possible. It can be easily seen that the
form of the optimal solutions is either 0 or wk for each
item, with at most one exception to choose the frac-
tional part of its weight. Now, comparing the maxi-
mization problems (25) and (27), there is no doubt
that the cµ/θ rule is virtually a Fractional Knapsack

Problem. We formally state it in the following proposi-
tion and omit its proof for brevity.

Proposition 3. For linear queue-length cost functions
and exponential patience-time distributions, the cµ/θ
rule problem (24) is identical to the Fractional Knapsack
Problem (27).

5.2. The Fractional 0-1 Knapsack Problem
Instead of the linear objective functions in (27), we
consider a nonlinear reward function Vk(yk) being the
reward value of item kwith weight yk packed into the
knapsack. For standardization, we setVk(0) # 0. Also,
Vk(yk) is postulated to be a nondecreasing function in
yk. Among all the possible choices of {y1, y2, · · · , yK},
we allow at most one item to be strictly between 0 and
its maximum weight. Hence, the problem (27) is ex-
tended to

maximize
∑K

k#1
Vk yk

( )

subject to
∑K

k#1
yk ≤ W,

0 ≤ yk ≤ wk, k # 1, . . . ,K,
0 < yk < wk for at most one k ∈ {1, · · · ,K}.

(28)

We refer to (28) as the Fractional 0-1 Knapsack Problem
because it allows at most one item to be divided like
in the Fractional Knapsack Problem and requires other
items to be packed in their entirety or not packed at all
like in the classical 0-1 Knapsack Problem. Obviously,
the last constraint can be eliminated when (28) is a
concave optimization problem.Now, it becomes clear
that in order to find an optimal fixed-priority order,
it is essential to solve the Fractional 0-1 Knapsack
Problem. Therefore, the proposition below immedi-
ately follows.

Proposition 4. For general queue-length cost functions
and patience-time distributions, the fixed-priority control
problem is equivalent to the Fractional 0-1 Knapsack
Problem (28).
Note that if we restrict ourselves to the family of

fixed-priority policies, then there is no need to require
the queue-length cost functions to be concave and
the hazard rates to be nondecreasing, as in Theorem 4.
All we need is to find an optimal solution on the
boundary of the feasible region of (13) by adding a
constraint like the last one in (28).

Remark 3. Note that in the study of knapsack problems,
it is quite common to assume that all the weights are
integer numbers—that is, W and wk in (28) are all in-
tegers. It is also well known that the classical 0-1
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Knapsack Problem can be solved in pseudo-polynomial
time through dynamic programming (see, e.g., Martello
and Toth 1990). In Section EC.4 of the e-companion,
we develop a dynamic-programming algorithm to
solve our fixed-priority control problem in the same
manner, for which we need to assume that the re-
lated parameters—that is, λi and µi in (13)—are ra-
tional numbers.

6. Conclusion
To the best of our knowledge, this paper is the first to
extend the Gcµ rule by adding abandonment with
general patience-time distributions. We consider the
control problem of a multiclass many-server queue-
ing model with general holding cost functions and
patience-time distributions based on the fluid ap-
proximation. Tominimize the queue-length costs and
abandon penalties, we solve a nonlinear program-
ming in terms of the steady state of the fluid model.
The optimal solution inspires us to design three fluid
scheduling polices for the fluid model in Section 3.
For the original queueing system, the stochastic version
of the three scheduling polices is similarly defined in
Section EC.2 of the e-companion. The target-allocation
policy with the priority-value function (17) (see (EC.20)
in the e-companion for its stochastic version) works for
any kind of queue-length cost functions and patience-
time distributions. Interestingly, we find that the Gcµ/h
rule with the priority-value function (20) (see (EC.21)
in the e-companion for its stochastic version) is as-
ymptotically optimal for convex queue-length cost
functions and nonincreasing hazard rates of patience.
In contrast, the fixed-priority policy is asymptotically
optimal for concave queue-length cost functions
and nondecreasing hazard rates of patience with
the priority-value function (21) (see (EC.22) in the
e-companion for its stochastic version) after reor-
dering the class indices, if needed. In order to find
such an optimal order of indices, we develop a
dynamic-programming algorithm (see Section EC.4
of the e-companion) based on the unexpected con-
sistency between queueing and knapsack problems.
Motivated by the application to EDs, a hybrid of the
fixed-priority policy and the Gcµ/h rule is suggested
to reduce patient abandonment and crowding in
waiting rooms. The simulation results show that the
performance of our proposed policy is fairly close to
the theoretical result, with a relative error of less than
3.8% among all performance metrics.

Several extensions are possible for future research.
First, we have assumed that the service-time distri-
butions are exponential, which facilitates the equilib-
rium analysis of the fluid model. The corresponding
convergence for the dynamically controlled multiclass

many-server queue with nonexponential service-time
distributions remains to be developed. Another di-
rection is to develop priority-value functions based on
the waiting time or the queue length. Although we
believe that in EDs our proposed dynamic policies
based on the number of patients being treated are
more realistic, we could accommodate a wider range
of situations if we were able to show the asymptotic
optimality of a queue-length-based policy.
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Harrison JM, López MJ (1999) Heavy traffic resource pooling in
parallel-server systems. Queueing Syst. 33(4):339–368.

Huang J, Carmeli B, Mandelbaum A (2015) Control of patient flow in
emergency departments, or multiclass queues with deadlines
and feedback. Oper. Res. 63(4):892–908.

Kaspi H, Ramanan K (2011) Law of large numbers limits for many-
server queues. Ann. Appl. Probab. 21(1):33–114.

Kim J, Ward AR (2013) Dynamic scheduling of a GI/GI/1 + GI
queue with multiple customer classes. Queueing Systems. 75(2-4):
339–384.

Kim J, Randhawa RS, Ward AR (2018) Dynamic scheduling in a
many-server, multiclass system: The role of customer impatience
in large systems. Manufacturing Service Oper. Management 20(2):
285–301.

Long Z, Zhang J (2014) Convergence to equilibrium states for fluid
models of many-server queues with abandonment. Oper. Res.
Lett. 42(6–7):388–393.

Mandelbaum A, Stolyar AL (2004) Scheduling flexible servers with
convex delay costs: Heavy-traffic optimality of the generalized
cµ-rule. Oper. Res. 52(6):836–855.

Martello S, Toth P (1990) Knapsack Problems: Algorithms and Computer
Implementations, Wiley-Interscience Series in Discrete Mathe-
matics and Optimization (John Wiley & Sons, New York).

Pines JM, Hilton JA, Weber EJ, Alkemade AJ, Al Shabanah H,
Anderson PD, BernhardM, et al (2011) International perspectives
on emergency department crowding. Acad. Emergency Medicine
18(12):1358–1370.

Rowe BH, Channan P, BullardM, Blitz S, Saunders LD, Rosychuk RJ,
Lari H, Craig WR, Holroyd BR (2006) Characteristics of patients
who leave emergency departments without being seen. Acad.
Emergency Medicine 13(8):848–852.

Smith WE (1956) Various optimizers for single-stage production.
Naval Res. Logist. Quart. 3(1-2):59–66.

vanMieghem JA (1995) Dynamic schedulingwith convex delay costs:
The generalized cµ rule. Ann. Appl. Probab. 5(3):809–833.

Whitt W (2006) Fluid models for multiserver queues with aban-
donments. Oper. Res. 54(1):37–54.

WuCA, BassambooA, Perry O (2019) Service systemwith dependent
service and patience times. Management Sci. 65(3):1151–1172.

Zhenghua Long is an assistant professor in management
at the School of Management, Nanjing University. His re-
search interests lie in asymptotic analysis and optimal control
of queueing systems and their applications in manufacturing
and services.

Nahum Shimkin is a professor and dean of the Viterbi
Faculty of Electrical Engineering at the Technion. His research
interests include stochastic control and planning, queueing
systems, game theoretical analysis of multiuser systems, and
reinforcement learning.

Hailun Zhang is an assistant professor in data and decision
analytics at the Chinese University of Hong Kong, Shenzhen.
His research interests include data-driven queueing net-
works, online algorithm design, and their applications.

Jiheng Zhang is an associate professor in industrial en-
gineering and decision analytics at the Hong Kong University
of Science and Technology. His research interests are in ap-
plied probability, stochastic modeling and optimization, data
analysis, numerical methods, and algorithms.

Long et al.: Dynamic Scheduling of Multiclass Many-Server Queues with Abandonment
1230 Operations Research, 2020, vol. 68, no. 4, pp. 1218–1230, © 2020 INFORMS

http://www.ahrq.gov/professionals/systems/hospital/esi/esi1.html
http://www.ahrq.gov/professionals/systems/hospital/esi/esi1.html

	Dynamic Scheduling of Multiclass Many-Server Queues with Abandonment: The Generalized cμ/h Rule
	Introduction
	Multiclass Many-Server Queues
	Fluid Scheduling Policies
	Numerical Experiments
	Knapsack Problems
	Conclusion


