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Abstract. Consider a storage system where the content is driven by a Brownian motion in
the absence of control. At any time, one may increase or decrease the content at a cost
proportional to the amount of adjustment. A decrease of the content takes effect imme-
diately, while an increase is realized after a fixed lead time ℓ. Holding costs are incurred
continuously over time and are a convex function of the content. The objective is to find
a control policy that minimizes the expected present value of the total costs. Because of the
positive lead time for upward adjustments, one needs to keep track of all of the outstanding
upward adjustments as well as the actual content at time t as there may also be downward
adjustments during [t, t + ℓ)—that is, the state of the system is a function on [0, ℓ]. We first
extend the concept of LZ-convexity to function spaces and establish the LZ-convexity of the
optimal cost function. We then derive various properties of the cost function and identify
the structure of the optimal policy as a state-dependent two-sided reflection mapping
making the minimum amount of adjustment necessary to keep the system states within
a certain region.
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1. Introduction
Consider a storage system, such as an inventory or cash fund, whose content fluctuates according to a
Brownian motion in the absence of control. A convex holding cost of the content is incurred continuously. At
any time, a controller may initiate an upward adjustment to increase the content, which is realized after a lead
time, and/or a downward adjustment to decrease the content, which takes effect immediately. Both upward
and downward adjustments incur a variable cost. The objective is to find a control policy that minimizes the
expected discounted cost over an infinite planning horizon.

In the absence of the lead time, the state of the problem is one dimensional, and Harrison and Taksar [10, 11]
show that an optimal control policy can be characterized by two closed-form control limits. The method used
to analyze the problem is referred to as a lower-bound approach by Dai and Yao [5], and involves three steps.
(1) Based on the optimality equations, heuristically derive some differential inequalities of the optimal cost
function, with at least one equation being tight. This is known as the Hamilton–Jacobi–Bellman (HJB)
equation. (2) For a control limit policy, first obtain a set of ordinary differential equations (ODEs) of the cost
function and then solve those equations. (3) Find the control limits under which the cost function is con-
tinuously differentiable and hence optimal.

The problem becomes much more complicated, however, when there is a positive lead time ℓ for upward
adjustments. This is because the on-hand inventory at t + ℓ cannot be predicted solely from the inventory
position at any time t as there may be downward adjustments in [t, t + ℓ). One needs to keep track of the
amount and timing of each outstanding upward adjustment as well as the content on hand at any time—that
is, the state of the system is a function on [0, ℓ]. Thus, step (2) of the lower bound approach will only result in
an uncountable number of partial differential equations (PDEs) with unknown boundary conditions, which
are almost impossible to solve.

To derive and prove the structure of the optimal control policy in the presence of a positive lead time, we
follow step (1) to heuristically derive an HJB equation based on two optimality conditions, optimizing the
timing and amounts of adjustments, respectively. The similarity between our analysis and the lower bound
approach in Harrison and Taksar [11] stops here, and we proceed with the following steps, each of which
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involves challenging and deep mathematical analysis. (2) Extend the concept of LZ-convexity defined on finite
dimensional spaces and introduced by Murota [13] to a function space, and show that the optimal cost
function is the limit of the costs of a series of periodic review systems and hence is LZ-convex in our state space.
This is one of the key steps in our analysis and a fundamental building block. (3) Derive some properties of the
optimal cost function using the LZ-convexity of the cost function, and identify two sets of states in which an
upward and a downward adjustment are needed, respectively. These two sets also reveal the boundaries of
the PDEs for the HJB equation. (4) Construct a state-dependent two-sided reflection policy making the
minimum amount of upward or downward adjustment necessary to prevent the state from entering into the
two sets and prove it is optimal. Such a policy is much more complicated than that in Harrison and Taksar [11],
and the proof of its optimality requires the establishment of properties such as the monotonicity, Lipschtiz
continuity, and complementarity of the policy.

Existing methods can only deal with systems with single dimensional states—for example, zero lead time
for both upward and downward adjustments in our problem. For periodic control problems, except for those
with states of one or two dimensions, the common approach is to establish the LZ-convexity of the optimal cost
function, with which a threshold policy can be easily shown to be optimal. Such an approach cannot be
applied directly to problems with instantaneous control as LZ-convexity is only defined on finite dimensional
spaces. As one can see, identifying the optimal policy is nontrivial even after extending and applying the
concept of LZ-convexity to a function space (i.e., step (2)), and requires additional challenging steps—that
is, steps (3) and (4) mentioned above.

The remainder of this paper is organized as follows. In Section 2, we provide a brief summary of relevant
literature. In Section 3, we present a precise mathematical formulation of the Brownian control problem. We
then derive two optimality conditions and provide a heuristic derivation of the HJB equations. In Section 4, we
extend the concept of LZ-convexity to a function space, and show that the optimal cost function is the limit of
the costs of a series of periodic review systems and hence is LZ-convex. In Section 5, we provide various
properties of the optimal cost function, which lead to the optimal control being a state-dependent two-sided
reflection policy in Section 6. The conclusion and discussion are included in Section 7.

2. Literature Review
Research on the stochastic control of Brownian motion dates back to Bather [1] and the early work was aimed
at minimizing the total expected discounted costs. Constantinides and Richard [4] show that a control band
policy is optimal when there is a fixed cost for upward and downward adjustments, and Harrison et al. [12]
develop a method to find the optimal bands. Davis [7] and Øksendal and Sulem [14] show the equivalence of
this control problem to a sequence of optimal stopping problems. All of these papers assume that the holding
cost is linear. Dai and Yao [6] extend this work to a general convex holding cost function. Harrison and Taksar
[10, 11] prove that a control limit policy is optimal absent fixed costs under linear and convex holding costs,
respectively, and the latter also provides a procedure for computing the optimal limits. The methodology used
in these papers is the three-step approach described in the introduction. Later, these policies are shown to be
optimal also under the average cost criteria by Ormeci et al. [15] and Dai and Yao [5] with fixed costs when the
holding cost is linear and convex, respectively, and by Taksar [22] without a fixed cost.

Note that all of the abovementioned work assumes away a positive lead time for upward or downward
adjustments, except that of Øksendal and Sulem [14], which shows that, with some additional assumptions
that will be discussed in Section 7, the problem where the lead times for upward and downward adjustments
are the same can be reduced to one with zero lead times.

Since the state in our problem is on a function space, the literature on LZ-convexity that extends convexity to
multiple dimensions is also relevant. We refer to Zipkin [24] for an excellent summary of the development of
the concept and its application in inventory management. By establishing the LZ-convexity of the optimal cost
function, Zipkin [24] develops a new approach to the structural analysis of the standard, single-item, lost-sales
inventory system with a linear ordering cost and a positive replenishment lead time. This concept is also used
in the structural analysis of problems where the state is of a finite dimension—for example, inventory-pricing
control with lead times (Pang et al. [16]) and perishable inventory systems (Chen et al. [3]). In our paper, we
will extend LZ-convexity to a function space.

The two-sided reflection policy shown to be optimal for our problem is inspired by the work of Skorokhod [20, 21],
which solves the stochastic differential equation for a reflecting Brownian motion. The idea of the reflection
mapping is widely used in the study of queueing systems. For example, Harrison and Reiman [9] and Reiman [19]
obtain the heavy-traffic limits for some open queueing network using multidimensional reflection mappings.
We refer to Chen and Yao [2] and Whitt [23] for more in-depth knowledge about reflection mappings.
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3. Model Description
In this section, we formulate the problem mathematically and heuristically derive the Hamilton–Jacobi–
Bellman (HJB) equation.

3.1. Problem Formulation
3.1.1. Modeling Details. Let Ω be the set of all continuous functions ω :[0,∞)→R, and Wt :Ω→R be the
coordinate projection map Wt(ω) � ω(t) for t≥ 0. Denote by F � σ(Wt, t≥ 0) the smallest σ-field such that Wt is
F-measurable and Ft � σ(Ws, 0≤ s≤ t) for each t≥ 0. Also let P be the unique probability measure on (Ω,F)
such that Wt is a Brownian motion with drift µ and variance σ2, and E be the associated expectation operator.

Now consider a storage system, such as an inventory or bank account, whose content Ht, t≥ 0, fluctuates
according to a Brownian motion Wt with drift µ and variance σ2, without any control. Holding costs are
incurred continuously at the rate h(Ht). At any time, we may take an action to cause the storage level to jump
by a positive amount after a fixed lead time ℓ or by a negative amount that takes effect immediately. An
upward adjustment incurs a variable cost k↑, while a downward adjustment incurs a variable cost k↓. Thus, the
cost for an upward ξ↑ and/or downward ξ↓ adjustment at any given time is given by

φ(ξ↑, ξ↓) � k↑ξ↑+ k↓ξ↓. (1)

When ℓ � 0, the problem reduces to that in Harrison and Taksar [11]. With a positive lead time for upward
adjustments, the problem becomes much more complicated for the following reasons. (i) As instantaneous
downward adjustments can occur at any time, by itself the inventory position at any time t cannot predict the
content on hand and hence the expected holding cost at time t + ℓ. One needs to keep track of the content at
any time t, as well as all of the upward adjustments that will be realized in [t, t + ℓ), or a profile of outstanding
upward adjustments. (ii) With continuous time, such a profile is a function on [0, ℓ]. Dynamic control with
infinite dimensional state variables is well known to be extremely challenging, and there has been little work in
the literature. Next, we define the state and decision variables, and provide the system dynamics of the model.

1. The state variables: Let -t(u) ∈R be the content of the system plus the total amount of outstanding
upward adjustments at time t that will be realized by t + u. Then, -t(0) is simply the content of the system at
time t. Since all of the outstanding upward adjustments at time t will be realized before t + ℓ, we have -t(u) �
-t(ℓ) for u> ℓ in our state. Thus, -t(u), u≥ 0, is right-continuous, nondecreasing, and constant for u≥ ℓ.

Let -t � {-t(u), u≥ 0} be the state of the system at time t and D be the set of all possible states. That is, D is
the set of all functions on R+ with the following properties: (1) right-continuous on [0,∞) with left limits in
(0,∞), (2) nondecreasing, and (3) complete, which we establish in the appendix. For convenience, we denote
( � {((u) � 1,u≥ 0}∈D and - + a � {-(u) + a,u≥ 0} ∈D for a ∈R.

2. The decision variables: Let Y↑(t) and Y↓(t) be stochastic processes adapted to the filtration Ft for all t≥ 0,
representing the cumulative upward and downward adjustments up to time t, respectively. Thus, Y↑ and Y↓

are nondecreasing functions. For convenience, let π � (Y↑,Y↓) � {(Y↑(t),Y↓(t)) : t≥ 0} represent a control policy over
the planning horizon such that any control at time t is based on information that has been revealed up to t.

3. The system dynamics: For any t> 0, given the initial state -0 and policy π � (Y↑,Y↓), we have that

-t(u) � -0(u + t) + Y↑(t + u − ℓ) − Y↓(t) +Wt u≤ ℓ,
-t(ℓ) u> ℓ.

{
(2)

To see the intuition, we just need to focus on u where u≤ ℓ. Apart from Wt, -t(u) includes the content at time
0 plus the upward adjustments made before time t + u − ℓ, minus the downward adjustments made up to t.
The content at time 0 plus the upward adjustments made before time t + u − ℓ consists of two parts:
(1) -0(u + t) is the content of the system at time 0 plus the upward adjustments made before time 0 that will be
realized by t + u; (2) Y↑(t + u − ℓ) is cumulative upward adjustments made after time 0 that will be realized by
t + u. Taking u � 0 in (2), the content on hand at t can be written as Ht � -t(0) � -0(t) + Y↑(t − ℓ) − Y↓(t) +Wt.

3.1.2. The Cost Function. For any given policy π and initial state - � -0 ∈D, the total expected cost can be
written as

C(-,π) � E

∫ ∞

0
e−γth(-t(0))dt +

∫ ∞

0
e−γt(k↑dY↑(t) + k↓dY↓(t))

[ ]
, (3)

where γ is the discount rate. We impose the following mild assumptions on the holding cost function for the
rest of this paper.
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Assumption 1. The holding cost function h :R→R+ satisfies the following conditions: (1) h(·) is convex and piecewise
C2-continuous; (2) h(0) � 0; and (3) there exists M> 0 such that |h′(·)| ≤M.

Parts (1) and (2) of Assumption 1 guarantee that it is never optimal to make a downward adjustment exceeding
the available content at any time. Without loss of generality, we will only consider feasible policies that result in
finite control costs—that is,

E

∫ ∞

0
e−γt(dY↑(t) + dY↓(t))

[ ]
<∞. (4)

Thus, under Assumption 1, a policy π is feasible if and only if C(-,π) is finite. Denote by Π the set of all such
control policies and by C∗(-) � infπ∈Π{C(-,π)} the optimal cost.

The following proposition establishes that the optimal costC∗(-) is Lipschitz continuous onD. All of the proofs in
the paper are either in the main body or can be found in the appendix. Since the states are functions, we define the
distance between two states - and -′ ∈D as d(-,-′) � ∫ ∞0 e−γt |-(t) − -′(t)|dt. It is easy to see that the space D is
a complete metric space under the distance d(·, ·).
Proposition 1. Under Assumption 1, C∗(-) is Lipschitz continuous. That is, for any states - and -′,
|C∗(-) − C∗(-′)|≤Md(-,-′).
3.2. Heuristic Derivation of the Hamilton–Jacobi–Bellman (HJB) Equations
We first note that, for any given initial state - ∈D, the optimal cost should satisfy the following optimality
conditions:

C∗(-) � inf
ξ↑≥0, ξ↓≥0

{
φ(ξ↑, ξ↓) + C∗(Φξ↑,ξ↓(-))

}
, (5)

C∗(-) � inf
s≥0 E

∫ s

0
e−γuh(-(u) +Wu)du + e−γsC∗(σs(-) +Ws)

[ ]}
,

{
(6)

where s is a stopping time and

Φξ↑,ξ↓(-) � -(u) − ξ↓+ξ↑1{u≥ℓ} :u≥ 0
{ }

, (7)

σs(-) � {-(s + u),u≥ 0}
are the states after an adjustment (ξ↑, ξ↓) is made and after a period of time s with no adjustment for a given
initial state -, respectively. Let

C(-, ξ↑, ξ↓) � φ(ξ↑, ξ↓) + C∗(Φξ↑,ξ↓(-)) (8)

be the minimum cost under a given adjustment (ξ↑, ξ↓). Assume for now that ∂C(-, ξ↑, ξ↓)
∂ξ↑ and ∂C(-, ξ↑, ξ↓)

∂ξ↓ exist,
which we will prove later. Then, with a small amount of adjustment ε,

C(-, ε, 0) � C∗(-) + ∂C(-, 0, 0)
∂ξ↑

ε + o(ε), (9)

C(-, 0, ε) � C∗(-) + ∂C(-, 0, 0)
∂ξ↓

ε + o(ε). (10)

If (ξ↑, ξ↓) � (0, 0) (i.e., no adjustment is made at time 0), absent further adjustment, the state at time s> 0
becomes σs(-) + w for any realization of Ws � w. We define

V-(w, s) � C∗ σs(-) + w).( (11)

If no adjustment is made for ε amount of time, then, by Ito’s formula, the minimum expected discounted cost
becomes

E

∫ ε

0
e−γth(-t(0))dt + e−γεV-(Wε, ε)

[ ]
� C∗(-) + [ΓV-(0, 0) − γV-(0, 0) + h(-(0))]ε + o(ε), (12)
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where the operator Γ � ∂

∂s + σ2

2
∂2

∂w2 +µ ∂

∂w. Thus, for any given -,

ΓV-(0, 0) − γV-(0, 0) + h(-(0))[ ]
∧
∂C(-, 0, 0)

∂ξ↑
∧
∂C(-, 0, 0)

∂ξ↓
� 0, (13)

which is precisely the HJB equation associated with the state -. Since there is an uncountable number of - in
the state space, the HJB equations involve an uncountable number of PDEs with unknown boundary con-
ditions, and no known method is available to solve it directly. Instead, we will solve the problem by first
establishing the LZ-convexity of the optimal cost function on function spaces. A solution to the HJB equations
will be given in Theorem 4.

4. The L♮-Convexity of the Optimal Cost Function
Since the concept of LZ-convexity is defined on Rn, we first study a periodic version of the problem. We then
extend the concept of LZ-convexity from Rn to D by linking the problem to the limit of a series of periodic
problems.

4.1. A Periodic Review System
Consider a periodic review of the system with period length ℓ

n—that is, an upward adjustment takes n periods.
In such a system, the state in any period is an n-dimensional vector denoted by xt � xt,0, xt,1, . . . , xt,n−1)( where
xt,0 is the current content of the system and xt,i, 1≤ i≤ n − 1, is the content of the system plus the total
outstanding upward movement that will be realized from period t + 1 to t + i. Letting y↑t and y↓t be the upward
and downward adjustments in period t, we obtain the following dynamics:

xt+ 1 � (xt,1, xt,2,⋯, xt,n−1, xt,n−1 + y↑t ) − y↓t e + wte, (14)

where e is a vector of all 1’s whose dimension will be clear from the context, and wt �W(t+ 1)ℓ
n

−Wtℓ
n
is the

random change caused by the Brownian motion. Let 1a represent a normally distributed random variable with
mean aµ and variance aσ2 for any a> 0. Then, the discount rate becomes α � e−γℓ

n and holding cost is given by

hn(x) � E

∫ ℓ
n

0
e−γsh x +1ℓ

n

( )
ds

[ ]
in the periodic system.

Next, we present some definitions where the concept of LZ-convexity can be found in Zipkin [24], and show
that the optimal cost function for the periodic system is LZ-convex.

Definition 1. Let f be a function on Rn.
1. f is submodular if for any x1, x2 ∈Rn, f (x1) + f (x2) ≥ f (x1 ∨ x2) + f (x1 ∧ x2).
2. f is LZ-convex if the function g(x, ξ) � f (x − ξe) is submodular in Rn+ 1.

Thus, a function f is LZ-convex if and only if, for any x1, x2 ∈Rn and ξ1, ξ2 ∈R,
f (x1 − ξ1e) + f (x2 − ξ2e) ≥ f (x1∨ x2 − (ξ1 ∨ ξ2)e) + f (x1 ∧ x2 − (ξ1 ∧ ξ2)e).

To show the LZ-convexity of the optimal cost function for the periodic system, we define CT,n
t (xt) as the optimal

cost function from period t to T for a given (T,n) and state xt. Then,

CT,n
t (xt) � min

y↑t ,y
↓
t≥0

cT,nt (xt, y↑t , y
↓
t )

{ }
,

where

cT,nt (xt, y↑t , y
↓
t ) � k↑y↑t + k↓y↓t + αE CT,n

t+1(xt+ 1) + hn(xt,0 − y↓t )
[ ]

for 0≤ t≤T − 1 and CT,n
T (xT) � 0.

Proposition 2. cT,nt (x, y↑, y↓) is LZ-convex in (x,xn, y↓), and CT,n
t (x) is LZ-convex in x.

By theorem 6.2.3 of Puterman [18], C∞,n(x)≔ limT→∞ CT,n
0 (x){ }

<∞ is the unique solution to the optimality
equation C∞,n(x) � miny↑,y↓≥0

{
c∞,n(x, y↑, y↓)} where

c∞,n(x, y↑, y↓) � k↑y↑+ k↓y↓+ αE C∞,n((x1, x2,⋯, xn−1, xn−1 + y↑) − y↓e + wte) + hn(x0 − y↓)[ ]
and hence we have the following theorem.
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Theorem 1. C∞,n(x) is LZ-convex and hence the optimal cost for the infinite horizon periodic review system for any given n.

Thus, there exists a unique optimal adjustment (y↑, y↓) for any given x and the optimal y↑ (y↓) is increasing
(decreasing) in x, where the order of x in Rn is defined in the usual way of component-wise comparison.

4.2. The Continuous Review System
Since the state - is defined on D rather than Rn, we need to extend the concept of LZ-convexity to D. The
LZ-convexity of C∗(-) will enable us to construct an optimal policy in Section 6.

Definition 2. Suppose that -1,-2 ∈D.
• Order: -1 ≽-2 if -1(u) ≥-2(u) for any u≥ 0, and -1 ≼-2 if -1(u) ≤-2(u) for any u≥ 0.
• Max and Min Operations: -1∨ -2 � {-1(u) ∨ -2(u),u≥ 0} and -1 ∧-2 � {-1(u)∧-2(u), u≥ 0}.

Definition 3. A function F on D is LZ-convex if, for any -1,-2 ∈D and ξ1, ξ2 ∈R,
F(-1 − ξ1) + F(-2 − ξ2) ≥ F(-1 ∨ -2 − (ξ1 ∨ ξ2)) + F(-1 ∧-2 − (ξ1 ∧ ξ2)).

To connect the periodic review systems with our original one, for any given state - and policy π, consider
the following discretized state -n and policy πn that makes adjustments only at multiples of ℓ

n. It is easy to see
that -n and πn approach - pointwise and π, respectively, as n→∞.

1. The state -n is such that

-n(u) �
-
(
ℓ
n

)
, if 0≤ u≤ ℓ

n ,

-
(iℓ
n

)
, if (i−1)ℓ

n < u≤ iℓ
n, i � 2, 3,⋯, n,

-(ℓ), if u> ℓ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

Let

xn � -
ℓ

n

( )
,-

2ℓ
n

( )
,⋯,-

(n − 1)ℓ
n

( )
,-(ℓ)

( )
.

2. The policy πn � (Yn↑,Yn↓) is such that

Yn↑(t) � ∑⌊ntℓ ⌋
i�0

ξn↑i andYn↓(t) � ∑⌊ntℓ ⌋
i�0

ξn↓i , (16)

where (ξn↑0 , ξn↓0 ) � (Y↑(0),Y↓(0)) and (ξn↑i , ξn↓i ) � Y↑ iℓ
n

( ) − Y↑ (i−1)ℓ
n

( )
,Y↓ iℓ

n

( ) − Y↓ (i−1)ℓ
n

( )( )
for i � 1, 2,⋯ .

Then, the cost of the system for a given (-n,πn) is given by

C(-n,πn) � E

∫ ∞

0
e−γth

(
-n

t (0)
)
dt +

∫ ∞

0
e−γt(k↑dYn↑(t) + k↓dYn↓(t))

[ ]
, (17)

where -n
t (·) is the corresponding state at time t under πn with the initial state -n. By (2), we also have

-n
t (0)→-t(0) as n→∞ for any t≥ 0. It then follows, by (3), (17) and the Lebesgue’s dominated convergence

theorem, that

lim
n→∞C(-n,πn) � C(-,π). (18)

It remains to be shown that the optimal cost of the original problem is the limit of the costs of periodic review
systems and hence is LZ-convexity by Theorem 1.

Proposition 3. C∗(-) � limn→+∞ C∞,n(xn).
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Proof of Proposition 3. Since C∗(-) is the optimal cost, for any ε> 0, we can find a policy π such that C(-,π)<
C∗(-) + ε. On the other hand, as C∞,n(·) is the optimal cost of the periodic review system, C∞,n(xn) ≤C(-n,πn). Then,
we have

lim sup
n→+∞

C∞,n(xn) ≤ lim
n→+∞C(-n,πn) � C(-,π)<C∗(-) + ε.

As ε> 0 is arbitrary, we have lim supn→+∞C∞,n(xn) ≤C∗(-). Combined with the fact that lim infn→+∞C∞,n(xn) ≥
limn→+∞C(-n) ≥C∗(-), we have the result. □

Theorem 2. The optimal cost C∗(-) is LZ-convex in D.

Proof of Theorem 2. For any -1,-2 ∈D and their respective xn1 and xn2, it is clear that x
n
1 ∨ xn2 is the vector form of

(-1 ∨ -2)n � (-1)n ∨ (-2)n and xn1 ∧ xn2 is the vector form of (-1 ∧-2)n � (-1)n ∧ (-2)n. For any ξ1, ξ2 ∈R, by the
LZ-convexity of C∞,n(x) in Theorem 1,

C∞,n(xn1 − ξ1e) + C∞,n(xn2 − ξ2e)≥C∞,n(xn1 ∨ xn2 − (ξ1 ∨ ξ2)e) + C∞,n(xn1 ∧ xn2 − (ξ1 ∧ ξ2)e).
Letting n→∞, we see that C∗(-) satisfies Definition 3. □

5. Properties of the Optimal Cost Function C∗(-)
5.1. Impact of Adjustments on the Cost Function
Recall the function C(-, ξ↑, ξ↓) and their partial derivatives ∂C(-,ξ↑,ξ↓)

∂ξ↑ and ∂C(-,ξ↑,ξ↓)
∂ξ↓ introduced in Section 3.2.

A quick fact is that the LZ-convexity of C∗(-) immediately implies that the cost function C(-, ξ↑, ξ↓) is convex
and differentiable in ξ↑ and ξ↓. The following properties of the partial derivatives will help identify the control
regions and consequently construct the optimal policy in Section 6.

Lemma 1. Monotonicity of the derivatives:
1. If -1 ≼-2 and -1(ℓ) � -2(ℓ), ∂C(-1,ξ↑,ξ↓)

∂ξ↑ ≥ ∂C(-2,ξ↑,ξ↓)
∂ξ↑ .

2. For a> 0, ∂C(-+a,ξ↑,ξ↓)
∂ξ↑ ≥ ∂C(-,ξ↑,ξ↓)

∂ξ↑ .
3. ∂C(-,ξ↑,ξ↓)

∂ξ↓ is decreasing in -.

Lemma 2. Continuity of the derivatives: ∂C(-,ξ↑,ξ↓)
∂ξ↑ and ∂C(-,ξ↑,ξ↓)

∂ξ↓ are continuous in -.

Proof of Lemma 2. Since the proofs are similar, we only prove the continuity for ∂C(-,ξ↑,ξ↓)
∂ξ↑ . Suppose it is

not continuous and there exists a0 > 0 and a sequence {-n, n � 1, 2, . . .} in D such that, as n→∞, d(-,-n)→ 0
but ∂C(-n ,ξ↑,ξ↑)

∂ξ↑ − ∂C(-,ξ↑,ξ↓)
∂ξ↑ > 2a0 or < −2a0 for all n. Since C(-, ξ↑, ξ↓) is convex in ξ↑, there exists b0 > 0 such that

∂C(-,ξ↑+b0,ξ↓)
∂ξ↑ < ∂C(-,ξ↑,ξ↓)

∂ξ↑ + a0. Thus, ∂C(-,ξ
↑+b0,ξ↓)

∂ξ↑ < ∂C(-n ,ξ↑,ξ↓)
∂ξ↑ − a0. Since C(-, ξ↑, ξ↓) is convex in ξ↑, the partial derivative

∂C(-,ξ↑,ξ↓)
∂ξ↑ is increasing in ξ↑. We have

C(-, ξ↑ + b0, ξ↓) − C(-, ξ↑, ξ↓)�
∫ b0

0

∂C(-, ξ↑+ s, ξ↓)
∂ξ↑

ds ≤
∫ b0

0

∂C(-, ξ↑+ b0, ξ↓)
∂ξ↑

ds

≤
∫ b0

0

∂C(-n, ξ↑, ξ↓)
∂ξ↑

− a0

( )
ds≤

∫ b0

0

∂C(-n, ξ↑+ s, ξ↓)
∂ξ↑

ds −
∫ b0

0
a0ds

� C(-n, ξ↑+ b0, ξ↓) − C(-n, ξ↑, ξ↑) − a0b0.

On the other hand, because d(-,-n)→ 0 as n→∞ and C∗(-) is continuous in D, C(-n, ξ↑+ b0, ξ↓) − C(-n, ξ↑, ξ↓)
converges to C(-, ξ↑+ b0, ξ↓) − C(-, ξ↑, ξ↓) as n→∞. This is a contradiction, and ∂C(-,ξ↑,ξ↓)

∂ξ↑ is continuous in -. □

We also note that C(-, ξ↑, ξ↓) � C∗(Φξ↑,ξ↓(-)) ≤C∗(Φξ↑+ ε↑,ξ↓+ ε↓(-)) + φ(ξ↑+ ε↑, ξ↓+ ε↓) � C∗(-, ξ↑+ ε↑, ξ↓+ ε↓) for
any ε↑, ε↓ > 0. Thus, ∂C(-,ξ↑,ξ↓)

∂ξ↑ ≥ 0 and ∂C(-,ξ↑,ξ↓)
∂ξ↓ ≥ 0, and we have the following lemma.

Lemma 3. Nonnegativity of the derivatives: ∂C(-, ξ↑, ξ↓)
∂ξ↑ and ∂C(-, ξ↑, ξ↓)

∂ξ↓ are nonnegative.

Since there are no fixed adjustment costs, any adjustment at a particular time can be viewed as the result of
multiple simultaneous adjustments. Thus, starting with a smaller adjustment allows more flexibility and results in
the nonnegativity of the derivatives.
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5.2. The Set of Naturally Reachable States and Its Representation
Starting from an initial state -, the state at time s will be σs(-) + w without any adjustment given a realization
of the Brownian motionWs � w. Thus, for any s> 0 and w ∈R, we call σs(-) + w a naturally reachable state from -,
and {σs(-) + w : s> 0,w ∈R}⊆D is the set of all naturally reachable states from -. For a fixed initial state -, any
naturally reachable state can be fully described by a pair (w, s) ∈R×R+, referred to as a reachable state from
a given initial state with a slight abuse of notation.

5.2.1. The Set of States Where No Adjustment Is Needed. At any naturally reachable state (w, s) from an initial
state -, an adjustment may or may not be needed. It is obvious that no upward (downward) adjustment
should be made at - if

∂C(-, 0, 0)
∂ξ↑

> 0
∂C(-, 0, 0)

∂ξ↓
> 0

( )
.

That is, the set of naturally reachable states in which no adjustment is needed is given by

Ξ- � (w, s) ∈R×R+ :
∂C(σs(-) + w, 0, 0)

∂ξ↑
> 0,

∂C(σs(-) + w, 0, 0)
∂ξ↓

> 0
{ }

. (19)

Let

w↑
-(s) �max w ∈R :

∂C(σs(-) + w, 0, 0)
∂ξ↑

� 0
{ }

, (20)

w↓
-(s) �min w∈R :

∂C(σs(-) + w, 0, 0)
∂ξ↓

� 0
{ }

. (21)

By Lemma 1,

∂C(σs(-) + w, 0, 0)
∂ξ↑

> 0
∂C(σs(-) + w, 0, 0)

∂ξ↓
> 0

( )
if and only if w>w↑

-(s) w<w↑
-(s)

( )
. Thus, (19) is equivalent to

Ξ- � (w, s)∈R×R+ :w↑
-(s)<w<w↓

-(s)
{ }

.

Since σs(-) increases in s initially and remains constant when s≥ ℓ, by Lemma 1, w↑
-(s) increases in s and stays

constant at w↑
0(ℓ) + -(ℓ) for s≥ ℓ, and w↓

-(s) decreases in s and stays constant at w↓
0(ℓ) + -(ℓ) for s≥ ℓ as shown in

Figure 1. We do not give closed forms for the boundaries, but only shows the structural properties that the
boundaries for each state - are monotone. How to numerically solve the problem is another challenging
research topic and beyond the scope of this paper.

At any given state -, no adjustment is needed if (0, 0) ∈Ξ-, or equivalently w↓
-(0)< 0<w↑

-(0). Otherwise, as

ξ↑ (ξ↓) increases, by Lemma 1, the marginal cost remains zero initially—that is, ∂C(-,ξ
↑,ξ↓)

∂ξ↑
∂C(-,ξ↑,ξ↓)

∂ξ↓

( )
stays at 0 for

a while until it becomes positive. Since there are no fixed control costs, intuitively, the optimal upward
(downward) adjustment should be obtained at the maximum ξ↑ (ξ↓) at which the derivative is zero. This
means that an upward (downward) adjustment is needed at time s if w<w↑

-(s) (w>w↓
-(s)) as depicted in

Figure 1. w↑
-(s) and w↓

-(s) that define Ξ-.
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Figure 1, and simultaneous upward and downward adjustments are needed at a reachable state (w, s) if and
only if w↓

0(ℓ) ≥w↑
0(ℓ) as shown in the second case in Figure 1.

Furthermore, we show in the next proposition that w↑
0(ℓ) and w↓

0(ℓ) provide sufficient information for
deciding whether an upward or downward adjustment is not needed at a state.

Proposition 4 (No Intervention Region). No upward and downward adjustment is needed at - if -(ℓ)>w↑
0(ℓ) and

-(ℓ)<w↓
0(ℓ), respectively.

Proof of Proposition 4. If -(ℓ)<w↓
0(ℓ), we have -≼w↓

0(ℓ)(. By part 3 of Lemma 1, ∂C(-,0,0)
∂ξ↓ ≥ ∂C(w↓

0(ℓ)(,0,0)
∂ξ↓ � 0.

Hence, by the definition of w↓
0(ℓ), ∂C(-,0,0)

∂ξ↓ >0. If -(ℓ)>w↑
0(ℓ), there exists b> 0 such that -(ℓ) − b � w↑

0(ℓ) and

- − b≼w↑
0(ℓ)(. Then ∂C(-,0,0)

∂ξ↑ ≥ ∂C(-−b,0,0)
∂ξ↑ ≥ ∂C(w↑

0(ℓ)(,0,0)
∂ξ↑ � 0 by parts 2 and 1 of Lemma 1, and ∂C(-,0,0)

∂ξ↑ > 0 by the
definition of w↑

0(ℓ). □

5.2.2. Properties of V-(w,s) on Ξ-. In this section, we will show that the optimal value function V-(w, s) defined
in (11) is a solution to the HJB equation (13) with Ξ- as the boundaries, and we will identify the timing of
adjustment.

Theorem 3. The partial derivatives ∂V-(w,s)
∂s , ∂V-(w,s)

∂w , and ∂2V-(w,s)
∂w2 exist, and

∂V-(w, s)
∂s

+ σ2

2
∂2V-(w, s)

∂w2 + µ
∂V-(w, s)

∂w
− γV-(w, s) + h(-(s) + w) � 0 (22)

holds for almost every (w, s) ∈Ξ-.

The key step in proving Theorem 3 is to establish the following property of V-(w, s) in a small enough
neighborhood of any point (ŵ, ŝ) in Ξ-.

Proposition 5 (Key Representation for the Value Function). For a given - ∈D and (ŵ, ŝ) ∈Ξ-, there exists a neighborhood
of (ŵ, ŝ), Ξ(ŵ,ŝ)

- ⊂Ξ-, such that

V-(w, s) � E

∫ τ

0
e−γth(-(s + t) + w +Wt)dt

[ ]
+ E

[
e−γτV-(w +Wτ, s + τ)], (23)

for all (w, s) ∈Ξ(ŵ,ŝ)
- , where τ is the first time the process {(w +Wt, s + t) : t≥ 0} leaves Ξ(ŵ,ŝ)

- .

Proof of Proposition 5. By the continuity of the partial derivatives in Lemma 2, there exist δ> 0 and k0 > 0 such that,
for any -̂ satisfying d(σŝ(-) + ŵ, -̂)< 3δ,

∂C(-̂, 0, 0)
∂ξ↑

≥ k0,
∂C(-̂, 0, 0)

∂ξ↓
≥ k0. (24)

Consider a neighborhood of (ŵ, ŝ), Ξ(ŵ,ŝ)
- � (ŵ, ŝ) + B(δ), where B(δ)≔ [−δ, δ]× 0, δ

γ-(ℓ)
[ ]

. For any (w, s) ∈Ξ(ŵ,ŝ)
- ,

recall the definition of the distance d(·, ·) in Section 3.1,

d(σŝ(-) + ŵ, σs(-) + w) ≤ d(σŝ(-) + ŵ,σs(-) + ŵ) + d(σs(-) + ŵ,σs(-) + w)
≤ (s − ŝ)γ-(ℓ) + δ≤ 2δ.

Thus, Ξ(ŵ,ŝ)
- ⊂Ξ-. Next, show that the proposition holds in this neighborhood by contradiction via the fol-

lowing three steps.
1. Suppose (23) does not hold at a pair (w′, s′) ∈Ξ(ŵ,ŝ)

- . Since V-(w′, s′) � C∗(σs′(-) + w′) is the optimal cost at
σs′(-) + w′, there exists a positive c0 such that

E

∫ τ′

0
e−γth(-(s′+ t) + w′+Wt)dt

[ ]
+ E e−γτ

′

V-(w′+Wτ′ , s′+ τ′)[ ]
>V-(w′, s′) + c0, (25)

where τ′ is the stopping time when {(w′+Wt, s′+ t) : t≥ 0} leaves (ŵ, ŝ) + B(δ). Introducing -′ � σs′(-) + w′, (25)
is equivalent to

E

∫ τ′

0
e−γth(-′(t) +Wt)dt

[ ]
+ E e−γτ

′

V-′(Wτ′ , τ′)[ ]
>V-′(0, 0) + c0. (26)
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For any feasible periodic control policy πn � (Yn↑,Yn↓) defined in (16), let -′
t be the updated state at time t

under this policy πn. For any ε≤ δ, we define N(ε) � inf{k :
∑k

i�0(ξn↑i + ξn↓i ) ≥ ε}. Without loss of generality,
assume that

∑N(ε)
i�0 (ξn↑i + ξn↓i ) � ε; otherwise split the adjustments ξn↑N(ε) and/or ξ

n↓
N(ε) into two. Let A be the event

where the N(ε)th adjustment is made after τ′—that is, A � {τ′ ≤Tn
N(ε)}.

2. Estimate the cost C(-′,πn) by considering the events A and Ac, respectively.
a. On the event A, from (24), the marginal costs for the upward and downward adjustments are quite large,

implying that

C(-′,πn) ≥C∗(-′) + P(A)e−γδk0ε≥V-′(0, 0) + P(A)e−γδk0ε. (27)

b. On the event Ac, the cumulative amount of upward and downward adjustment by the stopping time τ′ is
less than ε—that is, d(-′

s,σs(-′) +Ws)< ε for any 0≤ s≤ τ′. Combining with (26), we can imply that

C(-′,πn) ≥V-′(0, 0) + c0−Mε

γ
− P(A)(δh̄ + V̄), (28)

where h̄ and V̄ are two constants. The detailed proofs of (27) and (28) are presented in the appendix.
3. Properly choose ε � min{δ, c0γ2M} and denote p0 � c0

2e−γδk0 min{δ, c0γ2M}+2δh̄+2V̄. If P(A) ≥ p0, from (27) C(-′,π) ≥
V-′(0, 0) + e−γδk0 min{δ, c0γ2M}p0. Otherwise, if P(A) ≤ p0, from (28) C(-′,π) ≥V-′(0, 0) + e−γδk0 min{δ, c0γ2M}p0. Thus, for
any discrete policy πn, its associated expected cost will be at least V-′(0, 0) + e−γδk0 min{δ, c0γ2M}p0. However, this
is a contradiction of Proposition 3. □

We are now ready to prove Theorem 3.

Proof of Theorem 3. In Proposition 5, we have proved that for any (ŵ, ŝ) ∈Ξ-, we can find a corresponding subset
Ξ(ŵ,ŝ)
- ⊆Ξ- such that all of the points in the subset satisfy (23). Applying Dynkin’s law in Dynkin [8] to (23), we find

that (22) holds for all (w, s) in Ξ(ŵ,ŝ)
- . In other words, for any (ŵ, ŝ) ∈Ξ-, we can find a corresponding neighborhood

Ξ(ŵ,ŝ)
- ∈Ξ- where (22) holds. Since Ξ- � ⋃ (w,s)∈Ξ-

Ξ(w,s)
- , we can conclude that (22) holds for all points in Ξ-. □

Define τ- ≥ 0 to be the first time the process {(w +Wt, s + t) : t≥ 0} leaves Ξ-. By Ito’s formula and Theorem 3, we
have the following corollary (whose proof is skipped as it is the same as that of Theorem 3). The corollary helps to
identify the time of the adjustment since the equation in the corollary actually holds for any stopping time τ such
that τ≤ τ- with probability 1.

Corollary 1. For any given -∈D and (w, s) ∈Ξ-,

V-(w, s) � E

∫ τ-

0
e−γth(-(s + t) + w +Wt)dt

[ ]
+ E e−γτ-V-

(
w +Wτ-, s + τ-

)[ ]
.

Based on the LZ-convexity of C∗(-) and its optimality, we have the following proposition.

Proposition 6. The partial derivatives ∂V-(w, s)
∂s , ∂V-(w, s)

∂w , and ∂2V-(w, s)
∂w2 exist, and

∂V-(w, s)
∂s

+ σ2

2
∂2V-(w, s)

∂w2 + µ
∂V-(w, s)

∂w
− γV-(w, s) + h(-(s) + w) ≥ 0

holds for almost every (w, s) ∈R×R+.

The above proposition and Lemma 3 show that each one of the three terms of (13) is always nonnegative.
Moreover, if-∈Ξ-, the first term of (13) must be zero by Theorem 3. Otherwise, by the definition of Ξ-, at least one
of the last two terms of (13) is zero. This yields the following theorem.

Theorem 4. For any - ∈D, V-(w, s) is a solution to the HJB equations (13) with Ξ- as the boundaries.

6. The Optimal Control Policy
In this section, we will construct an optimal control policy. We will first define the set of states in which an
upward or downward adjustment is needed. We then examine the corresponding upward (downward)
adjustment policy for a given downward (upward) adjustment policy, referred to as the one-sided reflection
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mapping in Section 6.1.1, and construct a two-sided reflection mapping in Section 6.1.2. Lastly, in Section 6.2,
we show that the two-sided reflection mapping is an optimal control.

Recall that Ξ- is divided into three regions as illustrated in Figure 1. Proposition 5 states that no upward or
downward control is needed in the middle region, and Equations (20)–(21) reveal that the timing of exercising
upward (downward) control is when the state - hits the lower (upper) boundary—that is, at time s when
w<w↑

-(s) (w>w↓
-(s)). Thus, the optimal policy should exert the minimum amounts of control sufficient to keep

the state -t out of D↑ and D↓, where

D↑ � - ∈D :w↑
-(0)< 0

{ }
andD↓ � - ∈D :w↓

-(0)> 0
{ }

, (29)

which is the two-sided reflection mapping. Lemma 1 immediately leads to the following corollary.

Corollary 2. Let D̄↑ and D̄↓ be the complements of D↑ and D↓, respectively.
1. If -≽-′ and -(ℓ) � -′(ℓ), then - ∈ D̄↑ implies -′ ∈ D̄↑.
2. If - ∈ D̄↑, then - + a∈ D̄↑ for all a> 0.
3. If -≽-′, then - ∈ D̄↓ implies -′ ∈ D̄↓.

If there exists a state belonging to both D↑ and D↓, then we need to make downward and upward adjustments at
the same time. This can happen when it is too costly to hold a unit of inventory that is likely to be needed ℓ amount
of time later—that is, when the cost for holding a large amount of inventory is relatively high and the lead time is
relatively long. When this happens, the optimal adjustment can be quite complicated. Thus, we will focus on the
case where D↑ ∩D↓ � Ø, which holds in most real applications. The following lemma also provides an explicit
sufficient condition for this to hold.

Lemma 4. D↑ ∩D↓ � Ø if and only if w↓
0(ℓ)>w↑

0(ℓ). A sufficient condition for D↑ ∩D↓ � Ø is k↑+ k↓ > 1−e−γℓ
γ maxx>0 h′(x).

Proof of Lemma 4. A direct result from Figure 1 is that a necessary and sufficient condition for nonsimultaneous
upward and downward adjustments is w↓

0(ℓ)>w↑
0(ℓ). If these two subsets intersect and (ξ↑, ξ↓) are simultaneously

adjusted, for a downward and an upward adjustment (ξ↑ − ε, ξ↓ − ε), we increase the holding cost by no more than

ε∫ ℓ0e−γtmaxx>0 h′(x)dtwhile reducing the control cost by (k↑+ k↓)ε. Since k↑+ k↓ >maxx>0 h′(x) 1−e−γℓγ , the total cost will
decrease. □

6.1. Reflection Mappings
We first identify the minimum upward (downward) adjustment needed to ensure -s∈ D̄↑ (-s∈ D̄↓) at all s≥ 0
for a given downward (upward) adjustment. We refer to them as one-sided reflection mappings that will lead
to the two-sided reflection policy, an optimal control.

6.1.1. One-Sided Reflection Mappings. For a given sample path of the Brownian motion ω and initial state -,
the state -s under policy (Y↑,Y↓) can also be written as

-s � σs(-) − Y↓(s) + σs−ℓ (Y↑)∧Y↑(s)( + ω(s)
by the dynamics (2). For convenience, we use the superscripts i, j∈ {↑, ↓}, i≠ j, to indicate a pair of upward and
downward adjustments. For any given (-,Yj,ω),

Πi(-,Yj,ω) � {
Yi : -s � σs(-) − Y↓(s) + σs−ℓ (Y↑)∧Y↑(s)( + ω(s) ∈ D̄i, for all s≥ 0

}
(30)

is the set of all of the feasible one-sided adjustments Yi that will ensure -s∈ D̄i at all s. Recall that D is a functional
set. For any subset ∅≠ S⊆D, let inf S be a function that takes the infimum of all functions in S at any point—that is,

(inf S)(t) � inf
f∈S

{ f (t)} for any t≥ 0.

By lemma 14.2.2 in Whitt [23], inf S ∈D.
Definition 4 (One-sided reflection mappings). We call ψi : (D,D,D)→D a one-sided reflection mapping for Di if, for
a given state -, sample path ω and Yj ∈D,

ψi(-,Yj,ω) � infΠi(-,Yj,ω).
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Next, we show the existence of the one-sided reflection mappings in Proposition 7 and provide some prop-
erties of the mappings in Proposition 8.

Proposition 7 (Existence of the Reflection Maps). ψi(-,Yj,ω) exists and belongs to Πi(-,Yj,ω).
Proof of Proposition 7. Since the proofs are similar, we only prove the result for ψ↑(-,Y↓,ω). We first claim that
Π↑(-,Y↓,ω) is nonempty as an adjustment

g(t) � sup
0≤u≤t

{
w↑

0(ℓ) − ω(u) + Y↓(u) − -(u + ℓ)}∈Π↑(-,Y↓,ω
)
.

This is because

-s(ℓ) � -(s + ℓ) + ω(s) − Y↓(s) + g(s) ≥w↑
0(ℓ), for any s≥ 0

and by Proposition 4, ∂C(-s,0,0)
∂ξ↑ � 0. So Π↑(-,Y↓,ω) at least has one element.

It remains to be shown that ψ↑(-,Y↓,ω) ∈Π↑(-,Y↓,ω). For any fixed ε> 0 and s≥ 0, there exists Y↑′∈Π↑(-,Y↓,ω)
such that Y↑′≽ψ↑(-,Y↓,ω) and Y↑′(s) ≤ψ↑(s) + ε. Thus, σs(-) + w(s) − Y↓(s) + σs−ℓ (Y↑′)∧Y↑′(s)( ∈ D̄↑. Then, by
parts 1 and 2 of Corollary 2, we know that σs(-) + w(s) − Y↓(s) + σs−ℓ(ψ↑(s) + ε)∧ (ψ↑(s) + ε)( ∈ D̄↑. Because s and ε
are arbitrary, ψ↑(-,Y↓,ω)∈Π↑(-,Y↓,ω). □

Proposition 8. Let - be the initial state and ω a sample path.
1. ψ↑(-,Y↓,ω) decreases in Y↓ and ψ↓(-,Y↑,ω) increases in Y↑.
2. sup 0≤u≤t |ψ

i(-,Yj
1,ω)(u) − ψi(-,Yj

2,ω)(u)| ≤ sup 0≤u≤t |Y
j
1(u) − Yj

2(u)| for any given t≥ 0, hence ψi(-,Yj,ω) is

Lipschitz continuous in Yj under the uniform norm.

Proof of Proposition 8. We will only prove the results for ψ↑(-,Y↓,ω).
1. Suppose Y↓

1 ≽Y↓
2. For any Y ∈Π↑(-,Y↓

1,ω), σs(-) + σ(s−ℓ) (Y)∧Y(s)( − Y↓
1(s) + ω(s) ∈ D̄↑. By part 2 of Corollary

2, σs(-) + σ(s−ℓ) (Y)∧Y(s)( − Y↓
2(s) + ω(s) ∈ D̄↑ for all s≥ 0 and consequently Y ∈Π↑(-,Y↓

2,ω). Thus, Π(-,Y↓
1,ω)⊆

Π(-,Y↓
2,ω) and ψ↑(-,Y↓

1,ω)≼ψ↑(-,Y↓
2,ω).

2. We prove this part by contradiction. For convenience, let a0 � sup0≤u≤t |Y
↓
1(u) − Y↓

2(u)| <∞ and g1 �
ψ↑(-,Y↓

1,ω) and g2 � ψ↑(-,Y↓
2,ω). Suppose that the inequality does not hold. Define τ≔ inf {s≥ 0 : |g2(s) −

g1(s)| > a0}. Without loss of generality, we assume g2(τ) ≥ g1(τ) + a0. Because g1 and g2 are right-continuous, there
exists an ε< ℓ such that g2(s) − g1(s)> a0 for s∈ τ, τ + ε( ]. Consider the following function

g′2(u) � g1(u) + a0 u∈ [τ, τ + ε),
g2(u) otherwise.

{
Then, for all t< τ, g′2(t) � g2(t) ≤ g1(τ) + a0 � g′2(τ) and g′2(τ + ε) � g2(τ + ε)> g1(τ + ε) + a0. Thus, g′2 is also
nondecreasing and strictly less than g2. Next, we show that g′2 ∈Π(-,Y↓

2,ω) or equivalently, for all s≥ 0,

σs(-) + σ(s−ℓ)g′2 ∧ g′2(s)( − Y↓
2(s) + ω(s) ∈ D̄↑ (33)

and hence, we have a contradiction. Note that, σs(-) + σ(s−ℓ)gk ∧ gk(s)( − Y↓
k(s) + ω(s) ∈ D̄↑ for k � 1, 2.

• For 0≤ s< τ, σ(s−ℓ) (g′2)∧ g′2(s)( � σ(s−ℓ) (g2)∧ g2(s)(, and (33) holds.
• For τ≤ s≤ τ + ε, g′2(s) � g1(s) + a0 and σ(s−ℓ) (g′2)∧ g′2(s)( + a0 ≽σ(s−ℓ) (g1)∧ g1(s)(. By part 1 of Corollary 2,

σs(-) + σ(s−ℓ) (g′2)∧ g′2(s)( − a0 − Y↓
1(s) + ω(s) ∈ D̄↑. Since a0 + Y↓

1(s) ≥Y↓
2(s), (33) holds by part 2 of Corollary 2.

• For s> τ + ε, g′2(s) � g2(s) and σ(s−ℓ) (g′2)∧ g′2(s)(≼ σ(s−ℓ) (g2)∧ g2(s)(. By part 1 of Corollary 2, (33)
holds. □

Because of the “inf ” operator,ψi(-,Yj,ω)(t) increases in t onlywhen-t hits the boundary ofDi—that is, ∂C(-t,0,0)
∂ξi

� 0,
which is summarized in the following proposition.

Proposition 9 (Complementarity of the Reflection Mappings). If -t is the state at time t under policy ψi for a given Yj and

initial state -, then ∫ ba ∂C(-t,0,0)
∂ξi

dψi(-,Yj,ω)(t) � 0 for any 0≤ a≤ b≤∞.

6.1.2. A Two-Sided Reflection Mapping. We are now ready to define a two-sided reflection mapping, and show
its existence and uniqueness.
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Definition 5 (A Two-Sided Reflection Mapping). For a given - and Brownian motion sample path ω, (Y↑,Y↓) is called
a two-sided reflection mapping if

Y↑ � ψ↑(-,Y↓,ω), (34)
Y↓ � ψ↓(-,Y↑,ω). (35)

Proposition 10. For any given - and Brownian motion sample path ω, there exists a unique two-sided reflection
mapping (Y↑∗,Y↓∗).
Proof of Proposition 10. The existence of a two-sided mapping: We show the existence of a two-sided mapping as
the limit of a series of one-sided mappings and the convergence of the mappings is achieved in a finite number of
steps. For any - and sample path ω, we construct a series of upward and downward reflection mappings as Y↓

0 � 0
and

Y↑
k � ψ↑(-,Y↓

k−1,ω), (36)

Y↓
k � ψ↓(-,Y↑

k,ω), (37)

for k � 1, 2, 3,⋯ . By part 1 of Proposition 8, one can easily see that both Y↑
k and Y↓

k increase in k (in the sense of
“≼ ”) and hence converge as k→∞. We now show that, for any fixed t, both Y↑

k(t) and Y↓
k(t) converge in a finite

number of steps.
Let-k↑

s ∈ D̄↑ denote the resulting state at time s under policy (Y↑
k,Y

↓
k−1) and-k↓

s ∈ D̄↓ denote the state at time s under
policy (Y↑

k,Y
↓
k), for k � 1, 2,⋯ . Let t↑k � inf{t :-k↑

t ∈D↓} and t↓k � inf{t :-k↓
t ∈D↑} be the first time-k↑

t entersD↓ and-k↓
t

enters D↑, respectively.
We first prove that for any given k≥ 1, Y↓

m � Y↓
k−1 on [0, t↑k] for allm≥ k. The proof of Y↑

m � Y↑
k on [0, t↓k] for allm≥ k

is similar and hence omitted. Thus, Y↑
m and Y↓

m converge to Y↑
k and Y↓

k in k steps on [0, t↑k+1] and [0, t↓k], respectively.
Since Y↓

k−1(s) ≤Y↓
k(s) � ψ↓(-,Y↑

k,ω)(s) for all s≥ 0, Y↓
k−1 is a smaller downward adjustment than Y↓

k and can also
prevent the profile from enteringD↓ as-k↑

s ∈ D̄↓ for s∈ [0, t↑k]. Note that the one-sidedmappings (36) and (37) on [0, s]
only depend on the sample pathω on [0, s]. Thus, Y↓

k−1 � Y↓
k on [0, t↑k] implying that (Y↑

k,Y
↓
k−1) jointly satisfy (34) and

(35) on [0, t↑k]. Hence, Y↑
m � Y↑

k and Y↓
m � Y↓

k−1 on [0, t↑k] for m≥ k.
Next, we show that t↑k ≤ t↓k ≤ t↑k+1 ≤ t↓k+1 for any given k≥ 1. Since Y↓

k �Y↓
k−1 on [0, t↑k], -k↓

s � -k↑
s for s∈ [0, t↑k] and

t↑k ≤ t↓k. Likewise, since Y↑
k+1 � Y↑

k on [0, t↓k], t↓k ≤ t↑k+1.
It remains for us to show that, for any fixed t, there exists k′ such that t↓k′ ≥ t. Denote sk � inf

{
t↑k ≤ t≤ t↓k :

Y↓
k(t) � Y↓

k(t↓k)
}
. Then, no adjustment is made on [sk, t↓k], and -k↓

t entersD↑ after t↓k because of the Brownian motion ω.

If Y↓
k(sk)>Y↓

k(sk−), by Proposition 9,
∂C(-k↓

sk
,0,0)

∂ξ↓ � 0. On the other hand, if Y↓
k(sk) �Y↓

k(sk−), we can find an increasing

sequence {up, p � 1, 2,⋯ } such that limp→∞ up � sk and Y↓
k increases at up. By Proposition 9, we have

∂C(-k↓
up ,0,0)
∂ξ↓ � 0 for

p � 1, 2, . . . , which implies that
∂C(-k↓

sk
,0,0)

∂ξ↓ � 0 following the continuity property in Lemma 2. Then, by Proposition 4,
we must have -(sk) + ω(sk) − Y↓

k(sk) + Y↑
k(sk) ≥w↓

0(ℓ) and -(t↓k) + ω(t↓k) − Y↓
k(t↓k) + Y↑

k(t↓k) ≤w↑
0(ℓ).

Since Y↓
k(sk) �Y↓

k(t↓k), -(sk) ≤-(t↓k) and Y↑
k(sk) ≤Y↑

k(t↓k), we have

ω(sk) − ω(t↓k) ≥w↓
0(ℓ) − w↑

0(ℓ). (38)

By the continuity of the sample path ω, there exists a δ> 0 such that

sup

0≤u1<u2≤t
|u1−u2 |<δ

|ω(u1) − ω(u2)| <w↓
0(ℓ) − w↑

0(ℓ)
2

.

This implies that t↓k ≥ sk + δ≥ t↑k + δ≥ t↓k−1 + δ if t↓k < t. So t↓�tδ� ≥ t.

Let (Y↑∗,Y↓∗) be the pointwise limit of the sequence {(Y↑
k,Y

↓
k) : k � 1, 2,⋯ }. Since convergence can be achieved in

a finite number of steps for any given t, (Y↑∗,Y↓∗) are finite at all t≥ 0. Taking the limit on both sides of (36) and (37)
by the Lipschitz continuity of ψ↑(-,Y↓,ω) and ψ↓(-,Y↑,ω), we can show that (Y↑∗,Y↓∗) jointly satisfy (34) and (35).

The uniqueness of the two-sidedmapping: Finally, we prove the uniqueness of the two-sidedmapping. Suppose
that there exists a two-sided mapping (Y↑′,Y↓′) that satisfies (34) and (35). By part 1 of Proposition 8, Y↓′≽ 0 implies
Y↑′ ≽Y↑

1 and Y↓′ ≽Y↓
1, and subsequently, Y↑′ ≽Y↑

i and Y↓′ ≽Y↓
i for i � 2, 3, . . . . Thus, Y↑′ ≥Y↑∗ and Y↓′ ≥Y↓∗. Define

τ↑ � inf{t≥ 0 :Y↑′(t)>Y↑∗(t)} and τ↓ � inf{t≥ 0 :Y↓′(t)>Y↓∗(t)}.
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1. If τ↑ > τ↓, then Y↓′(u) �Y↓∗(u) for τ↓ ≤u< τ↑. Let

Y↑′′(u) � Y↑(u), u∈ [0, τ↑),
Y↑′(u), otherwise.

{
Since Y↑′′(u) � Y↑(u) for u< τ↑, Y↑′′ is increasing and strictly less than Y↑′. By part 2 of Corollary 2,

Y↑′′∈Π↑(-,Y↓′,ω), a contradiction.
2. If τ↓ > τ↑, the proof is similar and omitted.
3. If τ↑ � τ↓, there exists some δ′ > 0 such that both Y↑′ − Y↑ and Y↓′ − Y↓ are strictly positive in (τ↑, τ↑+ δ).

Denote A0 � -(τ↑+ ℓ) + ω(τ↑) + Y↑′(τ↑) − Y↓′(τ↑).
• A0 ≥ w↓

0(ℓ)+w↑
0(ℓ)

2 : Since -(t), ω(t), and Y↓′ are right-continuous, there exists a δ≤ δ′ such that |-(t + ℓ) −
-(τ↑+ ℓ)| < w↓

0(ℓ)−w↑
0(ℓ)

8 , |Y↓′(t) − Y↓′(τ↑)| < w↓
0(ℓ)−w↑

0(ℓ)
8 , and |ω(t) − ω(τ↑)| < w↓

0(ℓ)−w↑
0(ℓ)

8 when t∈ [τ↑, τ↑+ δ).
Choose ε<

w↓
0(ℓ)−w↑

0(ℓ)
8 and let

Y↑′′(u) �
Y↑′(τ↑) − ε if Y↑′(τ↑)>Y↑(τ↑),
Y↑′(τ↑) if Y↑′(τ↑) � Y↑(τ↑),

{
u∈ [τ↑, τ↑+ δ),

Y↑′ otherwise.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Then, under adjustments (Y↑′′,Y↓′),

-t(ℓ) � -(t + ℓ) + ω(t) + Y↑′′(t) − Y↓′(t)

≥ -(τ↑+ ℓ) + ω(τ↑) + Y↑′(τ↑) − Y↓′(τ↑) − w↓
0(ℓ) − w↑

0(ℓ)
2

≥ A0− w↓
0(ℓ) − w↑

0(ℓ)
2

>w↑
0(ℓ)

for t∈ [τ↑, τ↑+ δ). By Proposition 4, we know -t ∈ D̄↑ for t∈ [τ↑, τ↑+ δ). For t ∉ [τ↑, τ↑+ δ), -t ∈ D̄↑ following the
same argument as that in the proof of Proposition 7. So Y↑′′∈Π↑(-,Y↓′,ω), a contradiction.

• A0<
w↓

0(ℓ)+w↑
0(ℓ)

2 : Similarly, by finding the corresponding δ, ε and letting

Y↓′′(u) �
Y↓′(τ↑) − ε if Y↓′(τ↑)>Y↓(τ↑),
Y↓′(τ↑) if Y↓′(τ↑) � Y↓(τ↑),

{
u∈ [τ↑, τ↑+ δ),

Y↓′(u) otherwise,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
we can show Y↓′′∈Π↓(-,Y↑′,ω), a contradiction. □

6.2. The Optimality of the Two-Sided Reflection Policy
In this section, we show that the two-sided reflection mapping π∗ � (Y↑∗,Y↓∗) is optimal and makes the
minimum amount of adjustment to prevent the state -t, t≥ 0, from falling into D↑ and D↓. Under the one-
dimensional setting in Harrison and Taksar [11] and described in Section 5, D↑ � {y< b} and D↓ � {y> a}, our
two-sided reflection mapping reduces to the same closed forms

R(t) � sup
0≤u≤t

[a − ω(u) + L(u)], t≥ 0,

L(t) � sup
0≤u≤t

[ω(u) + R(u) − b], t≥ 0

in their paper. This reflection mapping makes the minimum amount of adjustment to keep the controlled
process in the region {a≤ y≤ b}.
Theorem 5. The policy π∗ � (Y↑∗,Y↓∗) is optimal—that is, C(-,π∗) � C∗(-) for all- ∈D.

We prove Theorem 5 by considering a cost characterized by δ> 0 in (39) and showing that this cost approaches
both C(-,π∗) (Lemma 5) and C∗(-) (Lemma 6) as δ→ 0. Let -t be the state at t under the two-sided reflection policy
π∗ � (Y↑∗,Y↓∗) with initial profile -. For any small δ> 0, let D↓ − δ � {-′ − δ, :∀-′ ∈D↓} and D↑+ δ≔
{-′+ δ :∀-′∈D↑}. For a given sample path of the Brownianmotion and associated control π∗, the state-t will enter
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D↑+ δ when ∂C(-t−δ,0,0)
∂ξ↑ � 0 and D↓ − δ when ∂C(-t+δ,0,0)

∂ξ↓ � 0 many times over time. Without loss of generality, we

assume that -t first enters D↑+ δ and at

τδ1 � inf t≥ 0 :
∂C(-t − δ, 0, 0)

∂ξ↑
� 0

{ }
.

The process evolves and eventually enters D↓ − δ at

τδ2 � inf t> τδ1 :
∂C(-t + δ, 0, 0)

∂ξ↓
� 0

{ }
.

For j � 1, 2,⋯ , define

τδ2j+1 � inf t> τδ2j :
∂C(-t − δ, 0, 0)

∂ξ↑
� 0

{ }
,

τδ2j+2 � inf t> τδ2j+1 :
∂C(-t + δ, 0, 0)

∂ξ↓
� 0

{ }
;

τδ2j+1 represents the first time -t enters D↑+ δ since τδ2j, and τδ2j+2 represents the first time -t enters D↓ − δ since
τδ2j+1. Thus, τδi , i � 1, 2, . . . , form a series of stopping times. Let N(t) � max{k : τδk ≤ t} be the total number of such
stopping times by t,

-δ
t �

-t − δ, if t< τδ1,
-t + δ, if τδ2 j−1 ≤ t< τδ2 j,
-t − δ, if τδ2 j ≤ t< τδ2 j+1,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
and

Cδ(-,π∗) � E

∫ ∞

0
e−γth(-δ

t (0))dt + k↑
∫ ∞

0
e−γtdY↑∗(t) + k↓

∫ ∞

0
e−γtdY↓∗(t)

[ ]
(39)

is the cost associated with the process {-δ
t } and policy π∗. Cδ(-,π∗) differs from C(-,π∗) only by the holding

cost term, and the difference is bounded by ∫ ∞0 e−γttdt� M
γ δ as stated in the following lemma.

Lemma 5. |C(-,π∗) − Cδ(-,π∗)| ≤ M
γ δ.

Applying Proposition 9 and Theorem 3, we can show the following lemma.

Lemma 6. For any fixed T≥ 0,

Cδ(-,π∗) ≤C∗(-) + (2EN(T) + 3)Mδ − R1(-, δ,T) + R2(T), (40)

where R1(-, δ,T)→ 0 as δ→ 0 for any fixed T and R2(T)→ 0 as T→∞.

The proof is quite technical and can be found in the appendix. We are now ready to prove the optimality of the
two-sided reflection policy π∗.

Proof of Theorem 5. We first show that EN(t) is finite for any t≥ 0. Consider a sequence of stopping times of the
Brownian motion Wt,

U1 � inf t> 0, |Wt | � w↓
0(ℓ) − w↑

0(ℓ)
4

{ }
,

Uj � inf t>Uj−1, |Wt −WUj−1 | � w↓
0(ℓ) − w↑

0(ℓ)
4

{ }
, j � 1, 2,⋯

and let N′(t) � max{ j :Uj ≤ t} be the corresponding counting process.
By the definitions of two consecutive stopping times τδ2j−1 and τδ2j, -

δ
t enters D

↓ − δ at τδ2j−1 and then enters D↑+ δ

at τδ2j. By the same argument leading to (38) in the proof of Proposition 10, for a small enough δ, there exist
τδ2j−1 ≤ s1 < s2 ≤ τδ2j such that

Ws1 −Ws2 ≥w↓
0(ℓ) − w↑

0(ℓ) − 2δ>
w↓

0(ℓ) − w↑
0(ℓ)

2
.
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Thus, there must exist ij such that Uij ∈ [s1, s2]⊂ [τδ2j−1, τδ2j] for each j � 1, 2,⋯ . Hence, N(t) ≤ 2N′(t) for any t> 0,
and EN(t) is finite. Fixing the T and letting δ→ 0 in Lemma 5 and Lemma 6, we have

C(-,π∗) ≤C∗(-) + R2(T) (41)

for any T≥ 0. Note that R2(T)→ 0 as T→∞, combining the above with the optimality of C∗(-), we have
C(-,π∗) � C∗(-). □

7. Conclusion and Discussion
In this paper, we consider the optimal control of a storage system whose content is driven by a Brownian
motion in the absence of control. Because there is a positive lead time for upward adjustments, the state of the
system is a function on a continuous interval, and such a problem is extremely challenging. We develop
a novel four-step approach described in the introduction to identify the structure of optimal control as a state-
dependent two-sided reflection mapping that makes the minimum amount of upward or downward ad-
justment to prevent the state from entering into certain regions. To the best of our knowledge, this is the first
paper to study instantaneous control of stochastic systems in a functional setting, and the methodology
developed in the paper may inspire ways to solve other control problems in various applications.

7.1. The General Case with a Lead Time for Downward Adjustments
We have assumed that downward adjustments are instantaneous. If they are not and there is a positive lead time for
downward adjustments, then by the time a promised downward adjustment is made, there may not be enough
content left because of the Brownian motion. The only way to avoid this situation completely is to add a constraint on
downward adjustments and set aside enough inventory. But then it will be too difficult to calculate the inventory cost.

Now suppose that backlogging of downward adjustments after the lead time is allowed at the same penalty
cost as that whenever the content is negative. Then, if the lead times for upward and downward adjustments
are identical, the problem can be reduced to one with zero upward and downward adjustment lead times by
theorem 3.11 in Øksendal and Sulem [14]. Otherwise, our analysis can be extended by transforming the
problem into one with a single lead time as follows. Since upward and downward adjustments are symmetric
analytically when the latter can be backlogged, we only need to consider the case where ℓ↑ ≥ ℓ↓ > 0 and show
that the system can be transformed into one with zero lead time for downward adjustments.

Define -i
t(u) as the total outstanding movement i, i∈ {↑, ↓}, at time t but before any adjustment at time t that

will be realized during (t, t + u] and -i
t � {-i

t(u),u≥ 0}. Then, (-↑
t ,-

↓
t ) is the profile of the outstanding

movements at time t with -i
t(0) � 0 and -i

t(u) � -i
t(ℓi) for u> ℓi, and (Ht,-↑

t ,-
↓
t ) describes the state of the system

at time t. Hence, for t> 0, the dynamics of the system can be written as

Ht � H0 +Wt + -↑
0(t) − -↓

0(t) + Y↑(t − ℓ↑) − Y↓(t − ℓ↓), (42)

-i
t(u) �

-i
0(t + u) − -i

0(t) + Yi(t + u − ℓi) − Yi(t − ℓi), if u≤ ℓi,

-i
t(ℓi), else,

{
(43)

and the cost function for any initial state (H0,-↑
0,-

↓
0) and policy π is

C̃
(
H0,-↑

0,-
↓
0,π

) � E

∫ ∞

0
e−γth(Ht)dt +

∫ ∞

0
e−γtk↑dY↑(t) +

∫ ∞

0
e−γtk↓dY↓(t)

[ ]
. (44)

Now consider another system where there is no lead time for downward adjustments and the lead time for
upward adjustments is ℓ � ℓ↑ − ℓ↓, the initial state is -0(u) � H0 + -↑

0(u + ℓ↓) − -↓
0(ℓ↓), and the holding cost rate

is h̃(x) � e−γℓ↓E[h(x +1ℓ↓)].
Proposition 11. For any fixed policy π,

C(-0,π) � C̃
(
H0,-↑

0,-
↓
0,π

) − E

∫
ℓ↓

0
e−γth(Ht)dt

[ ]
,

where -0(u) � H0 + -↑
0(u + ℓ↓) − -↓

0(ℓ↓) and E ∫ ℓ↓0 e−γth(Ht)dt
[ ]

is a constant for given (H0,-↑
0,-

↓
0).

This proposition reveals that the difference between the cost functions of the single lead time system and the
original system is a constant under the same policy. Thus, the problem reduces to one with zero lead time for
downward adjustments.
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7.2. Lead Times with General Distribution
In practice, lead times can be random, time dependent, cost dependent, and so on, and indeed inventory
systems with various lead time profiles have been studied extensively in the past decades. Those studies built
on earlier research on systems with zero lead time and a fixed lead time, and Porteus [17] (also, many papers
include those by Nahmias mentioned in the literature review) provides a comprehensive review. In this paper,
we characterize the optimal structure for a continuous review system with a fixed lead time where the state
space is a functional one, which is extremely challenging and a first step toward the study of more realistic
problems. Thus, our contribution is more methodological than a direct application. Below, we discuss the
challenges of solving the problem when the lead time is random and cost dependent. When demand is time
dependent, the problem is even more difficult.

1. The lead time is random and follows a certain distribution on [0, ℓ]. In this case, our current functional
space will not be enough to describe the state because of the uncertainty of the arrival time of each outstanding
order. Furthermore, orders may cross in time—that is, orders placed earlier may arrive later. So one has to first
find a way to describe the state and the system dynamics when the lead time is random, which are nontrivial.
Even if the lead time possesses the memoryless property, the dimension of the state space remains the same as
one still needs to keep track of both the timing and magnitude of each control, which can vary over time.

2. The lead time is cost dependent. Suppose that one has an option to pay a premium for a faster delivery service.
We can show that the optimal cost function for any given lead time, long or short, is LZ−convex and the smaller of
two convex functions. However, since the infimum of convex functions is not necessary convex, our structural
results on the optimal policy may not hold.

Appendix
Proofs of Lemmas and Propositions
Proof of the completeness of space D. First, since any function stays constant over t≥ ℓ, D is a subset of the complete L1 space.
So, for any Cauchy sequence { fi : i � 1, 2, . . . , } in D, there exists a f ∈L1 such that f (t) � limi→∞ fi(t) almost surely. Moreover,
fi(ℓ) must converge as i→∞. Since fi ∈D is a nondecreasing function for all i � 1, 2, . . . and well defined at each t, fsup �
lim supi→∞ fi(t) is also nondecreasing, constant for t≥ ℓ, and continuous almost everywhere. Thus, there exists another
nondecreasing function f ∗ such that f ∗(t) � fsup (t) almost surely and is right-continuous at each t. Since f (t) � limi→∞ fi(t)
almost surely, we have f ∗(t) � f (t) almost surely and hence f ∗(t) ∈D. □

Proof of Proposition 1. By the definition of C∗(-), for any ε> 0, we can find a policy π such that C(-,π) ≤C∗(-) + ε.
We apply the same policy π to the state -′ and denote -t and -′

t to be the states under π with initial state - and -′,
respectively.

C∗(-′) − C∗(-) − ε≤C(-′,π) − C(-,π) � E

∫ ∞

0
e−γt

[
h
(
-′

t(0)
) − h(-t(0))]dt[ ]

≤ M
∫ ∞

0
e−γt[-′(t) − -(t)]dt � Md(-,-′).

By symmetry, we also have C∗(-) − C∗(-′) − ε≤ Md(-′,-). Letting ε→ 0, we have that C∗(-) is Lipschitz continuous. □

Proof of Proposition 2. For any given state x � (x0, x1,⋯, xn−1), if we let xn � xn−1 + y↑, we can rewrite

cT,nt (x, y↑, y
↓)� k↑xn + k↓y↓ − k↑xn−1

+αE CT,n
t+1((x1, x2,⋯, xn−1, xn) − y↓e + wte) + hn(x0 − y↓)[ ]

and view cT,nt (x, y↑, y↓) as a function of (x,xn, y↓). We next show by induction that cT,nt (x,y↑, y↓) is LZ-convex in (x,xn, y↓) and
CT,n
t (x) is LZ-convex in x simultaneously.
Since hn(x) is convex, CT,n

T (x) is 0 and hence LZ-convex in x. Assuming that CT,n
t+1(x) is LZ-convex in x. Since hn(·) is convex and

CT,n
t+1((x1, x2,⋯, xn−1, xn) − y↓e + wte) is LZ-convex in (x1,⋯, xn, y↓) for a given wt, by lemma 1 in Zipkin [24], cT,nt (x, y↑, y↓) is

LZ-convex in (x, xn, y↓) as LZ-convexity is preserved by expectation. Thus,

CT,n
t (x) � min

xn≥xn−1,y↓≥0
cT,nt (x, y↑, y↓)
{ } � min

xn≥xn−1
min
y↓≥0

cT,nt (x, y↑, y↓)
{ }{ }

is LZ-convex in x by lemma 2 in Zipkin [24] as minimization over a sublattice preserves LZ-convexity.
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Proof of Lemma 1.
1. Sinceφ(ξ↑, ξ↓) is a linear function of (ξ↑, ξ↓), we only need to show themonotonicity of ∂C

∗(Φξ↑ ,ξ↓ (-))
∂ξ↑ . For any ε> 0 and-1 ≼-2

where -1(ℓ) � -2(ℓ), Φξ↑+ ε,ξ↓ (-1) ∨ Φξ↑ ,ξ↓ (-2) � Φξ↑+ ε,ξ↓ (-2) and Φξ↑+ ε,ξ↓ (-1)∧Φξ↑ ,ξ↓ (-2) � Φξ↑ ,ξ↓ (-1). Since C∗(-) is LZ-convex,
letting ξ1 � ξ2 � 0 and F � C∗ in Definition 3, we have

C∗(Φξ↑+ ε,ξ↓ (-1)) + C∗(Φξ↑ ,ξ↓ (-2))≥C∗(Φξ↑+ ε,ξ↓ (-2)) + C∗(Φξ↑ ,ξ↓ (-1)),

or

C∗(Φξ↑+ ε,ξ↓ (-1)) − C∗(Φξ↑ ,ξ↓ (-1))≥C∗(Φξ↑+ ε,ξ↓ (-2)) − C∗(Φξ↑ ,ξ↓ (-2)),

which implies the monotonicity of ∂C∗(Φξ↑ ,ξ↓ (-))
∂ξ↑ .

2. For any ε, a> 0, letting F � C∗, -1 � Φξ↑ ,0(-), -2 � Φξ↑+ ε,0(-) and (ξ1, ξ2) � (0, −a) in Definition 3, we have

C∗(Φξ↑ ,ξ↓ (-) − 0) + C∗(Φξ↑+ ε,ξ↓ (-) − (−a))≥C∗(Φξ↑ ,ξ↓ (-) − (−a)) + C∗(Φξ↑+ ε,ξ↓ (-) − 0),

which implies ∂C∗(Φξ↑ ,ξ↓ (-)+a)
∂ξ↑ ≥ ∂C∗(Φξ↑ ,ξ↓ (-))

∂ξ↑ , and the result holds.

3. For any ε> 0 and -1 ≽-2, letting F � C∗ and (ξ1, ξ2) � (ξ, ξ + ε) in Definition 3, we have

C∗(-1 − ξ) + C∗(-2 − (ξ + ε))≥C∗(-2 − ξ) + C∗(-1 − (ξ + ε)),

which implies ∂C∗(Φ0,ξ↓ (-1))
∂ξ↓ ≥ ∂C∗(Φ0,ξ↓ (-2))

∂ξ↓ . Replacing -1 and -2 by Φξ↑ ,0(-1) and Φξ↑ ,0(-2), we have that ∂C(-,ξ↑,ξ↓)
∂ξ↓ is decreasing

in -. □

Proof of Equations (27) and (28). Note that, under the periodic policy πn, adjustments can only be made at Tn
i � iℓ

n and at the
amounts (ξn↑i , ξn↓i ) for i � 0, 1, 2,⋯ . For convenience, we use Ti to represent Tn

i and (ξ↑i , ξ
↓
i ) to represent (ξ

n↑
i , ξn↓i ) for i � 0, 1, 2,⋯ in

this proof.
• On the event A, rewrite C(-′,πn) as

E

[∫ TN(ε)

0
e−γth(-′

t(0))dt +
∑N(ε)

i�1
e−γTiφ(ξ↑i , ξ

↓
i )
]
+ E

[∫ ∞

TN(ε)
e−γth(-′

t(0))dt +
∑∞

N(ε)+1
e−γTiφ(ξ↑i , ξ

↓
i )
]
,

where the second item is the discounted control cost given initial state -′
TN(ε) and is thus always larger than or equal to the

lower bound E e−γTN(ε)C∗ -′
TN(ε)

( )[ ]
. Hence, we have

C(-′,πn)≥E

[∫ TN(ε)

0
e−γth(-′

t(0))dt +
∑N(ε)

i�1
e−γTiφ(ξ↑i , ξ

↓
i )
]
+ E e−γTN(ε)C∗(-′

TN(ε) )
[ ]

. (A.1)

Note that the optimal cost C∗(-′) can be written as

C∗(-′)� E

[∑N(ε)

i�1
[e−γTi−1C∗(-′

Ti−1 ) − e−γTiC∗(-′
Ti−)]

]
+ E

[∑N(ε)

i�0
e−γTi [C∗(-′

Ti−) − C∗(-′
Ti
)]
]
+ E e−γTN(ε)C∗(-′

TN(ε) )
[ ]

.

(A.2)

By the optimality condition (6), the first term in (A.2) is smaller than

∑N(ε)

i�1
E

[∫ Ti

Ti−1
e−γth(-′

t(0) +Wt)dt

]
� E

∫ TN(ε)

0
e−γth(-′

t(0) +Wt)dt
[ ]

. (A.3)

By the dynamics (2) and the definition of C(-, ξ↑, ξ↓), we have C∗(-′
Ti
) � C∗(Φξ↑i ,ξ

↓
i
(-′

Ti−)) � C(-′
Ti−, ξ

↑
i , ξ

↓
i ) − φ(ξ↑i , ξ

↓
i ), and the

second term in (A.2) can be written as

E
∑N(ε)

i�0
e−γTi [C(-′

Ti−, 0, 0) − C(-′
Ti−, ξ

↑
i ,ξ

↓
i )]

[ ]
+ E

∑N(ε)

i�0
e−γTiφ(ξ↑i , ξ

↓
i )

[ ]
. (A.4)

Let A denote the event where {TN(ε) ≤ τ′} and Ac its complement, and EA [X] � E [X1{A}] for any random variable X. Then
(A.4) can be bounded from above by

EA
∑N(ε)

i�0
e−γTi [C(-′

Ti−, 0, 0) − C(-′
Ti−, ξ

↑
i ,ξ

↓
i )]

[ ]
+ E

∑N(ε)

i�0
e−γTiφ(ξ↑i , ξ

↓
i )

[ ]
, (A.5)
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after dropping the term E Ac [ · ]. Since C(-, 0, 0) − C(-, ξ↑, ξ↓) is always nonpositive for any (-, ξ↑, ξ↓) by Proposition 4, and
C(-, ξ↑, ξ↓) is convex in ξ↑ and ξ↓, respectively,

C(-′
Ti−, 0, 0) − C(-′

Ti−,ξ
↑
i ,ξ

↓
i )

� [
C(-′

Ti−, 0, 0) − C(-′
Ti−, ξ

↑
i , 0)

] + [
C(-′

Ti−, ξ
↑
i , 0) − C(-′

Ti−,ξ
↑
i , ξ

↓
i )
]

≤ − ∂C(-′
Ti−, ξ

↑
i , 0)

∂ξ↑
ξ↑i −

∂C(-′
Ti−, ξ

↑
i , ξ

↓
i )

∂ξ↓
ξ↓i

� −
∂C(Φξ↑i ,0

(-′
Ti−), 0, 0)

∂ξ↑
ξ↑i −

∂C(-′
Ti
, 0, 0)

∂ξ↓
ξ↓i .

(A.6)

On the event A, for any k≤N(ε), (WTi,Ti) is in the set (ŵ − w, ŝ − s) + B(δ). Consequently, (w +WTi, s + Ti) is in (ŵ, ŝ) + B(δ).
Moreover, the cumulative amount of upward and downward adjustments at time Ti is less than δ, which means

∑
i≤kξ↑i+∑

i≤kξ↓i ≤ ε≤ δ. By (2),

d(σŝ(-) + ŵ,-′
Ti
) ≤ d(σŝ(-) + ŵ, σ(s+Ti)(-) + w +Wt) +

∑
i≤k

ξ↑i +
∑
i≤k

ξ↓i

≤ d(σŝ(-) + ŵ, σ(s+Ti)(-) + ŵ) + d(σ(s+Ti)(-) + ŵ, σ(s+Ti)(-) + w +Wt) + δ

≤ (s + Ti − ŝ)γ-(ℓ) + 2δ≤ 3δ.

Similarly, we have d(σŝ(-) + ŵ,Φξ↑i ,0
(-′

Ti−)) ≤ 3δ. Thus, by (24), we have
∂C(Φ

ξ↑
i
,0(-′

Ti−),0,0)
∂ξ↑ ≥ k0 and

∂C(-′
Ti
,0,0)

∂ξ↓ ≥ k0. That is, (A.6) is
bounded by −k0(ξ↑i + ξ↓i ) on the event A. Consequently, the first term in (A.5) is bounded from above by

EA

[∑N(ε)

i�0
−e−γδk0(ξ↑i + ξ↓i )

]
≤ −P(A)e−γδk0ε. (A.7)

Plugging (A.3), (A.5), and (A.7) into (A.2), we have

C∗(-′)≤E

[∫ TN(ε)

0
e−γth(-′

t(0))dt +
∑N(ε)

i�1
e−γTiφ(ξ↑i , ξ

↓
i ) + e−γTN(ε)C∗(-′

TN(ε) )
]
− P(A)e−γδk0ε.

Comparing it with (A.1), we have

C(-′,πn)≥C∗(-′) + P(A)e−γδk0ε ≥V-′ (0, 0) + P(A)e−γδk0ε.

• On the event Ac, rewrite C(-′,πn) as

E

[∫ τ′

0
e−γth(-′

t(0))dt +
∑
Ti≤τ′

e−γTiφ(ξ↑i ,ξ
↓
i )
]
+ E

[∫ ∞

τ′
e−γth(-′

t(0))dt +
∑
Ti>τ′

e−γTiφ(ξ↑i , ξ
↓
i )
]
.

Similar to the argument in (A.1), the second term is greater than E
[
e−γτ′C∗(-′

τ′ )
]
. Dropping the nonnegative item EA [ · ] in

the expectations, we have

C(-′,π)≥EAc

[∫ τ′

0
e−γth(-′

t(0))dt +
∑
Ti≤τ′

e−γTiφ(ξ↑i , ξ
↓
i )
]
+ EAc

[
e−γτ

′

C∗(-′
τ′ )
]

≥EAc

∫ τ′

0
e−γth(σt(-′)(0) +Wt)dt

[ ]
+ EAc

[
e−γτ′C∗(στ′ (-′) +Wτ′ )

]
−Mε

γ
. (A.8)

The second inequality follows because, on the event Ac, the cumulative amount of upward and downward adjustments by
the stopping time τ′ is less than ε. Thus, by (2), the distance d(σs(-′) +Ws,-′

s)< ε for any 0≤ s≤ τ′. By Assumption 1,
|h(-′

s(0)) − h(σs(-′)(0) +Ws)| ≤Mε, and by Proposition 1, |C∗(σs(-′) +Ws) − C∗(-′
s)| ≤ M

γ d(σs(-
′) +Ws,-′

s)<
M
γ ε for any 0≤

s≤ τ′. For each of the expectation EAc [·] in (A.8), we can write it as the difference E [·] − EA [·]. Since the process (Wt, t) does
not go out of (ŵ − w, ŝ − s) + B(δ) before the stopping time τ′, the shifted process (w +Wt, s + t) is always in (ŵ, ŝ) + B(δ) for
all 0≤ t≤ τ′. Then, for the EA [·] terms, we have the following bound:

EA

[∫ τ′

0
e−γth(σt(-′)(0) +Wt)dt

]
+ EA

[
e−γτ

′

C∗(στ′ (-′) +Wτ′ )
]

� EA

[∫ τ′

0
e−γth(σs+ t(-)(0) + w +Wt)dt

]
+ EA

[
e−γτ

′

V-(w +Wτ′ , s + τ′)
]

≤ P(A)
∫

δ

0
h̄dt + P(A)V̄ � P(A)(δh̄ + V̄), (A.9)
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where h̄ � sup(w,s)∈(ŵ,ŝ) +B(δ){h(σs(-)(0) + w)}<∞ and V̄ � sup(w,s)∈(ŵ,ŝ) +B(δ){V-(w, s)}<∞, all independent of τ′. This means
that C∗(στ′ (-′) +Wτ′ ) � V-(w +Wτ′ , s + τ′)≤V̄ and h(σt(-′)(0) +Wt) � h(σs+t(-′)(0) + w +Wt)≤ h̄ for all t≤ τ′. Plugging (A.9)
into (A.8), we have

C(-′,π)≥E

[∫ τ′

0
e−γth(σt(-′)(0) +Wt)dt

]
+ E

[
e−γτ

′

C∗(στ′ (-′) +Wτ′ )
]
−Mε

γ
− P(A)(δh̄ + V̄).

Comparing the above with (26), we have

C(-′,π)≥V-′ (0, 0) + c0 −Mε

γ
− P(A)(δh̄ + V̄). □

Proof of Proposition 6. Since C∗(-) is LZ-convex, the partial derivatives ∂V-(w, s)
∂w and ∂2V-(w, s)

∂w2 exist almost everywhere.

Moreover, ∂V-(w, s)
∂w � ∂C∗(σs(-)+w)

∂ξ↓ . By part 3 of Lemma 1, ∂V-(w, s)
∂w monotone in s. So the partial derivatives ∂2V-(w, s)

∂s∂w exists almost

everywhere and hence ∂V-(w, s)
∂s exists almost everywhere. Then by the optimality condition we have

V-(w, s)≤E

[∫ τ′

0
e−γth(-(s + t) + w +Wt)dt

]
+ E e−γτ

′

V-(w +Wτ′ , s + τ′)
[ ]

for any stopping time τ′. Combining with the existence of above three the partial derivatives, we immediately derive that

∂V-(w, s)
∂s

+ σ2

2
∂2V-(w, s)

∂w2 + µ
∂V-(w, s)

∂w
− γV-(w, s) + h(-(s) + w)≥ 0

holds for almost every (w, s)∈R×R+. □

Proof of Proposition 9. We only prove the result for ψ↑(-,Y↓,ω). Suppose the above equation does not hold—i.e., there exists t
such that ∂C(-t , 0, 0)

∂ξ↑ > 0 and ψ↑ increases at t.
If ψ↑(t)>ψ↑(t−), then there must exist ε, δ> 0 such that ψ↑(t) − ψ↑(t−)> ε and, for any -′ ∈D that satisfies ργ(-′,-t)< ε + δ -t(ℓ)

γ

and ∂C(-′ , 0, 0)
∂ξ↑ > 0. Hence, the following upward adjustment,

Y↑′(u) � ψ↑(u) − ε, u∈ [t, t + δ),
ψ↑(u), otherwise

{
is strictly less than ψ↑. Following a similar argument as in the proof of Proposition 8, we can show that Y↑′ ∈Π↑(-,Y↓,ω),
which implies that ψ↑ cannot be the infimum, a contradiction.

If ψ↑(t) � ψ↑(t−), there must exist ε, δ> 0 such that ψ↑(s) − ψ↑(s−)> ε and ∂C(-s , 0, 0)
∂ξ↑ > 0 for t≤ s≤ t + δ. Then, the following

upward adjustment,

Y↑′(u) � ψ↑(t), u∈ [t, t + δ),
ψ↑(u), otherwise

{
is strictly less than ψ↑. Similarly, we can show that Y↑′ ∈Π↑(-,Y↓,ω), which implies that ψ↑ cannot be the infimum, again
a contradiction. Thus, the proposition holds. □

Proof of Lemma 6. The proof is quite complicated, thus we give a road map. Essentially, we prove that, for any fixed T> 0,

Cδ(-,π∗) − C∗(-δ
0) + E e−γTC∗(-δ

T)
[ ] − (2EN(T) + 2)Mδ

+E
∫ T

0
e−γt

∂C(-δ
t , 0, 0)

∂ξ↑
dY↑∗(t) +

∫ T

0
e−γt

∂C(-δ
t , 0, 0)

∂ξ↓
dY↓∗(t)

[ ]
≤ E

∫ ∞

T
e−γth(-δ

t (0))dt + k↑
∫ ∞

T
e−γtdY↑∗(t) + k↓

∫ ∞

T
e−γtdY↓∗(t)

[ ]
. (A.10)

Once this is proven, let R1(-, δ,T) � E ∫ T0 e−γt ∂C(-
δ
t ,0,0)

∂ξ↑ dY↑∗(t) + ∫ T0 e−γt ∂C(-
δ
t ,0,0)

∂ξ↓ dY↓∗(t)
[ ]

and R2(T) � E
[∫ ∞T e−γth(-δ

t (0))dt+
k↑∫ ∞T e−γtdY↑∗(t) + k↓∫ ∞T e−γtdY↓∗(t)

] − E [e−γTC∗(-δ
T)]. Then (A.10) becomes

Cδ(-,π∗)≤C∗(-δ
0) + (2EN(T) + 2)Mδ − R1(-, δ,T) + R2(T). (A.11)

By (4) and the Lipschitz continuity of C∗(-), we immediately get that R2(T)→ 0 as T→∞. For R1(-, δ,T), it is easy to see

that -δ
t →-t as δ→ 0, so ∂C(-δ

t ,0,0)
∂ξ↑ converges to ∂C(-t ,0,0)

∂ξ↑ by part 1 of Lemma 1. By Lebesgue’s dominated convergence

theorem, the upward adjustment cost E ∫ T0 e−γt ∂C(-
δ
t ,0,0)

∂ξ↑ dY↑∗(t)
[ ]

converges to E ∫ T0 e−γt ∂C(-t ,0,0)
∂ξ↑ dY↑∗(t)

[ ]
, which equals to 0 by

Xu, Zhang, and Zhang: Instantaneous Control of Brownian Motion with a Positive Lead Time
962 Mathematics of Operations Research, 2019, vol. 44, no. 3, pp. 943–965, © 2019 INFORMS



Proposition 9. Similarly, for the downward adjustment cost, we have that E ∫ T0 e−γt ∂C(-
δ
t ,0,0)

∂ξ↓ dY↓∗(t)
[ ]

converges to 0. Thus,

R1(-, δ,T)→ 0 as δ→ 0. Finally, since |C∗(-) − C∗(-δ
0)| ≤Mδ, the lemma holds.

The remainder of this proof is devoted to showing (A.10). To this end, we apply the following double telescoping to C∗(-δ
0) −

E e−γTC∗(
[

-δ
T)] to approximate Cδ(-,π∗).

1. In the first telescoping, we write C∗(-δ
0) − E e−γTC∗(

[
-δ

T)] according to the partition of the interval [0,T] by
0 � τδ0 < τδ1 < . . . < τδN(T) ≤T.

C∗(-δ
0) − E e−γTC∗(-δ

T
)[ ]

� E
∑N(T)

k�1
e−γτδk−1C∗ -δ

τδk−1

( )
− e−γτδk C∗ -δ

τδk

( )[ ]
+ E e−γτ

δ
N(T)C∗ -δ

τδN(T)

( )
− e−γTC∗ -δ

T
( )[ ]

� E
∑N(T)

k�1
E e−γτδk−1C∗ -δ

τδk−1

( )
− e−γτδk C∗ -δ

τδk

( )
Fτδk−1

[[ ]]
(A.12)

+ E E e−γτ
δ
N(T)C∗ -δ

τδN(T)

( )
− e−γTC∗ -δ

T
( )∣∣∣∣FτδN(T)

[[ ]]
. (A.13)

2. Next, we examine all of the terms in (A.12) and (A.13), and apply a subtelescoping on each of them. We construct
a partition of the interval τδk−1, τ

δ
k

[ ]
by τδk−1 � ιk,0 < ιk,1 < . . . < ιk,jk � τδk for any 0< ε< δ where

ι̂k,j � inf u : u> ιk,j−1, (Y↑∗(u) − Y↑∗(ιk,j−1)) ∨ (Y↓∗(u) − Y↓∗(ιk,j−1))≥ ε

2

{ }
,

ιk,j � ι̂k,j ∧ (ιk,j−1 + ε)∧ τδk+1,

for j � 1, 2, · · · , jk. It is obvious that jk is almost surely finite. We define Y↑ε and Y↓ε piecewisely on the interval τδk−1, τ
δ
k

[ ]
as

Y↑ε(u) � Y↑∗(ιk,j) and Y↓ε(u) � Y↓∗(ιk,j) for ιk,j ≤ u< ιk,j+1. It is obvious that they are step functions with jump sizes bounded by ε
2.

Let -ε
t be the state at time t under policy (Y↑ε,Y↓ε) with the initial profile - and define

-δ,ε
t �

- ε
t − δ, if t< τδ1,

- ε
t + δ, if τδ2j−1 ≤ t< τδ2j,

- ε
t − δ, if τδ2j ≤ t < τδ2j+1.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
For k � 1, 2, · · · ,N(t), based on the second step of telescoping, we estimate (A.12) as

E E e−γτδk−1C∗ -δ
τδk−1

( )
− e−γτδk C∗ -δ

τδk

( )∣∣∣Fτδk−1

[[ ]]
� E

[
e−γτδk−1

[
C∗ -δ

τδk−1

( )
− C∗

(
-δ,ε

τδk−1

)]]
− E e−γτδk C∗ -δ

τδk

( )
− C∗ -δ,ε

τδk

( )[ ]∣∣∣Fτδk−1

[ ]
+E

[
E

[
e−γτδk−1C∗

(
-δ, ε

τδk−1

)
− e−γτδk C∗

(
-δ, ε

τδk

)∣∣∣∣Fτδk−1

]]
≥ − 2M ε + E

[
E

[
e−γτδk−1C∗

(
-δ,ε

τδk−1

)
− e−γτδk C∗

(
-δ, ε

τδk

)∣∣∣∣Fτδk−1

]]
� − 2Mε + E

[
E

[∑jk
j�1

e−γιk,j−1C∗ -δ, ε
ιk,j−1

( )
− e−γιk,jC∗ -δ,ε

ιk,j−
( )∣∣∣∣Fτδk−1

]]
+ E

∑jk
j�1

e−γιk,jC∗ -δ,ε
ιk,j

( )
− e−γιk,jC∗ -δ, ε

ιk,j−
( )[ ]

.
(A.14)

The last equality follows as a result of telescoping on the partition τδk−1 � ιk,0 < ιk,1 < . . . < ιk,jk � τδk . Since there is no upward
or downward adjustment during [ιk,j−1, ιk,j), the second term in (A.14) becomes

E

[
E

[∑jk
j�1

e−γιk,j−1E C∗ -δ,ε
ιk,j−1

( )
− e−γ(ιk,j−ιk,j−1)C∗ -δ,ε

ιk,j−
( )∣∣∣Fιk,j−1

[ ] ∣∣∣∣∣Fτδk−1

]]

� E

[
E

[∑jk
j�1

e−γιk,j−1E
[
V-δε

ιk,j−1
(0, 0) − e−γ(ιk,j−ιk,j−1)V-δε

ιk,j−1
(Wιk,j −Wιk,j−1, ιk,j − ιk,j−1)|Fιk,j−1

] ∣∣∣∣∣Fτδk−1

]]

� E

[
E

[∑jk
j�1

e−γιk,j−1E
[∫ ιk,j−ιk,j−1

0
e−γuh -δ,ε

ιk,j−1 (u) +Wu

( )
du

∣∣∣∣Fιk,j−1

] ∣∣∣∣∣Fτδk−1

]]

� E

[
E

[∑jk
j�1

∫ ιk,j

ιk,j−1
e−γuh -δ,ε

u (0)
( )

du

∣∣∣∣∣Fτδk−1

]]

� E

∫ τδk

τδk−1
e−γuh

(
-δ,ε

u (0)
)
du

[ ]
→E

∫ τδk

τδk−1
e−γuh(-δ

u(0))du

[ ]
as ε→ 0.
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By the definition of -δ
t and -δ,ε

t , we have -δ,ε
t ∈Ξ for any t≥ 0, which allows us to apply Theorem 3 and Corollary 1 to the

second equality with -′ � -δ,ε
ιk,j−1 as an initial state. Since -δ,ε

u (0)→-δ
u(0) and h -δ,ε

u (0)
( )

is dominated by h(-δ
t (0)) +Mδ as

ε→ 0, convergence is established by Lebesgue’s dominated convergence theorem.
Denote Δ

↑
k,j � Y↑ε(ιk,j) − Y↑ε(ιk,j−) and Δ

↓
k,j � Y↓ε(ιk,j) − Y↓ε(ιk,j−). Then, the third term in (A.14) can be written as

E
∑jk
j�1

e−γιk,jC -δ,ε
ιk,j−,Δ

↑
k,j,Δ

↓
k,j

( )
− e−γιk,jC -δ,ε

ιk,j−, 0, 0
( )[ ]

+E
∑jk
j�1

e−γιk,jφ
(
Δ
↑
k,j,Δ

↓
k,j

)[ ]
+ E e−γιk,j C∗ -δ,ε

ιk,jk

( )
− C∗ -δ,ε

ιk,jk
+ (−1)k2δ

( )[[ ]] (A.15)

≥E
∑jk
j�1

e−γιk,jC -δ,ε
ιk,j−,Δ

↑
k,j,Δ

↓
k,j

( )
− e−γιk,jC -δ,ε

ιk,j−, 0, 0
( )[ ]

+E
∑jk
j�1

e−γιk,jφ
(
Δ
↑
k,j,Δ

↓
k,j

)[ ]
− 2Mδ,

(A.16)

where the last term in (43) is due to the fact that, in addition to the jumps (Δ↑
k,jk

,Δ↓
k,jk

), -δ,ε
t also includes the jump

caused by δ at ιk,jk � τδk . The second term in (A.16) is the total discounted ordering cost under policy (Y↑ε,Y↓ε) and will

converge to E

[
k↑∫ τδk

τδk−1
e−γtdY↑∗(t)

]
+ E

[
k↓∫ τδk

τδk−1
e−γtdY↓∗(t)

]
. The first term in (A.16) can be written as follows for some

(u1(ω), u2(ω)) ∈ [0, ε2]× [
0, ε2

]
, which is also a discrete Riemann sum of an integral

E
∑jk
j�1

e−γιk,j
∂C -δ,ε

ιk,j−, u1(ω), u2(ω)
( )

∂ξ↑
Δ
↑
k,j +

∂C -δ,ε
ιk,j−, u1(ω), u2(ω)

( )
∂ξ↓

Δ
↓
k,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

→E

∫ τδk

τδk−1
e−γt

∂C(-δ
t , 0, 0)

∂ξ↑
dY↑∗(t) +

∫ τδk

τδk−1
e−γt

∂C(-δ
t , 0, 0)

∂ξ↓
dY↓∗(t)

[ ]

because maxj�1,2,. . . ,jkΔk,j → 0 as ε→ 0. Letting ε→ 0, each term in (A.12) is greater than

− 2Mδ + E

∫ τδk

τδk−1
e−γt

∂C(-δ
t , 0, 0)

∂ξ↑
dY↑∗(t) +

∫ τδk

τδk−1
e−γt

∂C(-δ
t , 0, 0)

∂ξ↓
dY↓∗(t)

[ ]

+E

∫ τδk

τδk−1
e−γuh(-δ

u(0))du

[ ]
+ E k↑

∫ τδk

τδk−1
e−γtdY↑∗(t)

[ ]
+ E k↓

∫ τδk

τδk−1
e−γtdY↓∗(t)

[ ]
.

(A.17)

Following the same argument, (A.13) is greater than

− 2Mδ + E

∫ T

τδN(T)
e−γt

∂C(-δ
t , 0, 0)

∂ξ↑
dY↑∗(t) +

∫ T

τδN(T)
e−γt

∂C
(
-δ

t , 0, 0
)

∂ξ↓
dY↓∗(t)

[ ]

+E

∫ T

τδN(T)
e−γuh

(
-δ

u(0)
)
du

[ ]
+ E k↑

∫ T

τδN(T)
e−γtdY↑∗(t)

[ ]
+ E k↓

∫ T

τδN(T)
e−γtdY↓∗(t)

[ ]
.

(A.18)

Plugging (A.17) and (A.18) into (A.12) and (A.13), we have that

C∗(-δ
0) − E e−γTC∗(-δ

T)
[ ] − E[2N(T) + 2]Mδ

≥E

∫ T

0
e−γuh(-δ

u(0))du
[ ]

+ k↑E
∫ T

0
e−γtdY↑∗(t)

[ ]
+ k↓E

∫ T

0
e−γtdY↓∗(t)

[ ]
+E

∫ T

0
e−γt

∂C(-δ
t , 0, 0)

∂ξ↑
dY↑∗(t) +

∫ T

0
e−γt

∂C(-δ
t , 0, 0)

∂ξ↓
dY↓∗(t)

[ ]
.

Combining the above with the cost function Cδ(-,π∗) defined in (39), we have (A.10). □
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Proof of Proposition 11. It follows as

E

∫ ∞

ℓ↓
e−γth(Ht)dt

[ ]
� E

[∫ ∞

0
e−γ(t+ℓ

↓)h(Ht+ℓ↓ )dt
]

� E

[∫ ∞

0
e−γ(t+ℓ

↓)h
(
H0 +Wt+ℓ↓ + -↑

0(t + ℓ↓) − -↓
0(t + ℓ↓) + Y↑(t + ℓ↓ − ℓ↑) − Y↓(t))dt]

� E

[∫ ∞

0
e−γ(t+ℓ

↓)h
(
Wt+ℓ↓ −Wt +Wt +H0 + -↑

0(t + ℓ↓) − -↓
0(ℓ↓) + Y↑(t − ℓ) − Y↓(t))dt]

� E

[∫ ∞

0
e−γ(t+ℓ

↓)h
(
Wt+ℓ↓ −Wt + -0(t) + Y↑(t − ℓ) − Y↓(t))dt]

� E

[∫ ∞

0
e−γ(t+ℓ

↓)E
[
h(Wt+ℓ↓ −Wt + -t(0))|-t(0)dt]]

� E

[∫ ∞

0
e−γtE e−γℓ

↓
h(-t(0) +1ℓ↓)dt

[ ]]

� E

[∫ ∞

0
e−γth̃(-t(0))dt

]
.

The cost difference E
[
∫ ℓ

↓

0 e
−γth(Ht)dt

]
is a constant because, for t≤ ℓ↓,

Ht � H0 +Wt + -↑
0(t) − -↓

0(t) + Y↑(t − ℓ↓) + Y↓(t − ℓ↑) � H0 +Wt + -↑
0(t) − -↓

0(t). □
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