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Technical Proofs

EC.1. Proof of Theorems 1 and 2

Proof of Theorem 1. We first characterize the diffusion limit of Ỹ n = {Ỹ n(t) : t≥ 0} given

by (17). Condition (3) implies that, for any T > 0,

sup
0≤t≤T

∣∣∣(λnF
n
c (ωn)− snµ)t√

λn
−βt

∣∣∣=
∣∣∣(λnF

n
c (ωn)− snµ)√

λn
−β
∣∣∣T → 0. (EC.1)

It then follows from (1), (3), (EC.1), Lemmas EC.2 and EC.4 that Ỹ n⇒ Ỹ , where Ỹ = {Ỹ (t) :

t≥ 0} with

Ỹ (t) = ρβt+ Λ̃(t)−
√
ρ− 1BA(t)−√ρB(t).

By Lemma EC.5 in Section EC.3, any subsequence of {Ṽ n}n∈N has a further convergent subse-

quence, written as {Ṽ nk}k∈N such that

Ṽ nk⇒ V? as k→∞, (EC.2)

for a limit {V?(t) : t≥ 0}. The objective is to characterize the limit as the solution to (19). To

this end, write the second term on the right-hand side of (16) as

∫ t

0

√
λn

(
F n(ωn +

Ṽ n(x−)√
λn

)−F n(ωn)
)
dΛ̄n(x) (EC.3)

=

∫ t

0

fω(Ṽ n(x−))dΛ̄n(x) +

∫ t

0

(√
λn
(
F n(ωn +

Ṽ n(x−)√
λn

)−F n(ωn)
)
− fω(Ṽ n(x−))

)
dΛ̄n(x).

According to Lemma 8.3 of Dai and Dai (1999) and (EC.2), the first term in (EC.3) converges

to
∫ t

0
fω(V?(x))dx along the subsequence {nk}k∈N as k→∞. By Condition (1) on the arrival

process, for any ε > 0 there exists an N1 such that when n≥N1,

P
(

sup
0≤t≤T

|Λ̄n(t)| ≥ 2T

)
≤ ε

2
.

By the tightness proved in Lemma EC.5 of Section EC.3, for the above ε, there also exist M > 0

and N2 such that for all n≥N2,

P
(

sup
0≤t≤T

|Ṽ n(t)| ≥M
)
≤ ε

2
.

With the help of Lemma 4.1 of Dai (1995), by Condition (4),
√
λn

(
F n(ωn + x√

λn
)−F n(ωn)

)

converges to fω(x) uniformly on compact sets. Thus, for any given δ > 0, we can find an N3

such that for n≥N3 and x∈ [−M,M ],

∣∣∣∣
√
λn

(
F n(ωn +

x√
λn

)−F n(ωn)
)
− fω(x)

∣∣∣∣≤
δ

2T
.
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So we can conclude that for all n≥max(N1,N2,N3),

P

(
sup

0≤t≤T

∣∣∣∣
∫ t

0

(√
λn
(
F n(ωn +

Ṽ n(x−)√
λn

)−F n(ωn)
)
− fω(Ṽ n(x−))

)
dΛ̄n(x)

∣∣∣∣≥ δ
)

≤ P
(

sup
0≤t≤T

|Ṽ n(t)| ≥M
)

+P
(

sup
0≤t≤T

|Λ̄n(t)| ≥ 2T

)
≤ ε

2
+
ε

2
= ε.

This proves that the last term in (EC.3) converges to 0. As a result, (EC.3) converges to
∫ t

0
fω(V?(x))dx. It follows from (16), Assumptions (18) and the above proved convergence of

(EC.3) that the limit process {V?(t) : t≥ 0} is a solution to (19).

In view of Theorem 5.15 on page 341 of Karatzas and Shreve (1991), we know that when

fω(·) is locally integrable, the solution of (19) is unique in the sense of probability law. Hence,

from Condition (4), we conclude weak convergence of {Ṽ n}n∈N and that the corresponding limit

satisfies (19). �

Proof of Theorem 2. From Theorem 2.8 in Whitt (1980), proving the convergence on (ω,∞)

is equivalent to proving the convergence on [ω+ δ,∞), for any δ > 0, which we now proceed to

prove.

By (7), when t≥ V n(0), the queue length process can be written as

Qn(t) =

Λn(t−ωn)∑

i=Λn(κn(t))+1

1{uni +τni >t}+

Λn(t)∑

i=Λn(t−ωn)+1

1{uni +τni >t}

=

Λn(t−ωn)∑

i=Λn(κn(t))+1

1{uni +τni >t}+

Λn(t)∑

i=Λn(t−ωn)+1

(
1{uni +τni >t}−F

n
c (t− τni )

)

+

∫ t

t−ωn
F n
c (t−x)d (Λn(x)−λnx) +λn

∫ t

t−ωn
F n
c (t−x)dx.

Applying the diffusion scaling (20),

Q̃n(t) = M̃n(t) +
1√
λn

Λn(t−ωn)∑

i=Λn(κn(t))+1

1{uni +τni >t}, (EC.4)

where

M̃n(t) =
1√
λn

Λn(t)∑

i=Λn(t−ωn)+1

(
1{uni +τni >t}−F

n
c (t− τni )

)
+

∫ t

t−ωn
F n
c (t−x)dΛ̃n(x). (EC.5)

Following the idea given by Liu and Whitt (2014), the process M̃n(·) can be viewed as the

diffusion-scaled queue length process of an infinite-server queue, with service times uni ∧ ωn.

With a modification to the proof for Theorem 3.1 (more specifically, Lemma 5.3) in Krichagina

and Puhalskii (1997), we obtain that the first term in (EC.5) weakly converges to the process

{G(t) : t ≥ ω + δ}. See Appendix EC.6 for details on the modifications. For the second term,

integrating-by-part, we have

∫ t

t−ωn
F n
c (t−x)dΛ̃n(x) = Λ̃n(t)−F n

c (ωn)Λ̃n(t−ωn)−
∫ t

t−ωn
Λ̃n(x)dF n

c (t−x). (EC.6)
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Using the Skorohod representation theorem, we embed all the random objects in a common

probability space. We maintain the original notation for the mapped random objects. On the

new probability space, we have

sup
0≤t≤T

|Λ̃n(t)− Λ̃(t)| → 0, as n→∞, (EC.7)

on each sample path. Note that

∫ t

t−ωn
Λ̃n(t)dF n

c (t−x)−
∫ t

t−ω
Λ̃(x)dFc(t−x)

=

∫ t

t−ωn

(
Λ̃n(t)− Λ̃(x)

)
dF n

c (t−x) +

∫ t−ω

t−ωn
Λ̃(x)dF n

c (t−x)

+

∫ t

t−ω
Λ̃(x)d (F n

c (t−x)−Fc(t−x)) .

The first two terms on the right-hand side converge to zero in probability, following (EC.7) and

|F n(ωn)−F n(ω)| ≤ |F n(ω)−F (ω)|+ |F n(ωn)−F (ω)| → 0. Since Λ̃ is a Brownian motion, thus

for any fixed T > 0,

lim
Γ→∞

P
(

sup
0≤t≤T

|Λ̃(t)| ≥ Γ

)
= 0.

This and {F n}n∈N converges to F in total variation on [0, ω] imply that the last term also

converges to zero in probability. Combining the above convergence with (EC.6), we conclude

that the second term in (EC.5) weakly converges to {
∫ t
t−ω Fc(t− x)dΛ̃(x) : t ≥ ω + δ}. So we

have

M̃n(t)⇒G(t) +

∫ t

t−ω
Fc(t−x)dΛ̃(x) on [ω+ δ,∞). (EC.8)

Now we consider the second term on the left-hand side in (EC.4). For any M > 0 and n∈N,

define the event Ωn
M = {supω+δ≤t≤T |

√
λn
(
t− ωn − κn(t)

)
| ≤M}. It is clear that, on the event

Ωn
M , we have

Λn(t−ωn)∑

i=Λn(κn(t))+1

1{uni >ωn+ M√
λn
} ≤

Λn(t−ωn)∑

i=Λn(κn(t))+1

1{uni +τni >t} ≤
Λn(t−ωn)∑

i=Λn(κn(t))+1

1{uni >ωn−
M√
λn
}.

Introduce

G̃n
M−(t) =

1√
λn

[ Λn(t−ωn)∑

i=Λn(κn(t))+1

(
1{uni >ωn−

M√
λn
}−F n

c

(
ωn− M√

λn

))

+F n
c

(
ωn− M√

λn

)(
Λn(t−ωn)−Λn(κn(t))−λn(t−ωn−κn(t))

)

+
(
F n
c

(
ωn− M√

λn

)
−F n

c (ωn)
)
λn

(
t−ωn−κn(t)

)]
,
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G̃n
M+(t) =

1√
λn

[ Λn(t−ωn)∑

i=Λn(κn(t))+1

(
1{uni >ωn+ M√

λn
}−F n

c (ωn +
M√
λn

)
)

+F n
c

(
ωn +

M√
λn

)(
Λn(t−ωn)−Λn(κn(t))−λn(t−ωn−κn(t))

)

+
(
F n
c

(
ωn +

M√
λn

)
−F n

c (ωn)
)
λn

(
t−ωn−κn(t)

)]
.

Then

1√
λn

Λn(t−ωn)∑

i=Λn(κn(t))+1

1{uni >ωn−
M√
λn
} = G̃n

M−(t) +F n
c (ωn)

√
λn(t−ωn−κn(t)),

1√
λn

Λn(t+ωn)∑

i=Λn(κn(t))+1

1{uni >ωn+ M√
λn
} = G̃n

M+(t) +F n
c (ωn)

√
λn(t−ωn−κn(t)).

Due to being on the event Ωn
M ,

sup
ω+δ≤t≤T

∣∣∣Q̃n(t)− M̃n(t)−F n
c (ωn)

√
λn(t−ωn−κn(t))

∣∣∣

≤ sup
ω+δ≤t≤T

|G̃n
M−(t)|+ sup

ω+δ≤t≤T
|G̃n

M+(t)|.

As a result, for any η > 0,

P
(

sup
ω+δ≤t≤T

∣∣∣Q̃n(t)− M̃n(t)−F n
c (ωn)

√
λn(t−ωn−κn(t))

∣∣∣≥ η
)

≤ P ((Ωn
M)c) +P

(
sup

ω+δ≤t≤T
|G̃n

M−(t)|+ sup
ω+δ≤t≤T

|G̃n
M+(t)| ≥ η

)
.

(EC.9)

Note that the definition of κn(·) in (6) and Proposition 1 imply that, as n→∞,

sup
V n(0)≤t≤T

∣∣∣κn(t)− t+ω
∣∣∣⇒ 0.

By the initial condition (18), the probability that V n(0)> ω+ δ is vanishing with n→∞. As

a result, we have

sup
ω+δ≤t≤T

∣∣∣κn(t)− t+ω
∣∣∣⇒ 0.

Then it is clear, for any fixed M > 0,

sup
ω+δ≤t≤T

|G̃n
M−(t)|+ sup

ω+δ≤t≤T
|G̃n

M+(t)| ⇒ 0. (EC.10)

By Theorem 1, sup0≤t≤T
√
λn|V n(t)−V n(t−)| ⇒ 0, as n→∞. From the definition (6), we know

that for ω+ δ ≤ t≤ T , t≤ κn(t) + V n(κn(t))≤ t+ supω+δ≤t≤T |V n(κn(t))− V n(κn(t)−)|. This,

together with (11), implies that, as n→∞,

sup
ω+δ≤t≤T

∣∣∣
√
λn
(
t−κn(t)−V n(κn(t))

)∣∣∣

= sup
ω+δ≤t≤T

∣∣∣
√
λn
(
t−κn(t)−ωn

)
− Ṽ n(κn(t))

∣∣∣⇒ 0. (EC.11)
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The first implication of (EC.11) is that

lim
M→∞

lim
n→∞

P ((Ωn
M)c) = 0.

Combining this with (EC.10) and (EC.9), we know that {Q̃n(t)} and {M̃n(t)+F n
c (ωn)

√
λn(t−

ωn−κn(t))} have the same weak limit. Since (EC.11) also implies that
√
λn
(
t−κn(t)−ωn

)
⇒

Ṽ n(t−ω), the result of the theorem follows from (EC.8). �

EC.2. Proofs of Propositions 1–3

In this section, we provide the proofs for Propositions 1–3.

Proof of Proposition 1. It suffices to show, in view of the convergence ωn→ ω, as n→∞,

that for any T > 0 and δ ∈ (0, ω/2),

P
(

sup
0≤t≤T

|V n(t)−ωn| ≥ δ
)
→ 0 as n→∞. (EC.12)

Define V̄ n(t) = V n(t)− ωn, ηn1 = inf{t ≥ 0 : V̄ n(t) ≥ δ} and ηn2 = inf{t ≥ 0 : V̄ n(t) ≤ −δ}. Let

Ω̄n
1 (δ,T ) = {ηn1 ≤ ηn2 , ηn1 ≤ T}, Ω̄n

2 (δ,T ) = {ηn1 > ηn2 , ηn2 ≤ T}, and Ω̄n
0 (δ) = {V̄ n(0)≤ δ/4}. In view

of (18), to get (EC.12), it is sufficient to prove that the probabilities of the events Ω̄n
1 (δ,T )∩

Ω̄n
0 (δ) and Ω̄n

2 (δ,T )∩ Ω̄n
0 (δ) vanish as n converges to infinity. We will only consider the event

Ω̄n
1 (δ,T )∩ Ω̄n

0 (δ), since the analysis of Ω̄n
2 (δ,T )∩ Ω̄n

0 (δ) is similar. On the set Ω̄n
1 (δ,T )∩ Ω̄n

0 (δ),

define ηn12 = sup{0≤ t≤ ηn1 : V̄ n(t)≤ δ/3}∨ 0. By the definitions of ηn1 and ηn12, we clearly have

that

V̄ n(ηn1 )≥ δ, and V̄ n(ηn12−)≤ δ

3
.

In view of F n(ωn +x)≥ F n(ωn) for any x≥ 0, by (16)–(17), we have that

V̄ n(ηn1 )− V̄ n(ηn12−)

≤ λn
snµ

[
F n
c (ωn)

Λ̃n(ηn1 )− Λ̃n(ηn12−)√
λn

− 1

λn

Λn(ηn1 )∑

i=Λ(ηn12)

(
1{uni ≤ωni }−F

n(ωni )
)

+
(λnF

n
c (ω)− snµ)(ηn1 − ηn12)

λn
− B̃

n(ηn1 +V n(ηn1 ))− B̃n(ηn12 +V n(ηn12−))√
λn

]
.

(EC.13)

By (1)–(3), we know that, as n→∞,

P
(∣∣∣λnF

n
c (ω)

snµ
· Λ̃

n(ηn1 )− Λ̃n(ηn12−)√
λn

∣∣∣> δ

6

)
→ 0, (EC.14)

P
(∣∣∣ 1

snµ
(λnF

n
c (ωn)− snµ)(ηn1 − ηn12)

∣∣∣> δ

6

)
→ 0. (EC.15)

Using Lemma EC.1, we have

P
(∣∣∣ 1

snµ

Λn(ηn1 )∑

i=Λ(ηn12)

(
1{uni ≤ωni }−F

n(ωni )
) ∣∣∣> δ

6

)
→ 0. (EC.16)
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To get that the last term in (EC.13) also vanishes, let Sn(t) denote the number of customers

in service at time t, and Dn(t) the number of departures through service completion by time t.

We can relate these two processes with Bn(t) by

Bn(t) =Dn(t) +Sn(t)−Sn(0), (EC.17)

which implies that

Bn(ηn1 +V n(ηn1 ))−Bn(ηn12 +V n(ηn12−)) = Dn(ηn1 +V n(ηn1 ))−Dn(ηn12 +V n(ηn12−))

+Sn(ηn1 +V n(ηn1 ))−Sn(ηn12 +V n(ηn12−)).

As V n(·) is always positive on [ηn12 + V n(ηn12−), ηn1 + V n(ηn1 )), all the servers are busy; hence

Sn(ηn1 + V n(ηn1 )) = Sn(ηn12 + V n(ηn12−)) = sn. As a result, noticing that the service time is

exponential with rate µ,

Bn(ηn1 +V n(ηn1 ))−Bn(ηn12 +V n(ηn12−)) = Dn(ηn1 +V n(ηn1 ))−Dn(ηn12 +V n(ηn12−))

= S (sn(ηn1 +V n(ηn1 )))−S (sn(ηn12 +V n(ηn12−))) ,

where {S(t) : t≥ 0} is a Poisson process with rate µ. Hence, we have that, as n→∞,

P
( λn
snµ

∣∣∣B̃
n(ηn1 +V n(ηn1 ))− B̃n(ηn12 +V n(ηn12−))√

λn

∣∣∣> δ

6

)
→ 0. (EC.18)

Combining (EC.13)–(EC.16) and (EC.18), the probability of the event Ω̄n
1 (δ,T ) ∩ Ω̄n

0 (δ) will

vanish as n→∞. �

Proof of Proposition 2. First consider the stationary distribution of the diffusion limit for

the virtual waiting time process. Introduce g(x) = ρ(fω(x) − β). Note that, in view of (26),

limx→∞ g(x) > 0 and limx→−∞ g(x) < 0. Now let X = {X (t) : t ≥ 0} be the solution to the

following stochastic differential equation:

dX (t) =−g(X (t))dt+σdW(t), t≥ 0.

It is enough to prove that the stationary distribution of X has the density

π(y) =C exp

(
− 2

σ2

∫ y

0

g(x)dx

)
, (EC.19)

where C is a normalizing constant. Noting that the generator of X is

A=
σ2

2

d2

dx2
− g(x)

d

dx
,

it is enough to prove that the function π in (EC.19) satisfies

∫

R
Af(x)π(x)dx= 0, (EC.20)
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for all f(·) in the class of bounded, twice continuously differentiable functions (see Ethier and

Kurtz (1986), page 248). However, with limx→∞ g(x)> 0, it can be easily verified that, with π

given in (EC.19), we have

∫

R+

Af(x)π(x)dx=
Cσ2

2

∫

R+

d
[

exp
(
− 2

σ2

∫ y

0

g(x)dx
)
f ′(y)

]
=−Cσ

2

2
f ′(0). (EC.21)

Similarly,

∫

R−
Af(x)π(x)dx=

Cσ2

2

∫

R−
d
[

exp
(
− 2

σ2

∫ y

0

g(x)dx
)
f ′(y)

]
=
Cσ2

2
f ′(0). (EC.22)

We now conclude (EC.20) by summing up (EC.21) and (EC.22). This implies (EC.19), and

hence (27).

For the stationary distribution of the diffusion limit of the queue length, note that, for t > ω,

G(t) is normally distributed with zero mean and variance
∫ ω

0
F (x)Fc(x)dx due to (23). Similarly,

∫ t
t−ω Fc(t − x)dΛ̃(x) follows a zero-mean normal distribution with variance θ2

∫ ω
0

(Fc(x))2dx.

Hence the second result is implied by Theorem 2. This completes the proof. �

Proof of Proposition 3. We will prove the statement by contradiction, via considering two

cases:

(i) limsup
λ→∞

√
λ(τ∗− τλ∗ )> 0 and (ii) lim inf

λ→∞

√
λ(τ∗− τλ∗ )< 0.

To that end, we first note that for any nondecreasing function f(·), the function defined by

∫∞
0

exp
(
− ρ

2σ2

∫ y
0

[f(x)−β]dx
)
dy∫∞

−∞ exp
(
− ρ

2σ2

∫ y
0

[f(x)−β]dx
)
dy

(EC.23)

is continuous and strictly increasing in β. In the remainder of the proof, we first propose a

feasible solution, and then compare it with any optimal solution that satisfies either of the

above two cases, to get a contradiction to the optimality of an optimal solution.

A feasible solution. This solution is constructed as follows. Suppose an announcement is

made exactly at time τ∗. Then by the definition of τ∗, ωτ∗ = τ∗. Hence, the first constraint on the

fraction of abandonment in (44) holds. Thus we only consider the second constraint on waiting

time in (44), which further becomes P (W λ(∞)> τ∗)≤ α2. Let ŝλ∗ be its optimal solution. (We

append the superscript λ to emphasize the dependency on the arrival rate.) It follows from (29)

and (32) that the optimal number of servers for announcement time τ∗ is given by (see also

problem (38), and (39)–(40))

ŝλ∗ =
λ

µ
Hc(τ∗|τ∗)−

β∗
µ

√
λ+ o(

√
λ), (EC.24)

where β∗ solves (46). Then by the continuity and monotonicity of the function given by (EC.23)

with f(·) = hτ∗(·),

Hc(τ∗|τ∗) ·
∫∞

0
exp

(
− ρ

2σ2

∫ y
0

[hτ∗(x)−β∗]dx
)
dy∫∞

−∞ exp
(
− ρ

2σ2

∫ y
0

[hτ∗(x)−β∗]dx
)
dy

= α2. (EC.25)
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This is equivalent to

(1−α1−α2) ·
∫ ∞

0

exp

(
− ρ

2σ2

∫ y

0

[hτ∗(x)−β∗]dx
)
dy

= α2

∫ 0

−∞
exp

(
− ρ

2σ2

∫ y

0

[hτ∗(x)−β∗]dx
)
dy. (EC.26)

By the definition of fτ∗(·),

hτ∗(x) =

{
e−h0τ∗h1x, if x≥ 0,

e−h0τ∗h0x, if x< 0.
(EC.27)

Obviously, (ŝλ∗ , τ∗) is a feasible solution to our original problem (44). (Indeed it is the staffing

level (45).)

Case (i) There is a subsequence along which the limit will be positive. To simplify the

notation, we still use λ to index the subsequence, i.e. limλ→∞
√
λ(τ∗ − τλ∗ ) > 0. We will first

focus on the subcase that

0< lim
λ→∞

√
λ(τ∗− τλ∗ )<∞. (EC.28)

Note that in this case ωτλ∗ > τ
λ
∗ (because H(τλ∗ |τλ∗ )<α1), then the constraint on waiting time in

(44) becomes P (W λ(∞)> τλ∗ ). Similar to (EC.24)–(EC.25) (noticing that the constraint P(Ab)

can be achieved from the first order), the optimal number of servers is

sλ∗ =
λ

µ
Hc(τ

λ
∗ |τλ∗ )− β

λ
∗
µ

√
λ+ o(

√
λ), (EC.29)

where βλ∗ solves

max
β

β

s.t. Hc(τ
λ
∗ |τλ∗ ) ·

∫∞
0

exp
(
− ρ

2σ2

∫ y
0

[fτλ∗ (x)−β]dx
)
dy∫∞

−∞ exp
(
− ρ

2σ2

∫ y
0

[fτλ∗ (x)−β]dx
)
dy
≤ α2

(EC.30)

with fτλ∗ (x) =
√
λ[H(τλ∗ + x√

λ
|τλ∗ )−H(τλ∗ |τλ∗ )]. From the definitions of fτλ∗ (x) and H,

fτλ∗ (x) =




e−h0τ

λ
∗
√
λ
(

1− exp(−h1
x√
λ
)
)
, if x≥ 0,

e−h0τ
λ
∗
√
λ
(

1− exp(−h0
x√
λ
)
)
, if −τλ∗

√
λ≤ x< 0.

(EC.31)

This, by the continuity and monotonicity of the function given by (EC.23), similar to (EC.26),

implies that

(
Hc(τ

λ
∗ |τλ∗ )−α2

)
·
∫ ∞

0

exp
(
− ρ

2σ2

∫ y

0

[fτλ∗ (x)−βλ∗ ]dx
)
dy

= α2 ·
∫ 0

−∞
exp

(
− ρ

2σ2

∫ y

0

[fτλ∗ (x)−βλ∗ ]dx
)
dy. (EC.32)

In view of (EC.28) and (EC.31),

lim
λ→∞

τλ∗ = τ∗ and lim
λ→∞

fτλ∗ (x) = hτ∗(x) =

{
e−h0τ∗h1x, if x≥ 0,
e−h0τ∗h0x, if x< 0.

(EC.33)
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This together with (EC.32) implies that

(1−α1−α2) ·
∫ ∞

0

exp

(
− ρ

2σ2

∫ y

0

[hτ∗(x)− lim inf
λ→∞

βλ∗ ]dx

)
dy

= α2

∫ 0

−∞
exp

(
− ρ

2σ2

∫ y

0

[hτ∗(x)− lim inf
λ→∞

βλ∗ ]dx

)
dy. (EC.34)

Using the continuity and monotonicity of the function given by (EC.23), therefore, we have

β∗ = lim inf
λ→∞

βλ∗ . (EC.35)

Similarly, taking the upper limit on both sides of (EC.32), we have

β∗ = limsup
λ→∞

βλ∗ . (EC.36)

On the other hand, by (EC.28)–(EC.29) and the definition of H, we have

0< lim
λ→∞

√
λ
(
Hc(τ

λ
∗ |τλ∗ )−Hc(τ∗|τ∗)

)
= h0e

−h0τ∗ × lim
λ→∞

√
λ(τ∗− τλ∗ )<∞. (EC.37)

It then follows from (EC.24), (EC.29) and (EC.35)–(EC.37) that limλ→∞(sλ∗ − ŝλ∗)/
√
λ > 0,

which is a contradiction with the optimality of sλ∗ .

Now consider the subcase

lim
λ→∞

√
λ(τ∗− τλ∗ ) =∞.

The above argument still works if we replace τ∗ by τλ∗ + M√
λ

for any M > 0. Then we again

obtain a contradiction with the optimality of sλ∗ . Hence the proof of Case (i) is complete.

Case (ii) Similar to case (i) we assume limλ→∞
√
λ(τ∗− τλ∗ )< 0. Now ωτλ∗ = τ∗ as τλ∗ is larger

than τ∗. Note that the constraint on waiting time in (44) becomes P
(
W λ(∞)>ωτλ∗

)
. So the

optimal number of servers is

sλ∗ =
λ

µ
Hc(ωτλ∗ |τ

λ
∗ )− β̂

λ
∗
µ

√
λ+ o(

√
λ), (EC.38)

where β̂λ∗ is the optimal solution to problem given by (EC.30) with replacing fτλ∗ (·) by fω
τλ∗
,τλ∗

(·),
where fω

τλ∗
,τλ∗

(x) =
√
λ[H(ωτλ∗ + x√

λ
|τλ∗ )−H(ωτλ∗ |τ

λ
∗ )]. Note that Hc(ωτλ∗ |ωτλ∗ ) =Hc(ωτλ∗ |τ

λ
∗ ), so

the difference between ŝλ∗ (see (EC.24)) and sλ∗ lies in the difference between β∗ and β̂λ∗ . If

lim inf
λ→∞

(β∗− β̂λ∗ )> 0, (EC.39)

then limλ→∞(sλ∗ − ŝλ∗)/
√
λ > 0, which is again a contradiction with the optimality of sλ∗ . Thus

to complete the proof for Case (ii), it is sufficient to show (EC.39).

To prove (EC.39), again by the continuity and monotonicity of the function given by (EC.23),

similar to (EC.26), we have

(1−α1−α2) ·
∫ ∞

0

exp
(
− ρ

2σ2

∫ y

0

[fω
τλ∗
,τλ∗

(x)− β̂λ∗ ]dx
)
dy
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= α2

∫ 0

−∞
exp

(
− ρ

2σ2

∫ y

0

[fω
τλ∗
,τλ∗

(x)− β̂λ∗ ]dx
)
dy. (EC.40)

From the definitions of fω
τλ∗
,τλ∗

(x) and H(x|τ), and ωτλ∗ = τ∗,

fω
τλ∗
,τλ∗

(x) =




e−h0τ∗

√
λ
(

1− exp(−h0
x√
λ
)
)
, if −

√
λτ∗ ≤ x≤

√
λ(τλ∗ − τ∗),

e−h0τ∗
√
λ
(

1− exp(−h1
(x−
√
λ(τλ∗ −τ∗))√
λ

−h0

√
λ(τλ∗ −τ∗))√

λ
)
)
, if x>

√
λ(τλ∗ − τ∗).

For notation simplicity, assume that limλ→∞
√
λ(τλ∗ − τ∗) exists and denote it by τ̃ . Then the

above equation yields that

lim
λ→∞

fω
τλ∗
,τλ∗

(x) =

{
e−h0τ∗h0x, if x≤ τ̃ ,
e−h0τ∗(h1(x− τ̃) +h0τ̃), if x> τ̃ .

(EC.41)

Combining (EC.40) and (EC.41) yields that

(1−α1−α2) ·
[∫ τ̃

0

exp
(
− ρ

2σ2

∫ y

0

[e−h0τ∗h0x− limsup
λ→∞

β̂λ∗ ]dx
)
dy

+

∫ ∞

τ̃

exp
(
− ρ

2σ2

∫ τ̃

0

[e−h0τ∗h0x− limsup
λ→∞

β̂λ∗ ]dx−
∫ y

τ̃

[e−h0τ∗(h1(x− τ̃) +h0τ̃)− limsup
λ→∞

β̂λ∗ ]dx
)
dy
]

= α2

∫ 0

−∞
exp

(
− ρ

2σ2

∫ y

0

[e−h0τ∗h0x− limsup
λ→∞

β̂λ∗ ]dx
)
dy.

Notice that by (EC.27) and (EC.41), limλ→∞ fω
τλ∗
,τλ∗

(x) = hτ∗(x) for x ≤ 0, and

limλ→∞ fω
τλ∗
,τλ∗

(x) < hτ∗(x) for x > 0. Thus using the fact 1 − α1 − α2 > 0 and h0 < h1, and

the definition of β∗ (see (EC.26)), we have that limsupλ→∞ β̂
λ
∗ <β∗ by the monotonicity of the

function given by (EC.23), which is equivalent to (EC.39).

In summary, Cases (i) and (ii) do not hold. Thus, we have limλ→∞
√
λ(τ∗ − τλ∗ ) = 0. Also

from this proof, we see that (45) is the minimal number of servers. Hence, the proof of the

proposition is complete. �

EC.3. Several Auxiliary Lemmas

In the following, we establish several technical lemmas which support the proofs of Proposi-

tion 1, Theorems 1 and 2.

Define the associated filtration with the nth system by {Fnk ;k≥ 0} by

Fnk = σ{τn`+1, v
n
` , u

n
` ; `≤ k}. (EC.42)

Then we have

Lemma EC.1. {∑[λnt]

i=1 (1{uni ≤ωni }−F
n(ωni )) : t≥ 0} is a Martingale with respect to the filtration

{Fnbλntc; t≥ 0}. Furthermore,

1

λn

[λnt]∑

i=1

(1{uni ≤ωni }−F
n(ωni ))⇒ 0.
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Proof. First note that for each i, uni+1 is independent of Fni . By Lemma 3.1 in Dai and He

(2010), ωni and ωnj are Fni−1-measurable for j < i. Also unj is measurable w.r.t. Fni−1. Since the

conditional probability

E[(1{uni ≤ωni }−F
n(ωni ))|Fni−1] = 0, (EC.43)

so {∑[λnt]

i=1 (1{uni ≤ωni }−F
n(ωni )) : t≥ 0} is a Martingale with respect to the filtration {Fnbλntc; t≥

0}. Therefore, we have the first part of the lemma.

Now we prove the second part of the lemma. Clearly, { 1
λn

∑[λnt]

i=1 (1{uni ≤ωni }−F
n(ωni )) : t≥ 0}

is also a Martingale. Its quadratic variation is given by

1

λ2
n

[λnt]∑

i=1

(1{uni ≤ωni }−F
n(ωni ))2 ≤ 1

λ2
n

[λnt]→ 0.

Therefore, the second part is proved. �

Lemma EC.2. Under the same assumptions as Theorem 1, as n→∞

B̃n⇒ 1√
ρ
B, (EC.44)

where B= {B(t) : t≥ 0} is a standard Brownian motion.

Proof. In view of (EC.17), we first look at the departure process {Dn(t) : t≥ 0}. We intro-

duce the following two diffusion scalings:

D̃n(t) =
Dn(t)− snµt√

λn
, S̃n(t) =

Sn(t)− sn√
λn

.

Then

B̃n(t) = D̃n(t) + S̃n(t)− S̃n(0). (EC.45)

Let Xn(t) denote the total number of customers at time t in the nth system. Then the departure

process Dn(t) can be represented as S(
∫ t

0
(Xn(x) ∧ sn)dx), where {S(t) : t ≥ 0} is a Poisson

process with rate µ. By (10),

sup
0≤t≤T

(sn−Xn(t))
+

λn
⇒ 0. (EC.46)

This, together with (2), implies

D̃n⇒ 1√
ρ
B. (EC.47)

By the initial condition (18) and (EC.46), we have that the last two terms in (EC.45) will

converge to zero. Hence, (EC.44) directly follows from (EC.47). �

Lemma EC.3. Under the same assumptions as Theorem 1, the sequence of stochastic processes

{Ṽ n}n∈N is stochastically bounded.
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Proof. It suffices to show that, for any T > 0 and ε > 0, the following holds for all large

enough n and M :

P
{

sup
0≤t≤T

|Ṽ n(t)| ≥M
}
≤ 4ε.

To this end, define

ςn1 = inf{t≥ 0 : Ṽ n(t)≥M}, ςn2 = inf{t≥ 0 : Ṽ n(t)≤−M},

Ωn
1 (M,T ) = {ςn1 ≤ ςn2 , ςn1 ≤ T}, Ωn

2 (M,T ) = {ςn1 > ςn2 , ςn2 ≤ T}.

Hence we only need to show that, for all large enough n and M ,

P (Ωn
1 (M,T ))≤ 2ε and P (Ωn

2 (M,T ))≤ 2ε. (EC.48)

We will first consider the event Ωn
1 (M,T ). By the definition of ςn1 , we must have that Ṽ n(ςn1 )≥

Ṽ n(ςn1−). In other words, if Ṽ n has a jump at ςn1 , then it must be an upward jump. Since

Ṽ n(t)∈ [−M, M ] on [0, ςn1 ], for any t∈ (0, ςn1 ] and small positive δ ∈ (0, t), by (16),

Ṽ n(t)− Ṽ n(t− δ) =− λn
snµ

∫ t

t−δ

√
λn

(
F n(ωn +

Ṽ n(x−)√
λn

)−F n(ωn)
)
dΛ̄n(x)

+ Ỹ n(ςn1 )− Ỹ n(ςn1 − δ). (EC.49)

Since Ṽ n(0) is stochastically bounded, we can choose M large enough such that

P (Ωn
0 (M)) = P

(
Ṽ n(0)≤ M

4

)
≥ 1− ε,

where Ωn
0 (M) is defined in the proof of Proposition 1. Define ςn12 = sup{0 ≤ t ≤ ςn1 : Ṽ n(t) ≤

M/2}∨0. We know that on the event Ωn
0 (M), ςn12 > 0. By the definition of ςn1 and ςn12, we clearly

have that

Ṽ n(ςn1 )≥M, and Ṽ n(ςn12−)≤ M

2
. (EC.50)

Note that the process Ṽ n(·) is larger than M/2 (thus larger than 0) on the interval [ςn12, ς
n
1 ].

By (EC.49) and the fact that F n(ωn +x)≥ F n(ωn) for any x≥ 0,

Ṽ n(ςn1 )− Ṽ n(ςn12−)≤ Ỹ n(ςn1 )− Ỹ n(ςn12−). (EC.51)

By (EC.50) and (EC.51),

P
(

Ωn
0 (M)∩Ωn

1 (M,T )
)
≤ P
(

sup
t∈[0,T ]

∣∣∣Ỹ n(t)
∣∣∣≥ M

4

)
. (EC.52)

We now prove the stochastic boundedness of Ỹ n. Recall the definition of Ỹ n in (17). The first

and the third term on the right side of (17) is stochastically bounded by Conditions (1), (2) and

(3). The last two terms are stochastically bounded by Lemma EC.2. It now remains to show

the stochastic boundedness of the third term, which can be written as 1√
λn

∑Λn(t)

i=1 (1{uni ≤ωni }−
F n(ωni )). According to Condition (1), it is enough to show the stochastic boundedness of
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1√
λn

∑[λnt]

i=1 (1{uni ≤ωni }−F
n(ωni )). From Doob’s inequality for martingale (see Lemma EC.1), for

any M ≥ 0,

P
(

sup
0≤t≤T

∣∣∣ 1√
λn

[λnt]∑

i=1

(1{{uni ≤ωni }}−F
n(ωni ))

∣∣∣≥M
)
≤ 1

M 2
E
[∣∣∣ 1√

λn

[λnT ]∑

i=1

(1{{uni ≤ωni }}−F
n(ωni ))

∣∣∣
]2

=
1

M 2λn

[λnT ]∑

i=1

E(1{{uni ≤ωni }}−F
n(ωni ))2 ≤M−2T.

Using the stochastic boundedness of {Ỹ n, n≥ 1}, we can choose M large enough such that the

probability on the right-hand side of (EC.52) is less than ε. So we have that P(Ωn
1 (M,T ))≤ 2ε

for large enough M . A symmetric argument shows that P(Ωn
2 (M,T ))≤ 2ε for large enough M .

So we have proved stochastic boundedness. �

Lemma EC.4. Under the same assumptions as Theorem 1, as n→∞

H̃n(·)⇒ (1/ρ)
√
ρ− 1BA(·). (EC.53)

Here H̃n(·) is given by (15) and BA = {BA(t) : t≥ 0} is a standard Brownian motion which is

independent of {B(t) : t≥ 0}.

Proof. We first prove a convergence result for the sequence of processes given by

{ 1√
λn

∑[λnt]

i=1 (1{uni ≤ωni }−F
n(ωni )) : t≥ 0}. By Lemma EC.1, the quadratic variation of martingale

{ 1√
λn

∑[λnt]

i=1 (1{uni ≤ωni }−F
n(ωni )) : t≥ 0} is

1

λn

[λnt]∑

i=1

(1{uni ≤ωni }−F
n(ωni ))2.

We calculate it in the following:

E
[ 1

λn

[λnt]∑

i=1

(
(1{uni ≤ωni }−F

n(ωni ))2−F n(ωni )F n
c (ωni )

)]2

=E
[ 1

λn

[λnt]∑

i=1

(
(1{uni ≤ωni }−F

n(ωni ))(F n
c (ωni )−F n(ωni ))

)]2

=
2

(λn)2

∑

1≤j<i≤[λnt]

E
[
(1{uni ≤ωni }−F

n(ωni ))(F n
c (ωni )−F n(ωni ))

· (1{unj ≤ωnj }−F
n(ωnj ))(F n

c (ωnj )−F n(ωnj ))
]

+
1

(λn)2

[λnt]∑

i=1

E
(
(1{uni ≤ωni }−F

n(ωni ))(F n
c (ωni )−F n(ωni ))

)2
.

(EC.54)

Then by conditioning on Fni−1, we have

E
[
(1{uni ≤ωni }−F

n(ωni ))(F n
c (ωni )−F n(ωni ))(1{unj ≤ωnj }−F

n(ωnj ))(F n
c (ωnj )−F n(ωnj ))

]

=E
[
E[(1{uni ≤ωni }−F

n(ωni ))|Fni−1](F n
c (ωni )−F n(ωni ))(1{unj ≤ωnj }−F

n(ωnj ))(F n
c (ωnj )−F n(ωnj ))

]
.
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By (EC.43) the first term on the right-hand side of (EC.54) is 0. Note that the second term on

the right-hand side of (EC.54) converges to 0 as n→∞, so the expectation on the left-hand

side of (EC.54) must converge to 0. As a result,

1

λn

[λnt]∑

i=1

(
(1{uni ≤ωni }−F

n(ωni ))2−F n(ωni )F n
c (ωni )

)
⇒ 0.

On the other hand, on the event given by {Λn(t+ 1)≥ λnt}

1

λn

[λnt]∑

i=1

(F n(ωni )F n
c (ωni )−F n(ωn)F n

c (ωn))

=
1

λn

[λnt]∑

i=1

(
[F n(ωni )−F n(ωn)]F n

c (ωni ) +F n(ωn) [F n
c (ωni )−F n

c (ωn)]
)

≤ sup
0≤s≤t+1

2 |F n(V n(s))−F n(ωn)| t

=
2√
λn

sup
0≤s≤t+1

∣∣∣∣
√
λn

(
F n(ωn +

1√
λn
Ṽ n(s))−F n(ωn)

)∣∣∣∣ t,

which vanishes to 0 following from Condition (4) and the stochastic boundedness of {Ṽ n}n∈N
given by Lemma EC.3. Note that (2) and (3) imply that for any T > 0, as n→∞,

F n(ωn)→ 1− 1

ρ
and P

(
inf

0≤t≤T
(Λn(t+ 1)−λnt)≥ 0

)
→ 1.

As a result,

1

λn

[λnt]∑

i=1

(1{uni ≤ωni }−F
n(ωni ))2⇒ lim

n→∞
F n(ωn)F n

c (ωn)t=
ρ− 1

ρ2
t.

Then from the martingale convergence theorem (Theorem 8.1 (ii) of Pang et al. (2007)), we

know that the sequence of the processes given by { 1√
λn

∑[λnt]

i=1 (1{uni ≤ωni }−F
n(ωni )) : t≥ 0} weakly

converges to the process
√
ρ−1
ρ
BA. The result of this lemma then follows from the random-time-

change theorem. �

Lemma EC.5. Under the same assumptions as Theorem 1, the sequence of stochastic processes

{Ṽ n}n∈N is tight.

Proof. In view of Lemma EC.3, it suffices to study the modulus of continuity for {Ṽ n}n∈N.

By (1), for any ε > 0,

lim
δ→0

limsup
n→∞

P
(

sup
s,t∈[0,T ]
|s−t|<δ

|Λ̃n(s)− Λ̃n(t)|> ε
)

= 0. (EC.55)

By Conditions (1)–(3), and Lemma EC.4, for any ε > 0,

lim
δ→0

limsup
n→∞

P
(

sup
s,t∈[0,T ]
|s−t|<δ

|Ỹ n(s)− Ỹ n(t)|> ε
)

= 0. (EC.56)

Let Ωn
c (M,T ) be the complement of Ωn

1 (M,T ) ∪ Ωn
2 (M,T ) which are given in the proof of

Lemma EC.3. Then

lim
M→∞

lim inf
n→∞

P (Ωn
c (M,T )) = 1. (EC.57)
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On the event Ωn
c (M,T ), it follows from (EC.49) that

∣∣∣Ṽ n(t)− Ṽ n(t− δ)
∣∣∣≤Cn

M ·
(

Λ̄n(t)− Λ̄n(t− δ)
)

+
∣∣∣Ỹ n(t)− Ỹ n(t− δ)

∣∣∣ ,

where Cn
M = max

{√
λn(F n(ωn + M√

λn
)−F n(ωn)),

√
λn(F n(ωn)−F n(ωn− M√

λn
))
}

. By Condi-

tion (4), Cn
M is bounded by a finite number CM which may depend on M . So for any M > 0,

P
(

sup
s,t∈[0,T ]
|s−t|<δ

|Ṽ n(s)− Ṽ n(t)|> ε
)
≤ (1−P (Ωn

c (M,T ))) +P
(

sup
s,t∈[0,T ]
|s−t|<δ

|Λ̄n(s)− Λ̄n(t)|> ε

2CM

)

+P
(

sup
s,t∈[0,T ]
|s−t|<δ

|Ỹ n(s)− Ỹ n(t)|> ε

2

)
.

By first letting n go to infinite, then δ to zero and finally M go to infinite, we can show that

lim
δ→0

limsup
n→∞

P
(

sup
s,t∈[0,T ]
|s−t|<δ

|Ṽ n(s)− Ṽ n(t)|> ε
)

= 0.

This shows that the modulus of continuity for {Ṽ n}n∈N will vanish as n→∞. Hence we have

the lemma. �

EC.4. Discussion on the Sequence of {ωn}
As discussed after condition (4) that both β and fω depend on the sequence {ωn}n∈N, one may

wonder whether different sequences of {ωn}n∈N satisfying conditions (3)–(4) and assumption

(18) will give us inconsistent results. (Inconsistence means that arguments based on different

sequences of {ωn}n∈N may give contradictions.) In this section, we argue that this inconsistence

is impossible.

We are given two sequences {ωn(1)}n∈N and {ωn(2)}n∈N with limn→∞ω
n
(1) = limn→∞ω

n
(2) = ω such

that i= 1,2,

λnF
n
c (ωn(i))− snµ√

λn
→ β(i), (EC.58)

√
λn

[
F n(ωn(i) +

x√
λn

)−F n(ωn(i))
]
→ f (i)

ω (x), (EC.59)

√
λn

(
V n(0)−ωn(i)

)
⇒ Ṽ

(i)
0 . (EC.60)

It directly follows from (EC.60) that

lim
n→∞

√
λn(ωn(2)−ωn(1)) = x0 ∈R. (EC.61)

We first look at the case of the virtual waiting time. Define Ṽ n
1 (t) =

√
λn(V n(t)− ωn(1)) and

Ṽ n
2 (t) =

√
λn(V n(t)−ωn(2)). Then

Ṽ n
2 (t) = Ṽ n

1 (t) +
√
λn(ωn(1)−ωn(2)). (EC.62)

It directly follows (EC.61)–(EC.62) that

if Ṽ n
i ⇒ Ṽ (i), then Ṽ n

3−i⇒ Ṽ (3−i) with Ṽ (2) = Ṽ (1)−x0, i= 1,2. (EC.63)
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To prove the results for two sequences {ωn(1)}n∈N and {ωn(2)}n∈N to be consistent, it is sufficient

to show that the diffusion approximations for ωn(1) and ωn(2) given by Theorem 1 also satisfy

(EC.63). To this end, note that (EC.61) together with (EC.58)–(EC.59) implies that

β(2) =−f (1)
ω (x0) +β(1), f (2)

ω (x) = f (1)
ω (x0 +x)− f (1)

ω (x0). (EC.64)

By (EC.58)–(EC.60) and Theorem 1, we have, as n→∞

Ṽ n
i ⇒ Ṽ (i), (EC.65)

where

Ṽ (i)(t) = Ṽ (i)(0)− ρ
∫ t

0

[
f (i)
ω (Ṽ (i)(x))−β(i)

]
dx+

[
Λ̃(t)−√ρB(t)−

√
ρ− 1BA(t)

]
. (EC.66)

In view of (EC.64), it follows from (EC.66) that

Ṽ (2) = Ṽ (1)−x0. (EC.67)

Therefore, different choices of {ωn}n∈N do not give us inconsistent results based on Theorem 1

when conditions (1)–(4) and assumption (18) hold!

Similarly, from Theorem 2, we can prove that different choices of {ωn}n∈N also do not give

us inconsistent results for the diffusion approximations for the queue length process.

EC.5. Discussion on the Initial State

We discuss Assumption (18) on the initial state. Usually, the initial state is given by the queue

length and patience times; see Liu and Whitt (2014), Mandelbaum and Momčilović (2012), and

Reed and Tezcan (2012). In the following, we hence provide a sufficient condition for (18) in

terms of queue length and patience times. Analysis for what general initial conditions imply

(18) is left for future research. To the best of our knowledge, the first work focusing on the

initial state is Aras et al. (2017), which studied the impact of initial content (e.g., initial age

process) on the system performances.

Lemma EC.6. Denote by Qn(0) the number of customers who are initially in queue. Assume

those initial customers in queue are infinitely patient. If Qn(0)−snµωn√
λn

⇒ Q̃0 for a random variable

Q̃0 and ωn→ ω, then as n→∞,

Ṽ n(0)⇒ Ṽ0, (EC.68)

where Ṽ0 = ρ(Q̃0−
√

ω
ρ
N ) with N being a standard normal random variable independent of Q̃0.

Proof. Recall that Dn(t) is the number of departures through service completion by time

t. As all customers initially in queue will eventually receive service, the virtual waiting time

V n(0) satisfies

Dn(V n(0)−)≤Qn(0)<Dn(V n(0)).
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As Dn is a Poisson process with rate snµ on [0, V n(0)], with probability one, there is only one

departure at time V n(0). This gives

Dn(V n(0)) =Qn(0) + 1. (EC.69)

Dividing both sides by λn, then one can see that

V n(0)⇒ ω, as n→∞.

From (EC.69), we get

Ṽ n(0) =
λn
snµ

(
Qn(0)− snµωn√

λn
− D

n(V n(0))− snµV n(0)√
λn

+
1√
λn

)
.

With V n(0)⇒ ω, we have Dn(V n(0))−snµV n(0)√
λn

⇒
√

ω
ρ
N ; here N follows the standard normal

distribution. Together with the assumption that Qn(0)−snµωn√
λn

⇒ Q̃0, we get the convergence of

Ṽ n(0). This completes the proof. �

EC.6. Proving the Convergence of the First Term in (EC.5)

To analyze the first term on the right-hand side of (EC.5), we need a modification of the proof

of Lemma 5.3 in Krichagina and Puhalskii (1997). Such a modification is needed because we

allow the distribution F n(·) to vary with n while Lemma 5.3 in Krichagina and Puhalskii (1997)

only deals with a fixed F (·) (i.e., F n(·)≡ F (·) for all n). We now demonstrate how to modify

their proof to allow the distribution F n(·) to vary with n. For a function g(·), let g(x−) denote

its left-hand limit at x.

To make the connection easy, we adopt the same notation as theirs without conflicting with

the notation already used in the above. We denote the first term on the right-hand side of our

(EC.5) by

Mn
2 (t) :=

1√
λn

Λn(t)∑

i=Λn(t−ωn)+1

(
1{uni +τni >t}−F

n
c (t− τni ))

)
.

Define vni = uni ∧ωn and let F n
∧ (·) be the distribution of vn1 . Let u1 be a random variable with

distribution F (·) and F∧(·) be the distribution of u1∧ω. Define Un as in their (2.23) but change

n to λn. Change V n in their (3.24) to V n(t, x) = Un(Λ̄n(t),F n
∧ (x)), t≥ 0, x≥ 0, and Ln(t, x) in

their (3.18) to

Ln(t, x) =
1√
λn

Λn(t)∑

i=1

[
1{vni ≤x}−

∫ x∧vni

0

dF n
∧ (y)

1−F n
∧ (y−)

]
.

Then following the same argument leading to their (3.19), we have

V n(t, x) =−
∫ x

0

V n(t, y−)

1−F n
∧ (y−)

dF n
∧ (y) +Ln(t, x), t≥ 0, x≥ 0.

Also, following the same argument leading to their (3.20), we have

Mn
2 (t) =Gn(t)−Hn(t),
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where

Gn(t) =

∫ t

0

V n(t−x,x−)

1−F n
∧ (x−)

dF n
∧ (x),

Hn(t) =
1√
λn

Λn(t)∑

i=1

(
1{vni ≤t−τni }−

∫ vni ∧(t−τni )+

0

dF n
∧ (u)

1−F n
∧ (u−)

)
.

In Krichagina and Puhalskii (1997), the proof of Lemma 5.3, which shows the convergence of

{Mn
2 (t)}, needs (i) the tightness of {Mn

2 }n∈N with Mn
2 = {Mn

2 (t) : t≥ 0} (Lemma 3.8) and (ii)

finite dimensional distribution convergence of {Mn
2 }n∈N. In the following we show (i) and (ii)

separately.

(i) Tightness. Lemma 3.8 is essentially a summary of Lemmas 3.4 (tightness of {Gn}n∈N
with Gn = {Gn(t) : t≥ 0}) and 3.7 (tightness of {Hn}n∈N with Hn = {Hn(t) : t≥ 0}), both of

which require Lemmas 3.1 and 3.2 and an additional analysis. We can directly use their Lemma

3.1 because it is for uniform distribution and does not involve general distributions. In our

model, Λ̄n plays the role of an in their Lemma 3.2. Our assumption (1) enables us to use their

Lemma 3.2.

We now show that the conclusion of their Lemma 3.4 (tightness of {Gn}n∈N) holds for our

model. Let T0 = supnω
n + 1. Let T0 = supnω

n + 1, and define piecewise-linear function ψn(·)
such that its graph linearly connects (0,0), (ωn1 , ω

n
1 ), (ω,ωn) and (T0, T0) (that is, ψn(0) = 0,

ψn(ωn1 ) = ωn1 , ψn(ω) = ωn and ψn(T0) = T0), where

ωn1 =

{
ωn− dn, if ωn ≤ ω,
ω− dn, if ωn >ω

with

{
F n
∧ (ωn−)−F n

∧ (ωn1 )< 1

λ
1/4
n

, if ωn ≤ ω,
F∧(ω−)−F∧(ωn1 )< 1

λ
1/4
n

, if ωn >ω,

and dn ∈ (0,1/λ1/4
n ). Assumptions (3)–(4) and assumption F (ω−) = 1 − 1/ρ imply that

F n
∧ (ωn−) − F∧(ω−) → 0 as n → ∞. Note that ψn(ω) = ωn, then ∆F n

∧ (ψn(ω)) → ∆F∧(ω).

(For a function f , ∆f(t) := f(t) − f(t−).) Then, sup0≤t≤T0 |ψn(t) − t| ≤ |ωn − ω| → 0 and

sup0≤t≤T0 |F n
∧ (ψn(t)) − F∧(t)| ≤ 1

λ
1/4
n

+ |F n
∧ (ωn−) − F∧(ω−)| + sup0≤t≤ω |F n(t) − F (t)| → 0 as

n→∞. One can also verify that the probability distribution F n
∧ (ψn(·)) converges to F∧(·) in

total variation. Indeed, for any measurable set A,

|F n
∧ (ψn(A))−F∧(A)| ≤|F n

∧ (ψn(A,x≤ ωnd ))−F∧(A,x≤ ωnd )|

+ |F n
∧ (ψn(A,ωnd <x<ω))−F∧(A,ωnd <x<ω)|

+ |F n
∧ (ψn(A,x≥ ω))−F∧(A,x≥ ω)|

≤|F n
∧ (A,x≤ ωnd )−F∧(A,x≤ ωnd )|

+
1

λ
1/4
n

+ |F n
∧ (ωn−)−F∧(ω−)|+ |F n

∧ (ωnd )−F∧(ωnd )|

+ |∆F n
∧ (ψn(ω))−∆F∧(ω)|.

Then the convergence in total variation of F n
∧ (ψn(·)) to F∧ follows from the convergence in

total variation of F n
∧ to F∧ on [0, ω) (from the condition (21)), F n(ωn)→ F (ω) and the fact

that |∆F n
∧ (ψn(ω))−∆F∧(ω)| → 0.
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Let D([0,∞),D[0,∞)) denote the space of all D[0,∞)-valued right continuous functions

with left limits defined on [0,∞); see Talreja and Whitt (2009) for detailed analysis on

this space. Introduce a sequence of mappings Ψn : D([0,∞),D[0,∞)) → D[0,∞) and Ψ :

D([0,∞),D[0,∞))→D[0,∞) by

Ψn(z)(t) =

∫ t

0

z(ψn(t)−ψn(x),F n
∧ (ψn(x)−))

1−F n
∧ (ψn(x)−)

dF n
∧ (ψn(x)), t≥ 0,

Ψ(z)(t) =

∫ t

0

z(t−x,F∧(x−))

1−F∧(x−)
dF∧(x), t≥ 0,

for any z ∈D([0,∞),D[0,∞)). Then for any T ≥ 0,

sup
0≤t≤T

|Ψn(zn)(t)−Ψ(z)(t)|

≤ sup
0≤t≤T

∣∣∣∣
∫ t

0

zn(ψn(t)−ψn(x),F n
∧ (ψn(x)−))

1−F n
∧ (ψn(x)−)

d (F n
∧ (ψn(x))−F∧(x))

∣∣∣∣

+ sup
0≤t≤T

∣∣∣∣
∫ t

0

(
zn(ψn(t)−ψn(x),F n

∧ (ψn(x)−))

1−F n
∧ (ψn(x)−)

− z(t−x,F∧(x−))

1−F∧(x−)

)
dF∧(x)

∣∣∣∣ .

The first term on the right-hand side in the above converges to zero because F n
∧ (ψn(·)) converges

to F∧(·) in total variation. If zn converges to z which is continuous in both variables, then the

second term converges to zero because

sup
0≤t≤T

∣∣∣ψn(t)− t
∣∣∣→ 0 and sup

0≤t≤T

∣∣∣F n
∧ (ψn(t)−)−F∧(t−)

∣∣∣→ 0 as n→∞.

Note that

Gn(ψn(t)) =

∫ ψn(t)

0

V n(ψn(t)−x,x−)

1−F n
∧ (x−)

dF n
∧ (x) =

∫ t

0

V n(ψn(t)−ψn(x),ψn(x)−)

1−F n
∧ (ψn(x)−)

dF n
∧ (ψn(x))

can be represented as Gn(ψn(t)) = Ψn(Un(Λ̄n(·), ·))(t). From the fact that Un(Λ̄n(·), ·) converges

to a function which is continuous in both variables, then similar to the argument below (3.26)

in Krichagina and Puhalskii (1997) we know that {Gn}n∈N is C-tight, i.e., the conclusion in

their Lemma 3.4 holds for our model.

We next show that the conclusion of their Lemma 3.7 (tightness of {Hn}n∈N) holds for our

model. Define Hn
k the same as their (3.28) with changing their F (·) to F n

∧ (·). The conclusion

of their Lemma 3.5, which shows that Hn
k is a square-integrable martingale, still holds because

it is for a specific system and no limit is involved. Based on Lemma 3.5, the arguments for

proving their Lemma 3.7 still work after we change their F (·) to F n
∧ (·) (i.e., for our model).

This is because the arguments for their (3.60) and thereafter still hold for F n
∧ (·), except that

we need to use the weak law of large numbers for the triangular array 1
λn

∑[λnt]

i=1

∫ vni
0

dFn∧ (u)

1−Fn∧ (u−)
.

The weak law of large numbers for triangular array can be applied because we can bound its

second moment:

E

[(∫ vni

0

dF n
∧ (x)

1−F n
∧ (x−)

)2
]

=

∫ ∞

0

(∫ x

0

dF n
∧ (x1)

1−F n
∧ (x1−)

)2

dF n
∧ (x)
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=

∫ ∞

0

∫ ∞

0

∫ ∞

0

1{x1∨x2≤x}
dF n
∧ (x1)

1−F n
∧ (x1−)

dF n
∧ (x2)

1−F n
∧ (x2−)

dF n
∧ (x)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

1{x1∨x2≤x}dF
n
∧ (x)

dF n
∧ (x1)

1−F n
∧ (x1−)

dF n
∧ (x2)

1−F n
∧ (x2−)

=

∫ ∞

0

∫ ∞

0

1−F n
∧ ((x1 ∨x2)−)

(1−F n
∧ (x1−)) (1−F n

∧ (x2−))
dF n
∧ (x1)dF n

∧ (x2)

≤ 2

∫ ∞

0

∫ ∞

0

1{x1≥x2}
1−F n

∧ ((x1 ∨x2)−)

(1−F n
∧ (x1−)) (1−F n

∧ (x2−))
dF n
∧ (x1)dF n

∧ (x2)

= 2

∫ ∞

0

∫ ∞

0

1{x1≥x2}
1

1−F n
∧ (x2−)

dF n
∧ (x1)dF n

∧ (x2)

= 2

∫ ∞

0

1−F n
∧ (x2−)

1−F n
∧ (x2−)

dF n
∧ (x2) = 2.

(ii) Finite dimensional distribution convergence. Introduce

Mn
2k(t) =

k∑

i=1

�Un((Λ̄n(ski−1),0), (Λ̄n(ski ),F
n
∧ (t− ski ))),

with the operator � defined in the same way as the equation below their (2.19). Essentially, we

change their F (·) in their (5.18) to F n
∧ (·). From the definitions, F n

∧ (x) = F∧(x) = 1 if x≥ ωn∨ω.

As a result, F n
∧ (t)→ F∧(t) for t > ω. From (21) and ωn→ ω, F n

∧ (t)→ F∧(t) for t < ω. As a

result, for all t 6= ω, F n
∧ (t)→ F∧(t). In the proof of (a) and (b) on their page 270, it is enough to

consider {ski } such that t−ski 6= ω for all i≥ 1 and k. Then the convergence of their (5.17) holds

by also using the convergence of F n
∧ (t− ski ) to F∧(t− ski ) and Λ̄n(ski−1) to Λ̄(ski−1). As a result,

their (a) on page 270 still holds. For (b) on their page 270, their (5.20) and the argument on the

top of page 273 still works. Thus, we have the convergence of finite dimensional distribution.

Combining (i) and (ii), we have shown that their Lemma 5.3 also holds for our model.
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