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Technical Proofs

EC.1. Proof of Theorems [1] and

Proof of Theorem [l We first characterize the diffusion limit of Ym={Y"(t):t>0} given
by . Condition implies that, for any T > 0,
(A F(w™) — st (M EM(w™) —s
sup
0<t<T VA vV An

It then follows from (I, (3)), (EC.1), Lemmas IEC.2{and [EC.4|that Y™ =Y, where Y = {Y(¢) :
t >0} with

ﬁt)_’ nit) —B‘T—>O. (EC.1)

Y (t)=pBt+A(t) —/p— 1Balt B(t).

By Lemma in Section any subsequence of {f/n}neN has a further convergent subse-

quence, written as {V"},cy such that
V=V, ask— o0, (EC.2)

for a limit {V,(¢):¢ > 0}. The objective is to characterize the limit as the solution to (19)). To
this end, write the second term on the right-hand side of as

/ \/E Fﬂ(wuv;(;_))—pn(wn))dm(x) (EC.3)

e ey Y N R R ) )

According to Lemma 8.3 of [Dai and Dali| (1999) and (EC.2), the first term in 1) converges
to fo fu(Vi(x))dx along the subsequence {nj}ren as k — co. By Condition on the arrival

process, for any € > 0 there exists an N; such that when n > Ny,

P( sup |A"(t)] >2T>

0<t<T

w\m

By the tightness proved in Lemma [EC.5 of Section for the above ¢, there also exist M >0
and N, such that for all n > N,

JEECE R

0<t<T

l\D\(T)

With the help of Lemma 4.1 of Dai (1995), by Condition (), v/A, (F”(w” + =) - F"(w”))
converges to f,(z) uniformly on compact sets. Thus, for any given ¢ > 0, we can find an Nj

such that for n > N3 and z € [-M, M],

V(o

)= F'(") = fule)

x
VAn
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$

This proves that the last term in (EC.3|) converges to 0. As a result, converges to
fot fu(Vi(x))dz. It follows from (16]), Assumptions and the above proved convergence of
that the limit process {V,(¢) :¢> 0} is a solution to (|19).

In view of Theorem 5.15 on page 341 of Karatzas and Shreve (1991), we know that when

So we can conclude that for all n > max(Ny, Ny, N3),
t f/n(x_) ~ _
P M (FM (W + ———) — F(w")) — fo (V™ (z—)) |JdA™
<0§;§T /0 (VA (P + ) W)~ (V@ )))dA" (@)
<® (sup (7012 00) +2 ((sup (A7) 227) <5+ 5 =

0<t<T 0<t<T

fu(+) is locally integrable, the solution of is unique in the sense of probability law. Hence,
from Condition , we conclude weak convergence of {‘7”}”@; and that the corresponding limit
satisfies (|19)). O

Proof of Theorem[4 ~ From Theorem 2.8 in[Whitt| (1980)), proving the convergence on (w,cc)
is equivalent to proving the convergence on [w + ¢, 00), for any § > 0, which we now proceed to
prove.

By , when ¢ > V"(0), the queue length process can be written as

A" (t—w™) A1)
QW= >, Luprreat DL laperss
i=An (w7 (£))+1 i=An (t—w) 41
A" (t—w™) A" (t)
= Z Lurirnsn + Z (Lpurgrnsy — FL(E—1]))
i=An (w7 (£))+1 i=An (t—wh) 41

t t
+/ F'(t—x)d (A"(x) )\nx)+)\n/ F'*(t — z)dz.
t—w™ t—w™

Applying the diffusion scaling ,

A (t—w™)

Z 1{u?+‘r£’z>t}7 (EC4)

Q"(t) = M"(t) + ——=
An i=A" (k7 ()41

AT (t) t

== Y (e —F=)+ [ Fa-adi@). (ECH)

M= AR (t—w™)+1 fmwn

Following the idea given by Liu and Whitt (2014), the process M "(-) can be viewed as the
diffusion-scaled queue length process of an infinite-server queue, with service times u} A w™.
With a modification to the proof for Theorem 3.1 (more specifically, Lemma 5.3) in Krichagina
and Puhalskii (1997), we obtain that the first term in weakly converges to the process
{G(t) : t >w+d}. See Appendix for details on the modifications. For the second term,
integrating-by-part, we have

/t BNt )R () = A7) - FR @A (o) - /t A@)dFr(t—2).  (BC6)

wh
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Using the Skorohod representation theorem, we embed all the random objects in a common
probability space. We maintain the original notation for the mapped random objects. On the
new probability space, we have

sup |A"(t) —A(t)] =0, as n— oo, (EC.7)

0<t<T

on each sample path. Note that

/ A ()P (t—a /A JAF(t — )

_/ (]\ () A ))de(t—x)+/_ R(x)dF?(t — )

t—wn

/ Az)d (F™(t —z) — Fu(t —2)).

The first two terms on the right-hand side converge to zero in probability, following (EC.7)) and
|F™ (W) — F™(w)| < |F™(w) — F(w)| + |F*(w") — F(w)| — 0. Since A is a Brownian motion, thus
for any fixed T > 0,

lim IP’( sup |A(t)] > F) =0.

F—oo 0<t<T
This and {F"},en converges to F' in total variation on [0,w]| imply that the last term also
converges to zero in probability. Combining the above convergence with (| m, we conclude
that the second term in weakly converges to {ft E,(t —x)dA(z) : t > w+6}. So we

have
]\A/[/”(t):>g(t)+/t F,(t—2z)dA(z) on [w+4,00). (EC.8)

Now we consider the second term on the left-hand side in (EC.4)). For any M >0 and n € N,
define the event QF; = {sup,,s<,<7 [V An (t —w™ — £"(t))| < M}. It is clear that, on the event

Q7F,, we have

A" (t—w™) A" (t—w™) A" (t—w™)
2 Lupeniy S DL lapemen S YL lupseno gy
i=AT (k7 (1)) +1 i=AT (k7 (1)) +1 i=AT (k7 (1)) +1

Introduce

A" (t—w™)

é;y_(t)z&[ > (1{u?>w"—JK’—n}_Ff(”n_\/A§7))

i=A" (k7 (£))+1

%) (A"t =) = (57 (1) = Anlt = = 5"(1)))

+ (FC” (w” - \/]\%) — Fc”(w”)))\n (t —w" — ﬁ”(t))] )

+F! (w" -
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G (t) = rn[ EZ (Lupswns gy = 2@ + %ﬂ))
+Fg(w"+ \/A%)(A"(tw”)A"(n"(t)))\n(tw”m"(t)))
+ (F: (w" + \/]‘%) fFC”(w”)))\n (t—w" - n”(t))].
Then
L At

A" (t+w™)
o 2 L =GO+ B @)V - - 0)
" i=AT (R () 41

Due to being on the event Q7

sup Q" (1) = M" () = FY (") VAt =" = (1))

WHd<t<T
< sup |GY_(H)]|+ sup |GhL (D)

wHS<t<T wHs<t<T

As a result, for any n > 0,

P (wg;lt)g 00— W)= P2 (") VAt =" = k(1) > n)

) ) (EC.9)
P((%)CHP( sup (G () + sup |Gl =7

wHS<t<T wHS<t<T

Note that the definition of k™(-) in @ and Proposition [1{ imply that, as n — oo,

sup n”(t)—t+w):>0.

Vn(0)<t<T

By the initial condition ([L§)), the probability that V™(0) > w4+ § is vanishing with n — co. As

a result, we have

sup |k"(t) —t—i—w‘ = 0.

wHS<t<T
Then it is clear, for any fixed M >0,

sup  |G2,_(O]+ sup |Gy, ()] = 0. (EC.10)

WS<E<T WI<t<T
By Theorem SUPg<i<p VAR |V () = V" (t—)| = 0, as n — co. From the definition (), we know
that for w+0 <t <T, t <k"(t) + V" (k"(t)) <t +sup,,s<icp |V(E" (1)) = V™ (k"(t)—)|. This,
together with , implies that, as n — oo,

sup |V (= R4 (0) — V(R ()|

WwHS<t<T

= sup ’\/E(t—ﬁ”(t)—w”)—XN/”(/{"(t))‘:>0. (EC.11)

wHS<t<T
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The first implication of (EC.11)) is that

lim lim P((Q2},)¢) =0.
M — 00 n—o0
Combining this with (EC.10) and (EC.9), we know that {Q"(¢)} and {M"(t) +F™" (w™) VA (t—
w™ — k" (t))} have the same weak limit. Since (EC.11) also implies that /A, (t — k" (t) —w") =

V™ (t — w), the result of the theorem follows from (EC.8). O

EC.2. Proofs of Propositions [IH3]

In this section, we provide the proofs for Propositions
Proof of Proposition[1. It suffices to show, in view of the convergence w™ — w, as n — oo,
that for any 7">0 and ¢ € (0, w/2),

IP( sup |[V"(t) —w"| 25) — 0 as n— oo. (EC.12)

0<t<T

Define V"(t) = V"(t) —w", nf =inf{t > 0: V"(t) > 6} and ny = inf{t > 0: V"(t) < —4}. Let
OO, T) = {nt <mg.ny <T}, Q3(8,T) = {n} >nz,m5 <T}, and Qf(5) = {V"(0) < d/4}. In view
of (18), to get (EC.12)), it is sufficient to prove that the probabilities of the events Qf (5,T") N
Q2 (8) and Q3 (5, 7) N Qg (5) vanish as n converges to infinity. We will only consider the event
Q2 (8, T) N QR (J), since the analysis of Q5(5,7) N Q2 (5) is similar. On the set Q7(5,T) N Q2 (6),
define 07, =sup{0 <t <n?:V"(t) <§/3} V0. By the definitions of n? and 7},, we clearly have
that

V() =6, and V"(nj,—) <

Wl >

In view of F"(w" 4 z) > F"(w") for any x>0, by (16)—(L7), we have that

V) =V (nie—)

e e A" (1)
An A"(nf) —A"(ni,—) 1
Sl [ (W) oW A i_;@ (L oy = F()) (EC.13)
I M2 (@) = su) (0 =) B (i + V' (ny)) — B (i + V”(n?r))]
An vV, '
By 7, we know that, as n — oo,
M2 w) AM(np) = A (=) | 6
P e W) ‘ %) S, EC.14
( Splb o - 6) - ( )
IP’( ! (A FM (w™) = spp) (m) —nis) | > é) —0. (EC.15)
Snu c 1 12 6
Using Lemma, we have
1 A" (n7) 5
p( o S (Lpurcuny — F (@) ‘ > 6) 0. (EC.16)

i:A(n{Lg)
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To get that the last term in (EC.13) also vanishes, let S™(¢) denote the number of customers
in service at time ¢, and D™(t) the number of departures through service completion by time ¢.

We can relate these two processes with B™(t) by
B"(t) =D"(t)+ S"(t) — S"(0), (EC.17)
which implies that
B (i + V" (7)) = B" (s + V" (niy=)) = D" (' + V" (n1')) = D™ (nis + V" (n1—))
S + V() = S (0t + V(05 ))-

As V"(-) is always positive on [n}, + V"(ni,—),n7 + V" (n})), all the servers are busy; hence
S™(ny +V™(ny)) = S"(niy + V™ (niy—)) = s,. As a result, noticing that the service time is
exponential with rate u,

B (n + V" (ni")) = B"(nf, + V" (mi—)) = D" (0 + V" (n}")) — D" (nyz + V" (0, —))

=S (sa(n +V"(01))) =S (sn(niz + V" (015-)))

where {S(t) :t >0} is a Poisson process with rate p. Hence, we have that, as n — oo,

Ao [ B2+ V(7)) = B (i + V" (15=)) | _ 0
]P’(@ = ’ > 6) ~0. (EC.18)

Combining (EC.13)—(EC.16) and (EC.18), the probability of the event Q7(5,T) N QE(5) will

vanish as n — oco. O

Proof of Proposition[d. First consider the stationary distribution of the diffusion limit for
the virtual waiting time process. Introduce g(z) = p(f.(x) — B). Note that, in view of (26),
lim, o g(x) > 0 and lim, , - g(x) < 0. Now let X = {X(t) :t > 0} be the solution to the

following stochastic differential equation:
dX(t) = —g(X(t))dt +odW(t), t>0.
It is enough to prove that the stationary distribution of X has the density

(y) = Cexp (-fQ /0 ’ g(:r)dac) , (EC.19)

where C' is a normalizing constant. Noting that the generator of A is

o? d? d
A= a9y

it is enough to prove that the function 7 in (EC.19)) satisfies

/R.Af(ﬂ:)w(m)d:v =0, (EC.20)
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for all f(-) in the class of bounded, twice continuously differentiable functions (see Ethier and

Kurtz| (1986), page 248). However, with lim, ., g(z) > 0, it can be easily verified that, with 7

given in (EC.19)), we have
/R+ Af(z)m(x)de = Cg : d [exp (— 022/0 g(x)dx) f’(y)] = —CTaf'(O). (EC.21)

+

Similarly,

/R Af(a)(a)de = 052 Rid[exp(— % /0 ’ o(x)dz) f/(y)] = 02"2 £(0).  (BC.22)

We now conclude (EC.20) by summing up (EC.21)) and (EC.22). This implies (EC.19)), and
hence .

For the stationary distribution of the diffusion limit of the queue length, note that, for ¢ > w,
G(t) is normally distributed with zero mean and variance [ F(z)F,(z)dz due to (23). Similarly,
fiw F,(t — z)dA(z) follows a zero-mean normal distribution with variance 62 Iy (Fo(x))*dz.
Hence the second result is implied by Theorem [2| This completes the proof. ([

Proof of Proposition[3.  We will prove the statement by contradiction, via considering two

cases:

(i) limsup VA(r, —7) >0 and (ii) 1i§ninf V(T — ) <0.

A—00

To that end, we first note that for any nondecreasing function f(-), the function defined by

Jo exp (= 20 3 Jo [f (@) — Bldz) dy
fjooo oxp ( fO dx) d (EC.23)

is continuous and strictly increasing in 5. In the remainder of the proof, we first propose a

feasible solution, and then compare it with any optimal solution that satisfies either of the
above two cases, to get a contradiction to the optimality of an optimal solution.

A feasible solution. This solution is constructed as follows. Suppose an announcement is
made exactly at time 7,. Then by the definition of 7., w,, = .. Hence, the first constraint on the
fraction of abandonment in holds. Thus we only consider the second constraint on waiting
time in (44]), which further becomes P (W*(c0) > 7.) < as. Let 5} be its optimal solution. (We
append the superscript A to emphasize the dependency on the arrival rate.) It follows from

and (32)) that the optimal number of servers for announcement time 7, is given by (see also

problem (38)), and (39)-(40))

*

P = 2HC(T*|T*) _ i*ﬁ +o(VN), (BC.24)

where 3, solves . Then by the continuity and monotonicity of the function given by (EC.23))

fo exp ( % foy[h‘r* (z) - B*]dl’) dy
ffooo exp (_# foy[hn (z) — ﬁ*]dx) dy

H.(1.|T.) - Q. (EC.25)
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This is equivalent to

~ a / " e <—2g2 /0 e (2) ﬂ*]dx> dy. (EC.26)

By the definition of f,, (-),

h(2) e Mo hyz, if x>0, (EC.27)
n(T) = 2
e M hox, if x <0.

Obviously, (82,7.) is a feasible solution to our original problem (44]). (Indeed it is the staffing
level (45).)

Case (i) There is a subsequence along which the limit will be positive. To simplify the
notation, we still use A to index the subsequence, i.e. limy_, o ﬁ(n —72) > 0. We will first
focus on the subcase that

0< lim VA(r, — 1) < 0. (EC.28)

A—00

Note that in this case w x > 77 (because H(72|7') < o), then the constraint on waiting time in
becomes P (W*(oc0) > 7). Similar to (EC.24)-(EC.25)) (noticing that the constraint P(Ab)

can be achieved from the first order), the optimal number of servers is

A_A

I

S

H. (™) - ﬁjﬁﬂ(ﬁ), (EC.29)

where 32 solves
max
2 g

I exp (=52 [ [foa(x) — Bldz) dy (EC.30)

<O[2

[ exp (=52 [ [fo (@) — Bldz) dy —

with fo(x) = VAH (1} + 5|m2) — H(72|72)]. From the definitions of f,(z) and H,

st H. (1))

e—hoTi‘\/X<1—exp(—h1%)>, lfoO,
foala) = A (EC.31)
e—hoTs \f)\(l_exp(—h()%)>, if —T:‘\F/\S$<0.

This, by the continuity and monotonicity of the function given by (EC.23)), similar to (EC.26)),
implies that
o0 Yy
AAY ) P oA
(12 =) [ exp (= gl [ Ufiala) = p2ar)dy
0 p Yy
—ar [ exp (= [ 1)~ B )dy (BC.32)
0

2
oo 20

In view of (EC.28) and (EC.31)),

/\lim ) =7, and /\lim foa(@)=h. ()= (EC.33)

e~ Moz, if x>0,
e Mo hox, if x<0.
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This together with (EC.32)) implies that
oo 14 Y A
(1—a; —a) -/0 exp <_W/o [, (z) — llﬂgfﬁ*]dx) dy
0 o [

o _ N . A

=y /Oo exp( 202/0 [hr, () hﬂgfﬁJd:ﬁ) dy. (EC.34)
Using the continuity and monotonicity of the function given by (EC.23)), therefore, we have

B, = liminf 3. (EC.35)
A—00

Similarly, taking the upper limit on both sides of (EC.32), we have

B, =limsup 3. (EC.36)

A—00

On the other hand, by (EC.28)—(EC.29|) and the definition of H, we have

0< lim VX (HC(Tj\Tj) - HC(T*yT*)) = hoe "7 x lim VA(r, = 7)) <00, (EC.37)
—00 —0

It then follows from (EC.24), (EC.29) and (EC.35)-(EC.37) that lim, (s} —3))/vA >0,

which is a contradiction with the optimality of s).

Now consider the subcase

lim VA(7, — ) = 0.

A—r00

The above argument still works if we replace 7, by 7 + % for any M > 0. Then we again
obtain a contradiction with the optimality of s}. Hence the proof of Case (i) is complete.

Case (ii) Similar to case (i) we assume limy_, o VA(T, —72) < 0. Now w o2 =T, as 1) is larger

than 7,. Note that the constraint on waiting time in ([44)) becomes P (W*(c0) > wT*A). So the

optimal number of servers is

*

§h = 2}10(%173) — 55& +o(VA), (EC.38)

where BA is the optimal solution to problem given by (EC.30) with replacing f,A(-) by f,, = (+),
where f, = _i(z)= ﬁ[H(wT*A + %‘T*)‘) — H(w.a|m)]. Note that He(w,alw.a) = He(wa|7), so

(.UAT

the difference between 3 (see (BEC.24)) and s> lies in the difference between 8, and B2. If
lim inf (5. - BN >0, (EC.39)
—00

then limy_, (s} —52)/v/A > 0, which is again a contradiction with the optimality of s}. Thus
to complete the proof for Case (ii), it is sufficient to show (EC.39).
To prove (EC.39)), again by the continuity and monotonicity of the function given by (EC.23)),

similar to (EC.26[), we have
0o p Y N
(-ar-an) [ ew (=52 [1h @) - Bldr)dy
0 20- 0 )\ *
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—an [ o (o [ ale) - Bl (EC.40)

From the definitions of f A(z) and H(z|7), and w x =7,

e*hor*\f)\<1—exp(—ho\%)>, if —VAT, <z <V -1),

fo  o2(@)=
2 e‘hOT*\f/\<1—exp(—hli(m_ﬁ(”t”)) ho VA(Te — ) )) if 2>V —1,).

VA Rz
For notation simplicity, assume that limy_, . \A(Tj —7,) exists and denote it by 7. Then the
above equation yields that

lim f

Ao T Y >‘T*

e~ b, if £ <7,
A(z) = (EC.41)

e~hom(hy(x —7) + hoT), if > 7.

Combining (EC.40) and m [EC.41)) yields that

T Yy /\
(I1—a;—ay)- [/ exp (— 2'%/ [e7"0 hoz — lim sup ﬁf]dm) dy
0 o= Jo

A—0o0

) T N Y ~
+ / exp < — # /o [e7m0™ hox — limsup 5 ]dz — / [e= 07 (hy(z — 7) + hoF) — limsup ﬂ;\]dx) dy]

A—00 A—00

_ 0 ( P Y —hoTe . )
=9 exp(—53 e hox —limsup G;'|dx ) dy.
—0o0 0

A—00
Notice that by (EC.27) and (ECA41), limy,f, , a(x) = he(x) for 2 < 0, and
limy o0 fw (7)) <hge(z) for > 0. Thus using the fact 1 —a; —ay >0 and hy < hy, and
the deﬁmtlon of B, (see (EC.26|)), we have that limsup,_, B;\ < B, by the monotonicity of the

function given by (EC.23)), which is equivalent to (EC.39)).
In summary, Cases (i) and (ii) do not hold. Thus, we have limy_., VA(7, — 7)) = 0. Also

from this proof, we see that is the minimal number of servers. Hence, the proof of the

proposition is complete. O

EC.3. Several Auxiliary Lemmas

In the following, we establish several technical lemmas which support the proofs of Proposi-
tion [, Theorems [1] and
Define the associated filtration with the nth system by {F;k >0} by

Fi =o{rl,v) up € <k} (EC.42)

Then we have
LEmmA EC.1. {Ziﬁt](l{uygwg} — F™(wl)) :t >0} is a Martingale with respect to the filtration
{Fp\.it >0} Furthermore,

[Ant]

—Z Liur<wpy — F™(w]') = 0.
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Proof. First note that for each ¢, u},_, is independent of F;*. By Lemma 3.1 in Dai and He
(2010), w* and w¥ are F;' -measurable for j <i. Also u} is measurable w.r.t. 7' ;. Since the

conditional probability
E[(1pun<wny — F™(W))Fi1] =0, (EC.43)

S0 {Zggt](l{uygwy} — F™(w}')) :t >0} is a Martingale with respect to the filtration {F} it >
0}. Therefore, we have the first part of the lemma.
Now we prove the second part of the lemma. Clearly, {i Z[’\"t](l{u?gw?} —F*(w)):t>0}

i=1

is also a Martingale. Its quadratic variation is given by

1 1
¥l D (upcury — Fr(w}))* < 3z Ant] = 0.

noi=1

Therefore, the second part is proved. O

LEMMA EC.2. Under the same assumptions as Theorem[I], as n — oo
B = 1p (EC.44)
VP |

where B={B(t):t >0} is a standard Brownian motion.

Proof. In view of (EC.17)), we first look at the departure process {D"(t):t>0}. We intro-

duce the following two diffusion scalings:

D(t) = Dn(t\)ﬁ\_‘g"“t’ Sn(t) = Sn(\t})\_sn

Then
B™(t)=D"(t)+ S"(t) — S™(0). (EC.45)

Let X™(t) denote the total number of customers at time ¢ in the nth system. Then the departure
process D"(t) can be represented as S(fOt(X"(x) A s,)dx), where {S(t) :t > 0} is a Poisson

process with rate . By ,
- X"(t)"
wp (2= X"(2)
0<t<T An

= 0. (EC.46)

This, together with , implies

~ 1
D"= —B. EC.47
7 ( )
By the initial condition and (EC.46)), we have that the last two terms in (EC.45)) will

converge to zero. Hence, (KC.44]) directly follows from (EC.47). U

LEMMA EC.3. Under the same assumptions as Theorem[l], the sequence of stochastic processes

{V"}nen is stochastically bounded.
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Proof. Tt suffices to show that, for any 7'> 0 and ¢ > 0, the following holds for all large
enough n and M:
]P’{ sup |V"(t)] > M} <Ade.

0<t<T
To this end, define

P=inf{t>0:V"(t)> M}, &=inf{t>0:V"(t)<-M},
QMT)={ <,/ <T}, BM,T)={s>¢ . <T}.

Hence we only need to show that, for all large enough n and M,
P(QY(M,T)) <2 and P(Q5(M,T))<2e. (EC.48)

We will first consider the event Q7 (M, T). By the definition of ¢, we must have that V" (¢7") >
‘7"(#—). In other words, if V™ has a jump at ¢’, then it must be an upward jump. Since

17”(75) €[-M, M] on [0,¢]], for any t € (0,¢7'] and small positive ¢ € (0,t), by ,

V) — VM (t—0) = — Siﬂ g Vo (F”(w” + V:L/(;i)) - Fﬂ(w"))dmx)
FY() =Y (= 0). (EC.49)

Since V" (0) is stochastically bounded, we can choose M large enough such that
~ M
P(Qg(M))=P <V”(0) < 4) >1—c¢,

where QF(M) is defined in the proof of Proposition [I| Define ¢, = sup{0 <t < <" : V*(¢) <
M/2} Vv 0. We know that on the event Q (M), ¢, > 0. By the definition of ¢ and ¢}, we clearly
have that

. . M
V™(si') > M, and V"(%—)S?

, (EC.50)

Note that the process V"(-) is larger than M /2 (thus larger than 0) on the interval [¢%, <7,
By (EC.49) and the fact that F™(w" +z) > F"(w™) for any = > 0,

V() = VP (ey—) S Y™ (s]) = Y™ (). (EC.51)
By (EC.50) and (EC.51)),
P(Qs(M) N (M,T)) <P( sup [77(1)| = %) (EC.52)
te[0,T] 4

We now prove the stochastic boundedness of Y™, Recall the definition of Y™ in . The first
and the third term on the right side of is stochastically bounded by Conditions , and
. The last two terms are stochastically bounded by Lemma It now remains to show
the stochastic boundedness of the third term, which can be written as \/%\7 Z?:l(t)(l{u?gw?} -

F™(w!)). According to Condition (), it is enough to show the stochastic boundedness of
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W > ’\"t](l{uggw?} — F™(w]")). From Doob’s inequality for martingale (see Lemma [EC.1)), for
any M >0,

[Ant] (AnT]

P ’xﬁz Lty ey = FH n))‘ZM> H\ﬁ Z (Lgup<apyy — F"(w]))

0<t<T

i|2
1 [AnT]
= O By — F' (@) < ML
noi=1

Using the stochastic boundedness of {}7”, n > 1}, we can choose M large enough such that the
probability on the right-hand side of (EC.52) is less than €. So we have that P(Q}(M,T)) < 2¢
for large enough M. A symmetric argument shows that P(Q5 (M, T)) < 2¢ for large enough M.

So we have proved stochastic boundedness. O

LEMMA EC.4. Under the same assumptions as Theorem[I], as n — oo

= (1/p)v/p—1B4("). (EC.53)

Here H"(-) is given by and By ={Ba(t):t >0} is a standard Brownian motion which is
independent of {B(t):t>0}.

Proof. We first prove a convergence result for the sequence of processes given by

{F Z[)‘”t] (Lur<wry — F"(w})) : t > 0}. By Lemma[EC.1} the quadratic variation of martingale

Ant n n . .
{= S (L cupy — F (@) 14> 0} is
| Dt
oW D (Lpuncwmy — FH (@)
=1

We calculate it in the following:

B[ 3 () — @) — ) E20) |
Dnt

B[ LS (e - PN ) - )|

i=1

—

=

- (,\2)2 > E[(l{u?ﬁw?} — F(W)(F(w!) — F™ (W) (EC.54)
" 1< <i<[Ant]
(g = F)E @)~ F(3))]
[Ant]
+(An) ZE (Lo — F (@) (ER(@]) - FH (@)’

Then by conditioning on F" ;, we have

E [ (Lgupcapy = F @) (F2 (@) = F @) (L <oy — F" (@) (F2 (@) = F (@)
ZE[E[(l{uysw}—F”(w?))\fﬁl](Ff(W?) F(wi') (Lgup<uny — F"(w?))(Ff(w?)—F”(w?))}~
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By (EC.43) the first term on the right-hand side of (EC.54)) is 0. Note that the second term on
the right-hand side of (EC.54)) converges to 0 as n — 0o, so the expectation on the left-hand
side of (EC.54)) must converge to 0. As a result,

[(Ant]
1
D ((rsapy = F (@) = P (@) (w])) = 0.

" oi=1
On the other hand, on the event given by {A™(t+1) > \,t}
[Ant]
o2 (@B w)) = P (@) FY (")
i=1 "

— > (@) = P2 + P ) [P D) - F M) )

< sup 2[FM(V™(s)) - F (W)t

0<s<t+1
1
v ( S w

which vanishes to 0 following from Condition and the stochastic boundedness of {V"}neN
given by Lemma Note that and imply that for any T > 0, as n — oo,

= sup

t,
An 0<s<t+1

V(o) - )

1
Fr(w") 1= and 1@( inf (A”(t—i—l)—/\nt)zo)—ﬂ.

0<i<T
As a result,
1 [Ant] bl
n LANY : n n n n _ -
X, Zl(l{uggwg} — F™(wl) :>nh${.loF (W) EM(w™)t = pe t.

Then from the martingale convergence theorem (Theorem 8.1 (ii) of Pang et al. (2007))), we
know that the sequence of the processes given by {\/% ZE’\:’f] (Ljur<wmy —F™(w]')) 1t > 0} weakly

converges to the process —V”p_lb’ 4. The result of this lemma then follows from the random-time-

change theorem. O

LEmMA EC.5. Under the same assumptions as Theorem([l], the sequence of stochastic processes
{V"}nen is tight.

Proof. In view of Lemma it suffices to study the modulus of continuity for {V"},cx.
By , for any € > 0,

lim lim Sup]P’( sup |A"(s)—A"(t)] > 5) =0. (EC.55)
-0 pooo sl,t€[(|),7;]
s—t|<

By Conditions 7, and Lemma for any € > 0,

lim limsup]P( sup |[Y"(s)—Y"(t)| > 6) =0. (EC.56)
=0 p o s5,t€[0,T]
ls—t|<6
Let Q7(M,T) be the complement of QF(M,T) U Qy(M,T) which are given in the proof of
Lemma [EC.3l Then

lim liminfP (Q}(M,T))=1. (EC.57)

M—00 n—oo
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On the event Q7(M,T), it follows from (EC.49) that

Y

(vn(t) V(- 5)( <cp (A -A"t-0)) + ‘?n(w YRt —0)

where C7, = max {Wn(Fn(wn + ALY~ P (@), VA (F7 (W) — Fr (W — %))}. By Condi-
tion , C%, is bounded by a finite number C); which may depend on M. So for any M >0,

IP’( sup |17n(s)_x7"(t)\>e) g(1_P(Qg(M,T)))+P( sup |A"(s) = A"(t)| > — )

s,t€[0,T7] s,t€[0,T)] 2C'M
|s—t|<s |s—t|<éd
~ =~ e
+1P>( sup \Y”(s)—Y"(t)|>—).
5,t€[0,T] 2
|s—t|<d

By first letting n go to infinite, then § to zero and finally M go to infinite, we can show that

lim lim supIP’( sup |V™(s) = V"(t)| > E) =0.
=0 noo sl,te[?,i(;]
s—t|<

This shows that the modulus of continuity for {‘7”}”@; will vanish as n — co. Hence we have

the lemma. O

EC.4. Discussion on the Sequence of {w"}

As discussed after condition that both 8 and f,, depend on the sequence {w™}, ey, one may
wonder whether different sequences of {w™},en satisfying conditions f and assumption
will give us inconsistent results. (Inconsistence means that arguments based on different
sequences of {w"},ey may give contradictions.) In this section, we argue that this inconsistence
is impossible.

We are given two sequences {w(‘l)}neN and {W&)}neN with lim,, o0 wf}) = lim,, o Wiy = w such

that i=1,2,
A FH (W) = Supt

- — B9, (EC.58)
Vo [Fﬂ(wg) + \/“;7) — Pl )] — £ (), (EC.59)
vV (V"(o) —wy) = V. (EC.60)
It directly follows from that
lim /A, (wfy) — wfi)) =2 €R. (EC.61)

n—oo

We first look at the case of the virtual waiting time. Define Vy(t) = v/, (V™(t) — wiyy) and
V31 (t) = VA (V"(t) —wih)). Then

V() = Vi (t) + VA (W] — wih)). (EC.62)
It directly follows (EC.61)—(EC.62)) that

if V= VO, then Vi, = VO with V@ = VO — g i=1,2. (EC.63)
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To prove the results for two sequences {wa)}neN and {w&)}neN to be consistent, it is sufficient

to show that the diffusion approximations for wf}, and wf,, given by Theorem 1] also satisfy

(EC.63|). To this end, note that (EC.61)) together with (EC.58))—(KC.59)) implies that

B = 0 (o) + B, (@) = S o +2) — [ (o). (EC.64)

By (EC.58)—(EC.60) and Theorem |1, we have, as n — oo

V=V, (EC.65)

where

t
0

VO (1) =VD(0)~p / 79V @) = 8] da+ [A@) — VBB ~ /o~ 1Ba(t)] . (BC.66)
In view of (EC.64)), it follows from (EC.66|) that
VO =y® g (EC.67)

Therefore, different choices of {w™},,en do not give us inconsistent results based on Theorem
when conditions — and assumption hold!
Similarly, from Theorem |2, we can prove that different choices of {w™}, ey also do not give

us inconsistent results for the diffusion approximations for the queue length process.

EC.5. Discussion on the Initial State

We discuss Assumption on the initial state. Usually, the initial state is given by the queue
length and patience times; see|Liu and Whitt (2014), Mandelbaum and Momc¢ilovi¢| (2012), and
Reed and Tezcan| (2012). In the following, we hence provide a sufficient condition for in
terms of queue length and patience times. Analysis for what general initial conditions imply
is left for future research. To the best of our knowledge, the first work focusing on the
initial state is |Aras et al.| (2017), which studied the impact of initial content (e.g., initial age
process) on the system performances.

LEMMA EC.6. Denote by Q"(0) the number of customers who are initially in queue. Assume
those initial customers in queue are infinitely patient. If me\}iw = QVO for a random variable

@0 and w"™ — w, then as n — 0o,
V™(0) = Vo, (EC.68)
where 170 = p(@o — \/%N) with N being a standard normal random variable independent of @0.
Proof. Recall that D™(t) is the number of departures through service completion by time
t. As all customers initially in queue will eventually receive service, the virtual waiting time
V™(0) satisfies
D*(V™(0)—) <Q"(0) <D™ (V"(0)).
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As D™ is a Poisson process with rate s,u on [0,V™(0)], with probability one, there is only one

departure at time V"(0). This gives
D" (V"(0)) =Q"(0)+1. (EC.69)
Dividing both sides by A,, then one can see that
V'(0)=w, as n—oo.

From (EC.69), we get

V(0) =

= +
St

Vn Vn Van

With V™(0) = w, we have D"(v"(oz/)/\;:np VIO o “N; here N follows the standard normal

distribution. Together with the assumption that Q"o

An (Q”(O) —sppw”  D"(V"(0)) —snpV"(0) 1 ) '

—sppw’

An
‘7”(0) This completes the proof. O

= @0, we get the convergence of

EC.6. Proving the Convergence of the First Term in (EC.5)
To analyze the first term on the right-hand side of (EC.5|), we need a modification of the proof

of Lemma 5.3 in Krichagina and Puhalskii (1997). Such a modification is needed because we
allow the distribution F"(-) to vary with n while Lemma 5.3 in Krichagina and Puhalskii (1997)
only deals with a fixed F(-) (i.e., F"(-) = F(-) for all n). We now demonstrate how to modify
their proof to allow the distribution F"(-) to vary with n. For a function g(-), let g(z—) denote
its left-hand limit at x.

To make the connection easy, we adopt the same notation as theirs without conflicting with

the notation already used in the above. We denote the first term on the right-hand side of our

[ECH) by

1 AT (t)
My (1) 1= ——
T j=An(

Define v]' = u Aw™ and let F}(-) be the distribution of v}. Let u; be a random variable with
distribution F'(-) and F,(+) be the distribution of u; Aw. Define U™ as in their (2.23) but change
n to \,. Change V™ in their (3.24) to V"(t,x) = U"(A"(t), F*(x)),t > 0,2 >0, and L"(¢,) in
their (3.18) to

(1{u$+ri">t} —Fr(t - Tin))) .

t—wm™)+1

A (t) AV} n
~ Z[l{w}—/M Sl ]
)\n i—1 R 0 1- F/T\l(y_)

Then following the same argument leading to their (3.19), we have

L"(t,x) =

tVrty-)
V" (t,x :—/ — 7 T qF™(y)+ L (t,x), t>0,2>0.

Also, following the same argument leading to their (3.20), we have

My (t) = G"(t) — H"(t),
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where

i VRt —a,z-) o
G (t)_/o 1_F/<L(x_) CIF‘/\( )7

A"(t)

1 v;-n/\(tf‘rin)"" dF™ (U)
H'(1) =—— (1 S —/ 4o )
7 2 (Bersen = | = Fy(u-)

In |[Krichagina and Puhalskii| (1997)), the proof of Lemma 5.3, which shows the convergence of
{M3(t)}, needs (i) the tightness of {MJ'},en with M} = {M}(t):t >0} (Lemma 3.8) and (ii)
finite dimensional distribution convergence of {MJ'},cn. In the following we show (i) and (ii)
separately.

(i) Tightness. Lemma 3.8 is essentially a summary of Lemmas 3.4 (tightness of {G"},.en
with G" = {G"(t) : t > 0}) and 3.7 (tightness of {H"}, ey with H" = {H"(t) : t > 0}), both of
which require Lemmas 3.1 and 3.2 and an additional analysis. We can directly use their Lemma
3.1 because it is for uniform distribution and does not involve general distributions. In our
model, A" plays the role of a” in their Lemma 3.2. Our assumption enables us to use their
Lemma 3.2.

We now show that the conclusion of their Lemma 3.4 (tightness of {G"},en) holds for our
model. Let Ty =sup,, w™ + 1. Let T, = sup,,w™ + 1, and define piecewise-linear function " (-)
such that its graph linearly connects (0,0), (w},w}), (w,w™) and (Ty,To) (that is, ¥™(0) =0,
(W) = wp, $7(w) = w" and Y7 (Ty) = Ty), where

W —d,,, if W < w, . Fﬁ(w"—)—Ff(w?)<ﬁ, if w* <w,
"= . with "
w—d,, ifw'>w

wt =
! FA(w—)—FA(w?)<ﬁ, if w" > w,

and d, € (0,1/A\Y/*). Assumptions (3)-(4) and assumption F(w—) =1 — 1/p imply that
F'(w"—) — FA(w—) — 0 as n — oo. Note that {"(w) = w”, then AF!(¢Y"(w)) = AF(w).
(For a function f, Af(t) := f(t) — f(t—).) Then, supyc,<q, [¢"(t) — t| < |w" —w| — 0 and
WD, IFRW (1)) — FA(D] < e + 127 ) = Fulo—)] + subycrce, [F7(1) — (1) = 0 as
n — 0o. One can also verify that the probability distribution F(¢"(-)) converges to F,x(-) in

total variation. Indeed, for any measurable set A,
[EX (9" (A) = Fa(A)] <[FR (9" (A, 2 Swgi)) — Fa(A, 2 <wg)
+|F (WM (A w] <z <w))— FA(Aw] <z <w)]
T FR (" (A 2 w)) - FA(A,z > w)|

<|FR (A, <wi) = Fa(A, z <wg)|

1 n(, n n(, n n
ot [FR (" =) = Falw=)[+[F{(wi) = Fa(wq)]

TIAFL (" (W) = AFA(w)].
Then the convergence in total variation of F7'(¢"(-)) to F, follows from the convergence in
total variation of F' to F, on [0,w) (from the condition (21)), F"(w™) — F(w) and the fact
that [AF? (" (w)) — AF(w)| — 0.
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Let D([0,00),D][0,00)) denote the space of all D[0,00)-valued right continuous functions
with left limits defined on [0,00); see Talreja and Whitt| (2009) for detailed analysis on
this space. Introduce a sequence of mappings ¥" : D(]0,00),D[0,00)) — D[0,00) and ¥ :
D(]0,0),D[0,00)) — D[0,00) by

v = [ 2O SO D g @), 120
W(2)(t) = /O Z(tl__xl;iAgff)_))dFA(x), £>0,

for any z € D(]0,00),DJ[0,00)). Then for any T' >0,

sup [W"(2")(t) — W(2)(t)]

- Can () — @), FRW@)2)) ¢
(W) @), FEM @) ) | 2w By e
+“p/< T Fr (@) ) I F (e ) )dFA( )

The first term on the right-hand side in the above converges to zero because F(¢"(-)) converges
to Fa(+) in total variation. If 2™ converges to z which is continuous in both variables, then the
second term converges to zero because

sup ‘wn(t) —t‘ — 0 and sup
0<t<T 0<t<T

Fl(y"(t)—) — FA(t—)| — 0 as n — oo.

Note that

dET (4" ()

& (1)) = /w"“) V(0 = 203) gy / V() — ¢ (@), 9" (@) -)
0 1—Fp(z—) 0 1= Fp(ym(z)=)
can be represented as G"(1)"(t)) = ¥ (U™ (A"(-),-))(t). From the fact that U"(A"(-),-) converges
to a function which is continuous in both variables, then similar to the argument below (3.26)
in Krichagina and Puhalskii (1997) we know that {G"},cn is C-tight, i.e., the conclusion in
their Lemma 3.4 holds for our model.

We next show that the conclusion of their Lemma 3.7 (tightness of {H"},,cn) holds for our
model. Define H}' the same as their (3.28) with changing their F'(-) to F{(-). The conclusion
of their Lemma 3.5, which shows that H}} is a square-integrable martingale, still holds because
it is for a specific system and no limit is involved. Based on Lemma 3.5, the arguments for
proving their Lemma 3.7 still work after we change their F'(-) to F}(-) (i.e., for our model).
This is because the arguments for their (3.60) and thereafter still hold for F7(-), except that
we need to use the weak law of large numbers for the triangular array ;- ZE’;’;t] fOU? %

The weak law of large numbers for triangular array can be applied because we can bound its

second moment:
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dF"(:Ul) dE7 (x2)
n dE(z1)  dFR(x0)
/ / 1{I1V12<z}dF ( )1—F/7\l(x1—)1—F/<‘(:L'2—)
1—F (21 Va)—)
1 Fr(z—)) (1= Fr(22—))
1—F((z1 Va)—)
ez (T Ey () (1 Fp(aao)

1 n mn
/ Lo e OF 1) F2 22)
1-—
1—-

dF(z)

dE (21)d Y (2)

Fr(za—)

nl‘g)

1L
-1
-1
[ |
-2/
2/0 ?nExQ)dF"(@) =2,

(ii) Finite dimensional distribution convergence. Introduce

Mg (1) ZDU” ((A™(57-1),0), (A"(s7), FX (t = 57))),

with the operator [J defined in the same way as the equation below their (2.19). Essentially, we
change their F'(-) in their (5.18) to F?(-). From the definitions, F(x) = Fa(z) =1if 2 > w" Vw.
As a result, F'(t) — Fa(t) for ¢ > w. From and w" — w, F(t) — Fa(t) for t <w. As a
result, for all ¢ # w, F(t) — F,(t). In the proof of (a) and (b) on their page 270, it is enough to
consider {s¥} such that t — s¥ # w for all i > 1 and k. Then the convergence of their (5.17) holds
by also using the convergence of F7'(t — sF) to F,(t —s¥) and A"(sF |) to A(sF ). As a result,
their (a) on page 270 still holds. For (b) on their page 270, their (5.20) and the argument on the
top of page 273 still works. Thus, we have the convergence of finite dimensional distribution.

Combining (i) and (ii), we have shown that their Lemma 5.3 also holds for our model.
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