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Abstract. Data has revealed a noticeable impact of delay-time-related information on
phone-customers; for example and somewhat surprisingly, delay announcements can
abruptly increase the likelihood to abandon (hang up). Our starting point is that the latter
phenomena can be used to support the control of queue lengths and delays. We do so by
timing the announcements appropriately and determining the staffing levels accordingly.
To this end, we model a service system as an overloaded GI/M/s+GI queue, in which
we seek to minimize the number of servers, s, subject to quality-of-service constraints
(e.g., fraction abandoning), while accounting for the instantaneous (hence discontinu-
ous) impact of an announcement on the distribution (hazard rate) of customer patience.
For tractability, our analysis is asymptotic as s increases indefinitely, and it is naturally
efficiency-driven (namely the servers are highly busy, and hence essentially all customers
are delayed in queue prior to service). This requires one to go beyond existing theory,
which turns out to be too crude for our needs (e.g., it requires a continuous hazard rate of
impatience and hence cannot be applied). We thus develop a refined process and steady-
state models, and use them to solve our minimization problem and more. The value and
accuracy of our models are demonstrated via extensive numerical experiments.
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1. Introduction
Motivated by large service centers (mainly call centers),
there has been a growing body of research on many-
server queues with customer abandonment (Garnett
et al. 2002, Gans et al. 2003, Zeltyn and Mandelbaum
2005, Whitt 2006, Akşin et al. 2007). Often the goal is a
balanced operation that is both Quality- and Efficiency-
Driven (QED): Customers do not wait too long for
available servers and servers do not wait too long
for needy customers. For large enough systems, this
QED balance translates into waiting and idle times
being negligible, relative to the service time. However,
in practice, many call centers are merely Efficiency-
Driven (ED) in that they are understaffed, which
results in significant delays and consequent abandon-
ment. One such scenario is depicted in Figures 4 and 5:
The first figure reveals extreme understaffing (e.g.,

80 agents present at 11:30, while about twice as many
are required for good performance); and the second
figure demonstrates the severe outcome of such under-
staffing: 20%–60% abandonment.

Various reasons could lead to an ED operation.
For example, call centers could be service-oriented as
opposed to revenue-generating (e.g., Whitt 2004); or
staffing levels could be inflexible to accommodate tem-
poral peaks or an unexpectedly high demand (e.g.,
Perry and Whitt 2009). When this happens, and when
queues are invisible (e.g., call centers) and significant,
it makes sense and is hence prevalent to provide cus-
tomers with delay information. (Such information has
no noticeable impact in short-wait conditions; see Hui
and Tse 1996.) One reason is to relieve waiting anxiety
because “uncertain waits feel longer than predictable
finite waits” (Maister 1985, p. 118).
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Just as important, such information helps customers
decide whether their gain from service is worth the
wait. In that case they abandon the queue, which, in
heavy traffic, could dramatically improve the wait-
ing experience of those opting for service. (For visi-
ble queues, and starting with Naor 1969, the analo-
gous option for a customer is to renege upon arrival at
too long a queue; see Hassin and Haviv 2003.) Delay
announcements could thus provide a relatively simple
and inexpensive means for improving customer expe-
rience and controlling delay—this is the starting point
of the present paper.
Specifically, we develop a model for many-server

queues in the ED regime, or more precisely, ED+QED
refinement. Our model captures the effect of growing
impatience on system performance, which is attributed
to delay announcements. We then use our model to
simultaneously optimize the staffing levels and timing
of announcements, subject to service level constraints
(e.g., fraction abandoning). However, capturing the
impact of announcements on customers’ tendency to
abandon (hang up) raises a challenge: There exists
empirical support to suggest that this impact is often
abrupt or, formally, manifested through a discontinu-
ity in the hazard rate of customer patience (underly-
ing the smoothed peaks in Figure 3). Moreover, there
is also the practical need and theoretical challenge to
accommodate general distributions. It follows that for
tractability, one must resort to fluid or diffusion mod-
els with discontinuous primitives, which necessitates
refinement of the existing models.
Two Types of Delay Announcements. Our refined mo-
del is motivated by two types of announcements. The
first is to be made upon the arrival of customers
who must wait before receiving service; see the “all-
exponential model” in Armony et al. (2009). In this
case, an estimated duration of delay is announced,
which has the following consequences. Some cus-
tomers choose to balk immediately, while others
remain online. Customers will not abandon if served
before their patience expires, but they will become irri-
tated once their waiting times reach the announced
delay. Such behavior is collectively (statistically) man-
ifested by a sudden increase in the hazard rate of the
patience-time distribution at the announced time (e.g.,
Armony et al. 2009). The second type of announce-
ment is to be made during waiting, e.g., when a cus-
tomer’s waiting time reaches one minute. Here, the
announcements provide varying levels of informa-
tion, ranging from the detailed “your waiting time
is expected to be X minutes/seconds,” through “you
are number X in the queue,” to the vague “please
hold—an agent will be with you momentarily.” Allon
and Bassamboo (2011) and Mandelbaum and Zeltyn
(2013) have had discussions on such announcements,
with the latter observing that such announcements,

in various call centers, have been found to be associ-
ated with an upward jump in the hazard rate right
after the announcement. Taking a step further, Li et al.
(2015) developed a statistical method to estimate the
hazard rate as a smooth surface of waiting time and
time-of-day: It is shown that peaks in the hazard
rates, attributed to delay announcements, are consis-
tent across different times-of-day.

In view of Armony et al. (2009), Mandelbaum and
Zeltyn (2013), and Li et al. (2015), both types of announ-
cements share the common feature of being associated
with a nonsmooth (abrupt) change in the hazard rate
of the patience-time distribution. It occurs at a certain
“impact point,” which is either the announced wait-
ing time (first type) or the chosen time to make an
announcement (second type). We make it an assump-
tion that announcements do abruptly increase the like-
lihood of customer abandonments. Under this assump-
tion, we develop models that quantify the impact of
this nonsmooth change on operational performance,
which then provides insights and guidelines for the
management of congestion. For example, we obtain
answers to whether an announcement upon arrival
(first type) can reduce staffing costs, and whether an
announcement duringwaiting (second type) should be
used (and if so, when).

Refined Models are Needed. With the above motiva-
tion, we consider a multiserver queueing system GI/
M/n+GI, with a possibly nonsmooth patience-time
distribution—this distinguishes our model from the
existing ones. To elaborate, it has been shown in Whitt
(2006), via simulation, that fluid models capture very
accurately the performance of ED systems. This was
rigorously proved later in Bassamboo and Randhawa
(2010), but under some regularity conditions that are
not satisfied in the presence of announcements. In con-
cert with that, Armony et al. (2009) demonstrated that
fluid models are inaccurate for systems with a delay
announcement. For example, in their M/M/n+GI sys-
tem with n � 100 servers—each having a service rate
of 1, an arrival rate of 140, and with the hazard rate
of patience-time distribution having a jump—the sim-
ulated queue length is 17.3 while the fluid approxima-
tion is 23.7. The understanding of this gap was left as
a problem for future research, which is here resolved:
Our refined model offers an improved approximation
of 16.4 (see Section 4.1 for details). Another example
is approximating the tail probabilities of waiting times
in the ED+QED regime. This was studied in Mandel-
baum and Zeltyn (2009), and requires the smoothness
of the hazard rate of customer patience. For such a sys-
tem with 100 servers, each having a service rate of 1,
and an arrival rate of 120, the simulated tail probabil-
ity is 0.2574, while the approximation in Mandelbaum
and Zeltyn (2009) yields 0.4167. Our refined model
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produces an accurate approximation of 0.2575 (see Sec-
tion 5 for extensive numerical experiments). Generally
speaking, nonsmooth changes in the hazard rate of
patience render the existing models inaccurate, and
our refinedmodel closes this accuracy gap successfully.

Control via Announcements, Jointly with Staffing. In
addition to improving customer satisfaction psycho-
logically, announcements can also reduce staffing lev-
els while not hurting the service level (as characterized
by the tail probabilities of the waiting times, for exam-
ple). To elaborate, with an announcement upon arrival,
we minimize the staffing level, subject to a target
bound on the probability that the waiting time exceeds
a benchmark (see optimization problem (38) in Sec-
tion 4.1.1). This same formulation of constrained opti-
mization is used in Mandelbaum and Zeltyn (2009).
It turns out that announcements reduce the staffing
level by a magnitude of O(

√
λ) (where λ is the arrival

rate). With announcements during waiting, we simul-
taneously optimize the timing of an announcement as
well as minimize the staffing level, and do so subject
to bounds on the tail probability of waiting and on the
fraction abandoning (see optimization problem (44) in
Section 4.2.1). It turns out that it is optimal to make
an announcement at a time that is approximately the
fluid offered waiting time; here also, the announce-
ment reduces staffing by a magnitude of O(

√
λ) (see

Proposition 3 in Section 4.2).

A Queueing Model with a Delay Announcement. Our
refined model introduces a general scaling (see (4))
of the patience-time distribution, which precisely cap-
tures its fine structures, especially the nonsmooth
changes attributed to announcements. As explained
in Section 2, hazard-rate scaling and no-scaling of the
patience-time distribution are special cases of this gen-
eral scaling. Our method for analyzing such a refined
model is based on the virtual waiting time, which dif-
fers from the traditional approach that is based on
queue length. The virtual waiting time Vn(t) is the time
that an infinitely-patient “virtual” customer would
have to wait if arriving at time t. The evolution of
the virtual waiting time is characterized by (16), which
enables us to develop diffusion approximations for sys-
tems with patience-time distribution scaling (4). The
tractable stationary distribution of the diffusion limit is
then used to approximate the steady-state performance
of its originating queueing systems. Useful characteris-
tics of the approximation formulae are: (a) closed-form;
(b) no need to worry which scaling to choose (hazard-
rate scaling vs. none) or how to choose a scaling for the
patience-time distribution; and (c) the ability to ana-
lyze how the operational performance is affected by a
nonsmooth change of the patience-time distribution.

1.1. Literature Review
Announcements. Customers’ reaction to announce-
ments within large service systems, in particular call
centers, has been studied both empirically and theoret-
ically. Brown et al. (2005) andMandelbaum and Zeltyn
(2013) statistically estimated thehazard rateofpatience-
time distribution and found that a surge is associated
with the time of announcement. Akşin et al. (2016)
modeled abandonment decisions endogenously in the
presence of delay announcements; they studied how
announcements impact customer behavior which, in
turn, affects system performance. This led to an empir-
ical approach that combines the estimation of patience
parameters, the modeling of abandonment behavior,
and a queueing analysis that incorporates that behav-
ior. Yu et al. (2017) explored the impact of delay
announcements, using an empirical approach that is
based on amedium-sized call center. Their key insights
are that delay announcements not only impact cus-
tomers’ perceptions of the system, but also directly
impact the waiting costs. Ibrahim et al. (2016) investi-
gated delay announcements in call centers within the
framework of an M/M/n+M in the ED regime: The
announcement to an arriving customer is the delay of
the last customer to enter service. The announcement-
dependent customer behavior is then explicitly mod-
eled by letting the joint probability and abandonment
rate depend on the announced waiting time. Jouini
et al. (2011) explored the effect of announcing different
percentiles of the waiting time distribution on balking
and reneging. System performance measures were cal-
culated via an M/M/s+M queue. Through a numeri-
cal study, Jouini et al. (2011) explored when informing
customers about delays is beneficial and what the per-
centile should be in these announcements.
The ED and ED+QED Regime. The ED regime was in-
troduced in Garnett et al. (2002), which was then fol-
lowed by ample research on the many-server queues
in that regime. Whitt (2004) studied both diffusion
approximations and steady-state limits for an ED
Markovian model. The ED+QED regime arose in Man-
delbaum and Zeltyn (2009), as a refinement to ED that
accommodates approximations to the tail probabilities
for M/M/n+G. Dai et al. (2010) analyzed diffusion
models for G/Ph/n+M systems in both the QED and
ED+QED regimes.

A closely relatedpaper is Liu andWhitt (2014b): They
established process level diffusion approximations for
models where the arrival rate and staffing level are
time dependent, thus allowing the system to alternate
between overloaded and underloaded regimes. Our
paper differs from theirs in terms of patience-time dis-
tribution scaling and methodology. More specifically,
their patience-time distribution is independent of n,
and is assumed to have a continuous density func-
tion. In our model, being motivated by systems with

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
3.

89
.2

0.
19

4]
 o

n 
05

 O
ct

ob
er

 2
01

7,
 a

t 1
9:

59
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Huang et al.: Refined Models for Efficiency-Driven Queues
Operations Research, 2017, vol. 65, no. 5, pp. 1380–1397, ©2017 INFORMS 1383

delay announcements, we allow the patience-time dis-
tribution to be more general (e.g., the one in Armony
et al. 2009). This requires a general scaling framework
(4) of patience-time distributions, which allows the
patience-time distributions to have abrupt changes. If
the patience-time distributions are independent of n
and have a continuous density function, the method in
Liu and Whitt (2014b) applies to the stationary model
(see their Section 10 for the connection to the ED+QED
regime). However, we have not been able to apply the
method in Liu and Whitt (2014b) to our general scal-
ing framework (4), thus necessitating the development
of a new method. Our base is a conservation law that
connects the numbers of customer arrivals, abandon-
ments, and service completions (see (9)). This law is for-
malized by a system dynamic equation for the virtual
waiting time (see (16)), which supports our diffusion
approximations.

Fluid Models. Fluid approximations are useful in the
ED regime. The pioneering work byWhitt (2006) intro-
duced fluid systems with general service and patience-
time distributions, and established the first fluid limit
in a discrete-time framework. It gave rise to simple,
yet effective, approximations for various performance
measures, based on the equilibrium of the fluid model.
Whitt’s fluid approximation, in continuous time, was
formally justified by Kang and Ramanan (2010) and
Zhang (2013) using measure-valued processes. The
papers by Kang and Pang (2011, 2013) would be help-
ful for readers to relate Whitt (2006) to the different
approach in Kang and Ramanan (2010) and Zhang
(2013). The paper by Liu and Whitt (2012a) com-
pleted the story started in Whitt (2006) by bringing the
model to the time-varying setting. Long and Zhang
(2014) proved that the fluid model G/GI/n+GI con-
verges to an equilibrium state, following the result
for G/M/n+GI in Section 5 of Liu and Whitt (2011a).
A sequence of works by Liu and Whitt (2011b, 2012b,
2014a) comprehensively analyzed, from theory to algo-
rithms, networks of many-server fluid queues in the
time-varying setting.
Approximations based on fluid models are sur-

prisingly accurate in the ED regime. Bassamboo and
Randhawa (2010) showed that the gap between the
steady-state queue length and its fluid approxima-
tion is O(1). This enabled the study of optimal capac-
ity sizing for M/M/n+GI, based on its fluid approx-
imation, to minimize the sum of the capacity costs
and long-term average customer-related costs. An in-
depth discussion on the gap between fluid and dif-
fusion approximations is provided in our Section 5.4.
This adds to Bassamboo andRandhawa (2010), because
their assumptions do not hold in the presence of non-
smooth patience-time distributions, which one might
find in the presence of delay announcements.

Tail Probabilities of the Waiting Time. In calculating
performance measures for M/M/n+GI, Zeltyn and
Mandelbaum (2005) and Mandelbaum and Zeltyn
(2009) identified the important role of the derivative of
the patience-time distribution at the fluid offered wait-
ing time. In particular, they studied the tail probability
of waiting, which is beyond the scope of the fluid mod-
els. Their method took advantage of explicit expres-
sions for steady-state performance (which would not
have been possible without Poisson arrivals and expo-
nential service times). We must resort to diffusion
limits in order to accommodate general arrivals and
patience-time distributions.

1.2. Main Contribution
To summarize, the contributions of this paper are as
follows:

• A new scaling framework (4) of the patience-time
distribution is proposed, which allows it to change
abruptly, as observed in practice.

• Inspired by Liu and Whitt (2014b), we develop a
new modeling approach ((9) and (16)–(17)) based on
the virtual waiting time. This enables diffusion analysis
for systems with scaling (4) of their patience-time dis-
tribution. Accurate approximations for performances
of the original stochastic system are constructed based
on the stationary distribution of the diffusion limit.

• Performance approximations for the fixed-delay
model of Armony et al. (2009) are improved by using
our approximations. Indeed, quoting the authors of the
latter (end of their Section 7), we “better quantify the
impact of stochastic fluctuations,” which they left as a
problem for future research.

• We jointly optimize (asymptotically) the two prob-
lems of optimal-staffing and announcement-timing,
under the assumption (supported by our data and
experience) that an announcement causes an abrupt
change in the likelihood of abandonment.

• Finally, we analyze the performance gap between
fluid and diffusion approximations, for a given pa-
tience-time distribution.

1.3. Organization and Notation
The rest of the paper is organized as follows. Section 2
introduces the queueing model and the heavy-traffic
regime. We then proceed, in Section 3, to derive the
diffusion limits and their stationary distribution, and
then use the latter to approximate the steady-state per-
formance of the originating queueing system. Based on
the approximation formulae, in Sections 4.1 and 4.2,
we investigate the impact of an announcement upon
arrival and during waiting, respectively. Section 5 pro-
vides an in-depth discussion of our approximation for-
mulae, and Section 6 offers some concluding remarks.
The proofs for the theorems and propositions, as well
as some complements, are given in the appendix.

We conclude the Introduction with the convention
and notations that are used throughout the paper.
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All random variables and processes are defined on
a common probability space (Ω,F,�), unless other-
wise specified; Ɛ is the expectation associated with
the probability �. Let � and � denote the set of
natural numbers and real numbers, respectively. Let
D([0,∞),�) be the space of right-continuous functions
with left-limits, defined on [0,∞) and taking real val-
ues.We equip this spacewith the Skorohod J1-topology
(see Ethier and Kurtz 1986). For a sequence of random
elements {Xn}n∈�, taking values in a metric space, we
write Xn ⇒ X to denote the convergence of Xn to X
in distribution. For any a , b ∈ �, we set a+ � max(a , 0)
and a ∧ b � min(a , b). For any probability distribu-
tion function F( · ), let Fc(x) � 1 − F(x). For any two
real-valued nonnegative functions f and g, we write
f (n)�O(g(n)) if lim supn→∞ f (n)/g(n)<∞, and f (n)�
o(g(n)) if lim supn→∞ f (n)/g(n)� 0.

2. Model Formulation
Consider a sequence of many-server queueing systems
with customer abandonment, indexed by n ∈ �. In the
nth system, there is a single class (queue) of customers
who are served by sn statistically identical servers. Cus-
tomers arrive according to a counting process Λn �

{Λn(t): t > 0}. For i > 1, let

τn
i � inf{t > 0: Λn(t) > i}

represent the time of the ith arrival to the nth sys-
tem. In our model, there are no batch arrivals, namely,
�(τn

i � τn
i+1) � 0, for all i ∈ �. Assume that there exists

a sequence of positive real numbers {λn}n∈� such that,
as n→∞, we have λn→∞ and

Λ̃n⇒ Λ̃ with Λ̃n(t)� 1√
λn

(Λn(t) − λn t), (1)

where Λ̃ � {Λ̃(t): t > 0} is a Brownian motion. Arriv-
ing customers are immediately served if any server is
idle. Otherwise, they wait in a queue and are served
on a first-come, first-served (FCFS) basis. The ith arriv-
ing customer requires a service time of vn

i , and has
patience time un

i : oncewaiting time reaches un
i , the cus-

tomer leaves the system immediately without receiv-
ing service. Service times are assumed i.i.d., and expo-
nentially distributed with rate µ. Patience times are
i.i.d., with a general distribution Fn( · ). We also assume
that the service times of the initial customers in queue
and the remaining service times of the initial cus-
tomers in service are i.i.d., following the exponential
distribution with rate µ. The sequences of service and
patience times and the arrival process are mutually
independent.
In concert with the assumptions on the ED regime

(Whitt 2006) and ED+QED regime (Mandelbaum and
Zeltyn 2009), we assume that there exist ρ > 1, β ∈ �,

and {ωn}n∈� converging to ωwith 0< ω <∞, such that,
as n→∞,

lim
n→∞

λn

snµ
� ρ > 1, (2)

λnFn
c (ωn) − snµ√

λn

→ β; (3)

(2)–(3) imply that Fn
c (ωn) → 1/ρ. In the special case

where Fn ≡ F and ωn ≡ ω, (2)–(3) imply (3.6) of Theo-
rem 3.1 in Whitt (2006). Thus ω can be interpreted as
the fluid offered waiting time. In fact, we show in Propo-
sition 1 that ω serves as the fluid limit of the offered
waiting time also when Fn does vary with n.
Note that if ρ � 1 and ωn � 0, then (2)–(3) become

the QED regime (see Garnett et al. 2002, Reed and
Tezcan 2012). There is a difference, in both analysis and
results of the QED and ED+QED regimes. For exam-
ple, the virtual waiting time in the QED regime is of
order 1/

√
λn , while that in the ED+QED regime oscil-

lates around ωn > 0, in order of 1/
√
λn . Consequently,

the diffusion limit of the virtual waiting time is always
nonnegative in the QED regime (centered by 0), while
it can be both positive and negative in the ED+QED
regime (centered by ωn > 0). In this paper, we focus on
the ED+QED regime.

Motivated by data and applications, we assume that
for ωn in (3), the patience-time distributions also sat-
isfy, as n→∞, that√

λn

[
Fn

(
ωn

+
x√
λn

)
− Fn(ωn)

]
→ fω(x), (4)

where fω( · ) is a continuous function. This setting is
quite general.A simple special case iswhere Fn(x)≡F(x)
and ωn � ω (i.e., without any scaling of the patience-
time distribution). In this case fω(x) � f (ω)x, where
f ( · ) is the density function of F( · ). However, the flex-
ibility (4) of allowing the patience-time distribution
to vary with n captures a subtle change around the
fluid offered waiting time; we refer to this as a fine
structure, which has been associated with customers’
abrupt reaction to delay announcements, as discussed
in the Introduction (see also Figure 3). This enables us
to analyze the impact of such announcements in Sec-
tion 4, and consequently optimize staffing levels and
announcement times, jointly.

Readers should note that both β and fω in (3)–(4)
depend on the sequence {ωn}n∈�. Nevertheless, given
arrival processes Λn , number of servers, service rate µ,
patience-time distribution Fn , and initial system state,
for different choices of the sequence {ωn}n∈�, as long as
they satisfy (3)–(4) and (18), it can be shown that their
diffusion limits and stationary distributions are consis-
tent. See Appendix EC.4 for detailed explanations.

We now formally model system dynamics. To this
end, we introduce two notions that correspond to wait-
ing times. The first is the offered waiting time ωn

i , which
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denotes the time that the ith arriving customer in the
nth system must wait before receiving service, if that
customer would have been infinitely patient, for i > 1.
The second is the virtual waiting time Vn(t), which is
the amount of time that a virtual customer with infinite
patience would have to wait before receiving service,
had that customer arrived at time t in the nth system.
When t happens to be the arrival time of an actual cus-
tomer, the virtual waiting time at t is regarded as if a
virtual customer arrives right after the actual customer.
Since there are no batch arrivals,

ωn
i � Vn(τn

i −).
Denote by An(t) the number of customers who arrive
during the time interval (0, t] and either abandoned
or will eventually abandon the nth system. Clearly,
An(0)� 0 and

An(t)�
Λn (t)∑
i�1

1{un
i 6ω

n
i }
. (5)

Any customer who arrives after time 0 cannot receive
service before Vn(0) due to FCFS. For t > Vn(0), let

κn(t)� inf{τ: τ+Vn(τ) > t}. (6)

All arrivals before κn(t) and initial customers are not
in queue at time t. Denote by Qn(t) the number of
customers in the queue at time t. The queue length
process, for time t > Vn(0), can be written as

Qn(t)�
Λn (t)∑

i�Λn (κn (t))+1
1{un

i −(t−τ
n
i )>0} . (7)

Note that the queue length representation (7) is sim-
ilar to (6.5) in Liu and Whitt (2014b), and κn(t) coin-
cides with their t − hn(t) (hn(t) is the age of the head-
of-the-line customer). Let Bn(t) denote the number of
customers who start service during (0, t]. Then, for
t > Vn(0),

Bn(t) − Bn(Vn(0)−)�
Λn (κn (t))∑

i�1
1{un

i >ω
n
i }
. (8)

Consider the ith customer who arrived during (0, t],
for a fixed i: If un

i 6 ωn
i , then this customer is

counted in An(t). Otherwise, the customer starts ser-
vice between time Vn(0) and t +Vn(t). There is, there-
fore, a simple balance equation regarding the arrival
process Λn(t):
Λn(t)�An(t)+Bn(t +Vn(t))−Bn(Vn(0)−), t > 0. (9)

3. Diffusion Approximations and
Steady-State Analysis

In this section, we derive our main theoretical results.
These include diffusion limits for the virtual waiting
time and the number of customers in the system, as
well as stationary distributions of the diffusions in the
heavy-traffic regime (1)–(4).

3.1. Stochastic Process Limits
Our first result is on the fluid scale, claiming that the
virtual waiting time process Vn is asymptotically close
to the fluid offered waiting time.

Proposition 1. In the heavy traffic regime (1)–(3), if
Vn(0)⇒ ω as n→∞, then for any T > 0, as n→∞,

sup
06t6T

|Vn(t) −ω | ⇒ 0. (10)

The proof is provided in Appendix EC.2. The above
proposition serves as a first-order fluid approximation.
Note that the condition Vn(0)⇒ ω, as n→∞, is differ-
ent from prevalent assumptions, which require either
that the remaining patience times for the initial cus-
tomers follow a certain distribution (e.g., Zhang 2013),
or that initial customers are infinitely patient (e.g.,
Mandelbaum and Momčilović 2012). This is because
the customer service times are assumed exponential. In
this case, the virtual waiting time after 0 only depends
on the initial state through the virtual waiting time at 0.

We now pursue a refined approximation of the
stochastic deviation from the fluid limit. In light of
Proposition 1, we introduce the diffusion-scaled virtual
waiting time process Ṽn � {Ṽn(t): t > 0} by

Ṽn(t)�
√
λn(Vn(t) −ωn), t > 0. (11)

It is also necessary to introduce diffusion-scaled aban-
donment and service processes. As ωn is the fluid
offered waiting time, roughly speaking, the abandon-
ment probability for each arriving customer is Fn(ωn).
Thus, intuitively, the diffusion-scaled abandonment
process Ãn � {Ãn(t): t > 0} can be defined by

Ãn(t)� An(t) − λn tFn(ωn)√
λn

. (12)

As the system is in the ED+QED regime and service
rate is µ, each server is almost surely busy at all times.
Hence, the diffusion-scaled service process B̃n � {B̃n(t):
t > 0} should be defined by

B̃n(t)�
Bn(t) − snµt√

λn

. (13)

From (5), we have

Ãn(t)�H̃n(t)+
∫ t

0

√
λn

·
(
Fn

(
ωn

+
Ṽn(x−)√

λn

)
− Fn(ωn)

)
dΛ̄n(x)

+ Fn(ωn)Λ̃n(t), (14)

where Λ̄n(s) � Λn(s)/λn , which is the fluid scaling of
Λn(s), and

H̃n(t)� 1√
λn

Λn (t)∑
i�1

(
1{un

i 6ω
n
i }
− Fn(ωn

i )
)
. (15)
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Applying the diffusion scaling to each term in (9), it
follows from t � tFn(ωn)+ tFn

c (ωn) that

Λ̃n(t)�Ãn(t)+
(snµ−λnFn

c (ωn))t√
λn

+ B̃n(t +Vn(t))− B̃n(Vn(0))+
snµ

λn
(Ṽn(t)− Ṽn(0)).

This, with (14), helps us write Ṽn as

Ṽn(t)� Ṽn(0) − λn

snµ

∫ t

0

√
λn

·
(
Fn

(
ωn

+
Ṽn(x−)√

λn

)
− Fn(ωn)

)
dΛ̄n(x)+ Ỹn(t), (16)

where

Ỹn(t)� λn

snµ

[
Fn

c (ωn)Λ̃n(t) − H̃n(t)+
(λnFn

c (ωn) − snµ)t√
λn

− B̃n(t +Vn(t))+ B̃n(Vn(0))
]
. (17)

Starting with (16), we can establish the following dif-
fusion approximation for the virtual waiting time. This
mesoscopic level turns out to be natural for capturing
system dynamics that are triggered by customer reac-
tions to delay announcements, as revealed by our call
center data.
We assume that the sequence {ωn}n∈� in (3)–(4)

satisfies
Ṽn(0)⇒ Ṽ0 as n→∞. (18)

Note that this condition is different from customary,
and is enough for our analysis due to the same reason
mentioned right after Proposition 1. In Appendix EC.5,
we provide a verifiable sufficient condition for (18).
Theorem 1. In the heavy traffic regime (1)–(4) with the ini-
tial condition (18), Ṽn ⇒ Ṽ , as n →∞, where the limit
Ṽ � {Ṽ(t): t > 0} is the unique solution to

Ṽ(t)�Ṽ0 − ρ
∫ t

0
[ fω(Ṽ(x)) − β]dx

+
[
Λ̃(t) −√ρB(t) −

√
ρ− 1BA(t)

]
, t > 0; (19)

here BA � {BA(t): t > 0} and B � {B(t): t > 0} are two
independent standard Brownian motions, which are further
independent of Λ̃.

Note that the diffusion limit in (19) generalizes (4.9)
in Liu and Whitt (2014b), where Fn � F and F has a
continuous density function f , which yields fω(Ṽ(x))�
f (ω)Ṽ(x). Similar to Liu and Whitt (2014b), the three
Brownian motions Λ̃, B and BA capture the stochas-
tic variability of the arrival process, service times and
patience times, respectively. The drift term of the dif-
fusion limit contains two parts. The first is the state-
dependent drift fω(Ṽ( · )), which depends on both Ṽ( · )
and the function fω( · ) characterizing the patience-
time distribution in the general framework (4). The
second part β is the drift due to the heavy traffic
assumption (3).

Now we consider the diffusion approximation for
the queue length process. In view of Proposition 1, the
queue length at time t approximately includes the
customers who have arrived to the system during
time interval (t − ωn , t] and have not abandoned by
time t. The number of these customers roughly equals
λn ∫ t

t−ωn Fn
c (t − x)dx (� λn ∫ω

n

0 Fn
c (x)dx), since the arrival

rate is λn (see Whitt 2006). One is led to introduce the
diffusion-scaled queue-size Q̃n � {Q̃n(t): t > 0} by

Q̃n(t)� 1√
λn

(
Qn(t) − λn

∫ ωn

0
Fn

c (x)dx
)
, t > 0. (20)

Building on the diffusion limit for the virtual waiting
time, the diffusion limit of the queue length process is
characterized in the following theorem.

Theorem 2. Assume the heavy traffic regime (1)–(4) with
the initial condition (18). Assume further that the sequence
of patience-time distributions satisfies

{Fn( · )}n∈� converges to F( · ) on [0, ω]
in total variation, (21)

where F( · ) is continuous at ω, and Fc(ω) � 1/ρ. Then
Q̃n ⇒ Q̃ on the time interval (ω,∞), as n→∞. Here the
limit Q̃ � {Q̃(t): t > 0} is given by

Q̃(t)�
∫ t

t−ω
Fc(t − x)dΛ̃(x)+ 1

ρ
Ṽ(t −ω)+G(t), (22)

where Λ̃ is given by (1), and Ṽ is given by Theorem 1;
G � {G(t): t > ω} is a Gaussian process independent of Λ̃
and Ṽ , with zero mean and covariance

Ɛ(G(t1)G(t2))�
∫ t1

t1∧(t2−ω)
F(t1 − x)Fc(t2 − x)dx ,

ω < t1 6 t2. (23)

Note that Condition (21) was not needed for Theo-
rem 1, because only those customers who will eventu-
ally receive service affect the virtual waiting time. In
fact, Theorem 1 required only a “local” property (con-
dition (4)) of the distribution Fn around ωn . However,
those customers who will eventually abandon affect
the queue length since they will stay in queue until
their patience times expire. That is, the queue length
process depends on customer patience times. Thus,
condition (21) on the “global” property of the distribu-
tions Fn is needed for Theorem 2. Since we impose no
refined assumption on the initial state of the system,
one can characterize the asymptotic queue process only
after the warm-up period [0, ω]. We note that, in anal-
ogy to Krichagina and Puhalskii (1997), the Gaussian
process G can be written as an integral with respect to
a Kiefer process; see Krichagina and Puhalskii (1997,
p. 237) for details.

3.2. Steady-State Analysis
For the purpose of steady-state analysis, we add the
assumption that the arrival process Λn is, in fact, a
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renewal process; let the inter-arrival time have mean
1/λn and variance θ2/λ2

n . Then the limit Λ̃ in (1) can be
written as θBΛ, whereBΛ � {BΛ(t): t > 0} is a standard
Brownian motion, independent of B and BA given by
Theorem 1. Let

σ2
� θ2

+ 2ρ− 1; (24)

then Λ̃−√ρB−
√
ρ− 1BA is equal in distribution to a

process σW, with W � {W(t): t > 0} being a standard
Brownian motion. According to Theorem 1, the diffu-
sion limit of the virtual waiting time satisfies

Ṽ(t)� Ṽ(0) − ρ
∫ t

0

[
fω(Ṽ(x)) − β

]
dx + σW(t),

t > 0. (25)

We now calculate the stationary distribution of the dif-
fusion limits Ṽ and Q̃. These will be used to derive
approximations for performance measures of their
originating queueing systems; see Section 3.3.

Proposition 2. Assume that fw( · ) in Theorem 1 satisfies

lim
x→∞

fw(x) > β and lim
x→−∞

fw(x) < β, (26)

where β is given in (3). Then the diffusion limit Ṽ has a
stationary distribution π( · ) given by

π(y)� C exp
(
−

2ρ
σ2

∫ y

0
[ fω(x) − β]dx

)
, y ∈ �, (27)

where C is a normalizing constant. Similarly, the stationary
distribution of the queue length diffusion limit {Q̃(t): t >ω}
in Theorem 2 exists as well. Denote by Q̃(∞) a random
variable with such a distribution; then it can be written, in
distribution, as

Q̃(∞)� Ñ1 + Ñ2 +
1
ρ

Ṽ(∞),

where Ñ1, Ñ2 and Ṽ(∞) are mutually independent, Ṽ(∞) is
a random variable with density function π( · ), Ñ1 and Ñ2 are
normal random variables, both with mean zero and variances
θ2 ∫ω0 (Fc(x))2 dx and ∫ω0 F(x)Fc(x)dx, respectively.

We comment here that the density function π( · ), and
in particular the normalizing constant C, depend on
the limit fω( · ) in (4). We later apply this model flexibil-
ity in Section 5, demonstrating that C and π( · ) can thus
have different analytical expressions depending on the
application. Condition (26) on fω is needed to ensure
existence of the stationary distribution π( · ), and it is
not a restrictive requirement in our applications; see
the examples in Section 4.

3.3. Approximation of the Originating System
We have established limits for a sequence of systems.
These limits will now support an approximation for

a single given system—specifically closed-form for-
mulae for its steady-state waiting time and queue
length. To this end, and as is often the case (e.g., Reed
and Ward 2008, Reed and Tezcan 2012), we presume
the validity of a limit-interchange, which justifies the
steady-state approximation of a queueing system by its
diffusion approximation. In practice, one can typically
observe/estimate system parameters: (i) the number of
servers s and individual service rate µ; (ii) the patience-
time distribution H( · ); and (iii) mean and variance
of the inter-arrival time 1/λ and θ2/λ2, respectively.
We denote the system by (s , µ, λ, θ2 ,H). The heavy
traffic assumptions (3) and (4) constitute a mathemat-
ical tool that guides on how to capture the structure
of the patience-time distribution H( · ) around ω, and
its impact on performances for a single system with
s servers. We rely on the stationary distribution π in
Proposition 2 to obtain the closed-form approximation
formulae for this particular system. The key challenge
is to map the stationary distribution of the diffusion
limit to the one corresponding to the originating sys-
tem (s , µ, λ, θ2 ,H). In view of (27), set

ρ :� λ
sµ
, σ2

� θ2
+ 2ρ− 1, (28)

β :�
λHc(ω) − sµ
√
λ

, (29)

fω(x) :�
√
λ

[
H

(
ω+

x
√
λ

)
−H(ω)

]
. (30)

The above gives rise to our approximation formulae for
the particular system (s , µ, λ, θ2 ,H). Let V(∞) denote
the steady-state of its virtual waiting time. Then by
Proposition 2, the density of

√
λ(V(∞) − ω) can be

approximated by

π(y)� C exp
(
−

2ρ
σ2

∫ y

0
[ fω(x) − β]dx

)
, (31)

where

C �

(∫ ∞

−∞
exp

(
−

2ρ
σ2

∫ y

0
[ fω(x) − β]dx

)
dy

)−1

(32)

is the normalizing constant.

Waiting Time. For the system (s , µ, λ, θ2 ,H), denote by
W(∞) the steady-state of its waiting time. Then W(∞)
is just the minimum between V(∞) and the customer
patience time. Thus, by (31),

�(W(∞)> y)
�Hc(y)�(

√
λ(V(∞)−ω)>

√
λ(y−ω))

≈Hc(y)
∫ ∞

√
λ(y−ω)

C exp
(
−

2ρ
σ2

∫ v

0
[ fω(x)− β]dx

)
dv. (33)

A special choice of y is ω, which will be used in the
optimal staffing problem that we discuss in Section 4.
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Queue Length. For the system (s , µ, λ, θ2 ,H), denote
by Q(∞) the steady-state of its queue length. By Propo-
sition 2, Q(∞) can be approximated by

λ

∫ ω

0
Hc(x)dx +

√
λ

(
Ñ1 + Ñ2 +

√
λ
ρ
(V(∞)−ω)

)
.

Consequently, performance measures related to Q(∞)
can be calculated explicitly using (31) and the above
formula. For example, the expected steady-state queue
length can be calculated as

ƐQ(∞) ≈ λ
∫ ω

0
Hc(x)dx +

1
ρ

√
λ

∫ ∞

−∞
xπ(dx). (34)

It is clear from the above that the patience-time dis-
tribution significantly affects system performance. In
the next section, we shall use the above to analyze delay
announcements and solve related staffing problems.
The accuracy of the above approximations is demon-
strated in Section 5, using various patience-time distri-
butions.

4. Impact of Delay Announcements
The advantage of our refined approximation is the abil-
ity to capture the fine structure of the patience-time dis-
tribution. This is necessary for our applications where
delay announcements cause a sudden change of the
patience-time distribution at a certain “impact point.”
As in Mandelbaum and Zeltyn (2009), we now apply
our refined approximation to solve two staffing prob-
lems for a call center in the ED+QED regime. The first
one, arising from the application of a delay announce-
ment upon arrival, is to minimize the staffing level so
as to achieve a service level constraint (see (38)). The
second, arising from the application of an announce-
ment during waiting, has the additional option of an
announcement epoch, while sharing the same objective
of minimizing staffing (see (44)). The patience-time dis-
tributions in both applications are not smooth enough
to use existing results, but have the feature charac-
terized by (4); here ω can be differently interpreted,
depending on the application, which we elaborate on
in the following two sections.

4.1. Delay Announcement Upon Arrival
As described in the Introduction, arriving customers
who must wait often receive an announcement up-
on arrival concerning their anticipated delay. The an-
nounced information could include a single num-
ber τ related to the delay, which is called a fixed
delay announcement by Armony et al. (2009). Follow-
ing their model description, customers respond to the
announcement by choosing to balk or not.Given adelay
announcementof τ, theprobability that anarriving cus-
tomer chooses to balk is B(τ). Here B( · ) is assumed
to be a distribution function. Arriving customers who
do not balk (with probability Bc(τ)) join the queue and
their patience times are also affected by the announced
information τ. This effect is modeled by assuming that

customers’ patience times follow the conditional distri-
bution H(t | τ).
An announced delay ωe is an equilibrium delay if

either (i) ρBc(0) 6 1 and ωe � 0, or (ii) ρBc(0) > 1 and
ρBc(ωe)Hc(ωe |ωe) 6 1 and

ρBc(ωe)Hc(t |ωe) > 1, for 0 6 t < ωe .
(35)

When there is a unique equilibrium delay ωe , the above
formal relations capture the facts that, in equilibrium,
and asymptotically in the fluid scale, the announced
delay τ is equal to the long-run average delay of
served customers, and both are equal to the equilib-
rium delay ωe . Our model setting, and specifically the
concept of equilibrium delay in the fluid scale, were
introduced by Armony et al. (2009). They also proved
the uniqueness of equilibrium delay under some regu-
larity conditions (Theorem 4.1 in Armony et al. 2009),
which are satisfied in the following model.

In this subsection, we consider “the all-exponential
conditional hazard-rate model” proposed in Armony
et al. (2009), where customer arrivals are assumed to be
a Poisson process with rate λ, and their service times
are exponentially distributed with rate µ. For a delay
announcement of τ, the balking probability is B(τ) �
1− e−bτ and customers’ patience is

H(t | τ)�
{

1− e−h0 t , 0 6 t 6 τ;
1− e−h0τe−h1(t−τ) , t > τ;

(36)

here h0 and h1 are two parameters, which capture
abandonment behavior before and after the announce-
ment τ. Here the abrupt change from h0 to h1 at τ
occurs because the promise for delay duration will be
violated once waiting time exceeds τ. In order to com-
pare the fluid approximation developed by Armony
et al. (2009) with the diffusion approximation given by
Proposition 2, h0 and h1 are assumed to be constants
independent of τ. It follows from (35) that the unique
equilibrium delay is

ωe �
1

b + h0
lnρ. (37)

With this setting, customers’ patience-time distribu-
tion has different left and right derivatives at the an-
nounced delay τ � ωe . Armony et al. (2009) derived
fluid approximations for various performance metrics
of such a system (see Table 1 therein). However, as they
observed, some performance metrics (such as expected
queue length and probabilities related to waiting time)
are not well approximated by their fluid model—
indeed, a refinement is called for.

Though balking is not formally incorporated in our
diffusion analysis, our approximation can easily accom-
modate it by regarding balking customers as having
zero-patience, which is allowed by our assumptions.
This gives rise to the patience-time distribution H̃(· |ωe)
� B(ωe)+Bc(ωe)H(· |ωe).We now consider the same set
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Table 1. Comparing Fluid and Diffusion Approximations with Simulated Performance Metrics

h1 � 0.5 h1 � 4
Performance measure
h0 � 0.5 Fluid Simulated Diffusion Simulated Diffusion

Ɛ[Q(∞)] 23.7 24.3 23.7 17.3 16.4
Ɛ(W(∞); Bc) 0.212 0.217 0.224 0.155 0.151
�(W(∞) 6 ωe | S) 1 0.512 0.512 0.754 0.756

of parameters as inArmony et al. (2009). The number of
servers s � 100 with individual service rate µ � 1. The
arrival rate λ � 140, balking rate b � 1 and the patience-
time hazard rate h0 � 0.5 and h1 � 4. By (37), the equilib-
riumfluiddelay isωe �0.224.Aspointedout inArmony
et al. (2009), their fluid approximation is not nearly close
to the simulationwhen h1 �4> h0 �0.5, though it agrees
closely when h1 � h0 � 0.5. In Table 1, it is seen that our
diffusion analysis yields much improved approxima-
tions.The columns labeled“Simulated”and“Fluid”are
taken from Armony et al. (2009, Table 1). The columns
labeled “Diffusion” are calculated using formula (31).
In particular, Ɛ[Q(∞)] is calculated based on (34), and
Ɛ[W(∞); Bc] based on (33). The calculation of �(W(∞) 6
ωe | S), the conditional probability that the steady-state
waiting time is less than ωe , follows from

�(W(∞) 6 ωe | S)�
�(W(∞) 6 u ∧ωe)

�(W(∞) 6 u) ,

where u is a generic random variable independent
of W(∞), and following the distribution H̃(· |ωe);
�(W(∞) 6 y) can be calculated from (33), for any y.

4.1.1. Implications to Optimal Staffing. As proposed
by Mandelbaum and Zeltyn (2009), the ED+QED re-
gime is useful for staffing under the constraint satisfac-
tion �(W(∞) > z), for a benchmark z. Here we revisit
the staffing problem, using our refined approximation,
for those applications where the patience-time distri-
bution is not smooth enough to apply the result in
Mandelbaum and Zeltyn (2009).
We describe a general approach rather than restrict

ourselves to the setting of delay announcements, e.g.,
to the all-exponential model. Let the individual ser-
vice rate µ, arrival rate λ, variance of the interarrival
time θ2/λ2, and the patience-time distribution H( · )
be given. We seek the number of servers s such that
staffing cost is minimized while adhering to the given
service level agreement (z , α) as follows:

min s
s.t. �(W(∞) > z) 6 α. (38)

For a general H, we set z � ω. Thus, we often face a
situation where one must account for the fine structure
of the patience-time distribution around the bench-
mark z. (For example, the hazard rate has a jump in the
above all-exponential model, implying that the left and
right derivatives of the patience-time distribution are

not equal.) We demonstrate in this subsection that our
diffusion analysis, which is general enough to accom-
modate such a fine structure of the patience-time dis-
tribution, can help not only in performance evaluation
but also with optimal staffing subject to constraints on
the tail probability.

We now propose an asymptotically optimal staffing
rule, which solves (38). It is based on the steady-state
approximations (31)–(33) in Section 3.2. From (29), the
number of servers is

s �
⌈
λ
µ

Hc(ω) −
β

µ

√
λ

⌉
. (39)

Note that β is the only element needed to determine the
number of servers s. We calculate it via (33), by solving
the optimization problem (38). This gives rise to

max β

s.t. Hc(ω)
∫ ∞

0
C exp

(
−

2ρ
σ2

∫ y

0
[ fω(x) − β]dx

)
dy

6 α. (40)

To demonstrate the applicability and accuracy of our
approximation for staffing, we performed numerical
studies for the following two examples, without a delay
announcement for clarity. We shall revisit these two
examples in Section 5, for an in-depth discussion on
performance evaluation.

Example 1. Customers arrive according to a Poisson
process with rate λ. Service times are exponentially
distributed with rate µ. The patience-time distribu-
tion is

H(x)�
{

x , x 6 ω,

ω+ κ(x −ω), ω < x 6 ω+
1−ω
κ

,
(41)

where ω is the fluid offered waiting time.

In this example, set the parameter ω � 1/6 and κ � 5
in (41). Assume that the individual service rate µ � 1
and the arrival rate λ � 120. It is clear that H( · ) is not
differentiable at the fluid offered waiting time ω. Thus,
we cannot use existing results such as Mandelbaum
and Zeltyn (2009). Applying the staffing rule (39) by
numerically solving (40) with α � 0.3, we get that the
optimal number of servers is 97. To show the accuracy
of our approach, we plot the tail probability versus the
number of servers in Figure 1. The vertical axis is the
probability that waiting time exceeds the fluid offered
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Figure 1. (Color online) Staffing Level and Probability That
Waiting Time Exceeds ω
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Number of servers

�
(W

(∞
) 

>
 �

)

Exact
Theory

waiting time. The number of servers ranges from 91 to
110 on the horizontal axis. Figure 1 demonstrates that
the approximation, based on our theory, is accurate:
The curve obtained almost overlaps the curve by simu-
lation. In fact, the optimal number of servers required
in order to achieve �(W(∞)> ω) 6 α is almost identical
to the solution found by the numerical simulation, for
service level α ranging from 0.1 to 0.4.

Example 2. Customers arrive according to a Poisson
process with rate λ. Service times are exponentially
distributedwith rate µ. The hazard rate of the patience-
time distribution is as follows:

h̃(x)�
{

h0 , x 6 ω,
h0 + κ(x −ω), x > ω,

(42)

where ω is the fluid offered waiting time.

In this example, set the parameter ω � ln(1.2)/h0,
h0 � 1.0 and κ � 100 in (42). Assume that the individ-
ual service rate µ � 1 and the arrival rate λ � 120. In
Figure 2, the number of servers ranges from 91 to 110.
The vertical axis is the probability that waiting time
exceeds the fluid offered waiting time. Again, we apply
the staffing rule (39) by numerically solving (40) with
α � 0.4, to show that the optimal number of servers

Figure 2. (Color online) Staffing Level and Probability That
Waiting Time Exceeds ω

88 90 92 94 96 98 100 102 104 106 108 110 112
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Exact
Refined
M&Z

�
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(∞
) 

>
 �

)

Note. Here κ � 100.

is 96. To demonstrate the accuracy, and also to com-
pare against the staffing rule given by Mandelbaum
and Zeltyn (2009), we plot the tail probability versus
the number of servers in Figure 2. The figure shows
that our approximation is much closer to the simu-
lated results. In fact, our refined approximation gives
a “near” optimal solution, which is off at most by 1,
for any service level ranging from 0.1 to 0.7. With-
out using it, the error in the staffing level could range
from 2 to 8 or even higher. For instance, the staffing
level based on the approximation by Mandelbaum and
Zeltyn (2009), with α � 0.4, gives rise to the optimal
number of servers 101, which is off by 5.

The above two examples demonstrate that our ap-
proach can handle more general settings and results
in more accurate staffing, when compared to existing
methods.
Remark 1. To apply the staffingmethod in Section 4.1.1
to the delay announcement model in Section 4.1, one
simply replacesHc(ω)by H̃(ωe |ωe) in (40),whereωe � τ
is the equilibrium delay. It is, furthermore, natural to
choose z � τ, since then the constraint in (38) bounds the
fraction of “broken promises.” For the all-exponential
model, the optimal staffing level is determined by (39),
with β replaced by β∗—the optimal solution to (40). We
see that β∗ essentially depends on fω( · ). In compari-
son to the case without announcement, one can ver-
ify that the staffing level in the case with announce-
ment is at least O(

√
λ) smaller than the case without

announcement; hence, if properly designed under the
appropriate circumstances, an announcement can re-
duce staffingwithout hurting service levels.

4.2. Delay Announcement During Waiting:
Asymptotic Optimality

Instead of making announcements upon arrival, one
can make an announcement while customers are
Figure 3. (Color online) Hazard Rates of a Patience-Time
Distribution in an Israeli Call Center

Hazard rate of patience time
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Notes. The peak at 60 seconds can be attributed to an announcement
at that time: “You are number X in queue, and the first one has been
waiting Y seconds.” (The peak at 10 seconds arises from unwilling-
to-wait customers.)
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waiting. As already indicated, such announcements
have been often associated with an abrupt change in
the patience-time distribution. For example, Figure 3
(taken from Mandelbaum and Zeltyn 2013) depicts a
surge of the hazard rate when waiting time reaches
60 seconds: The latter is precisely the time when an
announcement is made to customers.
A Queueing Model. Based on the previously-men-
tioned empirical support that an announcement is as-
sociated with a sudden jump, we propose the follow-
ing stylized (yet insightful) model. The announcement
is made when customers’ waiting time reaches τ, and
the patience-time distribution is accordingly assumed
to follow

H(x | τ)�
{

1− e−h0x , x 6 τ,
1− e−h0τ−h1(x−τ) , x > τ;

(43)

Here h0 and h1 are given parameterswith h0 < h1, which
captures the increase of the hazard rate caused by the
announcement made at τ. The nonsmooth change of
the hazard rate, from h0 to h1 at τ, can be interpreted
as customers’ reactions to hearing the announcement.
(Note that hazard ratemodels are, necessarily, notmod-
els about individual response, but rather models of
aggregate behavior of a customer population.)We com-
ment here that the form (43) was chosen merely for
concreteness and simplicity. Indeed, the results in this
subsection hold for general patience-time distributions;
for example, the hazard rate can also drop back to h0
from h1 after a while. The example (43) is also rele-
vant and insightful, in that it captures the essence of the
data in Figure 3, in which an announcement abruptly
and temporarily increases the hazard rate. Not only is
h0 < h1 supported by empirical data, it is also quite intu-
itive. If h0 � h1, the announcement does not make any
difference, thus there is no need to study it. Suppose
h0 > h1, meaning that the announcement “encourages”
customers to remain online. Essentially, such encour-
agement would add a load to the system. If we main-
tain the same staffing, then service quality worsens, as
measured by the probability of waiting time exceeding
a certain threshold. To maintain the same service qual-
ity, onemust staffmore servers and, hence, it is better to
have no announcement. Finally, as suggested by Man-
delbaumandZeltyn (2013), regardless of thepurposeof
an announcement, the ultimate result is conceivably an
encouragement for customers to abandon the system.
A Motivating Example: Controlling a Surge in Arrivals
by an Announcement. To motivate our joint optimiza-
tion of staffing and timing of the announcement, we
give an example where a call center (U.S. bank) faced
a surge of demand over three days (October 9–11),
following a special promotion. Figure 4 shows the
actual number of servers employed on October 10 and
what would be required (calculated using the Garnett

Figure 4. (Color online) Required Staffing to Operate in the
QED Regime (Red) vs. Actual Staffing (Blue)
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function in Garnett et al. 2002 and 4CC in http://ie
.technion.ac.il/serveng/4CallCenters, respectively) if
wewanted the call center to operate in theQED regime.
During most of the day, this required a number almost
double the number actually employed. Consequently,
the call center experienced a high abandonment frac-
tion (around 50%, as seen in Figure 5).

We thus propose a joint staffing and announcement
solution, in order to minimize staffing cost with the
help of an announcement, while satisfying a service-
quality level specified by both the abandonment
probability and the tail probability of waiting time
(see (44) in the sequel).

4.2.1. An Optimization Model. We now investigate
whether the management of an overloaded call cen-
ter can benefit from a delay announcement, with the
intention of minimizing the staffing level while sub-
ject to a prespecified service level. The latter is char-
acterized by two constraints: fraction of abandonment
less than α1 and fraction of those waiting above a
threshold less than α2. We require α2 < 1 − α1 since
otherwise the ED+QED regime is not suitable for the
staffing (see Remark 4.6 in Mandelbaum and Zeltyn
2009 for explanation). The first constraint on abandon-
ment probability �(Ab) is closely related to revenue
generation, as abandonment typically means revenue

Figure 5. (Color online) Fraction of Abandonment Under
Actual Staffing
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loss. The second constraint caters mainly to customer
satisfaction. The optimization problem is hence formu-
lated as follows:

min
s , τ

s

s.t �(Ab) 6 α1 ,

�(W(∞) > ωτ ∧ τ) 6 α2 ,

(44)

where ωτ is determined by the equation H(ωτ | τ)� α1.
It should be pointed out that both constraints depend
on the announcement time τ. There is an interesting
trade-off here: Making an early announcement helps
satisfy the second constraint, but may cause too much
abandonment (recall that h1 > h0), thus violating the
first constraint. On the other hand, a late announce-
ment has no impact on the system.
We study the optimization problem (44) similarly

to (38), by using the approximation formula (33) from
our diffusion analysis, with some technical adjust-
ments. To gain insight, we analyze a large-scale limit
where the arrival rate λ increases indefinitely. To high-
light the dependence on the arrival rate λ for the opti-
mal solution to (44), a superscript λ is added to each of
its components.
Proposition 3. For the stylized model (43) and (44), let
(sλ∗ , τλ∗ ) be an optimal solution to (44). Denote by τ∗ the
unique solution to H(τ∗ | τ∗) � α1. Then any optimal an-
nouncement epoch τλ∗ satisfies

lim
λ→∞

√
λ(τ∗ − τλ∗ )� 0.

Moreover, the optimal number of servers is

sλ∗ �
λ
µ
(1− α1) −

√
λ
β∗
µ

+ o(
√
λ), (45)

where β∗ is the unique solution to
max
β

β

s.t. (1− α1)
∫ ∞

0 exp(−(2ρ/σ2)
∫ y

0 [hτ∗(x) − β]dx)dy∫ ∞
−∞ exp(−(2ρ/σ2)

∫ y

0 [hτ∗(x) − β]dx)dy
6 α2 , (46)

with hτ∗(x)� limλ→∞
√
λ[H(τ∗ + x/

√
λ | τ∗) −H(τ∗ | τ∗)].

The proof of this proposition is presented in Ap-
pendix EC.2. The key message is that, in the asymp-
totic sense, it is optimal to make the announcement
so that the abandonment fraction is exactly α1, and
then set the optimal staffing level according to (45). The
staffing level then depends on β∗ only. Comparing this
to the case without announcement (with fτ∗(x) in (46)
replaced by e−h0ωx), it is easy to verify that β∗ in the
case with announcement is smaller; hence, the staffing
level in (45) is reduced by O(

√
λ).

Remark 2. The abrupt change in the patience hazard
rate, characterized by h0 and h1 in (43), is assumed to be
independent of τ. We note, however, that this change
may depend on the announcement time τ in practice,
but this is left for future research.

5. Refined Approximations
The approximation (31), together with the derived for-
mulae (33)–(34) for the steady-state, does not depend
on a particular characteristic (such as derivative or
hazard rate) of the patience-time distribution. This
generality provides an accurate recipe that is free of
details. With additional structure information about
the patience-time distribution (e.g., exact values of
the left and right derivatives), it leads to insights
beyond what has been previously known. At the end
of the section, we use such a structure to shed light
on the asymptotic gap between fluid and diffusion
approximation.

5.1. Using the Density of Patience-Time
Distribution

Assume that the patience-time distribution H( · ) has a
density at ω and write it as H′(ω). Then fω(x), defined
in (30), can be “well approximated” by H′(ω)x, and the
density π in (31) can be approximately specialized to

π(x) ≈ C exp
(
−
ρ

σ2 [H
′(ω)x2 − 2βx]

)
. (47)

This implies that
√
λ(V(∞) − ω) asymptotically fol-

lows a normal distribution. Consequently, it follows
from (33) that
�(W(∞) > y)

≈Hc(y)
∫ ∞

√
λ(y−ω)

C exp
(
−
ρ

σ2 [H
′(ω)x2 − 2βx]

)
dx

� Hc(y)�
(

β

H′(ω) +
σ√

2ρH′(ω)
N >
√
λ(y −ω)

)
� Hc(y)Φc

(−β√2ρ+
√

2ρλH′(ω)(y −ω)
σ
√

H′(ω)

)
, (48)

where N is a standard normal random variable and
Φ( · ) is its distribution function.

This case is related toMandelbaumandZeltyn (2009).
Specifically, if the number of servers is s � Hc(ω) ·
(λ/µ) + δ

√
λ/µ, with any finite constant δ, and the

arrival process is a Poisson process, thenwehave σ2�2ρ
and β �−δ√µ by (28)–(29). Furthermore, we have

�(W(∞) > ω) ≈Hc(ω)Φc

(
δ
√
µ√

H′(ω)

)
.

This is consistent with Mandelbaum and Zeltyn (2009,
Theorem 4.3). There is also a connection to Bassamboo
and Randhawa (2010), where accuracy of the fluid ap-
proximation to the expected queue length is studied. If
β � 0, by the symmetry of the normal distribution and
in view of (34), we have

ƐQ(∞) ≈ λ
∫ ω

0
Hc(x)dx. (49)

The expected queue length, derived from the diffusion
approximation, has thus been reduced to the one given
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by thefluidapproximation.Thisprovides analternative
support for why the fluid model in itself gives an accu-
rate approximation to queue length, a phenomenon
discussed in Bassamboo and Randhawa (2010).

5.2. Using the Left and Right Derivatives of the
Patience-Time Distribution

Assume now that the left and right derivatives of
the patience-time distribution H( · ) at ω, H′(ω+) and
H′(ω−), are not equal. Following (30), for large λ,

fω(x)�
√
λ

[
H

(
ω+

x
√
λ

)
−H(ω)

]
≈

{
H′(ω−)x , x 6 0,
H′(ω+)x , x > 0.

(50)

The density π in (31) can be then approximately spe-
cialized to

π(x) ≈



C exp
(
−1

2
(x − β/(H′(ω−)))2
(σ2/2)(1/(ρH′(ω−)))

)
· exp

(
ρβ2

σ2H′(ω−)

)
, x 6 0,

C exp
(
−1

2
(x − β/(H′(ω+)))2
(σ2/2)(1/(ρH′(ω+)))

)
· exp

(
ρβ2

σ2H′(ω+)

)
, x > 0,

(51)

where the normalizing constant satisfies

C−1
�Φc

( −√2ρβ

σ
√

H′(ω+)

)
exp

(
ρβ2

σ2H′(ω+)

)
1√

H′(ω+)

+Φ

( −√2ρβ

σ
√

H′(ω−)

)
exp

(
ρβ2

σ2H′(ω−)

)
1√

H′(ω−)
.

The steady-state probability, that waiting time ex-
ceeds ω, can be approximated via (33) by

�(W(∞) > ω) ≈ C ·Hc(ω)Φc

( −√2ρβ

σ
√

H′(ω+)

)
· exp

(
ρβ2

σ2H′(ω+)

)
1√

H′(ω+)
. (52)

It follows from (34) that the expected queue length is

ƐQ(∞)

≈λ
(
ω− ω

2

2

)
+C
√
λ
ρ

{∫ ∞

0
x exp

(
−1

2
(x− β/(H′(ω+)))2
(σ2/2)(1/(ρH′(ω+)))

)
·exp

(
ρβ2

σ2H′(ω+)

)
dx

−
∫ ∞

0
x exp

(
−1

2
(x+β/(H′(ω−)))2
(σ2/2)(1/(ρH′(ω−)))

)
·exp

(
ρβ2

σ2H′(ω−)

)
dx

}

�λ

(
ω− ω

2

2

)
+C
√
λ
ρ

{
σ2

2ρ

[
1

H′(ω+) −
1

H′(ω−)

]
+

√
2πσ√
2ρ

[
β

(H′(ω+))3/2 exp
(

ρβ2

σ2H′(ω+)

)
Φc

(
−

√
2ρβ

σ
√

H′(ω+)

)
+

β

(H′(ω−))3/2 exp
(

ρβ2

σ2H′(ω−)

)
Φ

(
−

√
2ρβ

σ
√

H′(ω−)

)]}
.

The last derivation is, in fact, a generalization of the
Garnett function, introduced in Garnett et al. (2002).
To make the connection, let hN( · ) be the hazard rate
for the standard Normal distribution. Then (52) can be
written as

�(W(∞) > ω)

≈Hc(ω)
(
1+

√
H′(ω+)
H′(ω−)

hN(−
√

2ρβ/(σ
√

H′(ω+)))
hN(

√
2ρβ/(σ

√
H′(ω−)))

)−1

� Hc(ω) ×Garnetty(x),

where we set Garnetty(x)� [1+
√

yhN(x/
√

y)/hN(−x)]−1,
y�H′(ω+)/H′(ω−), and x�−

√
2ρβ/(σ

√
H′(ω−)).

Now consider Example 1 for systems with the num-
ber of servers ranging in {20, 50, 100, 200, 400}. The
individual service rate µ � 1. Consider the overloaded
case where ρ � 1.2, thus the offered waiting time
ω � 1/6. We have tested extensively the accuracy of
our approximation formulae by experimenting with
β ∈ {0,−1, 1}. To save space, we only report the case
β � 0 (the corresponding arrival rates are {24, 60, 120,
240, 480}). Other values of β give rise to similar accu-
racy. (The role of β is emphasized when we discuss the
related staffing problem in Section 4.1.1.)

Table 2 summarizes the comparison for Example 1
with a different right derivative k � 1, 3, 5. The column
“Approx.” is obtained via our approximation formu-
lae (33)–(34). The column “Simulation” is obtained by
simulating such a system with the given parameters.
The number after “±” indicates the half-width 95%
confidence interval. Note that when k � 1, the left and
right derivatives are the same, i.e., H( · ) is differen-
tiable at the fluid offered waiting time ω. In this case,
our approximation for the expected queue length coin-
cides with the fluid approximation. As Table 2 shows,
the larger the difference between the right and left
derivatives becomes (k becomes larger), the larger is
the error from the fluid approximation in estimating
the expected queue length.

5.3. Using the Hazard Rate of the
Patience-Time Distribution

Assume that the hazard rate of the patience-time distri-
butionH( · ) exists, anddenote it by h( · ). Following (30),
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Table 2. Comparison of the Approximation and the Simulation of Example 1

(a) Ɛ(Q∞)

k � 1 k � 3 k � 5

Servers Fluid Simulated Approx. Simulated Approx. Simulated Approx.

20 3.67 3.82± 0.02 3.67 2.61± 0.01 2.30 2.27± 0.01 1.87
50 9.17 9.05± 0.04 9.17 6.98± 0.03 6.99 6.36± 0.03 6.32
100 18.33 17.98± 0.06 18.33 14.94± 0.04 15.25 14.01± 0.03 14.31
200 36.67 36.19± 0.07 36.67 31.84± 0.05 32.31 30.51± 0.05 30.97
400 73.33 72.88± 0.09 73.33 66.71± 0.06 67.18 64.81± 0.06 65.28

(b) �(W∞ > ω)

k � 1 k � 3 k � 5

Servers Simulated Approx. Simulated Approx. Simulated Approx.

20 0.4188± 0.0015 0.4167 0.3079± 0.0012 0.3050 0.2619 ±0.0013 0.2575
50 0.4172± 0.0024 0.4167 0.3053± 0.0018 0.3050 0.2578± 0.0013 0.2575
100 0.4168± 0.0020 0.4167 0.3051± 0.0014 0.3050 0.2574± 0.0012 0.2575
200 0.4163± 0.0018 0.4167 0.3048± 0.0014 0.3050 0.2574± 0.0012 0.2575
400 0.4173± 0.0013 0.4167 0.3054± 0.0009 0.3050 0.2579± 0.0008 0.2575

we compute

fω(x)�
√
λ

[
H

(
ω+

x
√
λ

)
−H(ω)

]
�exp

(
−
∫ ω

0
h(y)dy

)√
λ

·
[
1−exp

(
−
∫ ω+x/

√
λ

ω

h(y)dy
)]

�Hc(ω)
√
λ

[
1−exp

(
−
∫ x/

√
λ

0
h(ω+ y)dy

)]
≈Hc(ω)

√
λ

[
1
√
λ

∫ x

0
h
(
ω+

y
√
λ

)
dy

]
(for large λ)

�Hc(ω)
∫ x

0
h
(
ω+

y
√
λ

)
dy. (53)

From (31), the density π of
√
λ(V(∞) − ω) can be

approximated by

π(x)≈C exp
(

2ρβx
σ2

)
· exp

(
−

2ρ
σ2 Hc(ω)

∫ x

0

∫ v

0
h
(
ω+

y
√
λ

)
dy dv

)
, (54)

with the appropriate normalizing constant C. Based
on (54), the probability �(W(∞) > y) and expected
queue length ƐQ(∞) can be approximated by replacing
fω(x) in (33)–(34) with Hc(ω)

∫ x

0 h(ω+ y/
√
λ)dy.

Consider now Example 2, where the density func-
tion of the patience-time distribution exists, but the
hazard rate has a very steep change around ω. The
individual service rate µ � 1. Assume that ρ � 1.2 and
h0 � 1; hence, the offered waiting time ω � ln(1.2). As
in the previous example, we report only the study for

β�0, with other β’s behaving similarly. Table 3 summa-
rizes the comparison for Example 2 for different system
sizes with the number of servers ranging from 20 to
400, and κ � 20, 100. The column “Appr. G” is obtained
via our approximation formulae (33)–(34) with fω(x)
from (30), while column “Appr. H” is calculated by
replacing (30) with (53). As Table 3(a) shows, the larger
the parameter κ becomes (meaning a steeper change
of the hazard rate), the larger the error that the fluid
approximation yields in approximating the expected
queue length. Since, in this case, the patience-time dis-
tribution is differentiable, we can also use the method
by Mandelbaum and Zeltyn (2009), which leads to
0.4167 in approximating �(W∞ > ω) for all systems in
Table 3(b). This is not nearly as close as either “Appr. G”
or “Appr. H.” We also observe that “Appr. G” seems
better for the tail probability of waiting times, and sim-
ilar or slightly worse for queue length, when compared
against “Appr. H.”

We now relate our general setting of scaling the
patience-time distribution to the hazard-rate scaling
in Reed and Tezcan (2012). Note that our study is
in the ED+QED regime (ω > 0), which is different
from the QED regime (ω � 0) studied in Reed and
Tezcan (2012). From the application point of view, the
ED+QED regime is more suitable for the analysis of
delay announcements. From the technical viewpoint,
our derivation of the corresponding diffusion limit is
quite different from that in the QED regime. Specifi-
cally, when analyzing the virtual waiting time at time t
for the QED regime, the customers in queue at time t
who would eventually abandon are negligible. How-
ever, under the ED+QED regime, these customersmust
be accounted for, which makes the analysis more chal-
lenging. At the same time, it is worth pointing out that
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Table 3. Comparison of the Approximation and the Simulation of Example 2

(a) Ɛ(Q∞)

κ � 20 κ � 100

Servers Fluid Simulated Appr. G Appr. H Simulated Appr. G Appr. H

20 4 3.34± 0.02 3.1599 2.6690 2.70± 0.01 2.4354 1.9113
50 10 8.65± 0.04 8.7328 8.2553 7.48± 0.04 7.025 7.0144
100 20 18.04± 0.05 18.3797 17.9050 16.30± 0.04 16.6151 16.1387
200 40 37.56± 0.06 38.0092 37.5344 35.11± 0.06 35.5413 35.0705
400 80 77.20± 0.08 77.9364 77.1579 73.84± 0.07 74.2668 73.7983

(b) �(W∞ > ω)

κ � 20 κ � 100

Servers Simulated Appr. G Appr. H Simulated Appr. G Appr. H

20 0.35785± 0.00143 0.3576 0.3271 0.28828± 0.00122 0.2879 0.2493
50 0.36396± 0.00210 0.3641 0.3461 0.29371± 0.00172 0.2938 0.2723
100 0.37122± 0.00188 0.3712 0.3589 0.30348± 0.00142 0.3037 0.2895
200 0.37858± 0.00175 0.3787 0.3703 0.31552± 0.00142 0.3157 0.3062
400 0.38652± 0.00124 0.3859 0.3801 0.32922± 0.00102 0.3286 0.3221

the diffusion limits in the QED and ED+QED regimes
share a somewhat similar structure (e.g., the variance
is constant and the drift is a continuous function of
the state). This similarity helps one to apply the same
procedure for calculating the stationary distribution of
both diffusion limits.
Consider a sequence of many-server queues indexed

by n. The patience-time distribution Fn( · ) has hazard
rate hn( · ) given by

hn(x)�
{

h(x), for x ∈ [0, ω],
h(ω+

√
λn(x −ω)), for x ∈ (ω,∞).

This implies that Fn
c (ω)� Hc(ω). In view of (53),

fω(x) ≈
{

Hc(ω)h(ω)x , x 6 0,

Hc(ω)
∫ x

0 h(ω+ y)dy , x > 0.

Therefore, by (54), the approximation of the density of√
λ(V(∞)−ω) can be written as

π(x)≈



Cexp
(

2ρβx
σ2

)
exp

(
−
ρ

σ2 Hc(ω)h(ω)x2
)
,

if x60,

Cexp
(

2ρβx
σ2

)
·exp

(
−

2ρ
σ2 Hc(ω)

∫ x

0

∫ v

0
h(ω+y)dydv

)
,

if x>0,

(55)

with an appropriately normalizing constant C. This
same structure also arises for the QED diffusion in
Reed and Tezcan (2012, Proposition 3.2).

5.4. On the Gap Between Fluid and
Diffusion Models

We observed in Table 2(a) that the fluid approxima-
tion could result in a large error, when the left and
right derivatives of the patience-time distribution do
not agree. We now further study Example 2, where
the patience-time distribution is differentiable but not
that smooth. Similarly to Table 3, we simulate Exam-
ple 2 with the same set of parameters (µ � 1, h0 � 1,
ρ � 1.2, ω � ln(ρ)/h0 and κ � 100), but consider a wide
range of system size. In Table 4, we compare the sim-
ulated queue length and the one obtained by diffusion
approximation, where the number of servers ranges in
{10i , i � 1, . . . , 6}.
To give a graphical viewof how the gap relates to sys-

tem size, we plot the difference between “Fluid” and
“Appr. H” in Figure 6. One can observe that the gap
stabilizes around 25, as the system size becomes fairly
large. However, for practical purposes, system size is
normally in the hundreds, notmillions. Thus, the diffu-
sion correction term does play an important role.

Table 4. On the Accuracy of the Fluid Approximation in the
ED Regime as System Size Becomes Large

κ � 100

Servers Simulated Fluid Appr. G Appr. H

10 1.30± 0.00 2 0.9983 0.4238
100 16.34± 0.04 20 16.6151 16.1387
1,000 191.58± 0.22 200 192.2776 191.8092
10,000 1,986.39± 1.58 2,000 1,986.265 1,985.7893
100,000 19,980.10± 22.18 20,000 19,980.7746 19,980.2881
1,000,000 199,929.32± 86.96 200,000 199,977.555 199,977.0616
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Figure 6. (Color online) Gap Between the Fluid and
Diffusion Approximations
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In fact, using the hazard-rate approximation, we now
demonstrate for Example 2, that the gap between the
fluid and diffusion approximation can be calculated
explicitly, and it is indeed O(1). Plugging (42) into (53),
we get the steady-state density,

π̃(x)�


Cκ exp

(
− 1
σ2 (h0x2 − 2βρx)

)
, x 6 0,

Cκ exp
(
− 1
σ2

(
h0x2

+
κx3

3
√
λ
− 2βρx

))
, x > 0,

(56)
where

Cκ �

[∫ ∞

−∞
exp

(
−h0x2

2 − κx3

6
√
λ

)
dx +

√
2π

2
√

h0

]−1

→
√

h0√
2π
,

as λ→∞.
Also, from (34) and (56), we deduce the approximation
for the expected queue length

Ɛ[Q(∞)] ≈ λ
∫ ω

0
Hc(x)dx +gap(λ),

where

gap(λ)� Cκ

∫ ∞

0
x exp

(
− x2

2

) (
exp

(
− κx3

6
√
λ

)
− 1

)√
λ dx.

It is easy to verify the bound����(exp
(
−κx3

6
√
λ

)
− 1

)√
λ

���� 6 κx3

6 ,

and that (
exp

(
−κx3

6
√
λ

)
− 1

)√
λ→ κx3

6 ,

as λ→∞ for all x > 0. Consequently,

lim
λ→∞

gap(λ)�− κ6
1
√

2π

∫ ∞

0
x4 exp

(
− x2

2

)
dx

�− κ6 ×
3
2 �−κ4 ,

where the integral was evaluated via integration by
parts. When κ � 100, the limit is −25, which is consis-
tent with Figure 6.

Our study of the gap relates to Bassamboo and
Randhawa (2010), who studied the gap between the
fluid-approximation and the steady-state of the origin-
ating system. It is proved in Bassamboo and Randhawa
(2010) that the latter gap is O(1), as the system size
becomes large. Our finding on the gap between the
approximations based on fluid and diffusion concurs
with this result. The two gaps are similar under the
premise that the diffusion approximation is close to the
originating system. Nevertheless, what we offer here is
an alternative view of the gap using fluid approxima-
tion, under more general conditions than Bassamboo
and Randhawa (2010). Indeed, they require, in their
Assumption 1, that the density function of the patience-
time distribution be continuously differentiable.

6. Conclusion
In this paper, we have established diffusion limits
for many-server queues with abandonment in a fairly
general setting of scaling the patience-time distribu-
tion. Such a generality allows the fine structure of the
patience-time distribution to be manifested in the dif-
fusion limit, and consequently in the approximation
formulae for the performance measures.

The fine structure of the patience-time distribution
can be naturally attributed to delay announcements.
Applying our approximation formulae, we have thus
investigated the impact of delay announcements in two
settings—first when the announcement is made upon
arrival, and next when it is made once customers’ wait-
ing time exceeds a threshold. We have also prescribed
the optimal staffing rule in the presence of a delay
announcement.

To illustrate the value and generality of our approx-
imations, we connect them to existing approaches of
scaling the patience-time distribution. Moreover, the
application of our general formulae does not require
the choice of a scaling method, and it applies to more
general settings than those in the literature.

From the technical point of view, we offer a new
method of obtaining the diffusion limits for many-
server queues, by focusing on the virtual waiting time.
Following our method, He (2015) recently developed
diffusion approximations for overloaded queues in the
nondegenerate slowdown (NDS) scaling. We believe
that our method can be also applied in the QED
regime, and we leave this for future research.

Another worthy direction to pursue is the study of
multiple announcements, first upon arrival and sub-
sequent ones during waiting, with the latter possibly
interacting with customers: For example, encouraging
an abandonment but simultaneously obtaining infor-
mation about when it would be convenient to call them
back. As a final point, deeper statistical validation,
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individual psychological modeling, and the effect of
announcements on model primitives, all naturally call
for further study.
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